JP2005123617A - パターン化しない連続磁性層にデータを記憶するシステムおよび方法 - Google Patents

パターン化しない連続磁性層にデータを記憶するシステムおよび方法 Download PDF

Info

Publication number
JP2005123617A
JP2005123617A JP2004297247A JP2004297247A JP2005123617A JP 2005123617 A JP2005123617 A JP 2005123617A JP 2004297247 A JP2004297247 A JP 2004297247A JP 2004297247 A JP2004297247 A JP 2004297247A JP 2005123617 A JP2005123617 A JP 2005123617A
Authority
JP
Japan
Prior art keywords
magnetic
track
storage device
data storage
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004297247A
Other languages
English (en)
Other versions
JP4516817B2 (ja
Inventor
Stuart Stephen Papworth Parkin
ステュアート・スティーヴン・パプワース・パーキン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JP2005123617A publication Critical patent/JP2005123617A/ja
Application granted granted Critical
Publication of JP4516817B2 publication Critical patent/JP4516817B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0808Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】メモリ素子のスイッチングがメモリ素子の形状およびサイズの影響を受けず、はるかに強い局所磁場を生成することができ、それによって、温度変動に対して十分な磁気安定性を有するより小さな磁気素子が可能になるMRAM構成の要求を満たす。
【解決手段】パターン化しない磁性被膜上にデータを書き込むために強磁性材料中の磁壁の固有な本来の特性を利用して、パターン化しない磁性被膜上にデジタル情報を記憶する。MTJ(磁気トンネル接合部)を利用して、このパターン化しない磁性被膜からデータを読み出す。十分な温度安定性を実現するために、これらの磁気領域の向きを変更するのに必要とされる磁場は、導線を流れる電流によってもたらされるものよりもはるかに強くすることができる。このようなより強い磁場は、2つの磁壁の境界で生成される磁壁漏れ磁場を用いることによって実現される。これらの磁気領域は、隣接する磁性導線内の磁壁からの漏れ磁場を用いることによって書き込まれる。これらの導線は、磁気記憶領域の書込みが行われるべき磁気記憶層の近くにもっていかれる。
【選択図】図1

Description

本発明は、一般にメモリ記憶システムに関し、特に磁区の磁気モーメントを利用してデータを記憶するメモリ記憶システムに関する。詳細には、本発明は、パターン化しない連続磁性層にデータを記憶するシステムに関する。
本出願は、同時係続の「シフト可能な磁気シフト・レジスタおよびそれを使用する方法(ShiftableMagnetic Shift Register and Method of Using the Same)」という名称の米国特許出願第10/458,554号および「磁気シフト・レジスタに書込みを行うシステムおよび方法(Systemand Method for Writing to a Magnetic Shift Register)」という名称の米国特許出願第10/458,147号に関連するものである。いずれも2003年6月10日に出願されたものであり、それら全体を参照により本明細書に組み込む。
現在、MTJ(磁気トンネル接合)メモリ素子を利用する高性能、不揮発性メモリとしてMRAM(磁気ランダム・アクセス・メモリ)に大きな関心が寄せられている。この磁気トンネル接合は、薄い絶縁材料で分離された強磁性材料の2つの層を備える。これらの層の一方の磁気モーメントの方向は、例えば、米国特許第5,650,958号に記載の反強磁性材料による交換バイアスによって、あるいは、米国特許第5,801,984号および第5,936,293号に記載されているように、この層を、第2強磁性層のものよりも大きな磁気異方性をもつ強磁性材料から形成することによって固定されている。
この第1層の磁気モーメントは、このメモリ素子の動作中に印加された磁場に極めてわずかしか応答しない。対照的に、第2強磁性層では、磁気モーメントの方向がメモリ素子の動作中に印加された磁場に応答して移動し、それによって、この層の磁気モーメントの方向を設定することができる。この印加された磁場は、書込み磁場または切替え磁場と称する。
第1および第2強磁性層の磁化がともにほぼ均質であり、かつ1つの特定の方向に沿って整列され、それによって、磁気モーメントにより、本質的に単一の磁区が形成されると有利である。通常は、磁気モーメントは均質にならず、減磁場が最も強くなるデバイスの縁部では特に、磁化が好ましい方向から離れるように方向づけられることがある。
そうではあるが、第2層中の磁気モーメントの方向は、第1層にほぼ平行または反平行になり、それによって「1」または「0」の形でデータを記憶することができる。一般に、個々のMTJは、磁気トンネル接合構造からなる連続被膜をマイクロ・リソグラフィによりパターン化することによって形成され、それによって、特定の形状および面積を有するMTJ素子が画定される。MRAMを生成するには、米国特許第5,640,343号に記載されているように、MTJデバイスに対して読出しおよび書込みを行うための「書込み」ラインおよび「ビット」ラインの網目構造中にこれらのMTJ素子を組み込む。
個々のMTJ素子の状態の設定および問い合わせを行うための電気回路は、従来方式のCMOSプロセスによって形成することができる。MRAMチップの製作時に、一般にMTJ素子は最初に、前のステップで製作した書込み(またはビット)ライン・アレイの上部に磁気トンネル接合構造からなる連続磁気多層被膜を被着させることによって製作される。次いで、エッチング技術を用いてMTJ被膜をパターン化して、特定の形状およびサイズの超小型トンネル接合部を形成する。
MTJを利用したMRAMに伴う主要な問題の1つは、MTJ素子を極めて小さなサイズにスケーリングすることである。これらの素子の切替え磁場は、これらのデバイスが小さくなるほど、デバイス縁部の細部構造の影響をよりいっそう受けやすくなる。MTJの形状およびサイズならびにこれらのデバイスの縁部の粗さが少し変動しても、個々のデバイスに書込みを行うのに必要とされる磁場の強さに大きな変化が生じる。さらに、これらの素子のサイズが小さくなるほど、MTJメモリ素子の状態を変化させるのに必要とされる磁場は強くなる。
MTJメモリ素子の縁部における磁極から発する静磁場により、書込み磁場または切替え磁場の必要な強さが概ね決まる。減磁場の役割を軽減するために、例えば、米国特許第5,841,692号、第6,153,320号、および第6,166,948号に記載されているように、薄い非強磁性層で分離された2つ以上の強磁性層からなるサンドイッチ構造から、MTJを構成する一方または両方の強磁性層を形成することによって、MTJデバイスの構造をより複雑にすることがある。
従来型MRAMのクロスポイント型構成では、記憶素子の状態は、MTJメモリ素子の近くで「書込みライン」用導線および「ビットライン」用導線からなる並列アレイに電流を流すことによって変化する。一般に、個々のMTJ記憶素子における局所的な磁場は、MTJ素子の真上および直下に配置された2本の導線に電流を流すことによって生成される。
MTJ素子は、各書込みライン用導線および各ビットライン用導線の「交点」に配置される。一般に、書込みライン用導線およびビットライン用導線は互いに直交して配置され、MTJ素子は、その磁化容易軸が、これらの導線のうちの一方、通常はビットラインと称する導線に沿った向きになるように方向づけられる。ただし、MTJデバイスは、これらの導線の方向に対して何らかの他の角度の向きで配置してもよい。一連のMTJ記憶素子は、各書込み用導線および各ビット用導線に沿って配置される。
これらのビットラインのうちの1本および書込みラインのうちの1本の交点のところで選択された1つの素子は、これらの導線に沿って同時に電流を流すことによって書込みが行われる。これらの同じ導線に沿って、書込みライン磁場またはビットライン磁場のいずれかに曝された多数の半ば選択された状態の素子がある。
書込みライン用導線およびビットライン用導線に沿って流れる電流によって生成され得る最大磁場は、電流密度が適度である場合には約100エルステッドに制限される(あるいは、これらの導線にパーマロイなどの高透磁率軟質強磁性材料が被覆されている場合には、この量は2倍になろう)。最大電流は、最終的にはエレクトロ・マイグレーションによって制限される。エレクトロ・マイグレーションでは、導線内の原子が導線を流れる電流によって移動することがあり、それによって、典型的には導線の局所的なくびれにより、局所電流密度が増加して制御困難な変化が生じるために、最終的に導線の破損が生じ得る。
このため、実際のデバイスでは、電流密度をこの制限よりも低くしなければならないが、このような状況下でさえも、電流密度は、電力損失およびチップ上のパワー・トランジスタのサイズに関する要件を含めて、他の理由によって制限されることになる。そのため、こうした電流に関する制約により最大磁場が制約され、それによってMTJ素子の最小サイズが制限される。
切替え磁場は、素子の正味の磁気モーメントを小さくすることによって、例えば、磁化値が比較的小さい磁性材料を用いることによって、あるいは磁性材料の使用量を少なくすることによって弱くすることができる。磁性材料の使用量は、MTJデバイス中の磁性層の厚さを薄くすることによって少なくすることができる。ただし、こうすると、このようなデバイスは、超常磁性効果による熱揺らぎの影響を受けやすくなる。したがって、MTJ素子は、MRAMデバイスの動作温度における温度変動に対してこれらの素子が安定になるのに十分な磁気異方性を有する必要がある。MRAMクロスポイント型構成で、素子の書込み中に、これらのデバイスが半ば選択された状態になるときは特にそうである。
米国特許出願第10/458,554号 米国特許出願第10/458,147号 米国特許第5,650,958号 米国特許第5,801,984号 米国特許第5,936,293号 米国特許第5,640,343号 米国特許第5,841,692号 米国特許第6,153,320号 米国特許第6,166,948号 米国特許第6,452,240号 米国特許第5,465,185号 米国特許第5,341,118号
したがって、メモリ素子のスイッチングがメモリ素子の形状およびサイズの影響を受けず、はるかに強い局所磁場を生成することができ、それによって、温度変動に対して十分な磁気安定性を有するより小さな磁気素子が可能になるMRAM構成が求められている。このようなシステムの要求は、これまで依然として満たされていない。このような要求は、本発明により満たされる。
本発明は、このような要求を満たし、可動部分がない固体デバイス中のパターン化しない磁性被膜、すなわちデータ記憶層にデジタル情報を記憶するシステムおよびそれに関連する方法(本明細書では、総称して「このシステム」または「本システム」と称する)を提示する。本システムは、パターン化しない磁性被膜に対して書込みおよび読出しを行う包括的な方法を提供する。簡単に言うと、本システムは、強磁性またはフェリ磁性材料中の磁壁の固有な本来の特性を利用して、パターン化しない磁性被膜上にデータを書き込む。MTJ(磁気トンネル接合部)を利用してパターン化しない磁性被膜からデータを読み出す。この磁性被膜は記憶層である。この磁性被膜は、複数のデータ・ビットを記憶し得る単一の連続層とすることもできるし、互いに連続していない一連の不連続な区画とすることもできる。
この磁性被膜は、単一の磁性層からなるものとすることもできるし、非強磁性スペーサ層によって分離された複数の磁性層からなるものとすることもできる。この被膜は、従来型の磁気ハード・ディスク・ドライブ内の磁気媒体で用いられるものに類似の磁性材料からなる。これらの磁性材料は、この層に書き込まれる磁気領域すなわちビットが温度変動に対して安定になるのに十分な固有の結晶磁気異方性を有する。このことは、これらの磁気領域すなわちビットの向きを変えるのに必要とされる磁場は、近くの導線を流れる電流がもたらし得るよりもはるかに強いことを意味する。ただし、このような比較的強い磁場は、磁性被膜の近傍に配置された磁性導線からなる磁気トラック中の2つの磁壁間の境界において生成される磁壁漏れ磁場を用いることによって実現することができる。
各磁壁に関連して強い漏れ磁場がある。この磁壁により、極めて小さなスペース内の磁性材料中で1つの方向から別の方向への磁気の変化が集中する。この磁壁の性質よっては、極めて強い双極性漏れ磁場がこの磁壁から放射し得る。磁区のこの特性を用いて、磁性被膜中のデータ記憶領域に書込みを行う。磁壁が磁性被膜すなわちデータ記憶層の近くに移動すると、磁壁の強い磁場により、記憶層内の局所的な記憶領域中の磁気モーメントの方向が変わり、それによって、記憶層にビットが実質的に「書き込まれる」。
磁壁漏れ磁場の重要な特性は、それらが磁壁に近いスペースの狭い領域に局所化されることである。そのため、磁壁漏れ磁場により、極めて局所化された強い磁場を提供することができる。この磁場は、磁気トラックまたは磁性導線などの磁性要素内で磁壁の位置を移動または制御することによって空間的に操作することができる。
磁壁によって生成された磁場は、数千エルステッドの切替え磁場によって磁性層に書込みを行うのに十分に強い。漏れ磁場の強さは、磁壁から離れるに従って急激に弱くなる。したがって、磁壁漏れ磁場によって特性が変わる材料から導線までの距離を変化させ、かつこの導線に沿って磁壁を移動させることによって、磁性被膜の近傍に配置された磁気トラックまたは磁性導線内で磁壁漏れ磁場の印加を制御することができる。
本システムでは、記憶層内の磁気記憶領域は、磁性導線からなる隣接した磁気トラック内の磁壁からの漏れ磁場を利用して書込みが行われる。これらの導線は、磁気記憶領域の書込みが行われることになる磁気記憶層の近くに置かれる。静止状態では、これらの磁区は、導線中の記憶層から離れた位置にもっていくことができる。この位置は、漏れ磁場が記憶層の状態に影響を及ぼし得ないほど記憶層の表面から十分に離れている。
磁気領域の書込みを行うために、磁壁は導線内を、この磁気領域の一方の側から、磁気領域を(この領域の近くを)横切って、導線の他方の側に移動する。この導線を流れる電流により磁壁の動きが制御され、その結果、磁気記憶層内の磁気領域の書込みが制御される。
一実施形態では、記憶層内の各磁気領域は、トランジスタに接続された関連する磁性導線を有する。この関連する磁性導線に電流を流して、対応する磁壁およびそれに関連する漏れ磁場を移動させることによって個々の磁気領域が切り替えられる。その結果、この磁気領域の書込みが行われる。磁壁がいずれの方向(左から右、または右から左)に移動するかに応じて、1つの方向または他の方向にこの磁気領域の書込みが行われる。
別の実施形態では、各磁気記憶領域に関連する磁性導線は全体として直列に接続され、それによって、各磁気領域に関連する磁壁は、記憶領域を横切って一緒に移動する。磁性導線を記憶層の上下に配置することによって、選択された磁気領域の上下の導線からの磁壁漏れ磁場の組合せによって、選択された磁気領域の書込みが行われる。半ば選択された状態の領域の書込みは行われない。
磁性被膜またはデータ記憶層は、連続したものとすることもできるし、あるいは、互いに連続しない比較的小さな磁気区画からなるものとすることもできる。これらの比較的小さな磁気区画は、1つ(または少数のデータ記憶領域)しか含まないほど小さな区画から、あるいは、1つまたは複数の書込みトラックに関連する一連の磁気データ領域を含む程度に十分に大きくし得るものまで、サイズが変化し得る。
好ましい実施形態では、1つ(または複数)のデータ記憶領域が、磁気区画の縁部または境界まで延びないように磁気区画を十分に大きくする。こうすると、この区画の縁部の細部の形態および形状は、この区画内で1つまたは複数の磁気領域の書込みを行うのに必要とされる磁場の強さに影響を及ぼさない。その結果、個々のデータ記憶領域は、従来型のMRAM構成の場合と同様の特定の形状を有する特別な区域に「パターン化」されず、「パターン化されない」磁性被膜またはデータ記憶層内に存在することになる。同様に、これらのデータ記憶領域は、ナノメートル・レベルで小さくパターン化された、特定の形状およびサイズの磁気素子中に局所化されない。そうではなくて、それらは単に、パターン化されず、その他の点では均質な磁性被膜内の領域である。磁性被膜内での磁気領域の位置は、書込み素子によって好都合に決まる。
従来のMRAM設計に比べて本発明の1つの利点は、パターン化しない磁気データ記憶層内で磁気領域の書込みを行うのに必要とされる磁場は、この層の磁気特性の影響しか受けず、ナノメートル・レベルでパターン化された磁気素子の細部の物理的な構造の影響を受けないことである。さらに、磁気書込み素子内の磁壁漏れ磁場を用いると、非磁性導線を流れる電流から生成され得るものよりも、はるかに強い局所磁場が可能になる。こうすると、従来型のクロスポイント設計で可能なものよりも、はるかに高い密度を実現することができるMRAMが可能になる。
次に、本発明の様々な特徴およびそれらを実現する方法を、以下の説明、特許請求の範囲、および図面を参照してより詳細に説明する。図面では、適切な場合には、参照する要素間の対応を示すために参照数字を繰り返し用いる。
従来のMRAM構成では、例えば、従来方式の光学ビームまたは電子ビームあるいはその両方によるリソグラフィおよびエッチングによってリソグラフィ的にパターン化された特定の形状およびサイズを有する離散した磁気メモリ素子を用いることが必要である。一般に、これらのメモリ素子は、これらの磁気メモリ素子に対して、読出し、書込み、および問い合わせを行うために用いられる回路を形成するトランジスタおよびコンデンサなどの微小電子コンポーネントの上部に製作される。
まず、典型的にはシリコン・ウエハ上にこれらのコンポーネントが形成され、次いで、通常はまずウエハ全体にわたって、磁気メモリ素子を構成する連続被膜を被着させることによって磁気メモリ素子が製作される。次いで、この被膜をリソグラフィによりパターン化して、特定の明確な形状およびサイズの磁気メモリ・デバイスにする。これらのデバイスは、これらの素子を下にある電子コンポーネントに接続する導線またはビアに極めて精確に位置合わせされる。
最後に、パターン化した磁気メモリ素子の上部にビアおよび導線を製作して、これらの素子に最終的な電気的接続部を設ける。一般に、磁気メモリの性能は、磁気メモリ素子の細部の形状およびサイズ、ならびにこれらの素子の上下の回路に対するこれらの素子の配置の精度に大きく影響される。そのため、これらの素子の形状およびサイズは、極めて良好に制御しなければならない。さらに大きなメモリ記憶容量を可能にするためにこれらの素子のサイズが縮小するにつれ、この制御がますます難しくなりつつある。
図1に、パターン化しない連続磁性被膜10Aを備える磁気メモリ・デバイス100の上位構成の例を示す。磁気データ記憶層10Aは、明確な構造をもたず、各データ・ビットの位置も指定されず、そのため、この磁性被膜にデータを極めて密に書き込むことができる。
本明細書で用いるとき、「パターン化する」という用語は、記憶層が一連の区画からなることを示す。これらの区画はそれぞれ、磁気記憶層内で磁気領域を構成する少なくとも1つのデータ・ビットを収容するのに十分に大きい。さらに、各区画は、その区画の縁部が、その区画内に記憶されるデータ・ビットの書込みに大きな影響を及ぼさない程度に十分に大きい。
一般に、「パターン化しない」という用語は、記憶層が記憶データ・ビット・アレイ全体にわたって連続していることを示す。パターン化された領域とは、円形、楕円形、長方形、正方形、または台形など任意の所望の形状のものとし得る区画である。パターン化された区画は、1つまたは複数の行または列のデータ・ビットが含まれるように十分に大きくすることもできる。
磁気メモリ・デバイス100は、(本明細書では書込み素子とも称する)一連の書込みデバイス20を用いる。書込みデバイス20は、個々の磁性導線でできている多数のトラックからなる。これらを、トラック25、30、35、40などの磁気トラックで示す。これらのトラックは、磁化が、好ましくはトラックに沿って1つの磁区から次の磁区に、1つの方向の磁化から反対の方向の磁化に交互に変わる複数の磁区からなる。単なる説明のために、図1では隣接するトラックの磁区が反対に磁化されるように示すが、動作時には、1つのトラックから次のトラックに磁区の向きが相関している必要はなく、書込み素子の履歴に応じて変化し得る。
図1では、書込みデバイス20は、磁性被膜10Aの面の上下に位置する。参照を簡単にするために、本明細書では、トラックの例である25および30は、これらが磁性被膜10Aの面の上に配置されるので上部トラックとも称する。同様に、本明細書では、トラックの例である35および40は、これらが磁性被膜10Aの面の下に配置されるので下部トラックとも称する。本明細書では、「上部」および「下部」という用語は、限定するための用語としてではなく、単なる説明のために用いられていることが明らかであろう。
この実施形態の例では、トラック25、30、35、および40は、導線中のアーチ状の湾曲部が磁性被膜10Aにほとんど接触するように形成される。データは、データ・ビット45で表す各データ・ビットに書き込まれる。ここで、磁性被膜の上のトラックのアーチ状の湾曲部は、磁性被膜の下のトラックのアーチ状の湾曲部に一致する。
磁性被膜10Aの上面に薄い絶縁層15Aを被覆し、底面にほぼ類似の薄い絶縁層を被覆する。好ましくは、これらの絶縁層の一方あるいは両方により、層10A中のデータ・ビットの状態を読み出すための、磁気トンネル接合部のトンネル障壁コンポーネントを形成することができる。
磁性被膜10Aおよび書込み素子20は、絶縁材料で取り囲まれる。この絶縁材料は、磁性被膜10Aおよび書込み素子20の製作プロセス中に作製され、それによって固体メモリ・デバイスが形成される。
電流が強磁性金属を流れると、スピン・アップ電子およびスピン・ダウン電子からなるこの電流はスピン偏極した状態になる。というのは、スピン・アップ電子およびスピン・ダウン電子の電気伝導率が、磁性金属中では全く異なるものになり得るからである。(定義では、電流と反対方向に移動する)スピン偏極した電子が、磁壁の第1の側から他方の側に流れると、この電流は、磁壁の第1の側の磁化方向に沿う方向にスピン偏極した状態になる。
次いで、スピン偏極した電子により、スピン角運動量が磁壁の第2の側の反対に磁化された材料に送られて磁壁の第2の側の磁気モーメントが回転し、それによって磁壁が誘起されて、スピン偏極した電子の方向、すなわち電流の方向と反対方向に多数のスピン偏極した電子の分だけ移動する。電流が逆方向に流れる場合には、磁壁も反対方向に移動することになる。
書込みデバイス20のトラック(すなわち、トラック25およびトラック35)に沿って電流が流れると、電流の方向に応じて、これらのトラック内の磁区が左または右に移動する。これらの磁区が移動すると、磁壁からの漏れ磁場により、磁性被膜10Aへの書込みが行われる。これらのトラックに沿って、各磁壁に関連する漏れ磁場がそれぞれ書込みを行うことができる。ただし、漏れ磁場の磁場は、上部トラック25中の漏れ磁場が、同じデータ・ビット45に印加される下部トラック35中の漏れ磁場と合成されない限り、データがデータ・ビット45に書き込まれないように選択する。
図1では、トラックを、これらのトラックに沿って規則的に離間した一連の磁壁とともに示す。これらの磁壁は、トラックに沿って互いに反対方向に磁化されたトラック領域間の境界のところに形成される。これらの磁壁は、必ずしも規則的に離間している必要はないことを理解されたい。図1では、これらの磁壁を、磁気記憶被膜に書込みを行っていない静止状態で示す。
図6〜図8(図6、図7、図8)の詳細図面に、書込みデバイス20の動作を示す。書込みデバイス20は、磁性被膜10Aの近傍に配置された導線25および導線35などの強磁性トラックまたは導線からなる。導線25および導線35は、これらの導線中のアーチ状の湾曲部によって被膜10Aの近傍にもっていかれる。
例として示すように、強磁性トラック25は、互いに反対方向に磁化された磁区の例である205および210など複数の連続した磁区からなる。強磁性トラック35は、やはりトラックに沿って互いに反対方向に磁化された複数の連続した磁区215、220からなる。これらの磁区205と210および215と220により、磁壁225および230がそれらの間に画定される。
磁区205と210および215と220の磁化方向は、このメモリ・デバイスの初期化中に設定される。この初期化段階は、メモリの製作後、メモリ・デバイスの動作前に一度だけ行う必要がある。これは、これらの磁気トラックを詳細に設計し、かつ、例えば強い外部磁場を適切な順序で印加することによって行われる。
これらのトラックの初期状態は、これらのトラックの端部から磁区を注入することによっても確立することができる。例えば、トラック自体の磁気状態を変更するのに必要とされるものよりも弱い磁場内で、1つの方向から他の方向に容易に磁化を回転することができる磁気領域から磁区を注入する。これらの磁気領域は、例えば、トラックよりも広くすることができる。というのは、狭い磁性導線または磁気領域の切替え磁場は、それらの幅にほぼ反比例して減少するからである。
導線に磁区を注入した後で、この導線に電流パルスを流すことによって、この磁区をトラックまたは導線に沿って移動させることができる。一続きの磁壁を注入し、かつ電流パルスにより磁壁の移動を誘起することによって、一続きの磁壁を各トラックに沿って確立することができる。これらの磁区をトラック内に確立した後は、これらの磁区は、磁気記憶被膜にデータ・ビットを書き込むためにこれらのトラックに電流を流すことによってのみ移動する。
具体的に図7を参照すると、第1磁壁225は漏れ磁場235に関連し、第2磁壁230は漏れ磁場240に関連する。書込みデバイス20の磁壁225および230がともに、磁性被膜10Aに最も近い(データ領域とも称する)領域を通過すると、書込みデバイス20の磁壁225から放射される強い磁場と、磁壁230から放射される強い磁場が合成されて、磁気記憶被膜10A内のデータ領域にデータ・ビットを書き込むことができる。
磁気記憶被膜10Aへの書込みを行うために、書込みデバイス20は、磁性被膜10A内のデータ・ビット45の磁気モーメントの方向を選択的に変更する。この図では、磁気記憶被膜10Aに印加される漏れ磁場235および240の強さは、それぞれの磁壁225および230の周りの領域の外側で、書込みデバイス20または磁性被膜10Aのいずれにおいても急激に減少する。
したがって、磁壁225および230に関連する漏れ磁場を用いて、磁気記憶被膜10Aに、極めて局所化された強い磁場を提供することができ、それによって、磁性被膜10A内で小さな磁気領域45の書込みを行うことができる。書込みデバイス20によって磁性被膜10Aに印加される漏れ磁場235および240の強さは、書込みデバイス20内で磁壁225および230の相対的な位置を制御することによって制御することができる。
さらに、磁壁225の位置は、トラック25に沿って電流250を印加することによって制御される。同様に、磁壁230の位置は、トラック35に沿って電流255を印加することによって制御される。
図8に示すように、磁壁225および230はそれぞれ、このビットの書込みが行われた後で、電流250および255によって磁気ビット45から離れるように移動する。図6および図8に示すように、トラック25および35は、磁壁が書込みに用いられていないときに磁壁の位置を固定するために、これらのトラックのアーチ型領域のいずれの側にも切欠を有する。
書込み動作中、パルス250および255などの電流パルスを、それぞれのトラック25および35に印加する。これらの電流パルスは、対応する磁壁225および230を、アーチ型領域の一方の側の1つの切欠位置から、アーチ型領域の他方の側の第2切欠位置まで移動させるのに十分な大きさと継続時間を有する。
これらの切欠位置間で磁壁が移動する間、これらの磁壁およびそれらに関連する漏れ磁場は磁気記憶被膜の近くにもっていかれ、それによって、磁気記憶被膜は、小さな磁気領域の磁化方向を、1つの方向またはそれと反対の方向に設定して磁気ビットを書き込むのに十分に強い局所磁場に曝される。
図6〜図8では、磁性被膜10A内での磁気領域45の書込みは、記憶被膜10Aの上のトラック25内の磁壁からの漏れ磁場と、記憶層10Aの下のトラック35からの漏れ磁場を合成することによって行われる。
本発明の別の実施形態では、磁気記憶被膜10Aの上下いずれかの単一のトラックからの1つの磁壁だけからの漏れ磁場によって書込みが行われる。
図1では、磁性被膜10Aは、パターン化しない連続磁性被膜として示されている。しかし、例えば図2〜図5に示す他の実施形態では、各磁性被膜10B〜10Eは、互いにそれぞれ別個の磁性材料の複数の区画からなる。
例えば、図2に示すように、磁性被膜10Bは、単一のデータ・ビットを選択的に書き込むことができる一連のほぼ円形(または楕円形)形状の区画、すなわち101、102、103からなる。これらの区画101、102、103は、書込み素子20内の書込みデバイスからなる「行」および「列」のそれぞれに沿って分布し、かつ位置合わせされている。
これらの区画101、102、103は、磁気ビットを1つだけを含む程度に十分に大きく、そのため、図1に示す各データ・ビットは、この磁性被膜の1つの区画内に含まれる。磁気ビットは、磁気区画の縁部いっぱいまでは延びず、そのため、このビットを書き込むのに必要とされる書込み磁場は、区画101、102、103の縁部の細部の形状および形態の影響は受けない。そのため、磁気区画101、102、103は、各区画に関連する上部および下部の対応する磁気トラックに精確に位置合わせする必要はなく、それによって、メモリ・デバイスの製作が、匹敵するデバイスよりもはるかに容易で簡単かつ安価になる。
本明細書に示す実施形態では、形状が区画101、102、103に相当する一連の絶縁層15Bが、これらの区画上に形成される。ただし、層15Bは、磁気区画101、102、103の縁部の先まで延びてもよく、連続して1つの区画から別の区画に延びてもよい。
層15Bの大きさは、磁気メモリ・デバイス100を製作する方法の詳細によって決まる。さらに、層15Bは、磁性被膜区画101、102、103に精確に位置合わせされる必要はない。層15Bは、上部磁気トラック25、30に接触する磁気区画101、102、103の中央部分を覆って、読出し用のトンネル障壁を形成するだけでよい。
任意選択で、区画101、102、103の下面に類似の絶縁層を被覆することができる。この任意選択の絶縁層も、磁気トンネル接合読出しデバイス内にトンネル障壁層を形成することができる。ただし、区画101、102、103は単一のデータ・ビットを含み、それぞれ1つの上部トラックおよび下部トラックとしか交わらないので、下部トラックを、磁気区画と電気的に接触させることができ、この磁気区画と下部トラックの間の分離層は必要とされない。
図3に、磁性被膜10Cが一連のほぼ長方形(あるいは、正方形、三角形その他の任意の適当な)形状の区画、すなわち、単一のデータ・ビットを選択的に書き込むことができる104、105、106からなる書込みデバイス20の別の実施形態を示す。これらの区画104、105、106は、書込み素子20内の書込みデバイスからなる「行」および「列」のそれぞれに沿って分布し、かつ位置合わせされている。この実施形態では、形状が区画104、105、106に相当する一連の絶縁層15Cが、これらの区画上に形成される。
図2に関連して上記で説明した配置に類似して、層15Cは、上部トラック25、30が磁気区画104、105、106の近くにある領域に大きさを制限することができる。あるいは、層15Cは、磁気区画間で連続するものとし得る。任意選択で、対応する薄い絶縁層を、磁気区画104、105、106の下面に配設することができる。
図4に、磁性被膜10Dが、一連の列すなわち107、108、109からなる書込みデバイス20の別の実施形態を示す。この実施形態では、形状が区画107、108、109に相当する一連の絶縁層15Dが、これらの区画上に形成される。
図5に、磁性被膜10Eが、一連の列すなわち110、111、112からなる書込みデバイス20の別の実施形態を示す。この実施形態では、形状が区画110、111、112に相当する一連の絶縁層15Eが、これらの区画上に形成される。
図4および図5に示す実施形態のいずれにおいても、対応する絶縁層15Dおよび15Eは、一方では、上部トラックと磁性被膜が近接する領域に横方向範囲を制限することもできるし、他方では、隣接するトラック間で連続したものとすることもできる。同様に、対応する磁気区画の下面上に薄い絶縁層があってもよいし、なくてもよい。
磁性被膜10が比較的小型の磁気区画から構成される方法に関わらず、これらの区画は、それらが個々の磁気ビットに対してパターン化しない磁性被膜のように振る舞う程度に十分に大きい。そのため、磁気区画の周辺領域、すなわちこの区画の縁部の細部の形状および形態は、パターン化された個々の磁気記憶ビットを伴う従来型MRAMの場合とは異なり、個々の磁気ビットの書込みに影響を及ぼさない。
図9〜図11(図9、図10、図11)に、本発明に関連して用いられる磁区、磁壁、および漏れ磁場の概念を示す。図9に、書込み素子20のトラックを構成する磁性材料層の例を示す。この磁性材料層は、2つの磁区305および310を有し、それらの磁化はx軸に沿って互いに反対方向に方向づけられている。
矢印315などの矢印は、磁気モーメントすなわち双極子を示し、かつ局所的な磁化方向を示す。磁区305内の磁気モーメントは右を指しており、磁区310内の磁気モーメントは左を指している。磁壁320は、反対極性の磁区310、305が交わる領域である。磁区305と磁区310の間の磁化の変化が、小さな領域すなわち磁壁320に集中しており、それによって強い双極性漏れ磁場が生成されて、この層の表面から放射される。
図10に、漏れ磁場Bの例の相対的な大きさを示す。漏れ磁場Bは、例えばx方向に約100nmの領域にわたって局所化され集中している。図11に、漏れ磁場Bの成分Bx、By、およびBzのピーク値を面外れ距離の関数として示す。漏れ磁場はz方向にも局所化されており、主にz方向の約20nmの領域に集中している。
これらの漏れ磁場成分Bx、By、およびBzは、磁壁320の領域内では極めて大きく、磁壁320から離れるに従って急激に減少する。その結果、漏れ磁場Bは局所化され、小さな局所化された領域内で第2磁性材料を磁化するのに用いるのに十分に大きくなる。
漏れ磁場Bの成分の大きさおよび空間的な変動の細部は、磁壁320内での磁化の空間的な変動の細部によって決まる。磁壁内の磁化の分布は、書込み素子20の磁気トラックを構成する磁性層中の磁性材料の磁気パラメータ、特に、磁化(単位体積当たりの磁気モーメント)、磁気異方性、および磁気交換の強さ、ならびに磁性層の厚さおよび幅によって決まる。
漏れ磁場Bを用いて、磁性被膜10内で磁気領域の書込みを行う。磁壁320が別の磁性材料の近くに移動すると、磁壁320の強い漏れ磁場Bにより、この第2磁性材料中の磁気モーメントの方向が変わり、それによって、実質的にこの磁性材料への「書込み」が行われる。この磁壁320は、磁性導線の磁性材料に磁壁320に直交する電流を流すことによって、書込み素子20の磁気トラックの磁性導線内を移動させることができる。
磁区の磁気モーメントの方向は、書込み素子20の磁気トラックの方向に沿うものとすることもできるし、磁気トラックの方向に直交するものとすることもできる。極めて狭いトラックでは、磁気モーメントの好ましい方向は、トラックの方向に沿うものである。
図12のプロセス・フロー・チャートに、本発明に従って書込みデバイスによりデータを書き込む方法400を示す。この方法は、図13〜図15(図13、図14、図15)に即して検討したものである。図に、書込みデバイス20の書込み領域505(図13)の外側で磁気トラック内の静止位置にある磁壁およびそれに関連する漏れ磁場を示す。データの書込み要求は、メモリ・システムが受け取る。
図12のブロック405で、メモリ・システムは、データ(0または1)を、磁気データ記憶被膜中のデータ・ビット510が、右を指す磁気モーメント(右磁気モーメント)を受け取るか、あるいは左を指す磁気モーメント(左磁気モーメント)を受け取るかのいずれかに変換する。決定ブロック410で、データ・ビット510が左磁気モーメントで書き込まれる場合、方法400はブロック415に進む。
ブロック415で、図13の書込みデバイス20のトラック520に電流515を印加して、電流515の方向を示す矢印で示すように、正の方向に磁壁525を移動させる(ブロック420)。トラック520は磁性被膜10の上に配置されている。電流515の印加に応答して、漏れ磁場530が書込み領域505内に移動する(図15)。
図14に、図13の静止位置と、図15の書込み位置の間の中間位置における磁壁525を示す。同時にかつ同様のやり方で、磁性被膜10の下に配置され、トラック520に直交する向きのトラック540に電流545を印加する。電流545の矢印の端部は、この電流が図13、図14、図15に入る方向に流れることを示す。
データ・ビット510のところで、かつデータ・ビット510のところでのみ、トラック520およびトラック540はともに、データ被膜10に近接している。トラック540に電流545を印加して、書込み領域505内に漏れ磁場550を移動させる。漏れ磁場530および550により、データ・ビット510に書込みが行われ(ブロック425)、それによって、データ・ビット510の磁化の方向が所望の方向を指すように変更される。
次いで、トラック520および540に電流515および545を印加し(ブロック430)、それによって、漏れ磁場530および550がデータ・ビット510の領域から取り除かれる。漏れ磁場530、550は、それらの前の位置に戻してもよいし、それらのそれぞれのトラック520、540に沿ってさらに移動させてもよい(ブロック435)。
書込みデバイスの漏れ磁場530および550は、ある瞬間または所定の時間しか磁性被膜10の近傍に留まらないが、磁性被膜10のデータ・ビット510に書込みを行うにはそれで十分である。データ・ビット510に印加される漏れ磁場530および550の強さは、磁壁トラック520および540が磁気記憶被膜10の近傍にあるときだけ強くなる。
決定ブロック410で、データ・ビット510が右磁気モーメントで書き込まれる場合、方法400はブロック440に進む。ブロック440で、図16に示すようにトラック520に電流515を印加し、それによって、磁壁555が負の方向に移動する(ブロック445)。
漏れ磁場560は、書込み領域505内に移動する(図16)。同時にかつ同様のやり方で、磁性被膜10の下に配置され、トラック520に直交する向きのトラック540に電流545を印加する。データ・ビット510のところで、かつデータ・ビット510のところでのみ、トラック520およびトラック540はともに、データ被膜10に近接している。
トラック540に電流545を印加して、書込み領域505内に漏れ磁場565を移動させる。電流545の先端は、この電流が図16、図17、図18から出る方向に流れることを示す。漏れ磁場560および565により、磁性被膜10に書込みが行われ(ブロック450)、それによって、データ・ビット510の磁化の方向が右方向を指すように変更される。次いで、トラック520および540にそれぞれ電流515および545を印加し、これらの磁区がデータ・ビット510から離れるように移動する(図12のブロック435)。
本発明の別の実施形態では、図13〜図18のトラック520および540をアーチ状の湾曲部をもたない真っ直ぐな導線として製作する。すなわち、磁気記憶被膜は常に、磁壁が静止位置にあるときでさえ、強い磁壁漏れ磁場に曝されていることになる。
2つのトラック内の磁区からの漏れ磁場を合成したものによって磁気領域が書き込まれる図13〜図18に示す実施形態では、上記のやり方は許容可能であるが、アーチ状の湾曲部により、書込みプロセスを除き、強い漏れ磁場が記憶被膜に作用することが妨げられる図13〜図18に示す実施形態の場合よりも望ましくない。
磁気記憶被膜10および書込みデバイス20の特性は、単一の磁壁からの漏れ磁場では、磁気記憶被膜内の磁化方向を変更するには不十分であるように選択される。
別の実施形態では、図19〜図20(図19、図20)に示すように、各トラック605、610においてアーチ型湾曲部の代わりに小さな強磁性ブロック615および620を使用する。これら強磁性ブロック615、620の上部に薄い層625、630を形成する。
この薄い層を用いて、磁性被膜10から強磁性ブロック615、620までの間隔を決める。好ましくは、書込みデバイスは磁性被膜10と電気的に接触するべきではないので、(図2および図3に示すように、おそらくは磁性被膜が1つの磁気ビットに対応する区画に分割される場合を除き)薄い層625、630は、書込みデバイス20Bおよび磁性被膜10を取り囲む絶縁材料と連続したものとし得る絶縁材料から形成することができる。
磁壁635は、電流640によって強磁性ブロック615の中央まで押される。図19〜図20に示す実施形態は、図13〜図18に示す実施形態よりも製作が簡単になり得る。
別の実施形態では、図21に示すように、書込みデバイス20Cにおいて均質な強磁性またはフェリ磁性材料の代わりに、不均質な強磁性またはフェリ磁性材料を用いることができる。書込みデバイス20Cのトラック705は、交互に並んだタイプの強磁性またはフェリ磁性材料で構築される。
例えば、ブロック710および720は、1つのタイプの磁性材料から形成し、ブロック715および725は、別のタイプのものから形成する。これらの交互に並んだタイプの強磁性またはフェリ磁性材料は、トラック705内の磁区がそれらの静止位置に留まるように画定された領域を生成する働きをする。ブロック710および720の磁気モーメントは同じ方向に整列され、そのため、書込みデバイス20Cが静止状態にあるときには漏れ磁場が磁性被膜10に印加されない。
磁性被膜10への書込みは、磁気トラック705に沿って電流を流して、このトラックに沿って磁壁を移動させることによって行う。トラック705に沿って適切な方向に電流パルス(またはパルス・トレイン)を印加することによって磁壁730、735を移動させると、対応する磁壁730または735は、トラックが磁性被膜10の近傍に存在する書込み領域740にもっていかれる。このトラックは、例えば、データ領域740の近傍では幅が異なるように設計することができ、それによって、磁壁がこの位置に留まり、この磁壁を書込み位置からこの磁壁の静止位置に、書込み領域から離れるように移動させるのに第2電流パルスを必要とすることが好ましい。
図21には書込みデバイス20Cの上部トラックだけを示すが、類似の下部トラックも追加することができる。この下部トラックは、上部トラックに対してある角度で位置決めすることができる。データ領域740の書込みは、この領域が、上部および下部トラック内を移動して書込み領域に達した両方の磁壁からの磁場を合成したものに曝されるときにのみ行われる。
最初に、上部または下部トラックのいずれかの磁壁が書込み領域740に移動して、領域740が第1磁場に曝されると好ましいことがある。その後、第2磁壁を、書込み領域の反対側に移動させる、すなわち、書込み領域740を横切って停止させずに移動させる。この方法は、上部および下部トラック内の磁壁がともに、磁気書込み領域を通って、この領域内で停止することなく同時に移動する場合のように、対応する上部および下部トラック内の磁壁の移動のタイミングがそれほどきわどくないので有利なことがある。
一実施形態では、順次電流パルスによって決まる時間だけ磁壁がデータ・ビット740、745の上に位置するように、これらの磁壁を移動させる。第1パルスにより、磁壁漏れ磁場730および735が、磁性被膜10の近くに移動する。類似のやり方で、電流パルスにより、磁性被膜10の下の磁壁からの漏れ磁場が層10の上からの漏れ磁場と同時に到達するように、磁性被膜10の下の対応するトラックに沿って磁壁を移動させる。
磁壁およびそれに関連する漏れ磁場の到達時間を調整することによって、これらの磁壁からの合成磁場が磁性層10の書込みを行うのに十分に大きくなる時間の長さを調整することができる。層10の上下にあるこれら2つの磁壁からの漏れ磁場の強さが異なると有利なことがある。この磁壁漏れ磁場は、層10からのトラックの物理的な間隔を変えることによって、または、トラックを製作する磁性材料の特性を変えることによって、あるいは、トラックの形状およびサイズ(例えば、厚さおよび幅)を変えることによって容易に変えることができる。
別の実施形態では、磁気領域すなわち磁区710および720を1つにまとめ、1種類の磁性材料から形成することができる。磁気領域715および725は、交互に並べる別の種類の磁性材料から合わせて形成する。このパターンは、トラック705全体を通じて繰り返すことができる。磁性被膜10の真上で磁壁を固定する潜在能力をもたらす手段は不要である。磁性被膜10の書込みは、単に、書込みを行うビットの上で磁壁を停止させずに、磁性被膜10の近くで磁壁およびそれに関連する漏れ磁場を通過させることによって実施し得る。
一般に、磁気ビットを磁気記憶被膜10に書き込むための磁壁を提供するのに用いられるトラックは、これらの磁壁が、静止状態では書込み位置から離れた明確な位置に留まるように設計される。これらの位置は、例えばトラック幅がわずかに狭くなる切欠、またはトラック幅がわずかに広くなる突起を形成することによって導線を整形するか、あるいは、異なる磁気特性、例えば異なる磁化または磁気異方性あるいはその両方を有する異なる磁性材料の領域からトラックを形成するか、もしくはこれらの方法を組み合わせることによって画定される。
図21の実施形態に、切欠および交互に並んだ磁性材料を使用して、静止状態において磁壁の位置を画定するところを示す。どの方法を用いるかの選択は、特に、トラックの製作方法およびトラックの製作のし易さに依存し得る。
磁壁が書込み位置のいずれの側でもトラックに沿った特定の位置に留まるようにトラックを製作することに加えて、複数の磁性材料を配置するか、あるいは磁壁が書込み位置のところにも留まるようにトラックを整形することによって、トラックを設計することもできる。後者の場合には、1つの電流パルスを用いて、静止状態位置の1つから書込み位置まで磁壁を運び、第2電流パルスを用いて、書込み位置から静止状態位置の1つまで磁壁を運ぶ。(この位置は、磁壁が最初にそこから移動してきた位置と同じ静止位置とすることもできるし、あるいは、書込み位置の他方の側の静止位置とすることもできる。)
さらに、磁気記憶被膜の上下にあるトラックは、一方のトラックには書込み中に磁壁の固定位置があり、他方のトラックはそれとは異なり、このような位置がないように設計することができる。こうすると、磁気領域を磁性被膜10に書き込むために、最初にこれらのトラックの1つにおいて電流パルスを用いて、このトラック内の書込み位置に磁壁を運ぶことができる。
次いで、磁性被膜の他方の側の対応するトラックにおいて電流パルスを用いて、一方の静止状態から他方の静止状態に書込み位置を横切って磁壁を運ぶことができる。こうすると、磁気ビットは、一方の磁壁漏れ磁場によってもたらされる静止磁場と、反対側のトラック内の磁壁によってもたらされる動的なすなわち移動する磁壁漏れ磁場とを合成したものによって書き込まれる。その結果、最初に、一方のトラックからの磁壁漏れ磁場により、1つの方向に静止磁場を印加し、次いで、第2トラックからの磁壁漏れ磁場を用いて、直交する方向に動的な磁場を印加することによって、磁気ビット45の磁化を歳差回転させる方法を利用することができる。
磁壁漏れ磁場の詳細な空間的変動は磁壁の構造によって決まり、磁壁の構造は、トラックを形成する磁性材料の磁気特性ならびにトラックの細部の形状およびサイズ、すなわち磁性材料の厚さおよび幅によって決まる。漏れ磁場の空間的な変動は、トラックの磁気構造のマイクロ磁気学的なシミュレーションによって決定することができる。
これらのシミュレーションから、磁壁内の磁化変動は複雑であり、例えば、トラックの厚さおよび幅が変化すると大きく変化し得ることが示される。そのため、磁壁漏れ磁場の空間的な分布は、マイクロ磁気学的なモデル化によって最適化することができる。
これらの細部に応じて、特に磁壁漏れ磁場の符号は、磁壁が移動しているか、あるいは静止しているかに依存し、また磁壁の移動方向に依存し得る。このため、磁気領域を磁気記憶被膜10に書き込むための詳細な手順は、磁壁およびそれに関連する漏れ磁場の詳細な磁気構造によって決まることになる。
書込みデバイス20を構成するトラックの詳細な構造および組成は、磁壁内の磁化の分布、したがって磁壁漏れ磁場の分布に影響を及ぼすことになる。このため、書込みビット45の磁化の方向は、書込みデバイス20の細部の構造によって決まることになる。したがって、ビット45の磁化の方向は、書込みデバイス20内のトラックの1つに概ね沿うように、例えば、上部トラックの方向または下部トラックの方向に沿うように設計することもできるし、上部または下部トラックの方向に対してある角度の方向に沿うように設計することもできる。
トラックを形成する磁性材料は、鉄、コバルト、およびニッケル、ならびにこれらの強磁性金属の組合せから形成した2元合金および3元合金、あるいは、1つまたは複数のこれらの元素と、例えば、磁気異方性をより大きくするために選択した他の元素を組み合わせて形成した合金など、様々な磁性材料からなり得る。磁壁からの漏れ磁場の強さは磁壁の幅によって決まり、一般に磁壁が狭くなると強くなるので、鉄、コバルト、およびニッケルだけからなる合金から得ることができるものよりも磁気異方性が大きい磁性材料からトラックを形成すると有利なことがある。例えば、鉄−コバルト−ニッケルの磁気異方性は、これらの元素と白金またはパラジウムを組み合わせることによって大きくすることができる。
磁壁漏れ磁場は、磁性材料の磁化がより大きくなっても増加するので、ニッケルよりも磁化値が大きい鉄およびコバルトを大量に含む合金からトラックを形成すると有利なことがある。トラックを形成する材料の選択は、トラックに沿って磁壁を移動させるのに必要とされる電流の大きさおよび電流パルスの長さにも影響を及ぼすことになる。
磁気異方性が大きいほど、電流パルスの大きさおよび長さが大きくなり得る。同様に、磁壁を移動させるのに必要とされる電流パルスの大きさに影響を及ぼすのに重要なのは、磁性材料の減衰率である。この減衰率は、例えば米国特許第6,452,240号に記載されているように、磁性材料に遷移金属または希土類金属をドープすることによって変化させることができる。
このため、磁壁を移動させることによってトラックの磁化方向を変更するのに電流パルスを用いることの重要な利点は、トラックの磁化方向を変更するのに強い外部磁場が必要とされる状況下でさえ、適度な大きさの電流パルスを用いて磁壁を移動させて、トラックの領域の磁化方向を変更することができることである。これは、局所的な磁化方向を変更する方法が、外部磁場を用いるか、あるいは磁壁漏れ磁場を用いるかで大きく異なるからである。
トラックはリソグラフィにより製作することができ、そのため、トラックを形成する磁性材料の選択は、トラックを製作するのに選択した方法の影響を受けることになる。例えば、反応性イオン・エッチング、または湿式化学エッチング、あるいはイオン・ミリングのいずれかによってエッチングすることができる材料からトラックを形成すると有利なことがある。さらに、トラックの製作中に腐食しない材料からトラックを形成すると有利なことがある。
トラックは単一の磁性層から構成することができるが、複数の磁性層からトラックを形成すると有利なことがある。例えば、より小さな電流で磁壁を移動させるために、トラックの上面および底面で電気伝導率がより高くなるようにトラックの伝導率を変化させると有用なことがある。
こうすると、トラックの断面全体にわたって不均一な電流分布が可能になり、それによって、電流がトラックの上面および底面でより大きくなり得る。例えば、磁壁はトラックの表面から、例えばこれらの表面の粗さのために何らかの抗力を受けることがあり、そのため、トラックの両端面で電流密度がより高くなると、磁壁を移動させるためにトラックに流す全体的な電流が少なくなり得る。電流が少ないと、トラックに沿って磁壁を移動させるのに必要とされるエネルギーが小さくなるので有利である。
図22の書込みデバイス20Dのトラック805に示すように、トラックに沿ってくぼみ(または突起)810、820、830を導入することによって、このトラックに沿った特定の位置に磁壁を固定する。くぼみ(または突起)810、820、830はそれぞれ、磁区835と840、845と850、855と860の間に配置する。
これらのくぼみ(または突起)810、820、830は、トラック805内で磁区が留まる領域を固定するように働く。というのは、磁壁のエネルギーは、トラックの幅によって決まるからである。くぼみ(または突起)810、820、830は、磁壁を固定する潜在能力をもたらす任意の物理的な形態とし得る。
図22に示すように、くぼみ(または突起)810、820、830は、書込み素子のトラック805の両側にある。あるいは、これらは、片側だけにすることもできるし、書込み素子のトラック805の上部または底部に配設することもできる。くぼみは突起とすることもできる。図22のくぼみ(または突起)は、磁壁が書込みを行っていないときに、磁壁の位置をその静止状態で固定するように働く。
くぼみ(または突起)は、くぼみ(または突起)815、825で図22に示すように、トラックに沿って書込み位置に配置することもできる。この図では、くぼみ(または突起)815、825は、磁性被膜10の近傍に配置されて、磁性被膜10への書込みを行うように用いられる漏れ磁場865、870、875の配置を固定する。トラック805に適切な電流が印加されると、(例えば)漏れ磁場865および870は、くぼみ815および825に移動して、漏れ磁場を精確に配置することができる。別の実施形態では、書込みデバイスを、くぼみまたは突起を備えた強磁性またはフェリ磁性の異なる材料の組合せから作製し得る。
別の実施形態では、書込みデバイス20のトラックに沿ってくぼみを書込み位置のところに作製しない。磁性被膜10の書込みは、単に、磁性被膜10の上下で磁壁をいかなるときでも静止させずに、磁性被膜10の近くで磁壁およびそれに関連する漏れ磁場を移動させることによって実現する。
漏れ磁場の局所的な磁場は極めて強くすることができ、材料の磁化である4πMに近づくことがある。ディスク・ドライブ型磁気記録書込みヘッドでは、実現可能な最大磁場は、磁気ディスク材料の約4πMである。ディスク・ドライブの開発では、磁化をより強くしようと試みられ、それによって、磁気モーメントおよび磁場がより強くなり、ディスクへの適切な書込みが確実に行われる。
この書込みデバイスでは、磁壁漏れ磁場の強さは、書込みデバイス20で用いられる材料の大きさに関係する。数千エルステッドの局所的な磁場が実現可能である。その結果、この書込みデバイスは、強力にかつ高い信頼性で磁性被膜10への書込みを行うことができる。書込みデバイスの幅が、磁性被膜10に書き込まれるデータ・ビットの幅になる。一実施形態では、書込みデバイスの典型的なサイズは、幅約100nmである。
トラックに沿って磁壁を移動させるのに必要とされる電流は、トラックを形成する磁性材料の面積が小さくなると減少することになる。このため、磁壁からの磁壁漏れ磁場を利用して磁気領域の書込みを行う方法は、極めて小さな磁気領域の書込みに有利であり、より大容量のメモリ・デバイス用のより小さな寸法に対するトラック幅の拡大縮小率に応じて変えると有利である。
磁気領域の幅は、磁壁漏れ磁場の空間的な変動によって決まる。書込みが行われる磁気領域の大きさを決める境界は、磁壁漏れ磁場が、磁性被膜10を構成する磁性材料の切替え磁場よりも強くなるところである。そのため、この幅は、書込みデバイス20を形成するトラックの物理的な幅に関係することになるが、この幅と厳密に同じにはならない。
磁気トンネル接合部に類似のデバイスを用いて、磁気記憶被膜10に記憶された情報を読み出すことができる。MTJ(磁気トンネル接合部)は、トンネル障壁を構成する薄い絶縁材料層で分離された2つの磁性材料層を有する。一般に、このトンネル障壁は、酸化アルミニウムの極薄層から形成されるが、MgOなどの他の絶縁材料または半導体材料から形成することもできる。
一般に、MTJ中の一方の磁性層は、磁化を変更するのに強い磁場を必要とする硬質磁性材料である。他の磁性材料は一般に軟質磁性材料であり、そのため、弱い磁場でその磁化を変更することができる。軟質磁性材料に弱い磁場を印加するとその磁化の方向は変化するが、軟質磁性層の磁化の方向は硬質磁性材料の磁化の方向に対して相対的に変わり得る。
MTJの両端に固定電圧を印加するとき、トンネル障壁を流れる電流の大きさは、トンネル接合部中のこれら2つの磁性材料の相対的な磁気の向きによって決まる。したがって、硬質層のモーメントが既知である場合には、トンネル接合部の電流値は、軟質磁性材料中の磁気モーメントの方向を示す。逆に、軟質磁性材料のモーメントが既知である場合には、トンネル接合部の電流は、硬質磁性材料のモーメントの方向を示す。
磁気トンネル接合部のこれら2つの磁性材料は、磁気メモリ・デバイス100の場合と同様にMTJ中の磁気モーメントを独立に切り替える手段が設けられる場合には、硬質磁性材料から形成することもできる。MTJを流れるトンネル電流により、MTJ中のこれら2つの磁性材料の一方すなわち基準層の磁気モーメントの方向が既知である場合には、他方の材料すなわち記憶層の磁気モーメントの方向を決めることができる。
書込みデバイス20のトラック内には一連の磁壁が存在する。1つの領域では、モーメントは1つの方向を向き、別の領域では、モーメントは別の方向を向いている。トラック内の一連の磁壁は、磁気メモリ・デバイス100のコントローラに既知である。このコントローラは、トラック内での磁壁の位置を把握している。したがって、データ・ビット45のモーメントは、上部トラックからデータ・ビット45および下部トラックを貫通して電流を流すことによって決定することができる。
電流値が大きいと、MTJの抵抗値が小さく、トラックおよびデータ・ビット45の磁区が平行であることを示す。電流値が小さいと、MTJの抵抗値が大きく、トラックおよびデータ・ビット45の磁区が反平行であることを示す。トラック内の磁区の方向が既知なので、データ・ビット45内の磁区の方向、すなわちデータ・ビット45に記憶されたデータを推測することができる。
磁気トンネル接合部を用いて磁性被膜10内のデータ・ビット45を読み出す方法900を、図23のプロセス・フロー・チャートと図24〜図25を併用して説明する。図24〜図25に示すように、磁気記憶被膜10内のデータを読み出すために用いられる磁気トンネル接合部は、記憶被膜自体に加えて、上部トラック25および下部トラック35の一方または両方からそれぞれ形成される。
トラック25および35は、トラックが記憶層に近づく書込み位置のところで、磁気トンネル接合部の絶縁障壁を形成する薄い絶縁層1080および1090によって記憶被膜から分離される。製作の便宜上、一方のトンネル障壁は他方のトンネル障壁よりも厚くすることが好ましい。トンネル障壁の抵抗値は、絶縁トンネル障壁の厚さに伴って指数的に大きくなるので、2つのトンネル障壁をほぼ等しい抵抗値で形成するのは難しいことがある。
しかし、実際には、このトンネル障壁抵抗値はトンネル障壁層の形態の影響を大きく受け、そのため、トンネル障壁の厚さが公称上同じときでさえ、それらの抵抗値は大きく変わり得る。トンネル障壁の形態は、トンネル障壁を成長させる下層の構造および形態ならびに化学組成に決定的に依存するので、トラック35の上部で成長させるトンネル障壁1090の形態および得られる抵抗値は、磁気記憶被膜10の上部に被着させるトンネル障壁1080のものと異なることがある。
この説明では、図24〜図25には、トンネル障壁1080をトンネル障壁1090よりも厚く示す。こうすると、下部磁気トラック35と上部磁気トラック25の間に形成されるトンネル接合部の抵抗値は、厚いトンネル障壁1080によって主に左右されることになる。そのため、磁気トンネル接合部の強磁性電極は、上部トラック25の磁性材料および磁気記憶被膜10の磁性材料から形成される。というのは、トンネル接合部の抵抗値は、上部絶縁層1080の抵抗値によって決まるからである。したがって、この実施例では、下部絶縁層1090の抵抗値は十分に小さく、そのためトンネル接合部の抵抗値への寄与は大きくない。
図24の左を向いた矢印1055および図25の右を向いた矢印1065で示すデータ・ビット45の磁気の方向は、図23のブロック905で示すように、対応する上部トラック25および下部トラック35の交点にはデータ・ビット45が存在し、これらのトラックに小さな電流を流すことによって、左右いずれかに方向づけられた磁気モーメントとして読み出される。図24の線1052および図25の線1062で、電流経路の方向を示す。
この電流は、図23のブロック910に示すように、上部トラック25に沿って流れ、上部絶縁層1080を通り、データ・ビット45を通り、下部絶縁層1090を通り、下部トラック35に沿って流れる。図24に、上部トラック内の磁区と同じ方向に方向づけられたデータ・ビット45のモーメントの方向を示す。
このため、図23のブロック940で示すように、磁気トンネル接合部の抵抗値は低くなり、電流1050は大きくなる。対照的に、図25では、データ・ビット45の磁化は、最も右の方向に沿って方向づけられ、上部トラック中の磁区内の磁化に反平行になり、そのため、磁気トンネル接合部の抵抗値は大きくなり、電流1060は小さくなる。そのため、図23のブロック925で示すように、データ・ビットが「1」に決まる。
データ・ビットの状態を読み出すのに用いられる電流は、トラックに沿って磁区を移動させるのに用いられる電流よりもはるかに小さく、そのため、読出し電流がデータ・ビットの状態に影響を及ぼすことはない。読出しに用いられる実際の電流は、トンネル接合部の抵抗値によって決まることになるが、このトンネル接合部の抵抗値は、上部および下部トラックの抵抗値がこのトンネル接合部の抵抗値に比べて無視し得るほど十分に大きく設計される。
同様に、トンネル接合部の抵抗値が大きいほど、上部および下部書込みトラックのアレイから形成されたトンネル接合部アレイに漏れる電流が小さくなる。この実施形態では、各データ・ビットに関連するすべてのトンネル接合部は互いに並列に接続される。この読出し電流は、トンネル接合部の抵抗値の大小を判定するのに十分な信号を得るのに必要な長さだけデータ・ビットに流れ、それによって、1ビットを読み出すのに必要とされるエネルギーが最小限に抑えられる。こうするために、アレイの境界のところに類似のトンネル接合部から形成される基準抵抗を設けることができ、この基準抵抗値とデータ・ビットのトンネル接合部の抵抗値を比較することができる。
このように、本明細書で説明したメモリ・システム100では、MTJは、2つの硬質磁性層から形成される。書込みデバイス20の上部トラック内の磁区の方向は、このトラックに沿って電流パルスを流すことによってのみ変更することができる。同様に、データ・ビット45の磁気モーメントの方向は、上部および下部トラック内で磁区を移動させることによりもたらされる強い漏れ磁場にかけることによってのみ変化し得る。本質的には、上部または下部トラック内の磁区により基準磁気モーメントが形成され、データ・ビットにより記憶磁気モーメントが形成される。
必要であれば、比較的大きい読出し信号を得るには、最初に上部トラック25内の磁区1025および磁気データ記憶ビット45から形成されるMTJの抵抗値を、このMTJに電流1050を流すことによって読み出すことができる。次いで、上部トラックに沿って電流を流して、このトラック内の磁壁を位置1つ分だけ移動させることができる。こうすると、このトラック内の磁気モーメントの方向は、図24に示す左向きから右向きに変更されることになる。
このMTJに小さな読出し電流を流すことによって、MTJの抵抗値を再度読み出す。ただし、この時点では抵抗値は大きくなっている。というのは、この時点で上部トラック25内の磁区の方向が、データ・ビット45の方向の反対方向になっているからである。上部トラックに沿って電流を流し、同時に下部トラック35に沿っては電流を流さないと、データ・ビット45の磁気の状態を変えずに、上部トラック内の磁区だけを移動させることになる。
このように、この方法によりデータ・ビットを読み出すと、はるかに大きな信号が得られることになる。というのは、この方法で必要なのは、読み出すべきMTJの抵抗値の差だけだからである。データ・ビットの状態は、上部トラック内の磁区内で磁化の方向が逆転したときにMTJの抵抗値が大小いずれになるかによって決まる。
磁性被膜10を形成する材料は、1つまたは複数の磁性層からなる。この磁性被膜の特性は、この磁性被膜が極めて小さな磁気領域を支持することができるように選択される。さらに、磁壁漏れ磁場の空間的な広がりによってサイズが概ね決まるこれらの小さな磁気領域は、この領域の磁気異方性が温度変動すなわち超常磁性の影響に耐えられるほど十分に大きくなるように十分に大きなサイズのものでなければならない。
この領域が小さすぎると、デバイスの動作温度において、磁気領域の磁気モーメントが、1つの磁気領域内で磁性材料の結晶磁気異方性によってもたらされるエネルギー障壁に打ち勝ち得るのに十分なエネルギーが温度変動に含まれる。このため、磁気記録ディスク・ドライブの高密度磁気薄膜媒体に用いられるタイプの材料および構造が適切である。
ただし、重要な違いは、本発明のメモリにおいては、磁気記憶被膜10を形成する材料は結晶質材料に限定されないことである。異方性の方向が磁性被膜内で一方向に沿って整列した結晶質材料を用いて、磁性被膜10を形成することができる。例えば、磁化容易軸を、1組のトラック(例えば、磁性被膜10の上のトラック)の方向に沿って整列させることができる。
磁気記録ディスク・ドライブでは、磁気ビットは、回転ディスクの円周の周りに書き込まれる。そのため、結晶磁気異方性が磁気媒体の面内で整列されておらずランダムであるか、あるいは、異方性の方向がディスク半径に沿って整列されるか、またはディスク半径に接していなければならない。このため、所与の1つの方向に沿った明確な結晶軸を有する結晶磁性被膜は使用できない。
本発明は、モーメントが磁性被膜10の面内にある磁性材料に限定されるものではないことを理解されたい。そうではなくて、磁性被膜10のモーメントは、被膜10の面に直交する向きにすることができる。というのは、書込みデバイス20のトラック内の磁壁からの磁壁漏れ磁場では、トラックを構成する磁性導線の表面に直交する方向に磁場の成分が大きくなり得るからである。そのため、層10を構成する材料は、垂直磁気異方性を有するように設計することができ、結晶質または多結晶とし得る。
図26〜図28に、磁性被膜10の構成の代替実施形態を示す。磁性被膜10Aは、1種類の磁性合金の被膜を用いて構成される。
磁性被膜10Bは、絶縁被膜中の磁気領域からなる粒状磁性合金である。この構造は、データ記憶領域を読み出すときに、磁気記憶被膜10に沿って流れる電流を減少させるのに有用になり得る。この被膜は極めて薄いので、この被膜の面内の抵抗値は、この被膜の垂直方向の抵抗値よりもはるかに大きくなる。金属粒状被膜も用いることができるはずである。例えば、これは、磁気異方性がより大きい磁性材料を形成するのに有利になることがある。というのは、磁性微粒子の表面では磁気異方性が強化されることが多いからである。
読出し性能を改善するには、この層の面内抵抗値よりもこの層の垂直方向の抵抗値がはるかに小さい材料から磁性被膜10を形成すると特に有利なことがある。例えば、被膜10Bの下面から上面に延びるが、被膜10Bの面に平行な方向に互いに電気的に分離されている磁性柱状微粒子からなる粒状材料から磁性被膜10Bを形成すると好ましいことがある。
例えば、これらの柱状磁性微粒子は、酸化アルミニウムまたは酸化シリコンあるいは酸化マグネシウムなどの絶縁酸化物によって、あるいは窒化アルミニウムなどの絶縁窒化物によって横方向に互いに分離することができる。すなわち、この絶縁材料は円筒形微粒子の粒界に沿っており、これらの微粒子の円筒の軸は磁性被膜10Bの表面に直交する向きになる。
磁性被膜10Cは、温度変動に対する安定性が改善されるように設計された人工的な反強磁性構造である。例えば、この被膜構造は、反強磁性結合層1110によって分離された2つの強磁性層1115および1120からなり得る。反強磁性結合層1110は、米国特許第5,465,185号および第6,153,320号に記載されているように、ルテニウムまたはルテニウム−オスミウム合金から、あるいは、米国特許第5,341,118号に記載されているように、クロムおよび他の様々な非強磁性金属とともに形成することができる。
図26〜図28に示すすべての実施形態において、磁性層は、複数の金属および非金属層から形成することができる。データ・ビットを読み出すための信号が最も大きくなるように、適切な絶縁障壁層と組み合わせて、大きくスピン偏極したトンネル電流が生じる磁性材料から磁性被膜の上面および下面を形成すると有利になることがある。例として、MgO障壁を、Co−Fe合金と組み合わせて用いることができる。こうすると、磁気データ・ビットの方向を読み出す信号が最も大きくなる。
図29に示すように、性能を最適化するために、書込みデバイス20のトラック内でビットを記憶させる蓄積部が望まれる。この蓄積部は、1つの磁区から、データ記憶領域の両側のデータ記憶領域内のすべての磁区を収容するのに十分な長さのものまでサイズが変わるものである。
図29では、データ記憶領域1205の両側に蓄積部1210、1215,1220、および1225を示す。各蓄積部は、データ記憶領域1205に対して書込みおよび読出しを行うトラック内のすべての磁区を収容するのに十分に長いものである。データ記憶領域1205に対して書込みおよび読出しを行うトラック内の磁区は、書き込まれるべき「1」および「0」の順序に応じて、磁区のそれぞれの蓄積部1210、1215,1220、1225に入り、またそれから出るように移動させることができる。
磁気メモリ・デバイス100の代替実施形態では、図30〜図31に示す磁気メモリ・デバイス100Aは、個々のデータ・ビット1315、1320の書込みを行う個々のレジスタ1305、1310からなる。各レジスタを代表するレジスタ1305は、電流導入部1325、1330および磁性導線またはトラック1335からなる。
トラック1335は、2つの磁区1340、1345および1つの磁壁1350からなる。磁壁1350から放射される漏れ磁場1355は、データ・ビット1315への書込みを行うのに十分に強い。電流導入部1325、1330は磁性材料でできており、磁区1340、1345用の蓄積部として働くのに十分に長いものである。レジスタ1305に電流1360を印加して、データ・ビット1315の領域に漏れ磁場1355を移動させる。
前に論じたように、漏れ磁場1355により、データ・ビット1315への書込みが行われる。次いで、データ・ビット1315の書込みが行われた後で、電流1360により、漏れ磁場1355を移動させて、データ・ビット1315の領域から外に出す。レジスタ1305、1310はそれぞれ、参照数字1375で示すトランジスタおよび制御ゲートによって個々に制御される。このトランジスタおよび制御ゲートは、レジスタ1305、1310に電流を流して磁性被膜10にデータを書き込む。
図30〜図31に、磁気記憶層10の上に、電流導入部1325、1330および個々の書込みレジスタ1305、1310を示す。これらの導入部を個々のトランジスタ1375に接続するために、これらのトランジスタは、磁性被膜10の下でシリコン基板中に形成されることが好ましい。こうすると、電流導入部が磁性層10の上にある場合、磁性被膜を貫通するビアを設けて、これらの電流導入部とシリコン基板中のトランジスタ・スイッチを接続することができる。
図1に示す実施形態に関連して論じたように、磁性被膜10を連続したものとする必要はなく、(それぞれが個々の磁気データ・ビットよりも大きい)複数の磁気区画から形成することができる。こうすると、これらの磁気区画間に、磁性被膜10によって画定される面を貫通してビアを形成することができる。磁性被膜10は不連続であり、かつこれらの区画間に配置された導電ビアから分離した複数の磁気区画からなる。これらの導電ビアは、絶縁材料によって磁気区画から電気的に分離される。
電流導入部1325、1330および個々の書込みレジスタ1305、1310は、磁性被膜10の下に配設することもでき、それによって、この層の下で、これらの導入部を半導体基板中の切替えトランジスタに接続するのがより直接的になる。
図30〜図31に、個々の書込みレジスタを、切欠またはこれらの書込みレジスタのところに磁壁の位置を固定する手段を備えずに示すが、これらのレジスタは、1つまたは複数の切欠または突起とともに形成することもできるし、異なる磁性材料からなる複数の結合された磁気領域から形成して、これらの磁気領域用のこれらの磁性材料間の境界で磁壁を固定することもできる。これらの異なる磁性材料の特性に応じて、磁壁を、これらの材料間の境界のところに配置するか、あるいは、磁気領域自体との境界から離して配置するかを選択することになる。
好ましい実施形態では、個々の書込みレジスタは、反対の符号の磁区漏れ磁場が生じる2つの磁壁を備えた3つの磁区からなる。そのため、これらの磁壁のいずれか一方を、書込みが行われるべき磁気領域の上を移動させることによって、一方の方向または反対の方向に磁気データ・ビットを書き込むことができる。好ましくは、この書込みレジスタは、磁気データ領域の左右、または電流導入部の垂直部分自体の磁壁用の記憶蓄積部を含むのに十分に長く、それによってデータ記憶密度がより高くなり得る。
書込みレジスタが1つの磁壁しか含まない図31〜図32に示す代替実施形態では、図9に示すネール(Neel)タイプの磁壁に関連する漏れ磁場のx成分に関する図10に示すように、磁壁漏れ磁場を、この磁壁の一方の側で一方の方向に沿い、かつこの磁壁の他方の側で反対の方向に沿うものとすることができる。このため、図9に示す磁壁が磁性被膜10の上を移動すると、磁壁がx軸に沿って左から右に移動するときに磁気データ・ビット45が一方向に書き込まれる。図10に示すように、磁性被膜は、磁化が左を指しているxの負の方向に書き込まれる。
しかし、同じ磁壁が右から左に移動する場合、被膜10内の磁気データ・ビットは、その磁化方向がxの正の方向を指す(すなわち、磁化が右を指す)ように書き込まれる。このため、単一の磁壁を用いて、データ・ビットを左方向または右方向に書き込むことができる。磁壁の移動方向(左から右または右から左)により書込みの方向が決まる。このため、磁気データ・ビットを左方向または右方向に書き込むために、書込みレジスタ内の磁壁の位置に応じて、まず磁壁を左または右に移動させることが必要なことがある。
図30〜図31に示すデバイスでは、磁気データ・ビットは、導入部1325、1330の1つ、および磁性被膜10の上部に薄い絶縁層15として形成されたトンネル障壁、ならびに磁性被膜10自体内の磁気データ・ビットに小さな電流を流すことによって読み出される。この電流の経路は、磁性被膜10の縁部または磁性被膜10の反対側の電気接点によって閉じることができる。
図32〜図33に示す磁気メモリ・デバイス100Bの実施形態では、磁気メモリ・デバイス100Bは、磁性被膜10の底部の(レジスタ1415、1420で代表する)書込みレジスタに加えて、磁性被膜10の上部に位置する(レジスタ1405、1410で代表する)個々の書込みレジスタを有する。データ・ビット1425、1430、1435、1440などのデータ・ビットは、データ・ビット密度を増加させ、かつ隣接する漏れ磁場からの干渉を避けるために互い違いに配置する。この実施形態では、データ・ビットの空間密度は、磁気メモリ・デバイス100Aの密度の2倍に増加する。
磁気メモリ・デバイス100Cの実施形態では、磁気メモリ・デバイス100Cは、レジスタ1515、1520に直交する書込みレジスタ1505、1510を有する。書込みレジスタ1505、1510、1515、および1520の相対的な配置は、所望の空間密度を実現する所望のとおりの任意の構成とすることができ、依然としてこれらのレジスタに電流を印加する能力を保持している。
磁気メモリ・デバイス100を操作するために、この回路は、読出しおよび書込み素子に加えて、これら読出しおよび書込みデバイスの操作、書込みレジスタ内で磁区を移動させる電流パルスの提供、データ・ビット中のデータの符号化および復号手段などを含めて、様々な目的の論理回路および他の回路を備える。一実施形態では、CMOSプロセスを用いてシリコン・ウエハ上に制御回路を製作する。個々の磁気データ・ビットに関係する回路は、メモリ・デバイスの記憶容量を最大化すると同時に、利用するシリコンの面積を最小限に抑えてコストをできる限り低く抑えるために、シリコン・ウエハ上での占有面積が小さくなるように設計されることになる。
以上説明した本発明の特定の実施形態は、本発明の原理のある種の応用例を単に示すものであることを理解されたい。本発明の趣旨および範囲から逸脱することなく、本明細書で説明したパターン化しない連続磁性層にデータを記憶するこのシステムおよび方法に多くの改変を加えることができる。
本発明による磁気メモリ・デバイスの実施形態を示す図である。 本発明による磁気メモリ・デバイスの実施形態を示す図である。 本発明による磁気メモリ・デバイスの実施形態を示す図である。 本発明による磁気メモリ・デバイスの実施形態を示す図である。 本発明による磁気メモリ・デバイスの実施形態を示す図である。 図1〜図5の磁気メモリ・デバイスで用いられる1つのデータ・ビットおよびその対応する書込みおよび読出し構造を概略的に示す拡大図である。 図1〜図5の磁気メモリ・デバイスで用いられる1つのデータ・ビットおよびその対応する書込みおよび読出し構造を概略的に示す拡大図である。 図1〜図5の磁気メモリ・デバイスで用いられる1つのデータ・ビットおよびその対応する書込みおよび読出し構造を概略的に示す拡大図である。 図1〜図5の磁気メモリ・デバイスの磁壁漏れ磁場を示す概略図である。 図1〜図5の磁気メモリ・デバイスの磁壁漏れ磁場を示す概略的なグラフである。 図1〜図5の磁気メモリ・デバイスの磁壁漏れ磁場を示す概略的なグラフである。 図1〜図5の磁気メモリ・デバイスへの書込み動作方法を示すプロセス・フロー・チャートである。 図1〜図5の磁気メモリ・デバイスへの書込みプロセスを示す図である。 図1〜図5の磁気メモリ・デバイスへの書込みプロセスを示す図である。 図1〜図5の磁気メモリ・デバイスへの書込みプロセスを示す図である。 図1〜図5の磁気メモリ・デバイスへの書込みプロセスを示す図である。 図1〜図5の磁気メモリ・デバイスへの書込みプロセスを示す図である。 図1〜図5の磁気メモリ・デバイスへの書込みプロセスを示す図である。 強磁性またはフェリ磁性材料のブロックを用いた、図1〜図5の磁気メモリ・デバイスの書込みデバイスの代替実施形態の構成を示す図である。 強磁性またはフェリ磁性材料のブロックを用いた、図1〜図5の磁気メモリ・デバイスの書込みデバイスの代替実施形態の構成を示す図である。 複数のタイプの強磁性またはフェリ磁性材料を用いた、図1〜図5の磁気メモリ・デバイスの書込みデバイスの代替実施形態の構成を示す図である。 強磁性またはフェリ磁性材料のトラックにおいてくぼみ(あるいは突起)を用いた、図1〜図5の磁気メモリ・デバイスの書込みデバイスの別の代替実施形態の構成を示す図である。 図1〜図5の磁気メモリ・デバイスからのデータの読出し動作方法を示すプロセス・フロー・チャートである。 図1〜図5の磁気メモリ・デバイスからのデータの読出しプロセスを示す図である。 図1〜図5の磁気メモリ・デバイスからのデータの読出しプロセスを示す図である。 図1〜図5の磁気メモリ・デバイスの磁性被膜で用いることができる材料を示す図である。 図1〜図5の磁気メモリ・デバイスの磁性被膜で用いることができる材料を示す図である。 図1〜図5の磁気メモリ・デバイスの磁性被膜で用いることができる材料を示す図である。 図1〜図5の磁気メモリ・デバイスの書込みトラックおよび読出しトラックで磁区用の蓄積部を使用するところを示す図である。 個々に制御されるレジスタを用いて磁性被膜への書込みを行う、図1〜図5の磁気メモリ・デバイスの代替実施形態を示す図である。 個々に制御されるレジスタを用いて磁性被膜への書込みを行う、図1〜図5の磁気メモリ・デバイスの代替実施形態を示す図である。 図30〜図31の磁気メモリ・デバイスの実施形態を示す図である。 図30〜図31の磁気メモリ・デバイスの実施形態を示す図である。 図30〜図31の磁気メモリ・デバイスの別の実施形態を示す図である。 図30〜図31の磁気メモリ・デバイスの別の実施形態を示す図である。
符号の説明
10、10A、10B、10C、10D、10E 磁性被膜
15、15A、15B、15C、15D、15E、1080、1090 絶縁層
20、20B、20C、20D 書込みデバイス
25、30、35、40、520、540、605、610、705、805、1335 トラック
45、510、740、745、1315、1320、1425、1430、1435、1440 データ・ビット
100、100A、100B、100C 磁気メモリ・デバイス
101、102、103 円形区画
104、105、106 矩形区画
107、108、109、110、111、112 列区画
205、210、215、220、305、310、835、840、845、850、855、860、1025、1340、1345 磁区
225、230、320、525、555、635、730、735、1350 磁壁
235、240、530、550、560、565、865、870、875、1355 漏れ磁場
250、255、515、545、640、1050、1060、1360 電流
315 磁化方向
505 書込み領域
615、620 強磁性ブロック
625、630 薄い層
710、715、720、725 ブロック
810、815、820、825、830 くぼみ
1052、1062 電流経路の方向
1055、1065 データ・ビットの磁気の方向
1110 反強磁性結合層
1115、1120 強磁性層
1205 データ記憶領域
1210、1215、1220、1225 蓄積部
1305、1310 レジスタ
1325、1330 電流導入部
1375 トランジスタおよび制御ゲート
1405、1410、1415、1420、1505、1510、1515、1520 書込みレジスタ

Claims (132)

  1. 磁性被膜と、
    前記磁性被膜の近傍に配設されたトラックを有する少なくとも1つの書込み素子とを備えるデータ記憶デバイスであって、
    前記トラック内の磁壁からの漏れ磁場を用いてデータ領域内の磁気モーメントの方向を選択的に変更することによって、前記磁性被膜の前記データ領域にデータ・ビットを選択的に書き込むことができる、データ記憶デバイス。
  2. 前記少なくとも1つの書込み素子が、前記磁性被膜の上に配設された上部トラックと、前記磁性被膜の下に配設された下部トラックとを備える、請求項1に記載のデータ記憶デバイス。
  3. 前記上部トラックおよび前記下部トラック内の磁壁からの漏れ磁場を用いて、前記上部トラックと前記下部トラックが交差する前記磁性被膜のデータ領域にデータ・ビットを選択的に書き込むことができる、請求項2に記載のデータ記憶デバイス。
  4. 前記少なくとも1つの書込み素子が、1つの上部トラックおよび複数の下部トラックを備える、請求項2に記載のデータ記憶デバイス。
  5. 前記1つの上部トラックおよび前記複数の下部トラックがそれぞれ、個々の磁性導線を備える、請求項4に記載のデータ記憶デバイス。
  6. 前記1つの上部トラックおよび前記複数の下部トラックが、前記磁性被膜内で複数の選択可能なデータ領域を画定する、請求項5に記載のデータ記憶デバイス。
  7. 前記少なくとも1つの書込み素子が、複数の上部トラックおよび1つの下部トラックを備える、請求項2に記載のデータ記憶デバイス。
  8. 前記複数の上部トラックおよび前記1つの下部トラックがそれぞれ、個々の磁性導線を備える、請求項7に記載のデータ記憶デバイス。
  9. 前記複数の上部トラックおよび前記1つの下部トラックが、前記磁性被膜内で複数の選択可能なデータ領域を画定する、請求項8に記載のデータ記憶デバイス。
  10. 前記少なくとも1つの書込み素子が、複数の上部トラックおよび複数の下部トラックを備える、請求項2に記載のデータ記憶デバイス。
  11. 前記複数の上部トラックおよび前記複数の下部トラックがそれぞれ、個々の磁性導線を備える、請求項10に記載のデータ記憶デバイス。
  12. 前記複数の上部トラックおよび前記複数の下部トラックが、前記磁性被膜上で複数の選択可能なデータ領域を画定する、請求項11に記載のデータ記憶デバイス。
  13. 前記上部トラックが湾曲部を備え、
    前記下部トラックが湾曲部を備え、
    前記データ領域が、前記上部トラックの前記湾曲部と前記下部トラックの前記湾曲部が交差する前記磁性被膜の領域に相当する、請求項2に記載のデータ記憶デバイス。
  14. 前記磁性被膜が連続している、請求項2に記載のデータ記憶デバイス。
  15. 前記磁性被膜が明確な構造をもたず、それによって前記データ・ビットの位置が指定されない、請求項14に記載のデータ記憶デバイス。
  16. 前記磁性被膜が単一の磁性層を含む、請求項2に記載のデータ記憶デバイス。
  17. 前記磁性被膜が重ね合わされた複数の磁性層を含む、請求項2に記載のデータ記憶デバイス。
  18. 前記重ね合わされた複数の磁性層の少なくとも一部が、少なくとも1つの非強磁性層で分離される、請求項17に記載のデータ記憶デバイス。
  19. 前記上部および下部トラック内の前記磁壁からの前記漏れ磁場が、前記磁性被膜に向かって同時に移動して、前記データ領域の磁気モーメントの方向を変更し、それによって前記磁性被膜に前記データ・ビットを実質的に書き込む、請求項3に記載のデータ記憶デバイス。
  20. 前記上部トラックおよび前記下部トラックの少なくとも1つに書込み電流を流すことによって前記磁壁が移動する、請求項19に記載のデータ記憶デバイス。
  21. 前記データが2値であり、かつ第1状態および第2状態を有し、
    前記データ・ビットが、第1方向に流れる前記電流に応答して前記第1状態を呈し、
    前記データ・ビットが、第2方向に流れる前記書込み電流に応答して前記第2状態を呈する、請求項20に記載のデータ記憶デバイス。
  22. 前記上部および下部トラックの前記磁壁が複数の磁区を画定し、
    静止状態で、前記磁区が前記磁性被膜のデータ記憶領域から離れるように置かれ、それによって、前記データ領域の状態が前記漏れ磁場の影響を受けない、請求項3に記載のデータ記憶デバイス。
  23. 前記複数の上部トラックが全体として直列に結合され、それによって、磁壁によって画定される磁気領域に関連する前記磁壁が、前記データ記憶領域を横切って一緒に移動する、請求項3に記載のデータ記憶デバイス。
  24. 前記上部トラックが、強磁性材料およびフェリ磁性材料からなる群から選択される磁性材料のブロックを備え、
    前記下部トラックが、強磁性材料およびフェリ磁性材料からなる群から選択される磁性材料のブロックを備え、
    前記データ領域が、前記上部トラックの前記ブロックと前記下部トラックの前記ブロックが交差する前記磁性被膜の領域に相当する、請求項2に記載のデータ記憶デバイス。
  25. 前記磁性被膜がパターン化されない、請求項2に記載のデータ記憶デバイス。
  26. 前記少なくとも1つの書込み素子が、強磁性材料およびフェリ磁性材料からなる群から選択される均質な磁性材料を含む、請求項2に記載のデータ記憶デバイス。
  27. 前記少なくとも1つの書込み素子が、強磁性材料およびフェリ磁性材料からなる群から選択される不均質な磁性材料を含む、請求項2に記載のデータ記憶デバイス。
  28. 前記上部トラックまたは前記下部トラックの少なくとも1つが、強磁性材料およびフェリ磁性材料からなる群から選択される交互に並んだタイプの磁性材料から構築される、請求項2に記載のデータ記憶デバイス。
  29. 前記上部トラックおよび前記下部トラックの少なくとも1つの前記磁壁が固定される、請求項3に記載のデータ記憶デバイス。
  30. 前記上部トラックおよび前記下部トラックの少なくとも1つの前記磁壁が、前記上部トラックおよび前記下部トラックの前記少なくとも1つに存在するくぼみによって固定される、請求項29に記載のデータ記憶デバイス。
  31. 前記磁性被膜が上面および下面を備え、
    前記磁性被膜の前記上面および下面の少なくとも1つの上に重なる絶縁トンネル障壁層をさらに備える、請求項2に記載のデータ記憶デバイス。
  32. 前記データ領域に書き込まれた前記データ・ビットが、前記データ領域に一致して前記上部トラックから前記下部トラックに読出し電流を流すことによって読み出される、請求項2に記載のデータ記憶デバイス。
  33. 前記データ・ビットの磁気の方向を判定することによって前記データ・ビットが読み出される、請求項32に記載のデータ記憶デバイス。
  34. 前記データ・ビットの第1の磁気方向には、トンネル接合部の第1抵抗値が表れている、請求項33に記載のデータ記憶デバイス。
  35. 前記データ・ビットの第2の磁気方向には、トンネル接合部の第2抵抗値が表れている、請求項33に記載のデータ記憶デバイス。
  36. 前記トンネル接合部の前記第1抵抗値が、前記トンネル接合部の前記第2抵抗値よりも小さい、請求項33に記載のデータ記憶デバイス。
  37. 前記データ領域に書き込まれた前記データ・ビットが、前記データ領域と交差する前記上部トラックまたは前記下部トラックのいずれか1つにのみ読出し電流を流すことによって読み出される、請求項2に記載のデータ記憶デバイス。
  38. 絶縁トンネル障壁層を取り囲む磁気トンネル接合部の抵抗値の変化を測定することによって、前記データ・ビットが読み出される、請求項37に記載のデータ記憶デバイス。
  39. 前記上部トラックと下部トラックが相互にある角度で配設される、請求項2に記載のデータ記憶デバイス。
  40. 前記上部トラックと下部トラックが相互に直交して配設される、請求項2に記載のデータ記憶デバイス。
  41. 前記磁性被膜がパターン化される、請求項1に記載のデータ記憶デバイス。
  42. 前記パターン化された磁性被膜が、複数のパターン化された磁気区画を備える、請求項41に記載のデータ記憶デバイス。
  43. 前記パターン化された磁性被膜の少なくとも一方の面上に重なる絶縁層をさらに備える、請求項42に記載のデータ記憶デバイス。
  44. 前記絶縁層が、複数のパターン化された絶縁区画にパターン化される、請求項43に記載のデータ記憶デバイス。
  45. 前記複数のパターン化された磁気区画が、前記複数のパターン化された絶縁区画を横切って延びる、請求項44に記載のデータ記憶デバイス。
  46. 前記複数のパターン化された磁気区画がそれぞれ、少なくとも1つのデータ・ビットを記憶する、請求項42に記載のデータ記憶デバイス。
  47. 前記複数のパターン化された磁気区画が同様の形状である、請求項42に記載のデータ記憶デバイス。
  48. 前記複数のパターン化された磁気区画の少なくとも一部が異なる形状である、請求項42に記載のデータ記憶デバイス。
  49. 前記複数のパターン化された磁気区画の少なくとも一部が円形である、請求項42に記載のデータ記憶デバイス。
  50. 前記複数のパターン化された磁気区画の少なくとも一部が長方形である、請求項42に記載のデータ記憶デバイス。
  51. 前記複数のパターン化された磁気区画の少なくとも一部が正方形である、請求項42に記載のデータ記憶デバイス。
  52. 前記複数のパターン化された磁気区画の少なくとも一部が楕円形である、請求項42に記載のデータ記憶デバイス。
  53. 前記複数のパターン化された磁気区画の少なくとも一部が三角形である、請求項42に記載のデータ記憶デバイス。
  54. 前記複数のパターン化された磁気区画の少なくとも一部が複数の行にパターン化される、請求項42に記載のデータ記憶デバイス。
  55. 前記複数のパターン化された磁気区画の少なくとも一部が複数の列にパターン化される、請求項42に記載のデータ記憶デバイス。
  56. 前記複数のパターン化された磁気区画の少なくとも一部が、複数の行および複数の列にパターン化される、請求項42に記載のデータ記憶デバイス。
  57. 前記トラックに接続されたスイッチをさらに備え、それによって前記トラックに電流を流して前記データ・ビットを書き込む、請求項1に記載のデータ記憶デバイス。
  58. 前記スイッチがトランジスタを含む、請求項57に記載のデータ記憶デバイス。
  59. 前記磁性被膜の近傍に配設された絶縁トンネル障壁層をさらに備える、請求項1に記載のデータ記憶デバイス。
  60. 前記絶縁トンネル障壁層および前記磁性被膜がトンネル接合部を形成する、請求項59に記載のデータ記憶デバイス。
  61. 前記トラックが湾曲部を備える、請求項1に記載のデータ記憶デバイス。
  62. 前記磁性被膜が連続している、請求項1に記載のデータ記憶デバイス。
  63. 前記磁性被膜が明確な構造をもたず、それによって前記データ・ビットの位置が指定されない、請求項1に記載のデータ記憶デバイス。
  64. 前記磁性被膜が単一の磁性層を含む、請求項1に記載のデータ記憶デバイス。
  65. 前記磁性被膜が重ね合わされた複数の磁性層を含む、請求項1に記載のデータ記憶デバイス。
  66. 前記重ね合わされた複数の磁性層の少なくとも一部が、少なくとも1つの非強磁性層で分離される、請求項65に記載のデータ記憶デバイス。
  67. 前記磁性被膜がパターン化されない、請求項1に記載のデータ記憶デバイス。
  68. 前記少なくとも1つの書込み素子が、強磁性材料およびフェリ磁性材料からなる群から選択される均質な磁性材料を含む、請求項1に記載のデータ記憶デバイス。
  69. 前記少なくとも1つの書込み素子が、強磁性材料およびフェリ磁性材料からなる群から選択される不均質な磁性材料を含む、請求項1に記載のデータ記憶デバイス。
  70. 前記磁壁が移動可能である、請求項1に記載のデータ記憶デバイス。
  71. 磁性被膜を形成するステップと、
    前記磁性被膜の近傍にトラックを配設することによって、少なくとも1つの書込み素子を形成するステップとを含む、データ記憶デバイスを作製する方法であって、
    前記トラック内の磁壁からの漏れ磁場を用いて前記トラック内で記憶領域内の磁気モーメントの方向を選択的に変更することによって、前記磁性被膜のデータ領域にデータ・ビットを選択的に書き込むことができる、前記方法。
  72. 前記少なくとも1つの書込み素子を形成するステップが、
    前記磁性被膜の上に上部トラックを形成するステップと、
    前記磁性被膜の下に下部トラックを形成するステップとを含む、請求項71に記載の方法。
  73. 前記上部トラックおよび前記下部トラック内の磁壁からの漏れ磁場を用いて、前記上部トラックと前記下部トラックが交差する前記磁性被膜のデータ領域にデータ・ビットを選択的に書き込むことができる、請求項72に記載の方法。
  74. 前記少なくとも1つの書込み素子が、複数の上部トラックおよび複数の下部トラックを備える、請求項72に記載の方法。
  75. 前記複数の上部トラックおよび前記複数の下部トラックがそれぞれ、個々の磁性導線を備える、請求項74に記載の方法。
  76. 前記上部トラックを形成するステップが湾曲部を形成するステップを含み、
    前記下部トラックを形成するステップが湾曲部を形成するステップを含み、
    前記データ領域が、前記上部トラックの前記湾曲部と前記下部トラックの前記湾曲部が交差する前記磁性被膜の領域に相当する、請求項72に記載の方法。
  77. 前記磁性被膜を形成するステップが、連続磁性被膜を形成するステップを含む、請求項72に記載の方法。
  78. 前記磁性被膜を形成するステップが、明確な構造をもたず、それによって前記データ・ビットの位置が指定されない磁性被膜を形成するステップを含む、請求項71に記載の方法。
  79. 前記磁性被膜を形成するステップが、単一の磁性層を形成するステップを含む、請求項71に記載の方法。
  80. 前記磁性被膜を形成するステップが、重ね合わされた複数の磁性層を形成するステップを含み、
    前記重ね合わされた磁性層の少なくとも一部が、少なくとも1つの絶縁層で分離される、請求項71に記載の方法。
  81. 前記上部トラックを形成するステップが、強磁性材料およびフェリ磁性材料からなる群から選択される磁性材料のブロックを形成するステップを含み、
    前記下部トラックを形成するステップが、強磁性材料およびフェリ磁性材料からなる群から選択される磁性材料のブロックを形成するステップを含み、
    前記データ領域が、前記上部トラックの前記ブロックと前記下部トラックの前記ブロックが交差する前記磁性被膜の領域に相当する、請求項72に記載の方法。
  82. 前記磁性被膜を形成するステップが、パターン化しない磁性被膜を形成するステップを含む、請求項71に記載の方法。
  83. 前記少なくとも1つの書込み素子を形成するステップが、強磁性材料およびフェリ磁性材料からなる群から選択される均質な磁性材料を用いるステップを含む、請求項71に記載の方法。
  84. 前記少なくとも1つの書込み素子を形成するステップが、強磁性材料およびフェリ磁性材料からなる群から選択される不均質な磁性材料を用いるステップを含む、請求項71に記載の方法。
  85. 前記上部トラックおよび前記下部トラックを形成するステップが、強磁性材料およびフェリ磁性材料からなる群から選択される交互に並んだタイプの磁性材料から、前記上部トラックまたは前記下部トラックの少なくとも1つを形成するステップを含む、請求項72に記載の方法。
  86. 前記上部トラックを形成するステップが、前記上部トラック内の前記磁壁を固定するステップを含む、請求項73に記載の方法。
  87. 前記下部トラックを形成するステップが、前記下部トラック内の前記磁壁を固定するステップを含む、請求項73に記載の方法。
  88. 前記磁性被膜が上面および下面を備え、
    前記磁性被膜の前記上面および下面の両方を被覆する絶縁トンネル障壁層を形成するステップさらに含む、請求項72に記載の方法。
  89. 前記磁性被膜を形成するステップが、前記磁性被膜をパターン化するステップを含む、請求項71に記載の方法。
  90. 前記パターン化された磁性被膜が、複数のパターン化された磁気区画を備える、請求項89に記載の方法。
  91. 前記トラックの一方の面上に絶縁層を重ねるステップをさらに含む、請求項71に記載の方法。
  92. 前記絶縁層を上に重ねるステップが、前記絶縁層を複数のパターン化された絶縁区画にパターン化するステップを含む、請求項91に記載の方法。
  93. 前記複数のパターン化された磁気区画が、前記複数のパターン化された絶縁区画を横切って延びる、請求項92に記載の方法。
  94. 前記複数のパターン化された磁気区画がそれぞれ、少なくとも1つのデータ・ビットを記憶する、請求項90に記載の方法。
  95. 前記複数のパターン化された磁気区画が同様の形状である、請求項90に記載の方法。
  96. 前記複数のパターン化される磁気区画をパターン化するステップが、前記複数のパターン化される磁気区画の少なくとも一部を異なる形状の磁気区画にパターン化するステップを含む、請求項90に記載の方法。
  97. 前記複数のパターン化される磁気区画をパターン化するステップが、前記複数のパターン化される磁気区画の少なくとも一部を円形の磁気区画にパターン化するステップを含む、請求項90に記載の方法。
  98. 前記複数のパターン化される磁気区画をパターン化するステップが、前記複数のパターン化される磁気区画の少なくとも一部を矩形の磁気区画にパターン化するステップを含む、請求項90に記載の方法。
  99. 前記複数のパターン化される磁気区画をパターン化するステップが、前記複数のパターン化される磁気区画の少なくとも一部を複数の行にパターン化するステップを含む、請求項90に記載の方法。
  100. 前記複数のパターン化される磁気区画をパターン化するステップが、前記複数のパターン化される磁気区画の少なくとも一部を複数の列にパターン化するステップを含む、請求項90に記載の方法。
  101. 前記複数のパターン化される磁気区画をパターン化するステップが、前記複数のパターン化される磁気区画の少なくとも一部を複数の行および複数の列にパターン化するステップを含む、請求項90に記載の方法。
  102. 前記トラックにスイッチを接続するステップをさらに含み、それによって前記トラックに電流を流して前記データ・ビットを書き込む、請求項71に記載の方法。
  103. 前記スイッチがトランジスタを含む、請求項102に記載の方法。
  104. 前記磁性被膜の近傍に絶縁トンネル障壁層を形成するステップをさらに含む、請求項71に記載の方法。
  105. 前記絶縁トンネル障壁層および前記磁性被膜がトンネル接合部を形成する、請求項104に記載の方法。
  106. 磁性被膜と、前記磁性被膜の近傍のトラック内に配設された少なくとも1つの書込み素子とを備えるデータ記憶デバイスにデータ・ビットを書き込む方法であって、
    前記トラック内の磁壁からの漏れ磁場を用いて前記トラック内で記憶領域内の磁気モーメントの方向を選択的に変更することによって、前記磁性被膜のデータ領域に前記データ・ビットを選択的に書き込むステップを含む、前記方法。
  107. 前記トラックにスイッチを接続するステップをさらに含み、それによって前記トラックに電流を流して前記データ・ビットを書き込む、請求項106に記載の方法。
  108. 前記磁性被膜がパターン化されない、請求項106に記載の方法。
  109. 前記トラックが個々の磁性導線を備える、請求項106に記載の方法。
  110. 前記トラックが、前記磁性被膜上で複数の選択可能なデータ領域を画定する、請求項109に記載の方法。
  111. 前記磁性被膜が連続している、請求項106に記載の方法。
  112. 前記磁性被膜が明確な構造をもたず、それによって前記データ・ビットの位置が指定されない、請求項111に記載の方法。
  113. 前記データ・ビットを選択的に書き込むステップが、前記データ領域の磁気モーメントの方向を変更するために、前記磁性被膜に向かって前記トラック内の前記磁壁からの前記漏れ磁場を同時に移動させるステップを含む、請求項106に記載の方法。
  114. 前記トラック内の前記磁壁からの前記漏れ磁場を同時に移動させるステップが、前記トラック内で書込み電流を流すステップを含む、請求項113に記載の方法。
  115. 前記電流を第1方向に流すステップにより、前記データ・ビットが第1の2値状態を呈し、
    前記電流を第2方向に流すステップにより、前記データ・ビットが第2の2値状態を呈する、請求項114に記載の方法。
  116. 前記トラック内で前記磁壁を固定するステップをさらに含む、請求項106に記載の方法。
  117. 前記データ領域と交差する前記トラックに読出し電流を流すことによって、前記データ領域内の前記データ・ビットを選択的に読み出すステップをさらに含む、請求項106に記載の方法。
  118. 前記データを選択的に読み出すステップが、前記絶縁トンネル障壁層の抵抗値の変化を測定するステップを含む、請求項117に記載の方法。
  119. 磁性被膜の近傍に絶縁トンネル障壁層からなるトンネル接合部を配設することによって形成されたデータ記憶デバイス上のデータ・ビットを読み出す方法であって、
    データ領域と交差するトラックに読出し電流を流すことによって、前記磁性被膜の前記データ領域に記憶された前記データ・ビットを選択的に読み出すステップを含む、前記方法。
  120. 前記データ・ビットを選択的に読み出すステップが、前記絶縁トンネル障壁層の抵抗値の変化を測定するステップを含む、請求項119に記載の方法。
  121. 前記磁性被膜がパターン化されない、請求項119に記載の方法。
  122. 前記トラックが個々の磁性導線を備える、請求項119に記載の方法。
  123. 前記トラックが、前記磁性被膜上で複数の選択可能なデータ領域を画定する、請求項122に記載の方法。
  124. 前記磁性被膜が連続している、請求項119に記載の方法。
  125. 前記磁性被膜が明確な構造をもたず、それによって前記データ・ビットの位置が指定されない、請求項124に記載の方法。
  126. データ記憶デバイス上のデータ・ビットを読み出す装置であって、
    磁性被膜の近接に絶縁トンネル障壁層を配設することによって形成されたトンネル接合部と、
    データ領域を貫通して前記トンネル接合部に読出し電流を流すことによって、前記磁性被膜の前記データ領域に記憶された前記データ・ビットを選択的に読み出す読出し素子とを備える、前記装置。
  127. 前記読出し素子が、前記絶縁トンネル障壁層の抵抗値の変化を測定することによって前記データを選択的に読み出す、請求項126に記載の装置。
  128. 前記磁性被膜がパターン化されない、請求項126に記載の装置。
  129. 前記磁性被膜が個々の磁性導線を備える、請求項126に記載の装置。
  130. 前記個々の磁性導線が、複数の選択可能なデータ領域を画定する、請求項129に記載の装置。
  131. 前記磁性被膜が連続している、請求項126に記載の装置。
  132. 前記磁性被膜が明確な構造をもたず、それによって前記データ・ビットの位置が指定されない、請求項131に記載の装置。
JP2004297247A 2003-10-14 2004-10-12 パターン化しない連続磁性層にデータを記憶するシステムおよび方法 Active JP4516817B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/685,835 US6970379B2 (en) 2003-10-14 2003-10-14 System and method for storing data in an unpatterned, continuous magnetic layer

Publications (2)

Publication Number Publication Date
JP2005123617A true JP2005123617A (ja) 2005-05-12
JP4516817B2 JP4516817B2 (ja) 2010-08-04

Family

ID=34423215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004297247A Active JP4516817B2 (ja) 2003-10-14 2004-10-12 パターン化しない連続磁性層にデータを記憶するシステムおよび方法

Country Status (5)

Country Link
US (2) US6970379B2 (ja)
JP (1) JP4516817B2 (ja)
CN (1) CN1612262B (ja)
SG (1) SG111304A1 (ja)
TW (1) TWI309415B (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100790886B1 (ko) * 2006-09-15 2008-01-03 삼성전자주식회사 자구 벽 이동을 이용한 정보 저장 장치
JP2008021976A (ja) * 2006-07-13 2008-01-31 Samsung Electronics Co Ltd 磁壁の移動を利用した半導体装置
JP2008034808A (ja) * 2006-07-25 2008-02-14 Samsung Electronics Co Ltd 磁壁の移動を利用した半導体装置
KR100813270B1 (ko) 2006-09-29 2008-03-13 삼성전자주식회사 자구벽 이동을 이용한 데이터 저장 장치 및 그의 동작 방법
JP2008118128A (ja) * 2006-10-18 2008-05-22 Samsung Electronics Co Ltd 磁区壁移動を利用した半導体装置及びその製造方法
JP2008147663A (ja) * 2006-12-06 2008-06-26 Samsung Electronics Co Ltd 磁壁移動を利用した情報保存装置及びその製造方法
KR100846509B1 (ko) 2006-12-22 2008-07-17 삼성전자주식회사 자구벽 이동을 이용한 정보 저장 장치 및 그 제조방법
US8040724B2 (en) 2007-08-03 2011-10-18 Nec Corporation Magnetic domain wall random access memory
US8120127B2 (en) 2007-08-03 2012-02-21 Nec Corporation Magnetic random access memory and method of manufacturing the same
US8159865B2 (en) 2008-10-16 2012-04-17 Sony Corporation Information storage element and method of writing/reading information into/from information storage element
US8194436B2 (en) 2007-09-19 2012-06-05 Nec Corporation Magnetic random access memory, write method therefor, and magnetoresistance effect element
US8238150B2 (en) 2008-10-20 2012-08-07 Sony Corporation Information storage element and method of writing/reading information into/from information storage element
US8300456B2 (en) 2006-12-06 2012-10-30 Nec Corporation Magnetic random access memory and method of manufacturing the same
US8351249B2 (en) 2006-04-11 2013-01-08 Nec Corporation Magnetic random access memory
US8379429B2 (en) 2008-02-13 2013-02-19 Nec Corporation Domain wall motion element and magnetic random access memory
US8416611B2 (en) 2007-06-25 2013-04-09 Nec Corporation Magnetoresistance effect element and magnetic random access memory
US8514616B2 (en) 2009-02-17 2013-08-20 Nec Corporation Magnetic memory element and magnetic memory
US8580408B2 (en) 2006-11-28 2013-11-12 Samsung Electronics Co., Ltd. Apparatus for moving magnetic domain wall and memory device including magnetic field application unit
WO2023012896A1 (ja) * 2021-08-03 2023-02-09 Tdk株式会社 磁壁移動素子および磁気アレイ

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032149A1 (en) * 2002-10-03 2004-04-15 Koninklijke Philips Electronics N.V. Read-only magnetic memory device mrom
GB0304610D0 (en) * 2003-02-28 2003-04-02 Eastgate Invest Ltd Magnetic logic system
US20050157597A1 (en) * 2003-05-29 2005-07-21 Seagate Technology Llc Optimized media grain packing fraction for bit patterned magnetic recording media
US8345374B2 (en) 2003-05-29 2013-01-01 Seagate Technology, Llc Patterned media for heat assisted magnetic recording
US6970379B2 (en) * 2003-10-14 2005-11-29 International Business Machines Corporation System and method for storing data in an unpatterned, continuous magnetic layer
KR20070072522A (ko) * 2004-10-27 2007-07-04 각고호우징 게이오기주크 자기 저항 효과 소자 및 자기 메모리 장치
US7304360B2 (en) 2005-07-12 2007-12-04 Magic Technologies, Inc. Method of forming super-paramagnetic cladding material on conductive lines of MRAM devices
DE102005040612A1 (de) * 2005-08-27 2007-03-01 Behr Gmbh & Co. Kg Abgaswärmeübertrager
KR100754394B1 (ko) * 2006-01-26 2007-08-31 삼성전자주식회사 마그네틱 도메인 드래깅을 이용하는 자성소자 유닛 및 그작동 방법
KR100718153B1 (ko) * 2006-02-17 2007-05-14 삼성전자주식회사 마그네틱 도메인 이동을 이용한 자기메모리
KR100754397B1 (ko) * 2006-02-22 2007-08-31 삼성전자주식회사 마그네틱 도메인 이동을 이용한 자기메모리
KR100695171B1 (ko) * 2006-02-23 2007-03-14 삼성전자주식회사 마그네틱 도메인 이동을 이용하는 자기 메모리 장치
US7710770B2 (en) * 2006-05-09 2010-05-04 Ingenia Holdings Uk Limited Data storage device and method
KR100790885B1 (ko) * 2006-09-15 2008-01-02 삼성전자주식회사 자구 벽 이동을 이용한 정보 저장 장치
KR100837403B1 (ko) * 2006-09-15 2008-06-12 삼성전자주식회사 자구 벽 이동을 이용한 정보 저장 장치의 정보 기록 방법및 정보 읽기 방법
US7950587B2 (en) * 2006-09-22 2011-05-31 The Board of Regents of the Nevada System of Higher Education on behalf of the University of Reno, Nevada Devices and methods for storing data
JP4969981B2 (ja) * 2006-10-03 2012-07-04 株式会社東芝 磁気記憶装置
KR100829571B1 (ko) * 2006-10-27 2008-05-14 삼성전자주식회사 자구벽 이동을 이용한 데이터 저장 장치 및 그의 동작 방법
KR100829576B1 (ko) * 2006-11-06 2008-05-14 삼성전자주식회사 자구벽 이동을 이용한 데이터 저장 장치 및 그의 동작 방법
KR100868761B1 (ko) 2006-11-20 2008-11-13 삼성전자주식회사 자구벽 이동을 이용한 정보 저장 매체
KR100846504B1 (ko) 2006-12-08 2008-07-17 삼성전자주식회사 자구벽 이동을 이용한 정보 저장 장치
KR100837412B1 (ko) * 2006-12-12 2008-06-12 삼성전자주식회사 멀티 스택 메모리 소자
US8054666B2 (en) * 2006-12-22 2011-11-08 Samsung Electronics Co., Ltd. Information storage devices using magnetic domain wall movement and methods of manufacturing the same
KR100846510B1 (ko) * 2006-12-22 2008-07-17 삼성전자주식회사 자구벽 이동을 이용한 정보 저장 장치 및 그 제조방법
US7710769B2 (en) * 2007-05-09 2010-05-04 Ingenia Holdings Uk Limited Data storage device and method
KR101288477B1 (ko) * 2007-08-10 2013-07-26 삼성전자주식회사 자구벽 이동을 이용한 정보 저장 장치
US7986493B2 (en) * 2007-11-28 2011-07-26 Seagate Technology Llc Discrete track magnetic media with domain wall pinning sites
KR100907471B1 (ko) * 2007-12-06 2009-07-13 고려대학교 산학협력단 나노선 및 이를 이용한 전류 인가 자벽 이동을 이용한메모리 소자
KR101438147B1 (ko) 2008-01-16 2014-09-17 삼성전자주식회사 자구벽 이동을 이용한 정보저장장치와 그의 동작 및제조방법
KR101435516B1 (ko) * 2008-02-14 2014-08-29 삼성전자주식회사 자구벽 이동을 이용한 정보저장장치 및 그 동작방법
KR20090090160A (ko) * 2008-02-20 2009-08-25 삼성전자주식회사 자구벽 이동을 이용한 정보저장장치 및 그 동작방법
US8242776B2 (en) * 2008-03-26 2012-08-14 Everspin Technologies, Inc. Magnetic sensor design for suppression of barkhausen noise
KR101431761B1 (ko) * 2008-06-24 2014-08-21 삼성전자주식회사 정보저장장치 및 그의 동작방법
US8228706B2 (en) * 2008-07-07 2012-07-24 International Business Machines Corporation Magnetic shift register memory device
US7626844B1 (en) 2008-08-22 2009-12-01 International Business Machines Corporation Magnetic racetrack with current-controlled motion of domain walls within an undulating energy landscape
IT1392999B1 (it) * 2009-02-12 2012-04-02 Ct De Investigacion Cooperativa En Nanociencias Cic Nanogune Asoc Manipolazione di particelle magnetiche in circuiti per la propagazione di pareti di dominio magnetiche.
US8406029B2 (en) 2009-02-17 2013-03-26 Samsung Electronics Co., Ltd. Identification of data positions in magnetic packet memory storage devices, memory systems including such devices, and methods of controlling such devices
US8050074B2 (en) * 2009-02-17 2011-11-01 Samsung Electronics Co., Ltd. Magnetic packet memory storage devices, memory systems including such devices, and methods of controlling such devices
US7969774B2 (en) * 2009-03-10 2011-06-28 Micron Technology, Inc. Electronic devices formed of two or more substrates bonded together, electronic systems comprising electronic devices and methods of making electronic devices
FR2945147B1 (fr) * 2009-04-30 2012-03-30 Thales Sa Dispositif memristor a resistance ajustable grace au deplacement d'une paroi magnetique par transfert de spin et utilisation dudit memristor dans un reseau de neurones
US8279667B2 (en) * 2009-05-08 2012-10-02 Samsung Electronics Co., Ltd. Integrated circuit memory systems and program methods thereof including a magnetic track memory array using magnetic domain wall movement
TWI424433B (zh) * 2009-06-23 2014-01-21 Ind Tech Res Inst 磁性移位暫存記憶體與讀取方法
US8390283B2 (en) * 2009-09-25 2013-03-05 Everspin Technologies, Inc. Three axis magnetic field sensor
US9196280B2 (en) * 2009-11-12 2015-11-24 Marquette University Low-field magnetic domain wall injection pad and high-density storage wire
US8164940B2 (en) * 2009-12-15 2012-04-24 Hitachi Global Storage Technologies Netherlands, B.V. Read/write structures for a three dimensional memory
US8518734B2 (en) 2010-03-31 2013-08-27 Everspin Technologies, Inc. Process integration of a single chip three axis magnetic field sensor
DE102010003811A1 (de) 2010-04-09 2011-10-13 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Verfahren und Anordnung zur Manipulation von in einem magnetischen Medium gespeicherten Domäneninformationen
JP5746595B2 (ja) * 2011-09-30 2015-07-08 株式会社東芝 磁気メモリ及びその製造方法
US20140003118A1 (en) 2012-07-02 2014-01-02 International Business Machines Corporation Magnetic tunnel junction self-alignment in magnetic domain wall shift register memory devices
US8787062B2 (en) 2012-07-02 2014-07-22 International Business Machines Corporation Pinning magnetic domain walls in a magnetic domain shift register memory device
US8767432B1 (en) 2012-12-11 2014-07-01 International Business Machines Corporation Method and apparatus for controlled application of Oersted field to magnetic memory structure
US9048410B2 (en) * 2013-05-31 2015-06-02 Micron Technology, Inc. Memory devices comprising magnetic tracks individually comprising a plurality of magnetic domains having domain walls and methods of forming a memory device comprising magnetic tracks individually comprising a plurality of magnetic domains having domain walls
US10157656B2 (en) * 2015-08-25 2018-12-18 Western Digital Technologies, Inc. Implementing enhanced magnetic memory cell
CN105633275B (zh) * 2015-09-22 2018-07-06 上海磁宇信息科技有限公司 一种垂直型stt-mram记忆单元及其读写方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150440A (ja) * 1992-10-30 1994-05-31 Victor Co Of Japan Ltd 記録媒体とその記録再生方法
WO1999050833A1 (fr) * 1998-03-30 1999-10-07 Japan Science And Technology Corporation Procede et appareil d'enregistrement magnetique
JP2000195250A (ja) * 1998-12-24 2000-07-14 Toshiba Corp 磁気メモリ装置
US6834005B1 (en) * 2003-06-10 2004-12-21 International Business Machines Corporation Shiftable magnetic shift register and method of using the same

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1599513A (ja) 1968-12-30 1970-07-15
US3868659A (en) 1973-04-10 1975-02-25 Us Navy Serial access memory using thin magnetic films
US3846770A (en) 1973-07-11 1974-11-05 Us Navy Serial access memory using magnetic domains in thin film strips
FR2263577B1 (ja) 1974-03-08 1978-07-07 Tecsi Tech Systemes Inf
US4080591A (en) 1977-01-03 1978-03-21 Sperry Rand Corporation Replicator for cross-tie wall memory system incorporating isotropic data track
US4075613A (en) 1977-01-03 1978-02-21 Sperry Rand Corporation Logic gate for cross-tie wall memory system incorporating isotropic data tracks
US4075612A (en) 1977-01-03 1978-02-21 Sperry Rand Corporation Rounded serrated edge film strip geometry for cross-tie wall memory system
US4192012A (en) 1978-11-08 1980-03-04 The United States Of America As Represented By The Secretary Of The Navy Crosstie memory bit stretcher detector
US4199819A (en) 1978-11-08 1980-04-22 The United States Of America As Represented By The Secretary Of The Navy Field determined cross-tie memory propagation circuit
US4250565A (en) 1979-02-23 1981-02-10 Sperry Corporation Symmetrical memory plane for cross-tie wall memory system
US4253160A (en) 1979-09-06 1981-02-24 Sperry Corporation Nondestructive readout, random access cross-tie wall memory system
US4253161A (en) 1979-10-15 1981-02-24 Sperry Corporation Generator/shift register/detector for cross-tie wall memory system
US4410963A (en) 1981-10-05 1983-10-18 Sperry Corporation Cross-tie propagation using offset serration and cross-tie rocking action
US5650958A (en) 1996-03-18 1997-07-22 International Business Machines Corporation Magnetic tunnel junctions with controlled magnetic response
US5729410A (en) 1996-11-27 1998-03-17 International Business Machines Corporation Magnetic tunnel junction device with longitudinal biasing
US5801984A (en) 1996-11-27 1998-09-01 International Business Machines Corporation Magnetic tunnel junction device with ferromagnetic multilayer having fixed magnetic moment
EP1115164B1 (en) * 2000-01-07 2005-05-25 Sharp Kabushiki Kaisha Magnetoresistive device and magnetic memory using the same
JP4667594B2 (ja) * 2000-12-25 2011-04-13 ルネサスエレクトロニクス株式会社 薄膜磁性体記憶装置
US6515895B2 (en) 2001-01-31 2003-02-04 Motorola, Inc. Non-volatile magnetic register
US6754017B2 (en) 2001-10-26 2004-06-22 Hitachi Global Storage Technologies, Netherlands B.V. Patterned media magnetic recording disk drive with timing of write pulses by sensing the patterned media
US6877213B2 (en) 2002-01-07 2005-04-12 International Business Machines Corporation Feature size reduction in thin film magnetic head using low temperature deposition coating of photolithographically-defined trenches
US6898132B2 (en) * 2003-06-10 2005-05-24 International Business Machines Corporation System and method for writing to a magnetic shift register
US6920062B2 (en) * 2003-10-14 2005-07-19 International Business Machines Corporation System and method for reading data stored on a magnetic shift register
US6970379B2 (en) * 2003-10-14 2005-11-29 International Business Machines Corporation System and method for storing data in an unpatterned, continuous magnetic layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150440A (ja) * 1992-10-30 1994-05-31 Victor Co Of Japan Ltd 記録媒体とその記録再生方法
WO1999050833A1 (fr) * 1998-03-30 1999-10-07 Japan Science And Technology Corporation Procede et appareil d'enregistrement magnetique
JP2000195250A (ja) * 1998-12-24 2000-07-14 Toshiba Corp 磁気メモリ装置
US6834005B1 (en) * 2003-06-10 2004-12-21 International Business Machines Corporation Shiftable magnetic shift register and method of using the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8923042B2 (en) 2006-04-11 2014-12-30 Nec Corporation Magnetic random access memory
US8351249B2 (en) 2006-04-11 2013-01-08 Nec Corporation Magnetic random access memory
US8526222B2 (en) 2006-04-11 2013-09-03 Nec Corporation Magnetic random access memory
US8547733B2 (en) 2006-04-11 2013-10-01 Nec Corporation Magnetic random access memory
JP2008021976A (ja) * 2006-07-13 2008-01-31 Samsung Electronics Co Ltd 磁壁の移動を利用した半導体装置
JP2008034808A (ja) * 2006-07-25 2008-02-14 Samsung Electronics Co Ltd 磁壁の移動を利用した半導体装置
KR100790886B1 (ko) * 2006-09-15 2008-01-03 삼성전자주식회사 자구 벽 이동을 이용한 정보 저장 장치
KR100813270B1 (ko) 2006-09-29 2008-03-13 삼성전자주식회사 자구벽 이동을 이용한 데이터 저장 장치 및 그의 동작 방법
JP2008118128A (ja) * 2006-10-18 2008-05-22 Samsung Electronics Co Ltd 磁区壁移動を利用した半導体装置及びその製造方法
US8580408B2 (en) 2006-11-28 2013-11-12 Samsung Electronics Co., Ltd. Apparatus for moving magnetic domain wall and memory device including magnetic field application unit
JP2008147663A (ja) * 2006-12-06 2008-06-26 Samsung Electronics Co Ltd 磁壁移動を利用した情報保存装置及びその製造方法
US8300456B2 (en) 2006-12-06 2012-10-30 Nec Corporation Magnetic random access memory and method of manufacturing the same
KR100846509B1 (ko) 2006-12-22 2008-07-17 삼성전자주식회사 자구벽 이동을 이용한 정보 저장 장치 및 그 제조방법
US8416611B2 (en) 2007-06-25 2013-04-09 Nec Corporation Magnetoresistance effect element and magnetic random access memory
US8120127B2 (en) 2007-08-03 2012-02-21 Nec Corporation Magnetic random access memory and method of manufacturing the same
US8040724B2 (en) 2007-08-03 2011-10-18 Nec Corporation Magnetic domain wall random access memory
US8194436B2 (en) 2007-09-19 2012-06-05 Nec Corporation Magnetic random access memory, write method therefor, and magnetoresistance effect element
US8379429B2 (en) 2008-02-13 2013-02-19 Nec Corporation Domain wall motion element and magnetic random access memory
US8159865B2 (en) 2008-10-16 2012-04-17 Sony Corporation Information storage element and method of writing/reading information into/from information storage element
US8238150B2 (en) 2008-10-20 2012-08-07 Sony Corporation Information storage element and method of writing/reading information into/from information storage element
US8514616B2 (en) 2009-02-17 2013-08-20 Nec Corporation Magnetic memory element and magnetic memory
WO2023012896A1 (ja) * 2021-08-03 2023-02-09 Tdk株式会社 磁壁移動素子および磁気アレイ

Also Published As

Publication number Publication date
CN1612262A (zh) 2005-05-04
US20060028866A1 (en) 2006-02-09
TW200523925A (en) 2005-07-16
US20050078511A1 (en) 2005-04-14
TWI309415B (en) 2009-05-01
SG111304A1 (en) 2005-05-30
CN1612262B (zh) 2011-05-18
US6970379B2 (en) 2005-11-29
JP4516817B2 (ja) 2010-08-04
US7315470B2 (en) 2008-01-01

Similar Documents

Publication Publication Date Title
JP4516817B2 (ja) パターン化しない連続磁性層にデータを記憶するシステムおよび方法
US7031178B2 (en) Magnetic shift register with shiftable magnetic domains between two regions, and method of using the same
US6351409B1 (en) MRAM write apparatus and method
US6898132B2 (en) System and method for writing to a magnetic shift register
US6920062B2 (en) System and method for reading data stored on a magnetic shift register
US7236386B2 (en) System and method for transferring data to and from a magnetic shift register with a shiftable data column
KR100832843B1 (ko) 기록 컨덕터 레이아웃 구조체
EP1600977B1 (en) Multi-bit magnetic random acces memory device
EP1653475B1 (en) Multi-bit magnetic random access memory device and method for writing the same
KR20040058244A (ko) 스캘러블 mram 소자에의 기록
US7336528B2 (en) Advanced multi-bit magnetic random access memory device
US7589994B2 (en) Methods of writing data to magnetic random access memory devices with bit line and/or digit line magnetic layers
JP2000285669A (ja) 磁気読出部及び/又はナノ・メモリ素子を使用する量子ランダム・アドレス・メモリ
KR20050085721A (ko) 전자기 장치들을 위한 합성 반강자성체 구조
JP2005229099A (ja) 積層可能な構造を有する高密度磁気ランダムアクセスメモリ(mram)のための方法および装置
JP2000030434A (ja) 磁気メモリセル
JP2007503670A (ja) 多状態磁気ランダムアクセスメモリセル
KR100519898B1 (ko) 자성 메모리, 자성 메모리 어레이, 자성 메모리 제조방법, 자성 메모리에의 기록 방법 및 자성 메모리로부터의판독 방법
KR20080058332A (ko) 메모리 액세스
US7218556B2 (en) Method of writing to MRAM devices
JP2005101605A (ja) Mramのための熱支援型切換えアレイ構成
US7042036B2 (en) Magnetic memory using single domain switching by direct current
JP2004193603A (ja) 2つの書込み導体を有するmram
JP2004296858A (ja) 磁気記憶素子及び磁気記憶装置
JP2003091987A (ja) 磁気メモリ装置及びその記録制御方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7432

Effective date: 20081020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100517

R150 Certificate of patent or registration of utility model

Ref document number: 4516817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250