JP2005123122A - 燃料電池、その製造方法、電子機器および自動車 - Google Patents

燃料電池、その製造方法、電子機器および自動車 Download PDF

Info

Publication number
JP2005123122A
JP2005123122A JP2003359296A JP2003359296A JP2005123122A JP 2005123122 A JP2005123122 A JP 2005123122A JP 2003359296 A JP2003359296 A JP 2003359296A JP 2003359296 A JP2003359296 A JP 2003359296A JP 2005123122 A JP2005123122 A JP 2005123122A
Authority
JP
Japan
Prior art keywords
layer
fuel cell
substrate
gas
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003359296A
Other languages
English (en)
Inventor
Shuhei Yamada
周平 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003359296A priority Critical patent/JP2005123122A/ja
Publication of JP2005123122A publication Critical patent/JP2005123122A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】
反応ガスを反応層に均一に供給できる、安定した出力が確保された燃料電池、この燃料電池の製造方法、並びに該燃料電池を備える電子機器及び自動車を提供する。
【解決手段】
第1のガス流路が形成された第1の基板と、第1のガス流路上に形成された第1のガス拡散層と、第1のガス拡散層上に形成された第1の反応層と、第1の反応層上に形成された電解質膜と、電解質膜上に形成された第2の反応層と、第2の反応層上に形成された第2のガス拡散層と、第2のガス流路が形成された第2の基板とを備える燃料電池であって、前記第1のガス流路及び第2のガス流路の少なくとも一方は、多孔質半導体により形成されてなり、前記第1のガス拡散層及び第2のガス拡散層の少なくとも一方は、吐出装置を使用する工程により得られたものであることを特徴とする燃料電池、この燃料電池の製造方法、並びに該燃料電池を備える電子機器及び自動車。
【選択図】 図1

Description

本発明は、多孔質シリコンなどの多孔質半導体からなるガス流路を有する燃料電池において、一定量の反応ガスを反応層に均一に供給することで、安定した出力が確保された燃料電池、及びこの燃料電池を効率よく製造する燃料電池の製造方法、並びに該燃料電池を備える電子機器及び自動車に関する。
従来、電解質膜と、この電解質膜の一面に配置された電極(アノード)及び電解質膜の他面に配置された電極(カソード)等から構成される燃料電池が存在する。例えば、電解質膜が固体高分子電解質膜である固体高分子電解質型燃料電池では、各電極は、通常、反応触媒が担持された炭素粒子からなる反応層と、反応層の基板側に炭素粒子からなるガス拡散層等とから形成されている。
燃料の水素ガスは、基板に形成されたガス流路から供給され、ガス拡散層を構成する炭素微粒子の隙間を通過して拡散され、反応層において反応して電子と水素イオンとなる。水素イオンは電解質中を通って他方の基板の反応層へ移動し、外部回路を移動してきた電子と、該他方の基板に形成されたガス流路からガス拡散層を介して供給される酸素ガスと反応して水を生成する。
一方、単結晶シリコンウェーハを陽極化成することにより、表面部分に多孔質シリコン層を形成する方法が知られており、この多孔質シリコン層をガス流路として用いる燃料電池が提案されている(非特許文献1)。
しかしながら、この文献記載の燃料電池は、ガス流路上のガス拡散層ではガス流路から供給される反応ガスの濃度が高く、それ以外の部分(ガス流路間)上ではガスの濃度が低くなるものである。そのため、一定の濃度の反応ガスを反応層に均一に供給することができず、燃料電池の安定した出力を確保することが困難であるという問題があった。
Manynard,H.L.他:Silicon Tunnels for Reactant Distribution in Miniaturized Fuel Cell,The 197th Meeting of The Electrochemical society,Abstract No.60(2000)
本発明は、上記した従来技術の問題に鑑みてなされたものであり、多孔質半導体からなるガス流路を有する燃料電池において、一定量の反応ガスを反応層に均一に供給することで、安定した出力が確保された燃料電池、及びこの燃料電池を効率よく製造する燃料電池の製造方法、並びに該燃料電池を備える電子機器及び自動車を提供することを課題とする。
本発明者らは、上記課題を解決すべく鋭意研究した結果、シリコンウェーハ表面部に形成された多孔質シリコン層をガス流路に用いる燃料電池において、任意の位置に所望の孔径を有する多孔質シリコン層を簡便に形成する技術(陽極化成法)と、吐出装置を用いる技術とを組み合わせることにより、多孔質シリコン層(ガス流路)上においては、相対的に粒子径の小さい炭素系微粒子からガス拡散層を形成し、多孔質シリコン層が形成されていない部分(ガス流路以外の部分)上においては、相対的に粒子径の大きい炭素系微粒子からガス拡散層を形成すると、反応層のどの場所においても一定量の反応ガスを均一に供給できる燃料電池を効率よく製造できることを見出し、本発明を完成するに至った。
かくして本発明の第1によれば、第1のガス流路が形成された第1の基板と、前記第1のガス流路上に形成された第1のガス拡散層と、前記第1のガス拡散層上に形成された第1の反応層と、前記第1の反応層上に形成された電解質膜と、前記電解質膜上に形成された第2の反応層と、前記第2の反応層上に形成された第2のガス拡散層と、第2のガス流路が形成された第2の基板とを備える燃料電池であって、前記第1のガス流路及び第2のガス流路の少なくとも一方は、多孔質半導体により形成されてなり、かつ前記第1のガス拡散層及び第2のガス拡散層の少なくとも一方は、吐出装置を使用する工程により得られたものであることを特徴とする燃料電池が提供される。
本発明の燃料電池においては、前記第1のガス拡散層及び第2のガス拡散層の少なくとも一方は、炭素系微粒子から形成されたものであるのが好ましい。
本発明の燃料電池は、前記第1の基板及び第2の基板の少なくとも一方は、表面部分にガス流路となる多孔質半導体層が形成されてなり、前記多孔質半導体層を有する基板上に炭素系微粒子からなるガス拡散層が全面に形成されてなり、かつ前記多孔質半導体層上におけるガス拡散層が、多孔質半導体層以外の部分上のガス拡散層に比して、相対的に粒子径の小さい炭素系微粒子から形成されてなるものが好ましい。
本発明の燃料電池は、前記第1の基板及び第2の基板の少なくとも一方は、表面に、水平方向に対して、相対的に孔径の大きい多孔質半導体層(1)からなるガス流路が形成され、該ガス流路間においては、相対的に孔径の小さい多孔質半導体層(2)が形成された構造を有する基板であるものが好ましく、前記第1のガス拡散層及び第2のガス拡散層の少なくとも一方は、水平方向に対して、前記多孔質半導体層(1)上においては相対的に粒子径の小さい炭素系微粒子から形成されてなり、前記多孔質半導体層(2)上においては、相対的に粒子径の大きい炭素系微粒子から形成されてなるものがより好ましい。
本発明の燃料電池においては、前記多孔質半導体層および多孔質半導体層(1)が、ガス拡散層側における多孔質半導体の孔径が、基板内側における多孔質半導体の孔径に比して相対的に小さくなるように形成されているのが好ましい。
本発明の燃料電池においては、前記多孔質半導体層、多孔質半導体層(1)および多孔質半導体層(2)が、単結晶シリコンウェーハ表面に、陽極化成法により形成された多孔質シリコン層であるのが好ましい。
本発明の第2によれば、第1の基板に第1のガス流路を形成する工程と、前記第1のガス流路上に第1のガス拡散層を形成する工程と、前記第1のガス拡散層上に第1の反応層を形成する工程と、前記第1の反応層上に電解質膜を形成する工程と、前記電解質膜上に第2の反応層を形成する工程と、前記第2の反応層上に第2のガス拡散層を形成する工程と、第2の基板に第2のガス流路を形成する工程とを有する燃料電池の製造方法であって、前記第1のガス流路及び第2のガス流路の少なくとも一方を、多孔質半導体により形成し、かつ前記第1のガス拡散層及び第2のガス拡散層の少なくとも一方を、吐出装置を用いて形成することを特徴とする燃料電池の製造方法が提供される。
本発明の燃料電池の製造方法においては、前記第1のガス流路を形成する工程及び第2のガス流路を形成する工程の少なくとも一方が、単結晶シリコンウェーハの表面に、陽極化成法により多孔質シリコン層を形成するものであるのが好ましい。
本発明の第3によれば、本発明の燃料電池を電力供給源として備えることを特徴とする電子機器が提供される。
本発明の第4によれば、本発明の燃料電池を電力供給源として備えることを特徴とする自動車が提供される。
本発明によれば、多孔質半導体層からなるガス流路と吐出装置により形成されたガス拡散層とを有する、低コストで出力の安定した燃料電池が提供される。
本発明の燃料電池は、ガス流路が多孔質半導体層で形成されているので、集電層やガス拡散層を吐出装置によって形成する際に、ガス流路内に吐出物が落下するおそれがないので、ガス流路内に落下防止用の支持体等を塗布する必要がないものである。
本発明の燃料電池は、ガス拡散層において、反応ガスの流量の大きい部分(ガス流路上部)では、相対的に粒子径の小さい炭素系微粒子からガス拡散層を形成することで反応ガスを拡散されにくくし、反応ガスの流量が小さい部分(ガス流路間の上部)では、相対的に粒子径の大きい炭素系微粒子からガス拡散層を形成することで反応ガスを拡散され易くすることにより、反応層のどの場所においても均一に反応ガスを供給できるので、安定した出力が確保されている。
本発明の製造方法によれば、陽極化成法により多孔質半導体層を形成することにより、ガス流路を簡便に形成することができる。また、吐出装置を用いて、所望の位置にガス拡散層を効率よく形成することができる。
本発明に係る電子機器は、本発明の燃料電池を電力供給源として備えることを特徴とする。本発明の電子機器によれば、安定した出力を有し、地球環境に適切に配慮したクリーンエネルギーを電力供給源として備えることができる。
また、本発明に係る自動車は、本発明の燃料電池を電力供給源として備えることを特徴とする。本発明の自動車によれば、安定した出力を有し、地球環境に適切に配慮したクリーンエネルギーを電力供給源として備えることができる。
以下、本発明の燃料電池、その製造方法、並びに本発明の燃料電池を備える電子機器及び自動車について詳細に説明する。
1)燃料電池
本発明の燃料電池は、第1のガス流路が形成された第1の基板と、前記第1のガス流路上に形成された第1のガス拡散層と、前記第1のガス拡散層上に形成された第1の反応層と、前記第1の反応層上に形成された電解質膜と、前記電解質膜上に形成された第2の反応層と、前記第2の反応層上に形成された第2のガス拡散層と、第2のガス流路が形成された第2の基板とを備えるものであって、前記第1のガス流路及び第2のガス流路の少なくとも一方は、多孔質半導体により形成されてなり、かつ前記第1のガス拡散層及び第2のガス拡散層の少なくとも一方は、吐出装置を使用する工程により得られたものであることを特徴とする。
本発明の第1の実施形態の燃料電池の端面図を図1に示す。
図1に示す燃料電池は、図中下側から、第1の基板2と、第1の基板2に形成された、多孔質半導体層からなる第1のガス流路3と、第1の基板2及び第1のガス流路3上に形成された第1の集電層6と、第1のガス拡散層8と、第1のガス拡散層8上に形成された第1の反応層10と、電解質膜12と、第2の反応層10’と、第2のガス拡散層8’と、第2の集電層6’と、多孔質半導体層からなる第2のガス流路3’と、第2の基板2’とから構成されてなる。
図1に示す燃料電池においては、第1の基板2及び第2の基板2’は、表面全体に多孔質半導体層が形成されてなり、相対的に孔径が大きい多孔質半導体層と、相対的に孔径が小さい多孔質半導体層とが、水平方向に対して交互に繰り返す構造となっている。そして、相対的に孔径が大きい多孔質半導体層がガス流路3(3’)の役割を果している。この燃料電池によれば、ガス流路間にも僅かに反応ガスが流れるため、全体的に反応ガスの流量を増やすことができ、電池特性をより向上させることができる。
また、図1に示す燃料電池においては、ガス流路3上部のガス拡散層8は、相対的に粒子径の小さい炭素系微粒子から形成され、ガス流路間上のガス拡散層8は、相対的に粒子径の大きい炭素系微粒子から形成されている。
図1に示す燃料電池の、ガス流路3(3’)及びガス拡散層8(8’)における反応ガスの流れを図3(a)に示す。なお、図3(a)において、集電層の記載は省略している(図3(b)にて同じ。)。相対的に孔径の大きい多孔質半導体層からなるガス流路3(3’)には、上流側から下流側に向かって反応ガスが流れている。相対的に孔径の小さい多孔質半導体層からなるガス流路間4(4’)には、図中、水平方向の矢印が示すように、隣接するガス流路3(3’)から反応ガスが僅かに流れこんでいる。本来反応ガスの通過することのないガス流路間にも反応ガスが流れることとなる。ガス流路間4(4’)を多孔質半導体層で形成することにより、反応ガスの流れの偏りを緩和し、かつ反応ガスの流量を増すことができる。
ガス流路3から拡散される反応ガスは、相対的に粒子径の小さい、すなわち反応ガスが拡散されにくいガス拡散層8aへ拡散される。一方、ガス流路間4から僅かに拡散される反応ガスは、相対的に粒子径の大きい、すなわち反応ガスが拡散され易いガス拡散層8bへ拡散される。したがって、ガス流路3からガス拡散層8(8’)へ拡散される反応ガスは、反応ガスがより拡散し易い方向へ拡散しながら反応層10(10’)側へ流れることになり、反応ガスの流量が全体的に平均化され、反応層10(10’)のどの場所へも反応ガスが均一に供給されることとなる。このようにして、図1に示す燃料電池は、出力の安定した燃料電池となっている。
本発明の第2の実施形態の燃料電池の端面図を図2に示す。
図2に示す燃料電池は、図中下側から、第1の基板2と、第1の基板2に形成された、多孔質半導体層からなる第1のガス流路3と、第1の基板2及び第1のガス流路3上に形成された第1の集電層6と、第1のガス拡散層8と、第1のガス拡散層8上に形成された第1の反応層10と、電解質膜12と、第2の反応層10’と、第2のガス拡散層8’と、第2の集電層6’と、多孔質半導体層からなる第2のガス流路3’と、第2の基板2’とから構成されてなる。
図2に示す燃料電池においては、ガス流路3及び3’は多孔質半導体から形成されており、ガス拡散層8及び8’は、ガス流路上においては、ガス流路間に比して相対的に粒子径の小さい炭素系微粒子から形成されている。このような構造とすることで、ガス流路3(3’)から垂直方向に拡散される反応ガスは、ガス拡散層8(8’)を通過する間に、どの場所においても濃度が平均化され、最終的に反応層に均一に供給されることとなる。
図2に示す燃料電池においては、基板表面の所定位置に所定の深さで多孔質半導体層からなるガス流路3(3’)が形成され、ガス流路3(3’)上部のガス拡散層8(8’)は、相対的に粒子径の小さい炭素系微粒子から形成され、ガス流路3(3’)間上のガス拡散層8(8’)は、相対的に粒子径の大きい炭素系微粒子から形成されている。
図2に示す燃料電池の、ガス流路3(3’)及びガス拡散層8(8’)における反応ガスの流れを矢印で図3(b)に示す。図3(b)において、ガス流路3(3’)を上流側から下流側に流れてくる反応ガスは、図中、垂直方向の矢印で示すように、ガス流路3(3’)からガス拡散層8(8’)側に拡散される。すなわち、ガス流路3(3’)上部のガス拡散層8(8’)においては反応ガスの供給量は多くなる。
一方、反応ガスがガス拡散層8(8’)を反応層10(10’)側へと拡散する場合、ガス拡散層8(8’)のうち、相対的に粒子径の小さい炭素系微粒子から形成されている部分8aは、反応ガスが拡散されにくく、相対的に粒子径の大きい炭素系微粒子から形成されている部分は、反応ガスが拡散され易い(図中、水平方向の矢印が示す方向)。その結果、ガス流路3(3’)から拡散された反応ガスは、ガス拡散層8(8’)を通過することで、反応層のどの場所へも均一に供給されることとなる。このようにして、図2に示す燃料電池は、出力の安定した燃料電池となっている。
本発明の燃料電池においては、前記多孔質半導体層又は多孔質半導体層(1)からなるガス流路3(3’)においては、ガス拡散層8(8’)側における多孔質半導体の孔径が、ガス流路内部を形成する多孔質半導体の孔径に比して相対的に小さくなるように形成されているのが好ましい。後工程において、吐出装置を用いて炭素系微粒子を塗布してガス拡散層を形成する場合、孔径の大きい多孔質半導体層上に吐出装置から炭素系微粒子が塗布されると、炭素系微粒子がガス流路の多孔質半導体の孔に落下するおそれがある。そこで、相対的に小さい孔径の多孔質半導体をガス拡散層側に形成しておけば、吐出装置から炭素系微粒子が吐出される際、該炭素系微粒子がガス流路に落下するのを防止でき、ガス拡散層を円滑に形成することができる。
本発明の燃料電池において、ガス流路を構成する多孔質半導体の半導体としては、シリコン(Si)、ゲルマニウム(Ge)、炭化シリコン(SiC)、ガリウム−リン(GaP)、ガリウム−砒素(GaAs)、インジウム−リン(InP)などが挙げられる。多孔質半導体層は、これらの半導体基板を陽極化成することにより形成することができる。多孔質半導体層としては、入手及び製造が容易であることから多孔質シリコン層が好ましく、単結晶シリコンウェーハの表面に陽極化成法により形成した多孔質シリコン層が特に好ましい。
本発明の燃料電池においては、いずれの実施形態においても、ガス拡散層8(8’)はガス流路3(3’)の形成された基板上に、吐出装置を使用して炭素系微粒子を塗布することにより形成することができる。吐出装置を用いるため、粒子径の異なる炭素系微粒子を、容易かつ正確に塗布することができ、所望の位置に、所望の粒子径を有する炭素系微粒子からなるガス拡散層を、形成することが可能である。
本発明に用いる炭素系微粒子は反応ガスの拡散性に優れ、吐出装置を用いて簡便に塗布できることから、ガス拡散層形成用材料として好適に用いることができる。炭素系微粒子としては、炭素、カーボンナノチューブ、カーボンナノフォーン、フラーレン等の微粒子が挙げられる。なかでも、入手が容易であること、及び拡散抵抗が小さいこと等の理由から炭素の微粒子が好ましい。
本発明の燃料電池の種類は特に制約されない。例えば、電解質膜が高分子電解質材料からなる燃料電池や、セラミックス系固体電解質である燃料電池等が挙げられる。
本発明の燃料電池は次のように動作する。すなわち、第1の基板の第1のガス流路から第1の反応ガスが導入され、ガス拡散層により均一に拡散され、拡散された第1の反応ガスが第1の反応層で反応してイオンと電子が生じ、生じた電子は集電層で集められ、第2の基板の第2の集電層に流れ、第1の反応ガスにより生じたイオンは、電解質膜の中を第2の反応層へ移動する。一方、第2の基板のガス流路から第2の反応ガスが導入され、第2のガス拡散層により均一に拡散され、拡散された第2の反応ガスが第2の反応層において、電解質膜中を移動してきたイオン及び第2の集電層から送り込まれた電子と反応する。例えば、第1の反応ガスが水素ガスであり、第2の反応ガスが酸素ガスである場合には、第1の反応層においては、H→2H+2eの反応が進行し、第2の反応層においては、1/2O+2H+2e→HOの反応が進行する。
2)燃料電池の製造方法
本発明の燃料電池の製造方法は、第1の基板に第1のガス流路を形成する工程と、前記第1のガス流路上に第1のガス拡散層を形成する工程と、前記第1のガス拡散層上に第1の反応層を形成する工程と、前記第1の反応層上に電解質膜を形成する工程と、前記電解質膜上に第2の反応層を形成する工程と、前記第2の反応層上に第2のガス拡散層を形成する工程と、第2の基板に第2のガス流路を形成する工程とを有する燃料電池の製造方法であって、前記第1のガス流路及び第2のガス流路の少なくとも一方を、多孔質半導体により形成し、かつ前記第1のガス拡散層及び第2のガス拡散層の少なくとも一方を、吐出装置を用いて形成することを特徴とする。
本発明の燃料電池の製造方法は、本発明の燃料電池を製造する方法として好適である。
本発明の燃料電池の製造方法は、例えば、図4に示す燃料電池の製造装置(燃料電池製造ライン)を使用して実施することができる。
図4に示す燃料電池製造ラインにおいては、各工程においてそれぞれ用いられる吐出装置20a〜20i、陽極化成装置21a及び21b、装置20a、21a、20c〜20hを接続するベルトコンベアBC1、装置20i、21bを接続するベルトコンベアBC2、ベルトコンベアBC1、BC2を駆動させる駆動装置58、燃料電池の組み立てを行なう組立装置60及び燃料電池製造ライン全体の制御を行なう制御装置56により構成されている。
装置20a、21a、20b〜20hは、ベルトコンベアBC1に沿って所定の間隔で一列に配置されており、装置20i、21bはベルトコンベアBC2に沿って所定の間隔で一列に配置されている。また、制御装置56は、装置20a〜20i、駆動装置58及び組立装置60と接続されている。
この燃料電池製造ラインにおいては、駆動装置58により駆動されたベルトコンベアBC1を駆動させ、燃料電池の基板(以下、単に「基板」という。)を各装置20a、21a、20b〜20hに搬送して、それぞれの装置における処理が行なわれる。同様に、制御装置56からの制御信号に基づいてベルトコンベアBC2を駆動させ、基板を装置20i、21bに搬送して、それぞれの装置における処理が行なわれる。また、組立装置60においては、制御装置56からの制御信号に基づいてベルトコンベアBC1及びBC2によって搬送されてきた基板を用いて燃料電池の組み立て作業が行なわれる。
吐出装置20a〜20iとしては、インクジェット方式の吐出装置であれば特に制約されない。例えば、加熱発泡により気泡を発生し、液滴の吐出を行なうサーマル方式の吐出装置、ピエゾ素子を利用する圧縮により、液滴の吐出を行なうピエゾ方式の吐出装置等が挙げられる。
本実施形態では、吐出装置20a〜20iとして、図5に示すものを用いる。吐出装置は、吐出物34を収容するタンク30と、タンク30と吐出物搬送管32を介して接続されたインクジェットヘッド22、被吐出物を搭載、搬送するテーブル28、インクジェットヘッド22内に滞留する余剰の吐出物34を吸引して、インクジェットヘッド22内から過剰の吐出物を除去する吸引キャップ40、及び吸引キャップ40で吸引された余剰の吐出物を収容する廃液タンク48から構成されている。
タンク30は、レジスト溶液等の吐出物34を収容するものであり、タンク30内に収容されている吐出物の液面34aの高さを制御するための液面制御センサ36を備える。液面制御センサ36は、インクジェットヘッド22が備えるノズル形成面26の先端部26aと、タンク30内の液面34aとの高さの差h(以下、水頭値という)を所定の範囲内に保つ制御を行う。例えば、この水頭値が25m±0.5mm内となるように液面34aの高さを制御することで、タンク30内の吐出物34が所定の範囲内の圧力でインクジェットヘッド22に送ることができる。所定の範囲内の圧力で吐出物34を送ることで、インクジェットヘッド22から必要量の吐出物34を安定して吐出することができる。
吐出物搬送管32は、吐出物搬送管32の流路内の帯電を防止するための吐出物流路部アース継手32aとヘッド部気泡排気弁32bとを備える。ヘッド部気泡排除弁32bは、後述する吸引キャップ40により、インクジェットヘッド22内の吐出物を吸引する場合に用いられる。
インクジェットヘッド22は、ヘッド体24及び吐出物を吐出する多数のノズルが形成されているノズル形成面26を備え、ノズル形成面26のノズルから吐出物、例えば、反応ガスを供するためのガス流路を基板上に形成する際に基板に塗布されるレジスト溶液等が吐出される。
テーブル28は、所定の方向に移動可能に設置されている。テーブル28は、図中矢印で示す方向に移動することにより、ベルトコンベアBC1により搬送される基板を載置して、吐出装置内に取り込む。
吸引キャップ40は、図5に示す矢印方向に移動可能となっており、ノズル形成面26に形成された複数のノズルを囲むようにノズル形成面26に密着し、ノズル形成面26との間に密閉空間を形成してノズルを外気から遮断できる構成となっている。即ち、吸引キャップ40によりインクジェットヘッド22内の吐出物を吸引するときは、このヘッド部気泡排除弁32bを閉状態にして、タンク30側から吐出物が流入しない状態とし、吸引キャップ40で吸引することにより、吸引される吐出物の流速を上昇させ、インクジェットヘッド22内の気泡を速やかに排出することができる。
吸引キャップ40の下方には流路が設けられており、この流路には、吸引バルブ42が配置されている。吸引バルブ42は、吸引バルブ42の下方の吸引側と、上方のインクジェットヘッド22側との圧力バランス(大気圧)を取るための時間を短縮する目的で流路を閉状態にする役割を果す。この流路には、吸引異常を検出する吸引圧検出センサ44やチューブポンプ等からなる吸引ポンプ46が配置されている。
また、吸引ポンプ46で吸引、搬送された吐出物34は、廃液タンク48内に一時的に収容される。
次に、図4に示す燃料電池製造ラインを用いて、燃料電池を製造する各工程を説明する。図4に示す燃料電池製造ラインを用いる燃料電池の製造方法のフローチャートを図6に示す。
図6に示すように、本発明の燃料電池は、第1の基板にガス流路を形成する工程(S10,第1のガス流路形成工程)、第1の集電層を形成する工程(S11,第1の集電層形成工程)、第1のガス拡散層を形成する工程(S12,第1のガス拡散層形成工程)、第1の反応層形成工程(S13,第1の反応層形成工程)、電解質膜を形成する工程(S14,電解質膜形成工程)、第2の反応層を形成する工程(S15,第2の反応層形成工程)、第2のガス拡散層を形成する工程(S16,第2のガス拡散層形成工程)、第2の集電層を形成する工程(S17,第2の集電層形成工程)、及び第2のガス流路が形成された第2の基板を積層する工程(S18,組立工程)により製造される。
次に、図1に示す燃料電池を例にとり、各工程S10〜S18の操作を説明する。
(1)第1のガス流路形成工程(S10)
まず、矩形状の第1の基板2を用意し、基板2をベルトコンベアBC1によりレジストパターンを形成するための吐出装置20aまで搬送する。本実施形態では、基板2として単結晶シリコンウェーハを使用する。
次に、ベルトコンベアBC1により搬送された基板2は、吐出装置20aのテーブル28上に載置され、吐出装置20a内に取り込まれる。吐出装置20a内においては、吐出装置20aのタンク30内に収容されているレジスト液が、ノズル形成面26のノズルを介してテーブル28に搭載された基板2上の所定位置に塗布され、基板2の表面にレジストパターン5が形成される。基板2の表面にレジストパターン5が形成された状態の端面図を図7(a)に示す。
次いで、所定の位置にレジストパターン5が形成された基板2は、ベルトコンベアBC1により陽極化成装置21aに搬送され、フッ化水素酸水溶液に浸漬され、電流が印加され陽極化成が行われる。レジストパターン5が形成されている部分以外の基板2表面部が多孔質化されて、図7(b)に示すように、基板2の表面部に多孔質シリコンからなる第1のガス流路3が形成される。
単結晶シリコンウェーハの陽極化成法によるシリコンの多孔質化方法としては、「表面技術Vol.4、No.5,P396〜401(1995)」等に記載されている方法を採用することができる。すなわち、シリコンの多孔質化は、シリコン表面の露出部分を陽極とし、対向電極を陰極として、両極をフッ化水素酸中に浸漬し、両極間に通電することにより行うことができる。対向電極としては、プラチナ(Pt)、チタン、イリジウム等からなる電極等が使用できる。本実施形態では、プラチナからなる電極を用いる。
第1のガス流路3が形成された基板2は、図示しない洗浄装置によって表面が洗浄され、レジストパターン5が除去される。以上のようにして得られる、第1のガス流路3が形成された基板2の端面図を図7(c)に示す。
第1のガス流路3が形成された基板2は、吐出装置20aに再搬送され、図7(d)に示すように、上記で形成した多孔質シリコン層上に、前記と同様にしてレジストパターン5’を形成する。この場合、吐出装置20aに代えて、図示しない別の吐出装置を使用してもよい。
レジストパターン5’が形成された基板2は陽極化成装置21aに再搬送され、前記ガス流路以外の基板表面が相対的に孔径の小さい多孔質シリコン層となるように陽極化成される。相対的に孔径の小さい多孔質シリコン層は、前記ガス流路となる多孔質シリコン層を形成する場合よりも電流密度を小さくすることで形成することができる。この場合、陽極化成装置21aに代えて、図示しない別の陽極化成装置を使用してもよい。
次いで、図示しない洗浄装置によって表面が洗浄され、レジストパターン5’が除去される。以上のようにして、図7(e)に示すように、表面部に、相対的に孔径の大きい多孔質シリコン層からなるガス流路3と、相対的に孔径の小さい多孔質シリコン層からなるガス流路間4が形成された基板2を得ることができる。
本実施形態においては、基板2の表面側における多孔質シリコンの孔径を、基板2内部側における多孔質シリコンの孔径より相対的に小さくするように、多孔質シリコン層を形成するのが好ましい。後にガス拡散層形成材料である炭素系微粒子を吐出装置を用いて塗布する際、炭素系微粒子が多孔質半導体の孔に落下するのを防ぎ、円滑に吐出操作を進めることができるからである。
基板2の表面側における多孔質シリコンの孔径が、基板2内部側における多孔質シリコンの孔径より相対的に小さくなるようにした構造は、単結晶シリコン基板の表面部に、陽極化成法により多孔質シリコン層を形成する際に、最初に電流密度を小さくして、基板表面に孔径の小さい多孔質シリコンを形成してから、徐々に電流密度を上げることにより、相対的に孔径の大きい多孔質シリコンからなるガス流路を形成することができる。多孔質半導体の孔径を制御する方法としては、電流密度を可変する方法のほかに、フッ化水素酸の濃度を変化させる方法や、それらを組み合わせる方法を採用することもできる。
得られる多孔質半導体の孔径は、ガス流路を構成する相対的に孔径の大きい多孔質半導体層においては、50nm以上であるのが好ましく、ガス流路間を構成する相対的に孔径の小さい多孔質半導体層においては、その1/2以下であるのが好ましい。
なお、陽極化成法による電気化学溶解反応は孔の先端で起こるため、通電を続けるとウェーハの内部へ多孔質化が進行する。したがって、多孔質半導体層の厚さは通電時間により制御することができる。
(2)第1の集電層形成工程(S11)
次に、ガス流路3が形成された基板2上に、第1の反応ガスが反応することにより発生した電子を集めるための第1の集電層5を形成する。
まず、ベルトコンベアBC1により吐出装置20bまで搬送された基板2を、テーブル28上に載置して吐出装置20b内に取り込む。吐出装置20bにおいては、タンク30内に収容されている集電層を形成する材料の一定量を、ノズルの形成面26のノズルを介して基板2上に所定間隔で吐出することにより、第1の集電層6が形成される。
第1の集電層6が形成された基板2の端面図を図8に示す。第1の集電層6が形成された基板2は、テーブル28からベルトコンベアBC1へ移され、ベルトコンベアBC1により吐出装置20cまで搬送される。
(3)第1のガス拡散層形成工程(S12)
次に、基板2の集電層上に第1のガス拡散層を形成する。先ず、ベルトコンベアBC1により吐出装置20cまで搬送された基板2をテーブル28上に載置して、吐出装置20c内に取り込む。
吐出装置20c内においては、吐出装置20cのタンク30内に収容されている炭素系微粒子を、ノズル形成面26のノズルを介してテーブル28に載置されている基板2表面の所定位置に吐出して、第1のガス拡散層8が形成される。
この場合、第1のガス流路(相対的に孔径の大きい多孔質シリコン層)3上には相対的に粒子径の小さい炭素系微粒子が塗布され、第1のガス流路間(相対的に孔径の小さい多孔質シリコン層)4上には、相対的に粒子径の大きい炭素系微粒子が塗布される。吐出装置を用いるため、このような操作が容易にでき、目的とする構造のガス拡散層を短時間に形成することができる。
炭素系微粒子の粒子径の大きさは、反応層のどの場所にも均一に反応ガスを供給することができるような大きさが好ましい。炭素系微粒子の粒子径の大きさは、多孔質シリコン層の孔径の大きさ、目的とする燃料電池の大きさ、求められる性能などに応じて適宜設定される。
第1のガス拡散層8が形成された基板2の端面図を図9に示す。第1のガス拡散層8が形成された基板2は、テーブル28からベルトコンベアBC1へ移され、ベルトコンベアBC1により吐出装置20dまで搬送される。
(4)第1の反応層形成工程(S13)
次に、基板2上に第1の反応層10を形成する。第1の反応層10は、第1の集電層6とガス拡散層8を介して電気的に接続されるように形成する。
まず、ベルトコンベアBC1により吐出装置20dまで搬送された基板2をテーブル28上に載置して、吐出装置20d内に取り込む。吐出装置20d内においては、吐出装置20dのタンク30内に収容されている金属微粒子を、ノズル形成面26のノズルを介してテーブル28に載置されている基板2表面の所定位置に吐出して、反応層10が形成される。
反応層10を形成する方法としては、a)炭素粒子を塗布した後に、金属微粒子を塗布する方法、b)金属微粒子を担持した炭素粒子を塗布する方法、c)金属微粒子と有機分散剤とを含む分散液を塗布した後に焼成する方法等が挙げられる。
a)の方法は、ガス拡散層上に金属微粒子を担持するための炭素粒子を塗布した後に金属微粒子を塗布して、炭素粒子に金属微粒子が担持された反応層を形成する方法である。この場合、吐出装置としては、炭素粒子を塗布する吐出装置20dと、金属微粒子を塗布する吐出装置20d’(図示を省略)とを使用するのが好ましい。また、炭素粒子としては、通常の炭素粒子のほかに、触媒担持能力に優れるカーボンナノチューブ、カーボンナノフォーン、フラーレン等の炭素物質を使用することもできる。
b)の方法は、反応層形成用材料として、金属微粒子を担持した炭素粒子の分散液を使用する。すなわち、吐出装置20dを用いて金属微粒子を担持した炭素粒子の分散液をガス拡散層上に塗布する。この場合、炭素粒子として、触媒担持能力に優れるカーボンナノチューブ、カーボンナノフォーン、フラーレン等の炭素物質を使用することもできる。
c)の方法は、吐出装置20dのタンク30内に、金属微粒子と有機分散剤とを含む分散液を収容し、ノズル形成面26のノズルを介して該分散液をテーブル28に載置されている基板2表面の所定位置に吐出して、分散液の塗膜を形成し、次いで、所定温度に加熱して、有機分散剤を蒸発除去又は燃焼させることにより金属微粒子からなる反応層を形成させるものである。また、分散液の塗膜を形成した後、該塗膜を窒素ガス等の不活性ガス雰囲気下、200〜300℃で焼成することによっても形成させることもできる。この場合には、金属微粒子に有機分散剤が焼成してできた炭素粒子が付着した構造の反応層が得られる。
反応層の形成において用いる金属微粒子としては、第1の反応ガス及び第2の反応ガスの反応触媒としての機能を有するものであれば特に制限されない。例えば、白金、ロジウム、ルテニウム、イリジウム、パラジウム、オスミウム及びこれらの2種以上からなる合金からなる群から選ばれる1種若しくは2種以上の金属の微粒子が挙げられ、白金が特に好ましい。金属微粒子の粒子径は制限されないが、通常1nm〜100nm、好ましくは数nm〜数十nmである。
また、金属微粒子を分散するための分散媒としては、例えば、水、アルコール類、ケトン類、エステル類、エーテル類、炭化水素類、芳香族炭化水素類等が挙げられる。
本発明の燃料電池の製造方法においては、反応層を形成する方法として、反応層形成用材料の一定量を、吐出装置20dを用いて、所定間隔をおいて塗布して形成するのが好ましい。この方法によれば、簡便な操作により、所定量を所定の位置に正確に塗布することができるので、反応層形成用材料の使用量を大幅に節約でき、所望のパターン(形状)の反応層を効率よく形成することができる。また、反応層形成用材料を塗布する間隔を場所によって変化させたり、用いる反応層形成用材料の種類を、塗布位置によって変更することも自由に行うことができる。
第1の反応層10が形成された基板2の端面図を図10に示す。第1の反応層10が形成された基板2は、テーブル28からベルトコンベアBC1へ移され、ベルトコンベアBC1により吐出装置20eまで搬送される。
(5)電解質膜形成工程(S14)
次に、第1の反応層10が形成された基板2上に電解質膜12を形成する。まず、ベルトコンベアBC1により吐出装置20eまで搬送された基板2を、テーブル28上に載置して吐出装置20e内に取り込む。吐出装置20eにおいては、タンク30内に収容されている電解質膜の形成材料をノズル形成面26のノズルを介して第1の反応層10上に吐出して電解質膜12が形成される。
用いる電解質膜の形成材料としては、例えば、ナフィオン(デュポン社製)等のパーフルオロスルホン酸を、水とメタノールの重量比が1:1の混合溶液中でミセル化して得られる高分子電解質材料や、タングスト燐酸、モリブド燐酸等のセラミックス系固体電解質を所定の粘度(例えば、20cP以下)に調整した材料等が挙げられる。
電解質膜が形成された基板2の端面図を図11に示す。図11に示すように、第1の反応層10上に所定の厚さを有する電解質膜12が形成されている。電解質膜12が形成された基板2は、テーブル28からベルトコンベアBC1へ移され、ベルトコンベアBC1により吐出装置20fまで搬送される。
(6)第2の反応層形成工程(S15)
次に、電解質膜12が形成された基板2上に第2の反応層10’を形成する。まず、ベルトコンベアBC1により吐出装置20fまで搬送された基板2を、テーブル28上に載置して吐出装置20f内に取り込む。吐出装置20fにおいては、吐出装置20dにおいて行われた処理と同様の処理により、第2の反応層10’が形成される。第2の反応層10’を形成する材料としては、第1の反応層10と同様のものを使用することができる。
電解質膜12上に第2の反応層10’が形成された基板2の端面図を図12に示す。図12に示すように、電解質膜12上に第2の反応層10’が形成されている。反応層10’においては、第2の反応ガスの反応が行われる。第2の反応層10’が形成された基板2は、テーブル28からベルトコンベアBC1へ移され、ベルトコンベアBC1により吐出装置20gまで搬送される。
(7)第2のガス拡散層形成工程(S16)
次に、第2の反応層10’が形成された基板2上に第2のガス拡散層8’を形成する。まず、ベルトコンベアBC1により吐出装置20gまで搬送された基板2を、テーブル28上に載置して吐出装置20g内に取り込む。吐出装置20gにおいては、吐出装置20cにおいて行われた処理と同様の処理により、第2のガス拡散層8’が形成される。第2のガス拡散層8’も、第1のガス拡散層8と同様に、多孔質シリコン層からなるガス流路3上は相対的に粒子径の小さい炭素系微粒子からなり、ガス流路間4上は、相対的に粒子径の大きい炭素系微粒子からなるように形成されるのが好ましい。
第2のガス拡散層8’が形成された基板2の端面図を図13に示す。第2のガス拡散層8’が形成された基板2は、テーブル28からベルトコンベアBC1へ移され、ベルトコンベアBC1により吐出装置20hまで搬送される。
(8)第2の集電層形成工程(S17)
次に、第2のガス拡散層8’が形成された基板2上に第2の集電層6’を形成する。先ず、ベルトコンベアBC1により吐出装置20hまで搬送された基板2を、テーブル28上に載置して吐出装置20h内に取り込み、吐出装置20bにおいて行われた処理と同様の処理により、第2の集電層6’が第2のガス拡散層8’上に形成される。
第2の集電層6’が形成された基板2の端面図を図14に示す。第2の集電層6’が形成された基板2は、テーブル28からベルトコンベアBC1へ移され、ベルトコンベアBC1により組立装置60まで搬送される。
(9)第2の基板組立工程(S18)
次に、基板2(第1の基板)と、別途用意した第2のガス流路3’が形成された第2の基板(基板2’)とを組立装置60により積層する。
第2のガス流路3’も、第1のガス流路3と同様に多孔質シリコンにより形成されているのが好ましい。第2のガス流路3’の形成は、吐出装置20i及び陽極化成装置21bにおいて、吐出装置20a及び陽極化成装置21aにより行なわれる処理と同様の処理により行なわれる。
第1の基板2と第2の基板2’との積層は、第1の基板2上に形成された第2のガス拡散層8’上の相対的に粒子径の小さい炭素系微粒子から形成された部分と、第2の基板2’に形成された第2のガス流路とが、電解質膜12を介して対向するように接合することにより行われる。
以上のようにして、図1に示すような本発明の燃料電池を製造することができる。
図2に示す燃料電池も、単結晶シリコン基板を陽極化成することにより、多孔質シリコンからなるガス流路3(3’)を形成した基板2(2’)を用い、図4に示す製造ラインを使用して同様にして製造することができる。
本発明の燃料電池においては、図1に示すように基板2に形成されている第1のガス流路と基板2’に形成されている第2のガス流路とが平行になるように基板2’が配置されていてもよいし、第1のガス流路と第2のガス流路が直角に交差するように基板2’が配置されていてもよい。
上述の実施形態の製造方法においては、ガス流路3及び3’を製造ライン上の陽極化成装置21a(21b)で形成しているが、表面に予め多孔質シリコン層からなるガス流路が形成された基板2(2’)を用意し、集電層を形成する工程から製造ラインで行うようにしてもよい。
また、上述の実施形態の製造方法においては、第1の反応ガスが供給される第1の基板側から燃料電池の構成部分を形成し、最後に第2の基板を積層することで燃料電池の製造を行っているが、第2の反応ガスが供給される側の基板から燃料電池の製造を開始するようにしてもよい。
上述の実施形態の製造方法においては、第1のガス流路が形成された第1の基板上に、第1の集電層、第1の反応層、電解質膜、第2の反応層及び第2の集電層を順次形成しているが、第1の基板と第2の基板のそれぞれに集電層、反応層及び電解質膜を形成し、最後に第1の基板と第2の基板とを接合することにより、燃料電池を製造することもできる。
また、本実施形態の燃料電池製造ラインの別の態様として、第1の基板に処理を施す第1製造ラインと第2の基板に処理を施す第2製造ラインとを設け、それぞれの製造ラインにおける処理を平行して行う製造ラインを用いることもできる。この場合には、第1の基板への処理と第2の基板への処理を平行して行うことができるため、効率よく燃料電池を製造することができる。
3)燃料電池を備える電子機器及び自動車
本発明の電子機器は、本発明の燃料電池を電力供給源として備えることを特徴とする。
電子機器としては、携帯電話機、モバイル、PHS、ノート型パソコン、PDA(携帯情報端末)、携帯テレビ電話機などが挙げられる。また、本発明の電子機器は、例えば、ゲーム機能、データ通信機能、録音再生機能、辞書機能などの他の機能を有していてもよい。
本発明の電子機器は、電力供給源として反応ガスのガス拡散効率及び反応効率の両方が高められ、安定した出力が確保された燃料電池を備えるものである。
本発明の電子機器によれば、地球環境に適切に配慮したクリーンエネルギーを電力供給源として備えることができる。
本発明に製造方法によれば、複数の燃料電池を積層することによって大型の燃料電池を製造することもできる。すなわち、図15に示すように、製造した燃料電池の基板2’の裏面に更に同様にしてガス流路を形成し、ガス流路が形成された基板2’の裏面上に、上述の燃料電池の製造方法における製造工程と同様にしてガス拡散層、反応層、電解質膜などを形成して燃料電池を積層することによって大型の燃料電池を製造することができる。このようにして得られる大型の燃料電池は、自動車の電力供給源として有用である。
本発明の自動車は、上述した燃料電池を電力供給源として備えるものである。 本発明の自動車によれば、地球環境に適切に配慮したクリーンエネルギーを電力供給源として備えることができる。
第1の実施形態に係る燃料電池の端面図である。 第2の実施形態に係る燃料電池の端面図である。 実施形態に係る燃料電池の反応ガスの流れを示す図である。 実施の形態に係る燃料電池の製造ラインの一例を示す図である。 実施の形態に係るインクジェット式吐出装置の概略図である。 実施の形態に係る燃料電池の製造方法のフローチャートである。 実施の形態に係る燃料電池の製造過程の基板の端面図である。 実施の形態に係る燃料電池の製造過程の基板の端面図である。 実施の形態に係る燃料電池の製造過程の基板の端面図である。 実施の形態に係る燃料電池の製造過程の基板の端面図である。 実施の形態に係る燃料電池の製造過程の基板の端面図である。 実施の形態に係る燃料電池の製造過程の基板の端面図である。 実施の形態に係る燃料電池の製造過程の基板の端面図である。 実施の形態に係る燃料電池の製造過程の基板の端面図である。 実施の形態に係る燃料電池を積層した大型燃料電池の図である。
符号の説明
2…第1の基板、2’…第2の基板、3…第1のガス流路、3’…第2のガス流路、6…第1の集電層、6’…第2の集電層、8…第1のガス拡散層、8’…第2のガス拡散層、10…第1の反応層、10’…第2の反応層、12…電解質膜

Claims (11)

  1. 第1のガス流路が形成された第1の基板と、
    前記第1のガス流路上に形成された第1のガス拡散層と、
    前記第1のガス拡散層上に形成された第1の反応層と、
    前記第1の反応層上に形成された電解質膜と、
    前記電解質膜上に形成された第2の反応層と、
    前記第2の反応層上に形成された第2のガス拡散層と、
    第2のガス流路が形成された第2の基板と
    を備える燃料電池であって、
    前記第1のガス流路及び第2のガス流路の少なくとも一方は、多孔質半導体により形成されてなり、かつ前記第1のガス拡散層及び第2のガス拡散層の少なくとも一方は、吐出装置を使用する工程により得られたものであることを特徴とする燃料電池。
  2. 前記第1のガス拡散層及び第2のガス拡散層の少なくとも一方は、炭素系微粒子から形成されたものであることを特徴とする請求項1に記載の燃料電池。
  3. 第1のガス流路が形成された第1の基板と、
    前記第1のガス流路上に形成された第1のガス拡散層と、
    前記第1のガス拡散層上に形成された第1の反応層と、
    前記第1の反応層上に形成された電解質膜と、
    前記電解質膜上に形成された第2の反応層と、
    前記第2の反応層上に形成された第2のガス拡散層と、
    第2のガス流路が形成された第2の基板と
    を備える燃料電池であって、
    前記第1の基板及び第2の基板の少なくとも一方は、表面部分にガス流路となる多孔質半導体層が形成されてなり、前記多孔質半導体層を有する基板上に炭素系微粒子からなるガス拡散層が全面に形成されてなり、かつ前記多孔質半導体層上におけるガス拡散層が、多孔質半導体層以外の部分上のガス拡散層に比して、相対的に粒子径の小さい炭素系微粒子から形成されていることを特徴とする請求項1又は2に記載の燃料電池。
  4. 第1のガス流路が形成された第1の基板と、
    前記第1のガス流路上に形成された第1のガス拡散層と、
    前記第1のガス拡散層上に形成された第1の反応層と、
    前記第1の反応層上に形成された電解質膜と、
    前記電解質膜上に形成された第2の反応層と、
    前記第2の反応層上に形成された第2のガス拡散層と、
    第2のガス流路が形成された第2の基板と
    を備える燃料電池であって、
    前記第1の基板及び第2の基板の少なくとも一方は、表面に、水平方向に対して、相対的に孔径の大きい多孔質半導体層(1)からなるガス流路が形成され、該ガス流路間においては、相対的に孔径の小さい多孔質半導体層(2)が形成された構造を有する基板であることを特徴とする請求項1又は2に記載の燃料電池。
  5. 前記第1のガス拡散層及び第2のガス拡散層の少なくとも一方は、水平方向に対して、前記多孔質半導体層(1)上においては相対的に粒子径の小さい炭素系微粒子から形成されてなり、前記多孔質半導体層(2)上においては、相対的に粒子径の大きい炭素系微粒子から形成されてなることを特徴とする請求項4に記載の燃料電池。
  6. 前記多孔質半導体層および多孔質半導体層(1)が、ガス拡散層側における多孔質半導体の孔径が、基板内側における多孔質半導体の孔径に比して相対的に小さくなるように形成されていることを特徴とする請求項1〜5のいずれかに記載の燃料電池。
  7. 前記多孔質半導体層、多孔質半導体層(1)および多孔質半導体層(2)が、単結晶シリコンウェーハ表面に、陽極化成法により形成された多孔質シリコン層であることを特徴とする請求項1〜6のいずれかに記載の燃料電池。
  8. 第1の基板に第1のガス流路を形成する工程と、
    前記第1のガス流路上に第1のガス拡散層を形成する工程と、
    前記第1のガス拡散層上に第1の反応層を形成する工程と、
    前記第1の反応層上に電解質膜を形成する工程と、
    前記電解質膜上に第2の反応層を形成する工程と、
    前記第2の反応層上に第2のガス拡散層を形成する工程と、
    第2の基板に第2のガス流路を形成する工程と
    を有する燃料電池の製造方法であって、
    前記第1のガス流路及び第2のガス流路の少なくとも一方を、多孔質半導体により形成し、かつ前記第1のガス拡散層及び第2のガス拡散層の少なくとも一方を、吐出装置を用いて形成することを特徴とする燃料電池の製造方法。
  9. 前記第1のガス流路を形成する工程及び第2のガス流路を形成する工程の少なくとも一方が、単結晶シリコンウェーハの表面に、陽極化成法により多孔質シリコン層を形成するものであることを特徴とする請求項8に記載の燃料電池の製造方法。
  10. 請求項1〜7のいずれかに記載の燃料電池を電力供給源として備えることを特徴とする電子機器。
  11. 請求項1〜7のいずれかに記載の燃料電池を電力供給源として備えることを特徴とする自動車。
JP2003359296A 2003-10-20 2003-10-20 燃料電池、その製造方法、電子機器および自動車 Withdrawn JP2005123122A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003359296A JP2005123122A (ja) 2003-10-20 2003-10-20 燃料電池、その製造方法、電子機器および自動車

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003359296A JP2005123122A (ja) 2003-10-20 2003-10-20 燃料電池、その製造方法、電子機器および自動車

Publications (1)

Publication Number Publication Date
JP2005123122A true JP2005123122A (ja) 2005-05-12

Family

ID=34615571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003359296A Withdrawn JP2005123122A (ja) 2003-10-20 2003-10-20 燃料電池、その製造方法、電子機器および自動車

Country Status (1)

Country Link
JP (1) JP2005123122A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100616678B1 (ko) 2005-04-25 2006-08-28 삼성전기주식회사 초소형 연료 전지 및 그 제조방법
WO2007074934A1 (ja) * 2005-12-27 2007-07-05 Toyota Jidosha Kabushiki Kaisha 燃料電池用拡散層の製造方法および燃料電池用拡散層
JP2008097944A (ja) * 2006-10-11 2008-04-24 Hitachi Ltd 燃料電池用セパレータ
WO2010053153A1 (ja) * 2008-11-10 2010-05-14 山陽特殊製鋼株式会社 燃料電池用セパレータおよびそれを用いた燃料電池
JP2012142135A (ja) * 2010-12-28 2012-07-26 Toyota Motor Corp 燃料電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100616678B1 (ko) 2005-04-25 2006-08-28 삼성전기주식회사 초소형 연료 전지 및 그 제조방법
WO2007074934A1 (ja) * 2005-12-27 2007-07-05 Toyota Jidosha Kabushiki Kaisha 燃料電池用拡散層の製造方法および燃料電池用拡散層
JP2008097944A (ja) * 2006-10-11 2008-04-24 Hitachi Ltd 燃料電池用セパレータ
WO2010053153A1 (ja) * 2008-11-10 2010-05-14 山陽特殊製鋼株式会社 燃料電池用セパレータおよびそれを用いた燃料電池
JP2012142135A (ja) * 2010-12-28 2012-07-26 Toyota Motor Corp 燃料電池

Similar Documents

Publication Publication Date Title
US7390528B2 (en) Method for forming functional porous layer, method for manufacturing fuel cell, electronic device, and automobile
KR100628906B1 (ko) 연료전지
JP2005123122A (ja) 燃料電池、その製造方法、電子機器および自動車
JP3885801B2 (ja) 機能性多孔質層の形成方法、燃料電池の製造方法、電子機器および自動車
JP3945440B2 (ja) 燃料電池、その製造方法、電子機器および自動車
Zhang et al. Effects of the nanoimprint pattern on the performance of a MEMS-based micro direct methanol fuel cell
JP2004273366A (ja) 燃料電池、その製造方法並びに燃料電池を備える電子機器及び自動車
JP4165251B2 (ja) 燃料電池の製造方法
JP4175146B2 (ja) 燃料電池の製造方法並びに燃料電池を備える電子機器及び自動車
JP4033126B2 (ja) 燃料電池製造装置および燃料電池の製造方法
JP2005324086A (ja) 吐出装置、燃料電池、回路基板、電子機器及び自動車
KR100691700B1 (ko) 기능성 재료층 형성용 조성물, 기능성 재료층의 형성방법, 연료 전지의 제조 방법, 전자 기기 및 자동차
JP2008140785A (ja) 燃料電池及び燃料電池の製造方法
JP2005032514A (ja) 燃料電池、燃料電池の製造方法、燃料電池を備える電子機器、燃料電池を備える自動車及び燃料電池を備えるコージェネレーションシステム
JP3912384B2 (ja) 燃料電池の製造方法
JP4432346B2 (ja) 燃料電池、燃料電池の製造方法、燃料電池を備えた電子機器及び燃料電池を備えた自動車
JP2004303595A (ja) 燃料電池、その製造方法、並びに燃料電池を備える電子機器及び自動車
JP2005100822A (ja) 燃料電池、該燃料電池の製造方法、該燃料電池又は該製造方法により製造された燃料電池を備える電子機器
JP2005056586A (ja) 燃料電池、その製造方法及び電気・電子機器
JP2004296324A (ja) 燃料電池及び燃料電池の製造方法
JP2005230614A (ja) 吐出装置、酸性吐出物の回収方法、燃料電池、電子機器及び自動車

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109