JP2005085340A - 光ピックアップ装置 - Google Patents

光ピックアップ装置 Download PDF

Info

Publication number
JP2005085340A
JP2005085340A JP2003314583A JP2003314583A JP2005085340A JP 2005085340 A JP2005085340 A JP 2005085340A JP 2003314583 A JP2003314583 A JP 2003314583A JP 2003314583 A JP2003314583 A JP 2003314583A JP 2005085340 A JP2005085340 A JP 2005085340A
Authority
JP
Japan
Prior art keywords
optical recording
light
recording medium
substrate
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003314583A
Other languages
English (en)
Inventor
Ryo Saito
涼 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2003314583A priority Critical patent/JP2005085340A/ja
Publication of JP2005085340A publication Critical patent/JP2005085340A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)

Abstract

【課題】3種類の光記録媒体と対応する第1〜第3レーザー光を収差補正素子組立体に入射させる際にできるだけ多くのレーザー光を平行光の状態で収差補正素子組立体に入射させる。
【解決手段】第1〜第3光記録媒体の各基板厚さの異なりによって発生する球面収差を補正するために、収差補正素子組立体21を第1〜第3レーザー光源11,31,41と対物レンズ26との間に設け、第1,第2,第3レーザー光源11,31,41から出射した第1,第2,第3レーザー光L1,L2,L3を平行光の状態で収差補正素子組立体21に入射させる。
【選択図】図1

Description

本発明は、波長が異なる第1〜第3レーザー光を用いて基板厚さが異なる第1〜第3光記録媒体を選択的に記録又は再生する際に、開口数(NA)が0.75以上である一つの対物レンズと、この対物レンズを用いた時に第1〜第3光記録媒体の基板厚さの異なりによって生じる球面収差を補正するために、枠体内で光透過性基板と光透過性を有する回折格子基板との間に液晶層を封入した収差補正素子組立体(波長選択フィルタ)とを少なくとも備えた光ピックアップ装置に関するものである。
一般的に、円盤状の光ディスクやカード状の光カードなどの光記録媒体は、映像情報とか音声情報やコンピュータデータなどの情報信号を透明基板上で螺旋状又は同心円状に形成したトラックに高密度に記録し、且つ、記録済みのトラックを再生する際に所望のトラックを高速にアクセスできることから多用されている。
この種の光記録媒体となる光ディスクとして例えばCD(Compact Disc)やDVD(Digital Versatile Disc)などは既に市販されているが、最近になって光ディスクに対してより一層高密度化を図るために、CD,DVDよりも情報信号を超高密度に記録又は再生できる超高密度光ディスク(Blu−ray Disc)の開発が盛んに行われている。
まず、上記したCDは、従来、波長が780nm前後のレーザー光を開口数(NA)=0.45程度の対物レンズで絞り込んだレーザービームをディスク基板に照射して、ディスク基板のレーザービーム入射面から略1.2mm隔てた信号面上に情報信号を記録又は再生している。
また、上記したDVDは、従来、波長が650nm前後のレーザー光を開口数(NA)=0.6程度の対物レンズで絞り込んだレーザービームをディスク基板に照射して、ディスク基板のレーザービーム入射面から略0.6mm隔てた信号面上に情報信号を記録又は再生している。この際、DVDの記録容量はCDよりも6〜8倍高めてディスク基板の直径が12cmの時に片面で4.7GB(ギガバイト)程度である。
また、上記した超高密度光ディスクは、波長が450nm以下のレーザー光を開口数(NA)=0.75以上の対物レンズで絞り込んだレーザービームをディスク基板に照射して、レーザービーム入射面から略0.05mm〜0.15mm隔てた信号面上に情報信号を記録又は再生できるように開発が進められている。この際、超高密度光ディスクの記録容量はディスク基板の直径が12cmの時に片面で25GB(ギガバイト)前後である。
ところで、ディスク基板厚さが異なる3種類の光ディスクを記録又は再生する光ヘッド装置がある(例えば、特許文献1参照)。
特開2003−67972号公報(第19頁、第8図) 「青色/DVD/CD互換ヘッド,MICROOPTICS NEWS Vol.20No.3,微小光学研究グループ機関誌,2002.9.6」(第20〜21頁、第2図,第7図)。
図23は従来の光ヘッド装置の形態を示した図、
図24(a)〜(c)は従来の光ヘッド装置において、3種類の光学系からの出射光を3種類の光ディスクにそれぞれ照射する状態を模式的に示した図である。
図23に示した従来の光ヘッド装置110は、上記した特許文献1及び非特許文献1に開示されているものであり、ここでは特許文献1及び非特許文献1を参照して簡略に説明する。
図23に示した如く、従来の光ヘッド装置110は、3種類の光ディスク101〜103にそれぞれ対応した第1〜第3光学系111〜113と、第1,第2干渉フィルタ114,115と、波長選択フィルタ116と、対物レンズ117とで構成されている。
上記した3種類の第1〜第3光学系111〜113は、内部に半導体レーザーと、光ディスクからの反射光を受光する光検出器をそれぞれ備えている。この際、第1光学系111内の半導体レーザーの波長は405nmであり、また、第2光学系112内の半導体レーザーの波長は650〜660nm程度であり、更に、第3光学系113内の半導体レーザーの波長は780〜785nm程度である。
上記した第1干渉フィルタ114は、波長405nmの光を透過させ、且つ、波長650〜660nmの光を反射させる働きを有する。また、第2干渉フィルタ115は、波長405nm,650〜660nmの光を透過させ、且つ、波長780〜785nmの光を反射させる働きを有する。
そして、第1光学系111内の半導体レーザーからの出射光は、第1,第2干渉フィルタ114,115を順に透過し、図24(a)に示したように平行光の状態で波長選択フィルタ116に入射した後に波長選択フィルタ116をそのまま透過して対物レンズ117に入射し、ディスク基板厚さ0.1mmの次世代規格の光ディスク101上に集光される。この後、光ディスク101からの反射光は、上記とは逆に戻り第1光学系111内の光検出器で受光される。
また、第2光学系112内の半導体レーザーからの出射光は、第1干渉フィルタ114で反射されて第2干渉フィルタ115を透過して、図24(b)に示したように拡散光(=発散光)の状態で波長選択フィルタ116に入射した後に波長選択フィルタ116で回折されて対物レンズ117に入射し、ディスク基板厚さ0.6mmのDVD規格の光ディスク102上に集光される。この後、光ディスク102からの反射光は、上記とは逆に戻り第2光学系112内の光検出器で受光される。
また、第3光学系113内の半導体レーザーからの出射光は、第2干渉フィルタ115で反射されて、図24(c)に示したように拡散光(=発散光)の状態で波長選択フィルタ116に入射した後に波長選択フィルタ116で回折されて対物レンズ117に入射し、ディスク基板厚さ1.2mmのCD規格の光ディスク103上に集光される。この後、光ディスク103からの反射光は、上記とは逆に戻り第3光学系113内の光検出器で受光される。
上記構成による従来の光ヘッド装置110によれば、光ディスク101〜103の各ディスク基板厚さが異なることによって発生する球面収差を波長選択フィルタ116によって補正することで、3種類の光ディスク101〜103を記録又は再生できるように構成されている。
ところで、上記した特許文献1及び非特許文献1に開示された従来の光ヘッド装置110において、第1〜第3光学系111〜113内の各半導体レーザーからの各出射光を波長選択フィルタ116,対物レンズ117に順に入射させる際に、図24(a)〜(c)に示したように、第1光学系111内の半導体レーザーからの出射光は平行光の状態で波長選択フィルタ116に入射させているものの、第2,第3光学系112,113内の各半導体レーザーからの各出射光は拡散光(=発散光)の状態で波長選択フィルタ116に入射させている。ここで、拡散光を波長選択フィルタ116に入射させた場合に、拡散光の光軸が対物レンズ117の光軸に対してズレた場合に平行光よりも球面収差の悪化が著しく、且つ、平行光よりも組み立て時の光軸調整が難しい。
また、上記した非特許文献1には、第1〜第3光学系111〜113を組み立てるにあたって、各光学系111〜113の光軸と対物レンズ117の光軸とのズレによる対物レンズシフトを考慮する場合とか、あるいは、対物レンズシフトにより生じるコマ収差を補正する場合に、対物レンズシフト(μm)に対するRMS波面収差(λ rms.)が図25に示したように開示されている。
図25は従来の光ヘッド装置において、DVD及びCDに対して対物レンズシフト時の波面収差を示した図である。
図25において、一般的には、対物レンズシフトに対して対物レンズ117の中心軸から±300μmの許容誤差が望まれるために、この範囲内でのデータが示されているが、DVD,CDとも、波面収差は対物レンズシフトがない場合には小さいものの、倍率の絶対値が大きい(入射共役長が短い)ために対物レンズシフトが大きくなると波面収差が急激に増加する。尚、上記した入射共役長とは、対物レンズとレーザー光源との間隔である(但し、対物レンズとレーザー光源との間に何ら光学素子がない場合である)。
この場合、図示から判断すると、対物レンズシフトが略±150μmを越えた場合に周知のマレシャルクライテリオンの0.07λ rms.を超えてしまい、実用的でないことが確認できる。
そこで、次世代規格の超高密度光ディスク(Blu−ray Disc),DVD,CDなど3種類の光記録媒体を一つの対物レンズで記録又は再生する光ピックアップ装置において、3種類の光記録媒体と対応する第1〜第3レーザー光を収差補正素子組立体(波長選択フィルタ)に入射させる際にできるだけ多くのレーザー光を平行光の状態で収差補正素子組立体に入射させることが望まれていると共に、対物レンズのシフト時における波面収差を低減し、実用化レベルに達することができる光ピックアップ装置が望まれている。
本発明は上記課題に鑑みてなされたものであり、第1の発明は、第1光記録媒体と、前記第1光記録媒体よりも記録密度が低く且つ前記第1光記録媒体よりも基板厚さが厚い第2光記録媒体と、前記第2光記録媒体よりも記録密度が低く且つ前記第2光記録媒体よりも基板厚さが厚い第3光記録媒体と、前記第1〜第3光記録媒体の各信号面を適宜組み合わせて一体的に積層した組み合わせ型光記録媒体とを選択的に記録又は再生する光ピックアップ装置において、
前記第1光記録媒体に対応して第1レーザー光を出射させる第1レーザー光源と、
前記第2光記録媒体に対応して前記第1レーザー光よりも波長が長い第2レーザー光を出射させる第2レーザー光源と、
前記第3光記録媒体に対応して前記第2レーザー光よりも波長が長い第3レーザー光を出射させる第3レーザー光源と、
第1光記録媒体用として開口数(NA)が0.75以上に設定され、且つ、互いに対向する第1,第2面のうち少なくとも一方の面が非球面に形成されて、前記第1〜第3レーザー光を前記第1〜第3光記録媒体の各信号面に集光させる対物レンズ、
前記第1〜第3レーザー光源と前記対物レンズとの間に設けられ、前記第1〜第3光記録媒体の各基板厚さの異なりによって発生する球面収差を補正するために、枠体内で光透過性基板と光透過性を有する回折格子基板との間に液晶層を封入した収差補正素子組立体とを備え、
前記光透過性基板は、前記液晶層が接する上面と前記第1〜第3レーザー光がそれぞれ平行光の状態で選択的に入射する下面とを有し、前記下面中で所定径の内周領域に光透過性平坦部が円形状に形成され、且つ、前記光透過性平坦部に連接した外周領域に前記第3,第2レーザー光に対して前記対物レンズへの開口数をそれぞれ所定値に制限する第3,第2レーザー光用開口制限部が外周に向かって順にリング状に形成され、
前記回折格子基板は、前記第1〜第3レーザー光が前記対物レンズ側に出射する上面と前記液晶層が接する下面とを有し、前記上面中で前記光透過性基板の前記光透過性平坦部と前記液晶層を介して対向する内周領域に前記第1レーザー光を透過させ且つ前記第2,第3レーザー光を回折させる回折格子パターン部が形成される共にこの回折格子パターン部の外側に平坦面が形成され、
前記液晶層は、前記回折格子基板の下面(又は前記光透過性基板の上面)に凸レンズ状の球面(又は非球面)を形成することで凹レンズ状の球面(又は非球面)屈折機能が付加されると共に、前記第1,第2光記録媒体に対して非動作状態に設定して前記第1,第2レーザー光をそのまま透過させる一方、前記第3光記録媒体に対して動作状態に設定して前記第3レーザー光を前記凹レンズ状の球面(又は非球面)屈折機能により屈折させることを特徴とする光ピックアップ装置である。
また、第2の発明は、第1光記録媒体と、前記第1光記録媒体よりも記録密度が低く且つ前記第1光記録媒体よりも基板厚さが厚い第2光記録媒体と、前記第2光記録媒体よりも記録密度が低く且つ前記第2光記録媒体よりも基板厚さが厚い第3光記録媒体と、前記第1〜第3光記録媒体の各信号面を適宜組み合わせて一体的に積層した組み合わせ型光記録媒体とを選択的に記録又は再生する光ピックアップ装置において、
前記第1光記録媒体に対応して第1レーザー光を出射させる第1レーザー光源と、
前記第2光記録媒体に対応して前記第1レーザー光よりも波長が長い第2レーザー光を出射させる第2レーザー光源と、
前記第3光記録媒体に対応して前記第2レーザー光よりも波長が長い第3レーザー光を出射させる第3レーザー光源と、
第1光記録媒体用として開口数(NA)が0.75以上に設定され、且つ、互いに対向する第1,第2面のうち少なくとも一方の面が非球面に形成されて、前記第1〜第3レーザー光を前記第1〜第3光記録媒体の各信号面に集光させる対物レンズ、
前記第1〜第3レーザー光源と前記対物レンズとの間に設けられ、前記第1〜第3光記録媒体の各基板厚さの異なりによって発生する球面収差を補正するために、枠体内で光透過性基板と光透過性を有する回折格子基板との間に液晶層を封入した収差補正素子組立体とを備え、
前記光透過性基板は、前記液晶層が接する上面と前記第1〜第3レーザー光がそれぞれ平行光の状態で選択的に入射する下面とを有し、前記下面中で所定径の内周領域に光透過性平坦部が円形状に形成され、且つ、前記光透過性平坦部に連接した外周領域に前記第3レーザー光に対して前記対物レンズへの開口数を所定値に制限する第3レーザー光用開口制限部が外周に向かってリング状に形成され、
前記回折格子基板は、前記第1〜第3レーザー光が前記対物レンズ側に出射する上面と前記液晶層が接する下面とを有し、前記上面中で前記光透過性基板の前記光透過性平坦部と前記液晶層を介して対向する内周領域に前記第1レーザー光を透過させ且つ前記第2,第3レーザー光を回折させる回折格子パターン部が形成される共にこの回折格子パターン部の外側に平坦面が形成され、
前記液晶層は、前記回折格子基板の下面(又は前記光透過性基板の上面)に凸レンズ状の球面(又は非球面)を形成することで凹レンズ状の球面(又は非球面)屈折機能が付加されると共に、前記第1,第2光記録媒体に対して非動作状態に設定して前記第1,第2レーザー光をそのまま透過させる一方、前記第3光記録媒体に対して動作状態に設定して前記第3レーザー光を前記凹レンズ状の球面(又は非球面)屈折機能により屈折させることを特徴とする光ピックアップ装置である。
また、第3の発明は、第1光記録媒体と、前記第1光記録媒体よりも記録密度が低く且つ前記第1光記録媒体よりも基板厚さが厚い第2光記録媒体と、前記第2光記録媒体よりも記録密度が低く且つ前記第2光記録媒体よりも基板厚さが厚い第3光記録媒体と、前記第1〜第3光記録媒体の各信号面を適宜組み合わせて一体的に積層した組み合わせ型光記録媒体とを選択的に記録又は再生する光ピックアップ装置において、
前記第1光記録媒体に対応して第1レーザー光を出射させる第1レーザー光源と、
前記第2光記録媒体に対応して前記第1レーザー光よりも波長が長い第2レーザー光を出射させる第2レーザー光源と、
前記第3光記録媒体に対応して前記第2レーザー光よりも波長が長い第3レーザー光を出射させる第3レーザー光源と、
第1光記録媒体用として開口数(NA)が0.75以上に設定され、且つ、互いに対向する第1,第2面のうち少なくとも一方の面が非球面に形成されて、前記第1〜第3レーザー光を前記第1〜第3光記録媒体の各信号面に集光させる対物レンズ、
前記第1〜第3レーザー光源と前記対物レンズとの間に設けられ、前記第1〜第3光記録媒体の各基板厚さの異なりによって発生する球面収差を補正するために、枠体内で光透過性基板と光透過性を有する回折格子基板との間に液晶層を封入した収差補正素子組立体とを備え、
前記光透過性基板は、前記液晶層が接する上面と前記第1〜第3レーザー光がそれぞれ平行光の状態で選択的に入射する下面とを有し、前記下面中で所定径の内周領域に光透過性平坦部が円形状に形成され、且つ、前記光透過性平坦部に連接した外周領域に前記第3,第2レーザー光に対して前記対物レンズへの開口数をそれぞれ所定値に制限する第3,第2レーザー光用開口制限部が外周に向かって順にリング状に形成され、
前記回折格子基板は、前記第1〜第3レーザー光が前記対物レンズ側に出射する上面と前記液晶層が接する下面とを有し、前記上面中で前記光透過性基板の前記光透過性平坦部と前記液晶層を介して対向する内周領域に前記第1レーザー光を透過させ且つ前記第2,第3レーザー光を回折させる回折格子パターン部が形成される共にこの回折格子パターン部の外側に平坦面が形成され、
前記液晶層は、前記回折格子基板の下面(又は前記光透過性基板の上面)に階段状回折格子面(又はブレーズ状回折格子面)を形成することで回折機能が付加されると共に、前記第1,第2光記録媒体に対して非動作状態に設定して前記第1,第2レーザー光をそのまま透過させる一方、前記第3光記録媒体に対して動作状態に設定して前記第3レーザー光を前記回折機能により回折させることを特徴とする光ピックアップ装置である。
更に、第4の発明は、第1光記録媒体と、前記第1光記録媒体よりも記録密度が低く且つ前記第1光記録媒体よりも基板厚さが厚い第2光記録媒体と、前記第2光記録媒体よりも記録密度が低く且つ前記第2光記録媒体よりも基板厚さが厚い第3光記録媒体と、前記第1〜第3光記録媒体の各信号面を適宜組み合わせて一体的に積層した組み合わせ型光記録媒体とを選択的に記録又は再生する光ピックアップ装置において、
前記第1光記録媒体に対応して第1レーザー光を出射させる第1レーザー光源と、
前記第2光記録媒体に対応して前記第1レーザー光よりも波長が長い第2レーザー光を出射させる第2レーザー光源と、
前記第3光記録媒体に対応して前記第2レーザー光よりも波長が長い第3レーザー光を出射させる第3レーザー光源と、
第1光記録媒体用として開口数(NA)が0.75以上に設定され、且つ、互いに対向する第1,第2面のうち少なくとも一方の面が非球面に形成されて、前記第1〜第3レーザー光を前記第1〜第3光記録媒体の各信号面に集光させる対物レンズ、
前記第1〜第3レーザー光源と前記対物レンズとの間に設けられ、前記第1〜第3光記録媒体の各基板厚さの異なりによって発生する球面収差を補正するために、枠体内で光透過性基板と光透過性を有する回折格子基板との間に液晶層を封入した収差補正素子組立体とを備え、
前記光透過性基板は、前記液晶層が接する上面と前記第1〜第3レーザー光がそれぞれ平行光の状態で選択的に入射する下面とを有し、前記下面中で所定径の内周領域に光透過性平坦部が円形状に形成され、且つ、前記光透過性平坦部に連接した外周領域に前記第3レーザー光に対して前記対物レンズへの開口数を所定値に制限する第3レーザー光用開口制限部が外周に向かってリング状に形成され、
前記回折格子基板は、前記第1〜第3レーザー光が前記対物レンズ側に出射する上面と前記液晶層が接する下面とを有し、前記上面中で前記光透過性基板の前記光透過性平坦部と前記液晶層を介して対向する内周領域に前記第1レーザー光を透過させ且つ前記第2,第3レーザー光を回折させる回折格子パターン部が形成される共にこの回折格子パターン部の外側に平坦面が形成され
前記液晶層は、前記回折格子基板の下面(又は前記光透過性基板の上面)に階段状回折格子面(又はブレーズ状回折格子面)を形成することで回折機能が付加されると共に、前記第1,第2光記録媒体に対して非動作状態に設定して前記第1,第2レーザー光をそのまま透過させる一方、前記第3光記録媒体に対して動作状態に設定して前記第3レーザー光を前記回折機能により回折させることを特徴とする光ピックアップ装置である。
本発明に係る光ピックアップ装置によれば、とくに、波長が異なる第1〜第3レーザー光を用いて基板厚さが異なる第1〜第3光記録媒体を選択的に記録又は再生する際に、開口数(NA)が0.75以上である一つの対物レンズと、この対物レンズを用いた時に第1〜第3光記録媒体の基板厚さの異なりによって生じる球面収差を補正するために、枠内で光透過性基板と光透過性を有する回折格子基板との間に液晶層を封入した収差補正素子組立体(波長選択フィルタ)とを少なくとも備え、且つ、第1〜第3レーザー光を平行光の状態で収差補正素子組立体に入射させているために、第1〜第3レーザー光の光軸が対物レンズの光軸に対して僅かにズレた場合でも球面収差の悪化が少なくなると共に、光ピックアップ装置を組み立てる時に光軸調整が容易となる。
また、第1光記録媒体用として設計した対物レンズを用い、且つ、収差補正素子組立体内の液晶層を第1,第2光記録媒体に対して非動作状態に設定する一方、第3光記録媒体に対して動作状態に設定することで、第3レーザー光に対してのみ液晶層の凹レンズ状の屈折機能又は液晶層の回折機能を働かせることができるので、とくに、第2,第3記録媒体に対する対物レンズシフト時の波面収差を従来例よりも向上させることができ、これにより第1〜第3光記録媒体を良好に記録又は再生することができる。
以下に本発明に係る光ピックアップ装置の一実施例を図1乃至図22を参照して詳細に説明する。
本発明に係る光ピックアップ装置は、波長が異なる第1〜第3レーザー光を用いて基板厚さが異なる第1〜第3光記録媒体を選択的に記録又は再生する際に、次世代光ディスク規格の第1光記録媒体(超高密度光ディスク:Blu−ray Disc)に対応して設計した一つの対物レンズと、この対物レンズを用いた時に第1〜第3光記録媒体の基板厚さの異なりによって生じる球面収差を補正するために、枠体内で光透過性基板と光透過性を有する回折格子基板との間に液晶層を封入した収差補正素子組立体(波長選択フィルタ)とを少なくとも備えたことを特徴とするものである。
図1は本発明に係る実施例1の光ピックアップ装置の全体構成を示した図である。
図1に示した如く、本発明に係る実施例1の光ピックアップ装置10Aは、波長λ1が450nm以下の第1レーザー光L1により情報信号を基板厚さが薄い信号面1bに超高密度に記録又は再生する第1光記録媒体(超高密度光ディスク)1と、波長λ2が第1レーザー光L1の波長λ1より長く650nm前後の第2レーザー光L2により情報信号を前記した信号面1bよりも基板厚さが厚い信号面2bに高密度に記録又は再生する第2光記録媒体(DVD)2と、波長λ3が第2レーザー光L2の波長λ2より長く780nm前後の第3レーザー光L3により情報信号を前記した信号面2bよりも基板厚さが厚い信号面3bに記録又は再生する第3光記録媒体(CD)3と、第1〜第3レーザー光L1〜L3のいずれかが入射するレーザービーム入射面を共通化し且つ第1〜第3光記録媒体1〜3の各信号面1b〜3bを適宜組み合わせて一体的に積層した組み合わせ型光記録媒体とを選択的に適用可能に開発したものである。
尚、第1〜第3光記録媒体1〜3の各信号面1b〜3bを適宜組み合わせて一体的に積層した組み合わせ型光記録媒体としては、ここでの図示を省略するものの、第1光記録媒体の信号面1bと第2光記録媒体の信号面2bとの組み合わせとか、第1光記録媒体の信号面1bと第3光記録媒体の信号面3bとの組み合わせとか、第2光記録媒体の信号面2bと第3光記録媒体の信号面3bとの組み合わせとかがあり、これらの組み合わせ型光記録媒体は合計のディスク基板厚さが略1.2mmに形成されるものであるが、以下の説明では個々の光記録媒体について詳述し、組み合わせ型光記録媒体の場合はその応用であるので説明は省略する。
また、以下の説明では、第1〜第3光記録媒体1〜3として、円盤状の光ディスクに適用した場合について説明するが、これに限ることなく、カード状の光記録媒体であっても良い。
そして、上記した第1〜第3光記録媒体1〜3は、光ディスク駆動装置5内に回転自在に設けたスピンドルモータ6の軸に固着したターンテーブル7上に選択的に装着されるようになっている。
ここで、上記した第1光記録媒体となる超高密度光ディスク(Blu−ray Disc)1は、次世代光ディスク規格に基づいてレーザービーム入射面1aと信号面1bとの間のディスク基板厚さt1が略0.05mm〜0.15mmに薄く設定されて、この上に補強板を貼り合せて合計厚さが厚く形成されており、この合計厚さは例えば略1.2mmである。尚、以下の説明では、第1光記録媒体を超高密度光ディスク1と記す。
また、上記した第2光記録媒体となるDVD(Digital Versatile Disc)2は、DVD規格に基づいてレーザービーム入射面2aと信号面2bとの間のディスク基板厚さt2が超高密度光ディスク1よりも厚く略0.6mmに設定されて、この上に略0.6mmの補強板を貼り合せて合計厚さが略1.2mmに形成されている。尚、以下の説明では、第2光記録媒体をDVD2と記す。
また、上記した第3光記録媒体となるCD(Compact Disc)3は、CD規格に基づいてレーザービーム入射面3aと信号面3bとの間のディスク基板厚さt3がDVD2よりも厚く略1.2mmに設定されている。尚、以下の説明では、第3光記録媒体をCD3と記す。
尚、この実施例1では、超高密度光ディスク1,DVD2,CD3の各ディスク基板厚さt1,t2,t3が、例えば0.1mm,0.6mm,1.2mmにそれぞれ設定されているものとする。
また、超高密度光ディスク1のレーザービーム入射面1a又はDVD2のレーザービーム入射面2aもしくはCD3のレーザービーム入射面3aの下方には、本発明に係る実施例1の光ピックアップ装置10Aが各光ディスク1,2,3の径方向に移動自在に設けられている。
上記した本発明に係る実施例1の光ピックアップ装置10A内には、超高密度光ディスク1に対応して波長λ1が450nm以下の第1レーザー光L1を出射するための第1レーザー光源(以下、青色半導体レーザーと記す)11と、DVD2に対応して波長λ2が650nm前後の第2レーザー光L2を出射するためにDVD用集積デバイス30内の第2レーザー光源(以下、赤色半導体レーザーと記す)31と、CD3に対応して波長λ3が780nm前後の第3レーザー光L3を出射するためにCD用集積デバイス40内の第3レーザー光源(以下、赤外半導体レーザーと記す)41とが設けられている。
尚、この実施例1では、青色半導体レーザー11から出射される第1レーザー光L1の波長λ1は例えば405nmに設定され、また、赤色半導体レーザー31から出射される第2レーザー光L2の波長λ2は例えば660nmに設定され、更に、赤外半導体レーザー41から出射される第3レーザー光L3の波長λ3は例えば780nmに設定されているものとする。
まず、超高密度光ディスク1に対応して青色半導体レーザー11側について説明すると、青色半導体レーザー11から出射した波長λ1=405nmの第1レーザー光L1は直線偏光(p偏光)の発散光であり、この発散光がコリメータレンズ12で平行光となり、第1レーザー光L1の平行光が偏光ビームスプリッタ13の偏光選択性誘電体多層膜13a(p偏光:反射、s偏光:透過)で反射されて90°方向を転じ、この後、第1レーザー光L1は第1ダイクロイックプリズム14のダイクロイック膜14a(波長λ1:透過、波長λ2:反射)を透過し、位相板15を透過して円偏光となる。この際、位相板15は波長λ1の第1レーザー光L1が透過するときに(λ1)/4の位相差を与え、後述する波長λ2の第2レーザー光L2が透過するときには(λ2)/4の位相差を与えるものである。
また、位相板15を透過した第1レーザー光L1は、第2ダイクロイックプリズム16のダイクロイック膜16a(波長λ1:透過,波長λ2:透過、波長λ3:反射)を透過し、立ち上げ用の平面ミラー17で90°光線方向を転じて、この後、第1レーザー光L1の平行光をレンズホルダ20内の下方部位に収納した収差補正素子組立体21に入射させている。
上記した収差補正素子組立体21は、各光記録媒体1〜3の各基板厚さの異なりによって発生する球面収差を補正するために、各レーザー光源11,31,41と対物レンズ26との間に設けられており、枠体22内の下方部位で青色半導体レーザー11,赤色半導体レーザー31,赤外半導体レーザー41側に向かって光透過性基板23が収納され、且つ、枠体22内の上方部位で対物レンズ26側に向かって光透過性を有する回折格子基板25が収納されていると共に、光透過性基板23と回折格子基板25との間に液晶層24が封入されている。
そして、収差補正素子組立体21内の液晶層24を動作させないで第1レーザー光L1を収差補正素子組立体21内の光透過性基板23と液晶層24とを順に透過させ、更に、回折格子基板25で回折させることなく0次光をそのまま透過させた後に、更に、レンズホルダ20内の上方部位に収納した対物レンズ26に入射させ、この第1レーザー光L1を対物レンズ26で絞って得た第1レーザービームを超高密度光ディスク1のレーザービーム入射面1aから入射させて信号面1b上に集光している。
尚、第1レーザー光L1に対する収差補正素子組立体21の作用についての詳細は後述する。
この際、対物レンズ26は、超高密度光ディスク用として開口数が0.75以上に設定され、且つ、互いに対向する第1,第2面26a,26bのうち少なくとも一方の面が非球面に形成されているものであるが、この実施例1では開口数(NA)が0.85の単玉レンズであり、且つ、後述するように収差補正素子組立体21側と対向する第1面26a及び各光ディスク1,2,3側と対向する第2面26bが共に非球面に形成されて、波長λ1=405nmの第1レーザー光L1に対して無限共役で最適化されている。そして、第1レーザー光L1に対して球面収差が最小となる対物レンズ26と超高密度光ディスク1のレーザービーム入射面1aとの間の距離、すなわち作動距離は0.5mmである。
また、レンズホルダ20内の下方部位に収納した収差補正素子組立体21と、レンズホルダ20内の上方部位に収納した対物レンズ26とは、レンズホルダ20内で光軸を合わせて一体化することによりコマ収差の発生を抑えており、本発明の要部となる収差補正素子組立体21と対物レンズ26については、後で詳述する。
また、レンズホルダ20の外周にはフォーカスコイル27とトラッキングコイル28とが一体的に取り付けられ、且つ、レンズホルダ20の外周に固着させた不図示の複数本のサスペンションワイヤを介してレンズホルダ20が超高密度光ディスク1,DVD2,CD3のフォーカス方向とトラッキング方向とに揺動可能に支持されている。
そして、フォーカスコイル27とトラッキングコイル28と不図示の永久磁石とにより、収差補正素子組立体21と対物レンズ26とがレンズホルダ20と一体となって超高密度光ディスク1のフォーカス方向とトラッキング方向とに制御されている。尚、後述するDVD2,CD3の場合にも、収差補正素子組立体21と対物レンズ26とがレンズホルダ20と一体となってフォーカス方向とトラッキング方向とに制御されるものである。
この後、対物レンズ26で集光した第1レーザービームによって超高密度光ディスク1の信号面1bへの再生、記録、または消去が行われる。
更にこの後、超高密度光ディスク1の信号面1bで反射された第1レーザービームによる戻りの第1反射光は往路と反対回りの円偏光となって対物レンズ26に再入射し、この対物レンズ26により平行光となり、収差補正素子組立体21を通過した後に平面ミラー17で90°光線方向を転じ、第2ダイクロイックプリズム16のダイクロイック膜16aを透過し、位相板15を透過して往路とは偏光方向が直交した直線偏光(s偏光)となり、第1ダイクロイックプリズム14のダイクロ膜14aを透過する。この際、位相板15を透過した第1反射光は往路と偏光方向が直交した直線偏光(s偏光)であるので、偏光ビームスプリッタ13の偏光選択性誘電体多層膜13aを透過し、シリンドリカルレンズ18で収束光となり、第1光検出器19に集光する。そして、第1光検出器19で超高密度光ディスク1の信号面1bを再生した時のトラッキングエラー信号,フォーカスエラー信号,メインデータ信号を検出している。
次に、DVD2に対応して赤色半導体レーザー31側について説明すると、赤色半導体レーザー31から出射した波長λ2=660nmの第2レーザー光L2は直線偏光(p偏光)の発散光であり、この発散光がDVD用集積デバイス30中のホログラム素子33を通過してコリメータレンズ34で平行光となる。
尚、上記したDVD用集積デバイス30は、赤色半導体レーザー31と、この赤色半導体レーザー31の右方に設置した第2光検出器32と、赤色半導体レーザー31及び第2光検出器32の上方に設置したホログラム素子33とを不図示の半導体基板上で一体化したものである。
また、コリメータレンズ34を透過した第2レーザー光L2は、第1ダイクロイックプリズム14のダイクロイック膜14aで反射されて90°光線方向を転じ、位相板15を透過して円偏光となり、第2ダイクロイックプリズム16のダイクロイック膜16aを透過する。この後、立ち上げ用の平面ミラー17で90°光線方向を転じ、更に、第2レーザー光L2の平行光を収差補正素子組立体21に入射させている。
そして、収差補正素子組立体21内の液晶層24を動作させないで第2レーザー光L2を収差補正素子組立体21内の光透過性基板23の外周領域で対物レンズ26への開口数(NA)が0.6相当になるように開口制限させるも、光透過性基板23の内周領域及び外周領域の内側と、液晶層24とを順に透過させ、更に、収差補正素子組立体21内の回折格子基板25の内周領域で回折させた1次光によって球面収差を補正した後に、1次光による拡散光が対物レンズ26に入射され、この第2レーザー光L2を対物レンズ26で絞って得た第2レーザービームをDVD2のレーザービーム入射面2aから入射させて信号面2b上に集光している。
尚、第2レーザー光L2に対する収差補正素子組立体21の作用についての詳細は後述する。
この後、対物レンズ26で集光した第2レーザービームによってDVD2の信号面2bへの再生、記録、または消去が行われる。
更にこの後、DVD2の信号面2bで反射された第2レーザービームによる戻りの第2反射光は往路と反対回りの円偏光となって対物レンズ26に再入射し、1次光の第2反射光が対物レンズ26により収束光となり、更に、収差補正素子組立体21により平行光となった後に平面ミラー17で90°光線方向を転じ、第2ダイクロイックプリズム16のダイクロイック膜16aを透過して、位相板15を透過後に往路とは反対の直線偏光(s偏光)となって、第1ダイクロイックプリズム14のダイクロイック膜14aで反射されて90°光線方向を転じ、コリメータレンズ34で収束光となり、DVD用集積デバイス30中のホログラム素子33によって回折し、第2光検出器32に集光する。そして、第2光検出器32でDVD2の信号面2bを再生した時のトラッキングエラー信号,フォーカスエラー信号,メインデータ信号を検出している。
この際、赤色半導体レーザー31とDVD2の信号面2bとの間の光軸上に配置された集光光学系によって発生する球面収差を収差補正素子組立体21で補正しているが、この球面収差が最小となった時に、対物レンズ26とDVD2のレーザービーム入射面2aとの間の距離、すなわち作動距離は0.35mm程度である。
上記説明したように、DVD2側では無偏光光学系であるが、往路と直交した直線偏光となるので、赤色半導体レーザー31への第2反射光が与える影響はほとんどない。
次に、CD3に対応して赤外半導体レーザー41側について説明すると、赤外半導体レーザー41から出射した波長λ3=780nmの第3レーザー光L3は直線偏光(p偏光)の発散光であり、この発散光がCD用集積デバイス40中のホログラム素子43を通過してコリメータレンズ44で平行光となる。
尚、上記したCD用集積デバイス40は、先に述べたDVD用集積デバイス30と略同様な構成であり、赤外半導体レーザー41と、この赤色半導体レーザー41の右方に設置した第3光検出器42と、赤外半導体レーザー41及び第3光検出器42の上方に設置したホログラム素子43とを不図示の半導体基板上で一体化したものである。
また、コリメータレンズ44を透過した第3レーザー光L3は、位相板45を透過して円偏光となり、第2ダイクロイックプリズム16のダイクロイック膜16aで反射されて90°光線方向を転ずる。位相板45は波長λ3の第3レーザー光L3が透過するときに(λ3)/4の位相差を与えるものである。この後、立ち上げ用の平面ミラー17で90°光線方向を転じ、更に、第3レーザー光L3の平行光を収差補正素子組立体21に入射させている。
そして、収差補正素子組立体21内の液晶層24を動作させて第3レーザー光L3を収差補正素子組立体21内の光透過性基板23の外周領域で対物レンズ26への開口数(NA)が0.45相当になるように開口制限させるも、光透過性基板23の内周領域を透過させた後に液晶層24で外側に向かって僅かに屈折させ、更に、収差補正素子組立体21内の回折格子基板25の内周領域で第2レーザー光L2よりも拡散度を強めて回折させた1次光によって球面収差を補正した後に、第2レーザー光L2よりも拡散度を強めて回折された1次光による拡散光が対物レンズ26に入射され、この第3レーザー光L3を対物レンズ26で絞って得た第3レーザービームをCD3のレーザービーム入射面3aから入射させて信号面3b上に集光している。
尚、第3レーザー光L3に対する収差補正素子組立体21の作用についての詳細は後述する。
この後、対物レンズ26で集光した第3レーザービームによってCD3の信号面3bへの再生、記録、または消去が行われる。
更にこの後、CD3の信号面3bで反射された第3レーザービームによる戻りの第3反射光は往路と反対回りの円偏光となって対物レンズ26に再入射し、1次光の第3反射光が対物レンズ26により収束光となり、更に、収差補正素子組立体21により平行光となった後に平面ミラー17で90°光線方向を転じ、第2ダイクロイックプリズム16のダイクロイック膜16aで反射されて、位相板45を透過後に往路とは反対の直線偏光(s偏光)となり、コリメータレンズ44で収束光となり、CD用集積デバイス40中のホログラム素子43によって回折し、第3光検出器42に集光する。そして、第3光検出器42でCD3の信号面3bを再生した時のトラッキングエラー信号,フォーカスエラー信号,メインデータ信号を検出している。
この際、赤外半導体レーザー41とCD3の信号面3bとの間の光軸上に配置された集光光学系によって発生する球面収差を、収差補正素子組立体21により第3レーザー光L3の平行光を第2レーザー光L2より拡散度を強めて回折させた1次光で補正しているが、この球面収差が最小となった時に、対物レンズ26とCD3のレーザービーム入射面3aとの間の距離、すなわち作動距離は0.13mm程度である。
上記説明したように、CD3側でも無偏光光学系であるが、往路と直交した直線偏光となるので、赤外半導体レーザー41への第3反射光が与える影響はほとんどない。
ここで、実施例1の要部となる収差補正素子組立体21と対物レンズ26とについて図2〜図8を用いて順に説明する。
図2は図1に示した実施例1における収差補正素子組立体を説明するための図であり、(a)は上面図,(b)は正面図,(c)は凹凸状回折格子パターン部の凹凸形状図、
図3は超高密度光ディスク用として無限共役に最適化された対物レンズを用いて、超高密度光ディスク,DVD,CDを記録又は再生する場合を拡大して示した図、
図4は図2に示した収差補正素子組立体と、図3に示した対物レンズとにより、超高密度光ディスクを記録又は再生する場合を模式的に示した図、
図5は図2に示した収差補正素子組立体と、図3に示した対物レンズとにより、DVDを記録又は再生する場合を説明するための光線図、
図6は図2に示した収差補正素子組立体と、図3に示した対物レンズとにより、CDを記録又は再生する場合を説明するための光線図、
図7は図2に示した収差補正素子組立体と、図3に示した対物レンズとにより、DVD,CDを記録又は再生した時に、DVD,CDに対して対物レンズシフト時の最良像面での波面収差を示した図、
図8は図2に示した収差補正素子組立体に、波長λ1〜λ3の第1〜第3レーザー光が入射した時の各回折効率と、凹凸状回折格子パターン部中の凹部の深さとの関係を示した図である。
まず、図2(a),(b)に示した如く、実施例1の要部となる収差補正素子組立体21では、枠体22が上下を開口され且つ外側面及び内側面が正方形状に形成されており、この枠体22内の下方部位に収納された光透過性基板23と、枠体22内の上方部位に収納された回折格子基板25との間に液晶層24が封入されている。
この際、光透過性基板23及び回折格子基板25は、光透過性のあるSILICA(合成石英)とか、BK7(ホウケイ酸クラウンガラス)とか、透明樹脂などを用いて外形形状が5mm角の正方形状に形成されているが、この実施例1では両基板23,25共に厚さが1mmのSILICA(合成石英)を用いている。
そして、光透過性基板23及び回折格子基板25の硝材にSILICA(合成石英)を用いた場合には、青色半導体レーザー11(図1)から出射した波長λ1=405nmの第1レーザー光L1に対する屈折率N1は1.46958であり、また、赤色半導体レーザー31(図1)から出射した波長λ2=660nmの第2レーザー光L2に対する屈折率N2は1.45627であり、更に、赤外半導体レーザー41から出射した波長λ3=780nmの第3レーザー光L3に対する屈折率N3は1.45367である。
まず、枠体22内の下方部位に収納される光透過性基板23は、液晶層24と接する上面23aと、第1〜第3レーザー光L1〜L3が選択的に入射する下面23bとが共に平坦面に形成されており、且つ、上面23aに液晶層24を動作させるための下側透明電極(図示せず)が膜付けされている一方、下面23bに光透過性平坦部23b1が中心“O”を中心にして直径φ1.87mm以内の内周領域に円形状に形成され、且つ、光透過性平坦部23b1の外周に隣接して直径φ1.87mm以上で直径φ2.64mm以下の外周領域内に第3レーザー光L3に対して対物レンズ26への開口数(NA)を0.45相当になるように開口制限する第3レーザー光用開口制限部23b2がダイクロイック膜を用いてリング状に成膜されており、更に、第3レーザー光用開口制限部23b2の外周に隣接して直径φ2.64mm以上で直径φ3.74mm以下の外周領域内に第2レーザー光L2に対して対物レンズ26への開口数(NA)を0.6相当になるように開口制限する第2レーザー光用開口制限部23b3がダイクロイック膜を用いてリング状に成膜されている。
従って、光透過性基板23は、第1〜第3レーザー光源11,31,41(図1)側の下面23bに、円形状の光透過性平坦部23b1と、リング状の第3レーザー光用開口制限部23b2と、リング状の第2レーザー光用開口制限部23b3とが中心“O”から外周に向かって順に形成されていることになる。
この際、光透過性基板23の下面23bに形成した第3レーザー光用開口制限部23b2は、波長選択性を有するダイクロイック膜により青色半導体レーザー11(図1)から出射した波長λ1=405nm±8nmの第1レーザー光L1を透過し、且つ、赤色半導体レーザー31(図1)から出射した波長λ2=660nm±10nmの第2レーザー光L2を透過する一方、赤外半導体レーザー41(図1)から出射した波長λ3=780±10nmの第3レーザー光L3を遮蔽する特性を有している。
また、光透過性基板23の下面23bに形成した第2レーザー光用開口制限部23b3は、波長選択性を有するダイクロイック膜により青色半導体レーザー11(図1)から出射した波長λ1=405nm±8nmの第1レーザー光L1を透過する一方、赤色半導体レーザー31(図1)から出射した波長λ2=660nm±10nmの第2レーザー光L2を遮蔽し、且つ、赤外半導体レーザー41(図1)から出射した波長λ3=780±10nmの第3レーザー光L3を遮蔽する特性を有している。
尚、光透過性基板23の下面23bに形成した第3レーザー光用開口制限部23b2及び第2レーザー光用開口制限部23b3として波長選択性を有するダイクロイック膜を成膜せずに、これらに代えて同様の性能を有し、且つ、下記する回折格子基板25に形成した凹凸状回折格子パターン部25a1とは凹凸寸法が異なる凹凸状の回折格子を第3,第2レーザー光用開口制限部23b2,23b3の幅寸法で分割してそれぞれリング状に形成しても良い。あるいは、液晶層24内を第3,第2レーザー光用開口制限部23b2,23b3の幅寸法で分割し、偏光方向によって第3,第2レーザー光L3,L2を遮蔽するように開口制限の役割を持たせても良い。
次に、枠体22内の上方部位に収納される回折格子基板25は、第1〜第3レーザー光L1〜L3が対物レンズ26(図1)側に出射する上面25aと、液晶層24が接する下面(25b)とを有し、上面25a中で光透過性基板23の光透過性平坦部23b1と液晶層24を介して対向し、且つ、中心“O”を中心にした直径φ2.64mmの内周領域内に凹凸状回折格子パターン部25a1が形成されていると共に、この凹凸状回折格子パターン部25a1の外周に隣接した外周領域は凹凸状回折格子パターン部が形成されていない平坦な上面(平坦面)25aとなっている。
また、回折格子基板25は、液晶層24と接する下面(25b)が凸レンズ状の球面(又は非球面)25b1に形成されることで、液晶層24の上面に凹レンズ状の球面(又は非球面)屈折機能が付加されると共に、この凸レンズ状の球面(又は非球面)25b1に沿って液晶層24を動作させるための上側透明電極(図示せず)が膜付けされている。
また、図2(c)に示した如く、回折格子基板25の上面25aに形成した凸状回折格子パターン部25a1は、凹凸部が径方向に複数本リング状に形成され、且つ、凹凸部の繰り返し周期Tが内周部から外周部に向かうにつれて徐々に狭めて形成されている。
また、回折格子基板25の上面25aの内周領域において、段差が1段の凹凸状回折格子パターン部25a1中の凹部の深さdは、青色半導体レーザー11(図1)から出射した波長λ1=405nmの第1レーザー光L1に対して回折作用が発生しないように下記の数1から求めると、全く回折せずに第1レーザー光L1の0次光をそのまま透過するようになっている。即ち、凹凸状回折格子パターン部25a1中の凹部の深さdが位相差2πの整数倍の時、0次回折効率が100%となる。
Figure 2005085340
上記した数1中で自然数kをk=1とした場合に、回折格子基板25の上面25aに形成した段差が1段の凹凸状回折格子パターン部25a1中の凹部の深さdは0.763μmとなっている。
尚、後述する数5において、凹凸状回折格子パターン部25a1をn値化した場合に段差数をn−1(但しnは2以上の自然数)で表示しており、凹凸状回折格子パターン部25a1の段差数が上記したように1段の場合に段差数n−1中でn=2を代入すれば、数5から凹凸状回折格子パターン部25a1の段差が1段の場合に、波長λiの第iレーザー光Li(例えば、第2レーザー光L2の時にi=2,第3レーザー光L3の時にi=3)に対する1次光における最大回折効率が得られる凹凸状回折格子パターン部25a1の凹凸部全体の深さdiが求められるが、これについては後で詳述する。
更に、回折格子基板25の上面25aに形成した凹凸状回折格子パターン部25a1は、後述するように赤色半導体レーザー31(図1)から出射した波長λ2=660nmの第2レーザー光L2の平行光を回折させて得た1次光を対物レンズ26を介してDVD2(図1)の信号面2b上に照射した時に、この信号面2b上での第2レーザー光L2のスポットが開口数(NA)=0.6相当になり、第2レーザー光L2の1次光の球面収差が最小となるように下記の数2に示した位相差関数Φ(x)により凹凸状回折格子パターン部25a1の中心“O”からの半径方向の距離xにおける位相差が求まり、その位相差を2値化することによって半径方向の凹凸形状が決定する。尚、この数2によって求まる凹凸面形状をBIN2面(Binary2面)と以下呼称する場合もある。
Figure 2005085340
上記した数2において、凹凸状回折格子パターン部25a1に対する位相差関数Φ(x)中の位相差関数係数A〜Aの一例を下記の表1に示す。
Figure 2005085340
更に、光透過性基板23の下面23b及び回折格子基板25の上面25aに、反射率が0.5%以下の反射防止膜(図示せず)を成膜することで光透過率が98%以上になっている。
次に、光透過性基板23の上面23aと、光透過性を有する回折格子基板25の下面(25b)との間に封入される液晶層24は、例えば、ゲストホスト型液晶で一軸性の複屈折材料からなり、厚さが0.05mm程度である。尚、図2及び図4〜図6中では1mm厚さの光透過性基板23及び回折格子基板25に対して、厚さが0.05mm程度の液晶層24を誇張して厚く図示している。
この際、液晶層24の屈折率は、図示しない下側透明電極と上側透明電極との間に印加する電圧によって変化する。即ち、液晶層24に電圧を印加しない時の非動作状態では液晶層24内が長軸方向に対して平行になり、入射したレーザー光の偏光方向に依存せずに、全面透過する。この時、非動作状態の液晶層24の屈折率NL1は略1.45〜1.47程度に設定されている。
一方、液晶層24に電圧を印加した時の動作状態では液晶層24内が長軸方向に対して直角になり、p偏光のレーザー光のみを透過する。この時、動作状態の液晶層24の屈折率NL2は1.7程度に上昇する。従って、この実施例1では、前述したように回折格子基板25の下面(25b)に凸レンズ状の球面(又は非球面)25b1が形成されているために、この球面(又は非球面)25b1によって液晶層24の上面は凹レンズ状の球面(又は非球面)屈折機能が働くことになる。
次に、図3に示した如く、実施例1の要部となる対物レンズ26は、超高密度光ディスク用として設計されたものであり、硝材として例えばNBF1(HOYA製光学ガラス)を用いて、収差補正素子組立体21と対向する第1面26a側を非球面に形成すると共に、超高密度光ディスク1,DVD2,CD3と対向する第2面26b側も非球面に形成している。
この際、対物レンズ26の第2面26bと超高密度光ディスク1のレーザービーム入射面1aとの間の作動距離WD1は0.5mm程度であり、また、対物レンズ26の第2面26bとDVD2のレーザービーム入射面2aとの間の作動距離WD2は0.35mm程度であり、更に、対物レンズ26の第2面26bとCD3のレーザービーム入射面3aとの間の作動距離WD3は0.13mm程度である。
そして、対物レンズ26の硝材にNBF1(HOYA製光学ガラス)を用いた場合には、青色半導体レーザー11(図1)から出射した波長λ1=405nmの第1レーザー光L1に対する屈折率N4は1.768985であり、また、赤色半導体レーザー31(図1)から出射した波長λ2=660nmの第2レーザー光L2に対する屈折率N5は1.738532であり、更に、赤外半導体レーザー41(図1)から出射した波長λ3=780nmの第3レーザー光L3に対する屈折率N6は1.73317504である。
ここで、波長λ1=405nmの第1レーザー光L1により超高密度光ディスク1を記録又は再生するように無限共役で最適に設計した対物レンズ26の仕様を下記の表2に示す。
Figure 2005085340
この表2から、青色半導体レーザー11(図1)から出射した第1レーザー光L1の設計波長λ1を例えば405nmに設定し、且つ、対物レンズ26は開口数(NA)が0.85のものを使用する。
次に、対物レンズ26の第1面26a及び第2面26bを非球面に形成する際、下記する数3の多項式を用いて非球面を表すものとする。
Figure 2005085340
上記した数3の多項式を用いた時に、対物レンズ26の第1面26aを非球面に形成するための非球面係数B〜B12の一例を下記の表3に示す。
Figure 2005085340
また、上記した数3の多項式を用いた時に、対物レンズ26の第2面26bを非球面に形成するための非球面係数B〜B10の一例を下記の表4に示す。
Figure 2005085340
更に、図2に示した収差補正素子組立体21と、図3に示した対物レンズ26とをレンズホルダ20内に収納した時に、超高密度光ディスク1,DVD2,CD3に対する各光学面関係についてそれぞれ下記の表5,表6,表7に順に示す。
Figure 2005085340
Figure 2005085340
Figure 2005085340
上記した表5〜表7から、収差補正素子組立体21の合計厚さは、1.0mmの光透過性基板23と、0.005mmの液晶層24と、1.0mmの回折格子基板25とを加算して図2(b)に示したように2.005mmとなる。また、収差補正素子組立体21と対物レンズ26との間の空間は3.3mmである。また、液晶層24の面形状は、光透過性基板23の下面(23b)に形成した凸レンズ状の球面(又は非球面)23b1による凹レンズ状の球面(又は非球面)である。また、回折格子基板25の面形状は、先に説明した数2で求めた凹凸状回折格子パターン部25b1によるBIN2面である。また、対物レンズ26の第1面26aの頂点における曲率半径は1.812171mmであり、第2面26bの頂点における曲率半径は−6.507584mmであり、対物レンズ26のレンズ厚さが3.104mmである。
次に、図2に示した収差補正素子組立体21と、図3に示した対物レンズ26とをレンズホルダ20内に収納した状態で、超高密度光ディスク1,DVD2,CD3を記録又は再生する場合について図4〜図6を用いて順に説明する。
ここで、図4に示した如く、レンズホルダ20内に収納した収差補正素子組立体21と対物レンズ26とにより超高密度光ディスク1を記録又は再生する場合に、対物レンズ26の第2面26bと超高密度光ディスク1のレーザービーム入射面1aとの間で作動距離WD1が0.5mm程度に設定されている状態で青色半導体レーザー11(図1)から出射した波長λ1=405nmの第1レーザー光L1をコリメータレンズ12(図1)で平行光にし、この平行光を収差補正素子組立体21に入射させている。
この際、収差補正素子組立体21内の液晶層24は電圧を印加することなく予め非動作状態に設定されており、非動作状態の液晶層24の屈折率NL1は前述したように略1.45〜1.47程度であり、一方、収差補正素子組立体21内でSILICA(合成石英)を用いた光透過性基板23及び回折格子基板25の各屈折率N1は波長λ1=405nmの第1レーザー光L1に対して前述したように1.46958である。従って、超高密度光ディスク1の場合に、非動作状態の液晶層24の屈折率NL1と、第1レーザー光L1に対する光透過性基板23及び回折格子基板25の各屈折率N1とが略同じ程度の値になっているため、第1レーザー光L1は液晶層24で屈折されずにそのまま透過されるようになっている。
上記の状態で、第1レーザー光L1の平行光を収差補正素子組立体21に入射させた時に、この第1レーザー光L1を収差補正素子組立体21内の光透過性基板23の下面23bの内周領域に円形状に形成した光透過性平坦部23b1と、この光透過性平坦部23b1の外側にダイクロイック膜を用いてリング状に順に成膜した第3レーザー光用開口制限部23b2及び第2レーザー光用開口制限部23b3とをそのまま透過させ、この後、この平行光を液晶層24で屈折させることなくそのまま透過させ、更に、回折格子基板25の上面25aの内周領域に形成した凹凸状回折格子パターン部25a1でも回折させずに0次光をそのまま透過させ、平行光のままで対物レンズ26の第1面26aに入射させている。
そして、対物レンズ26の第1,第2面26a,26bで絞った第1レーザービームを超高密度光ディスク1のレーザービーム入射面1aから入射させてディスク基板厚さが0.1mmの信号面1b上に集光している。
この場合には、波長λ1=405nmの第1レーザー光L1に対して、液晶層24で屈折が生じず且つ回折格子基板25の上面25aに形成した凹凸状回折格子パターン部25a1で回折が生じないため、収差補正素子組立体21での反射並びに吸収以外の光量損失がなく、前記したように凹凸状回折格子パターン部25a1中の凹部の深さdが0.763μmに形成されている場合に、0次光の回折効率は100%である。現時点では、波長λ1=405nmの青色半導体レーザー11(図1)の出力が低いため、実施例1の光ピックアップ装置10Aの各光学部品においては、光量損失が少ないことが必須となっている。
次に、図5に示した如く、レンズホルダ20内に収納した収差補正素子組立体21と対物レンズ26とによりDVD2を記録又は再生する場合に、対物レンズ26の第2面26bとDVD2のレーザービーム入射面2aとの間で作動距離WD2が0.35mm程度に設定されている状態で赤色半導体レーザー31(図1)から出射した波長λ2=660nmの第2レーザー光L2をコリメータレンズ34(図1)で平行光にし、この平行光を収差補正素子組立体21に入射させている。
この際、収差補正素子組立体21内の液晶層24は電圧を印加することなく予め非動作状態に設定されており、非動作状態の液晶層24の屈折率NL1は前述したように略1.45〜1.47程度であり、一方、収差補正素子組立体21内でSILICA(合成石英)を用いた光透過性基板23及び回折格子基板25の各屈折率N2は波長λ2=660nmの第2レーザー光L2に対して前述したように1.45627である。従って、DVD2の場合も、非動作状態の液晶層24の屈折率NL1と、第2レーザー光L2に対する光透過性基板23及び回折格子基板25の各屈折率N2とが略同じ程度の値になっているため、第2レーザー光L2は液晶層24で屈折されずにそのまま透過されるようになっている。
上記の状態で、第2レーザー光L2の平行光を収差補正素子組立体21に入射させた時に、この第2レーザー光L2を収差補正素子組立体21内の光透過性基板23の下面23bの外周領域にダイクロイック膜を用いてリング状に成膜した第2レーザー光用開口制限部23b3で遮蔽して対物レンズ26への開口数(NA)が0.6相当になるように開口制限させるも、光透過性基板23の下面23bの内周領域に円形状に形成した光透過性平坦部23b1及びこの光透過性平坦部23b1の外側にダイクロイック膜を用いてリング状に成膜した第3レーザー光用開口制限部23b2を透過させ、この後、この平行光を液晶層24で屈折させることなくそのまま透過させ、更に、回折格子基板25の上面25aの内周領域に形成した凹凸状回折格子パターン部25a1で回折させた1次光によって球面収差を補正して、回折させて得た1次光による拡散光を対物レンズ26の第1面26aに入射させている。
そして、対物レンズ26の第1,第2面26a,26bで絞った第2レーザービームをDVD2のレーザービーム入射面2aから入射させてディスク基板厚さが0.6mmの信号面2b上に集光している。
この場合、対物レンズ26は超高密度光ディスク用として設計されているので、赤色半導体レーザー31(図1)から出射した波長λ2=660nmの第2レーザー光L2に対して球面収差が大きくなるものの、回折格子基板25の上面25aに形成した凹凸状回折格子パターン部25a1で第2レーザー光L2に対して波面補正を行うことによって球面収差を補正しているので、DVD2への記録又は再生に支障をきたさない。
更に、図6に示した如く、レンズホルダ20内に収納した収差補正素子組立体21と対物レンズ26とによりCD3を記録又は再生する場合に、対物レンズ26の第2面26bとCD3のレーザービーム入射面3aとの間で作動距離WD3が0.13mm程度に設定されている状態で赤外半導体レーザー41(図1)から出射した波長λ3=780nmの第3レーザー光L3をコリメータレンズ44(図1)で平行光とし、この平行光を収差補正素子組立体21に入射させている。
この際、収差補正素子組立体21内の液晶層24は電圧を印加して予め動作状態に設定されており、動作状態の液晶層24の屈折率NL2は前述したように略1.7程度であり、一方、収差補正素子組立体21内でSILICA(合成石英)を用いた光透過性基板23及び回折格子基板25の各屈折率N3は波長λ3=780nmの第3レーザー光L3に対して前述したように1.45367である。従って、CD3の場合には、動作状態の液晶層24の屈折率NL2と、第3レーザー光L3に対する光透過性基板23及び回折格子基板25の各屈折率N3とが異なる値となり、液晶層24と基板23,25間で屈折率差が生じているので、第3レーザー光L3に対して液晶層24で屈折作用が生じることになる。
上記の状態で、第3レーザー光L3の平行光を収差補正素子組立体21に入射させた時に、この第3レーザー光L3を収差補正素子組立体21内の光透過性基板23の下面23bの外周領域にダイクロイック膜を用いてリング状に順に成膜した第3レーザー光用開口制限部23b2及び第2レーザー光用開口制限部23b3で遮蔽して対物レンズ26への開口数(NA)が0.45相当になるように開口制限させるも、光透過性基板23の下面23bの内周領域に円形状に形成した光透過性平坦部23b1を透過させ、この後、この平行光を回折格子基板25の下面(25b)に形成した凸レンズ状の球面(又は非球面)25b1により液晶層24の上面で凹レンズ状の球面(又は非球面)屈折機能を働かせて第3レーザー光L3を外側に向かって僅かに屈折させ、更に、回折格子基板25の上面25aの内周領域に形成した凹凸状回折格子パターン部25a1で第2レーザー光L2よりも拡散度を強めて回折させた1次光によって球面収差を補正して、第2レーザー光L2よりも拡散度を強めて回折させて得た1次光による拡散光を対物レンズ26の第1面26aに入射させている。
そして、対物レンズ26の第1,第2面26a,26bで絞った第3レーザービームをCD3のレーザービーム入射面3aから入射させてディスク基板厚さが1.2mmの信号面3b上に集光している。
この場合、対物レンズ26は超高密度光ディスク用として設計されているので、赤外半導体レーザー41(図1)から出射した波長λ3=780nmの第3レーザー光L3に対して球面収差が大きくなるものの、回折格子基板25の上面25aに形成した凹凸状回折格子パターン部25a1の周期T{図2(c)}が第2レーザービームに対して最適設計されているので、この凹凸状回折格子パターン部25a1によって第3レーザー光L3に対して波面補正を行って球面収差を補正し、更に不足する球面収差補正量に対して液晶層24の凹レンズ状の球面(又は非球面)屈折機能により拡散光とした第3レーザー光L3に対して有限補正を行って、波面補正と有限補正とを併せて球面収差を補正しているので、CD3への記録又は再生に支障をきたさない。
上記から実施例1の光ピックアップ装置10Aでは、収差補正素子組立体21に入射させる第1〜第3レーザー光L1〜L3の光束に対して、先に発明が解決しようとする課題でも述べたように、レーザー光の光束はできるだけ拡散光よりも平行光の状態で収差補正素子組立体21に入射させることが望ましく、この実施例1では超高密度光ディスク用の第1レーザー光L1とDVD用の第2レーザー光L2とCD用の第3レーザー光L3とを平行光の状態で収差補正素子組立体21に入射させているために、第1〜第3レーザー光L1〜L3の光軸が対物レンズ26の光軸に対して僅かにズレた場合でも球面収差の悪化が少なくなると共に、光ピックアップ装置10Aを組み立てる時に光軸調整が容易となる。
また、第2,第3レーザー光L2,L3を平行光の状態で収差補正素子組立体21に入射させているために、下記するようにDVD2,CD3に対する対物レンズシフト時の波面収差を従来例よりも向上させることができる。
ここで、先に発明が解決しようとする課題で述べたように、図1に示した実施例1の光ピックアップ装置10Aを組み立てる際に、3種類の光学系の光軸と対物レンズ26の光軸とのズレによる対物レンズシフト量が重要であることから、図7には、光ピックアップ装置10A内で対物レンズ26のシフト量の許容範囲を±300μm以内として対物レンズ26を100μm間隔でシフトした時の、DVD2,CD3に対するそれぞれの波面収差を示している。
図7から、DVD2,CD3ともに対物レンズシフト時の波面収差は、マレシャルクライテリオンの0.07λ rms.以下である。この実施例1では、DVD2を記録又は再生する場合に、波長λ2が660nmである第2レーザー光L2を収差補正素子組立体21に平行光の状態で入射させることにより、DVD2に対して対物レンズシフト時の波面収差が良好になっている。また、CD3を記録又は再生する場合にも、波長λ3が780nmである第3レーザー光L3を収差補正素子組立体21に平行光の状態で入射させることにより、CD3に対しても対物レンズシフト時の波面収差が良好になっている。
ここで、レンズホルダ20内に収納した収差補正素子組立体21と対物レンズ26とにより超高密度光ディスク1,DVD2,CD3を選択的に記録又は再生する場合に、回折格子基板25の上面25aに形成した凹凸状回折格子パターン部25a1中の凹凸部の周期T{図2(c)}が波長に比べて十分大きく、薄い素子とみなせる時に、凹凸状回折格子パターン部25a1を透過した後のm次回折効率ηはスカラー理論を用いて、下記の数4で表される。
Figure 2005085340
この際、数4中の凹凸状回折格子パターン部25a1中の凹凸部の周期Tは、計算を容易にするために一定な値として計算しているものであるが、前述したように凹凸状回折格子パターン部25a1中の凹凸部の周期Tは内周部から外周部に向かうにつれて徐々に狭めて形成されている。
次に、図8は超高密度光ディスク用である波長λ1=405nmの第1レーザー光L1と、DVD用である波長λ2=660nmの第2レーザー光L2と、CD用である波長λ=780nmの第3レーザー光L3とを回折格子基板25の上面25aに形成した凹凸状回折格子パターン部25a1に入射させた時に、第1レーザー光L1の0次光の回折効率と、第2レーザー光L2の1次光の回折効率と、第3レーザー光L3の1次光の回折効率とを上記した数4を用いて算出した結果を表している。
ここで、前述したように、回折格子基板25の上面25aに形成した凹凸状回折格子パターン部25a1中の凹部の深さd=0.763μmは、超高密度光ディスク用である波長λ1=405nmの第1レーザー光L1に対応して設計した値であり、この凹凸状回折格子パターン部25a1中の凹部の深さdが0.763μm(波長λ1に対して、位相差2π)である時に第1レーザー光L1の0次光の回折効率は図8中のQ線上で100%となる。
一方、凹凸状回折格子パターン部25a1中の凹部の深さdが0.763μmである時に、DVD用である波長λ2=660nmの第2レーザー光L2に対する1次光の回折効率は37.1%となり、また、CD用である波長λ3=780nmの第3レーザー光L3に対する1次光の回折効率は40.5%となり、この40.5%の値は第3レーザー光L3に対して最大回折効率となる。
上記に対して、DVD用である波長λ2=660nmの第2レーザー光L2に対する1次光の回折効率が最大となる条件を求めると、図8中のP線上で凹凸状回折格子パターン部25a1中の凹部の深さdが0.642μmとなり、この時に第2レーザー光L2に対する1次光の最大回折効率は40.5%である。一方、凹凸状回折格子パターン部25a1中の凹部の深さdが0.642μmである時には、超高密度光ディスク用である波長λ1=405nmの第1レーザー光L1に対する0次光の回折効率は77.2%となり、また、CD用であるλ3=780nmの第3レーザービームに対する1次光の回折効率は38.1%となる。
上記から超高密度光ディスク1と、DVD2と、CD3とを記録又は再生するシステムが成立するためには、波長λ1=405nmの第1レーザー光L1と、波長λ2=660nmの第2レーザー光L2と、波長λ3=780nmの第3レーザー光L3とに対して共に、収差補正素子組立体21内の回折格子基板25上での高い回折効率が得られることが望ましい。この際、DVD用となる波長λ2が660nm程度の赤色半導体レーザー31(図1)は高出力のものが量産できるようになってきているとはいうものの、少しでも高い回折効率が望ましい。一方、超高密度光ディスク用となる波長λ1が405nm程度の青色半導体レーザー11(図1)は低出力ではあるが、100%の回折効率が必須ではなく、多少の回折効率の低下は許容される。例えば、超高密度光ディスク1での回折効率は70%以上を確保しつつ、若干の犠牲を払い、DVD2,CD3で最大回折効率に近く、高い回折効率を保った、バランスの取れた設計が求められる。
上記条件を考慮すると、回折格子基板25の上面25aに形成した凹凸状回折格子パターン部25a1中の凹部の深さdは、第1レーザー光L1に対して略最大回折効率が得られる深さと、第2レーザー光L2に対して略最大回折効率が得られる深さとの間(図8中のP線とQ線とに挟まれた区間)になるように設定すると、波長λ1=405nmの第1レーザー光L1に対して回折効率が77%以上得られ、且つ、波長λ2=660nmの第2レーザー光L2及び波長λ3=780nmの第3レーザー光L3に対して回折効率が共に37%以上得られる。
上記した凹凸状回折格子パターン部25a1を作製する時に、10nm程度の深さ誤差が生じる場合があっても、図8中のP線とQ線とに挟まれた区間(波長λ1に対して、位相差1.68πから2πの範囲)であれば、共に高い回折効率を確保できる。
更に、回折格子基板25の上面25aに形成した凹凸状回折格子パターン部25a1は、段差が1段の凹凸構造であるので、第2レーザー光L2の1次光と対称に−1次光や高次光が発生するが、第2レーザー光L2の1次光以外の回折光はDVD2の信号面2b上には結像しないので、影響はほとんどない。
尚、一般的に、波長λiの第iレーザー光Liに対して、n値化した(凹凸段差がn−1段)凹凸状回折格子パターン部25a1中の凹部全体の深さdiは、下記の数5の関係を満たす時、1次回折効率が最大となる。尚、凹凸状回折格子パターン部25a1中で一段当たりの深さは、凹凸状回折格子パターン部25a1中の凹部全体の深さdiを段差数n−1で除算すれば良い。
Figure 2005085340
また、上記した数5において、凹凸状回折格子パターン部25a1の段差が1段、即ち、段差数n−1中でn=2の場合に、波長λ2(λi中でi=2)の第2レーザー光L2に対して回折格子基板25の屈折率がN2で、且つ、1次光の回折効率が最大となる図8中のP線と対応した凹凸状回折格子パターン部25a1中の凹部の深さdpは下記の数6で表される。
Figure 2005085340
更に、前記した数1において、波長λ1の第1レーザー光L1に対して回折格子基板25の屈折率がN1で、且つ、0次光の回折効率が最大となる図8中のQ線と対応した凹凸状回折格子パターン部25a1中の凹部の深さdqは下記の数7で表される。
Figure 2005085340
上記から、超高密度光ディスク1,DVD2,CD3ともに高効率でバランスの良い回折効率を取るためには、凹凸状回折格子パターン部25a1中の凹部の深さdを数6で得られた凹部の深さdpと、数7で得られた凹部の深さdqとの間になるように設定することが望ましい。
尚、実施例1では、回折格子基板25の上面25aに形成した凹凸状回折格子パターン部25aの段差が1段の場合を説明したが、凹凸状回折格子パターン部25a1は段差が1段に限らず、複数段の階段状回折格子パターン部(図示せず)としても良い。
次に、本発明に係る実施例1の光ピックアップ装置10Aにおいて、先に説明した収差補正素子組立体21内で光透過性基板23の下面23bの外周領域に形成した第2レーザー光用開口制限部23b3を削除して、一部簡素化を図った変形例の収差補正素子組立体21’を適用した場合について、先に説明した図1と、新たな図9〜図12とを用いて説明する。尚、図9〜図12中において、実施例1と同じ構成部材は同じ符番を付して図示し、詳細な説明を省略する。
図9は本発明に係る実施例1の光ピックアップ装置において、一部簡素化を図った変形例の収差補正素子組立体を説明するための図であり、(a)は上面図,(b)は正面図,(c)は凹凸状回折格子パターン部の凹凸形状図、
図10は図9に示した変形例の収差補正素子組立体と、図3に示した対物レンズとにより、超高密度光ディスクを記録又は再生する場合を模式的に示した図、
図11は図9に示した変形例の収差補正素子組立体と、図3に示した対物レンズとにより、DVDを記録又は再生する場合を説明するための光線図、
図12は図9に示した変形例の収差補正素子組立体と、図3に示した対物レンズとにより、CDを記録又は再生する場合を説明するための光線図である。
本発明に係る実施例1の光ピックアップ装置10Aにおいて、先に説明した収差補正素子組立体21に代えて一部簡素化を図った変形例の収差補正素子組立体21’は、図1に示したように、レンズホルダ20内の下方部位に収納されており、この収差補正素子組立体21’の上方部位に対物レンズ26が収納されている。
図9(a),(b)に示した如く、一部簡素化を図った変形例の収差補正素子組立体21’は、先に図2(a),(b)を用いて説明した収差補正素子組立体21と略同様に、枠体22内の下方部位に収納された光透過性基板23’と、枠体22内の上方部位に収納された回折格子基板25との間に液晶層24が封入されており、ここでは光透過性基板23’の下面23bのみが先に説明した収差補正素子組立体21内の光透過性基板23の下面23bに対して一部異なっているだけである。
即ち、上記した光透過性基板23’の下面23bには、光透過性平坦部23b1が中心“O”を中心にして直径φ1.87mm以内の内周領域に円形状に形成され、且つ、光透過性平坦部23b1の外周に隣接して直径φ1.87mm以上で直径φ3.74mm以下の外周領域内に第3レーザー光L3に対して対物レンズ26への開口数(NA)を0.45相当になるように開口制限する第3レーザー光用開口制限部23b4がダイクロイック膜を用いてリング状に成膜されている。
この際、光透過性基板23’の下面23bに形成した第3レーザー光用開口制限部23b4は、波長選択性を有するダイクロイック膜により青色半導体レーザー11(図1)から出射した波長λ1=405nm±8nmの第1レーザー光L1を透過する一方、赤色半導体レーザー31(図1)から出射した波長λ2=660nm±10nmの第2レーザー光L2を遮蔽し、且つ、赤外半導体レーザー41(図1)から出射した波長λ3=780±10nmの第3レーザー光L3を遮蔽する特性を有している。
更に、光透過性基板23’の下面23bに形成した第3レーザー光用開口制限部23b4は、先に、図2(a),(b)で説明した光透過性基板23の下面23bに形成した第3,第2レーザー光用開口制限部23b2,23b3を含む領域に成膜されており、第2レーザー光用開口制限部23b3が成膜されない分だけ、変形例の収差補正素子組立体21’を安価に製作できるものである。
そして、上記のように構成した変形例の収差補正素子組立体21’と対物レンズ26とをレンズホルダ20内に収納して、超高密度光ディスク1,DVD2,CD3を記録又は再生する時の光線図は図10,図11,図12に示した如くとなる。
ここで、図10に示した如く、レンズホルダ20内に収納した変形例の収差補正素子組立体21’と対物レンズ26とにより超高密度光ディスク1を記録又は再生する場合に、対物レンズ26の第2面26bと超高密度光ディスク1のレーザービーム入射面1aとの間で作動距離WD1が0.5mm程度に設定されている状態で青色半導体レーザー11(図1)から出射した波長λ1=405nmの第1レーザー光L1をコリメータレンズ12(図1)で平行光にし、この平行光を収差補正素子組立体21’に入射させている。
この際、収差補正素子組立体21’内の液晶層24は実施例1と同様に電圧を印加することなく予め非動作状態に設定されているので、前述したように、非動作状態の液晶層24の屈折率NL1と、第1レーザー光L1に対する光透過性基板23’及び回折格子基板25の各屈折率N1とが略同じ程度の値になっているため、第1レーザー光L1は液晶層24で屈折されずにそのまま透過されるようになっている。
上記の状態で、第1レーザー光L1の平行光を収差補正素子組立体21’に入射させた時に、この第1レーザー光L1を収差補正素子組立体21’内の光透過性基板23’の下面23bの内周領域に円形状に形成した光透過性平坦部23b1と、この光透過性平坦部23b1の外側にダイクロイック膜を用いてリング状に成膜した第3レーザー光用開口制限部23b4とをそのまま透過させ、この後、この平行光を液晶層24で屈折させることなくそのまま透過させ、更に、回折格子基板25の上面25aの内周領域に形成した凹凸状回折格子パターン部25a1でも回折させずに0次光をそのまま透過させ、平行光のままで対物レンズ26の第1面26aに入射させている。
そして、対物レンズ26の第1,第2面26a,26bで絞った第1レーザービームを超高密度光ディスク1のレーザービーム入射面1aから入射させてディスク基板厚さが0.1mmの信号面1b上に集光している。
この場合には、波長λ1=405nmの第1レーザー光L1に対して、液晶層24で屈折が生じず且つ回折格子基板25の上面25aに形成した凹凸状回折格子パターン部25a1で回折が生じないため、収差補正素子組立体21’での反射並びに吸収以外の光量損失がなく、前記したように凹凸状回折格子パターン部25a1中の凹部の深さdが0.763μmの場合に、0次光の回折効率は100%である。
次に、図11に示した如く、レンズホルダ20内に収納した変形例の収差補正素子組立体21’と対物レンズ26とによりDVD2を記録又は再生する場合に、対物レンズ26の第2面26bとDVD2のレーザービーム入射面2aとの間で作動距離WD2が0.35mm程度に設定されている状態で赤色半導体レーザー31(図1)から出射した波長λ2=660nmの第2レーザー光L2をコリメータレンズ34(図1)で平行光にし、この平行光を収差補正素子組立体21’に入射させている。
この際、収差補正素子組立体21’内の液晶層24は電圧を印加することなく予め非動作状態に設定されているので、前述したように、非動作状態の液晶層24の屈折率NL1と、第2レーザー光L2に対する光透過性基板23’及び回折格子基板25の各屈折率N2とが略同じ程度の値になっているため、第2レーザー光L2は液晶層24で屈折されずにそのまま透過されるようになっている。
上記の状態で、第2レーザー光L2の平行光を収差補正素子組立体21’に入射させた時に、この第2レーザー光L2を収差補正素子組立体21’内の光透過性基板23’の下面23bの内周領域に円形状に形成した光透過性平坦部23b1と、この光透過性平坦部23b1の外側にダイクロイック膜を用いてリング状に成膜した第3レーザー光用開口制限部23b4とをそのまま透過させ、この後、この平行光を液晶層24で屈折させることなくそのまま透過させ、更に、回折格子基板25の上面25aの内周領域に形成した凹凸状回折格子パターン部25a1で回折させた1次光によって球面収差を補正して、回折させて得た1次光による拡散光を対物レンズ26の第1面26aに入射させている。
この際、光透過性基板23’の下面23bに入射させた平行光のうちで回折格子基板25の上面25aの内周領域に形成した凹凸状回折格子パターン部25a1より外側でφ2.64mm以上の外周領域の平行光は凹凸状回折格子パターン部が形成されていない平坦な上面25aの外周領域をそのまま透過させて対物レンズ26に入射させているので、収差補正素子組立体21’上での周辺部の収差は大きく、内周と外周の波面は非連続で変化し、波面の連続性が保たれなくなり、対物レンズ26を通過した外周光はDVD2の信号面2b上でスポット形成に寄与しない。言い換えると、前述したように、回折格子基板25の上面25aの内周領域に形成した凹凸状回折格子パターン部25a1はDVD2に対して対物レンズ26への開口数が0.6相当になるように形成されているため、第2レーザー光L2による外周の平行光は凹凸状回折格子パターン部25a1を通過しないのでDVD2に対して対物レンズ26への開口数が制限された状態でスポット形成に寄与しない。
一方、光透過性基板23’の下面23bに入射させた平行光のうちで回折格子基板25の上面25aの内周領域に形成した凹凸状回折格子パターン部25a1より内側でφ2.64mm以内の内周領域の平行光のみを凹凸状回折格子パターン部25a1で回折させた1次光によって球面収差を補正して対物レンズ26の第1面26aに入射させているので、DVD2の信号面2b上でスポットが形成される。
そして、対物レンズ26の第1,第2面26a,26bで絞った第2レーザービームをDVD2のレーザービーム入射面2aから入射させてディスク基板厚さが0.6mmの信号面2b上に集光している。
この場合、対物レンズ26は超高密度光ディスク用として設計されているので、赤色半導体レーザー31(図1)から出射した波長λ2=660nmの第2レーザー光L2に対して球面収差が大きくなるものの、回折格子基板25の上面25aに形成した凹凸状回折格子パターン部25a1で第2レーザー光L2に対して波面補正を行うことによって球面収差を補正しているので、DVD2への記録又は再生に支障をきたさない。
更に、図12に示した如く、レンズホルダ20内に収納した変形例の収差補正素子組立体21’と対物レンズ26とによりCD3を記録又は再生する場合に、対物レンズ26の第2面26bとCD3のレーザービーム入射面3aとの間で作動距離WD3が0.13mm程度に設定されている状態で赤外半導体レーザー41(図1)から出射した波長λ3=780nmの第3レーザー光L3をコリメータレンズ44(図1)で平行光とし、この平行光を収差補正素子組立体21’に入射させている。
この際、収差補正素子組立体21’内の液晶層24は電圧を印加して予め動作状態に設定されているので、前述したように、動作状態の液晶層24の屈折率NL2と、第3レーザー光L3に対する光透過性基板23’及び回折格子基板25の各屈折率N3とが異なる値となり、液晶層24と基板23’,25間で屈折率差が生じているので、第3レーザー光L3に対して液晶層24で屈折作用が生じることになる。
上記の状態で、第3レーザー光L3の平行光を収差補正素子組立体21’に入射させた時に、この第3レーザー光L3を収差補正素子組立体21’内の光透過性基板23’の下面23bの外周領域にダイクロイック膜を用いてリング状に成膜した第3レーザー光用開口制限部23b4で遮蔽して対物レンズ26への開口数(NA)が0.45相当になるように開口制限させるも、光透過性基板23’の下面23bの内周領域に円形状に形成した光透過性平坦部23b1を透過させ、この後、この平行光を回折格子基板25の下面(25b)に形成した凸レンズ状の球面(又は非球面)25b1により液晶層24の上面で凹レンズ状の球面(又は非球面)屈折機能を働かせて第3レーザー光L3を外側に向かって僅かに屈折させ、更に、回折格子基板25の上面25aの内周領域に形成した凹凸状回折格子パターン部25a1で第2レーザー光L2よりも拡散度を強めて回折させた1次光によって球面収差を補正して、第2レーザー光L2よりも拡散度を強めて回折させて得た1次光による拡散光を対物レンズ26の第1面26aに入射させている。
そして、対物レンズ26の第1,第2面26a,26bで絞った第3レーザービームをCD3のレーザービーム入射面3aから入射させてディスク基板厚さが1.2mmの信号面3b上に集光している。
この場合、対物レンズ26は超高密度光ディスク用として設計されているので、赤外半導体レーザー41(図1)から出射した波長λ3=780nmの第3レーザー光L3に対して球面収差が大きくなるものの、回折格子基板25の上面25aに形成した凹凸状回折格子パターン部25a1の周期T{図9(c)}が第2レーザービームに対して最適設計されているので、この凹凸状回折格子パターン部25a1によって第3レーザー光L3に対して波面補正を行って球面収差を補正し、更に不足する球面収差補正量に対して液晶層24の凹レンズ状の球面(又は非球面)屈折機能により拡散光とした第3レーザー光L3に対して有限補正を行って、波面補正と有限補正とを併せて球面収差を補正しているので、CD3への記録又は再生に支障をきたさない。
そして、一部簡素化を図った変形例の収差補正素子組立体21’を用いた場合でも、超高密度光ディスク用の第1レーザー光L1とDVD用の第2レーザー光L2とCD用の第3レーザー光L3とを平行光の状態で収差補正素子組立体21’に入射させているために、先に説明した収差補正素子組立体21と同様に、第1〜第3レーザー光L1〜L3の光軸が対物レンズ26の光軸に対して僅かにズレた場合でも球面収差の悪化が少なくなると共に、光ピックアップ装置10Aを組み立てる時に光軸調整が容易となり、更に、先に図7を用いて説明したと同様に、DVD2,CD3に対する対物レンズシフト時の波面収差を従来例よりも向上させることができる。
更に、一部簡素化を図った変形例の収差補正素子組立体21’でも、回折格子基板25の上面25aに形成した凹凸状回折格子パターン部25a1中の凹部の深さdを、先に図8を用いて説明したと同様に、波長λ1が405nmである第1レーザー光L1に対して略最大回折効率が得られる深さと、波長λ2が660nmである第2レーザー光L2に対して略最大回折効率が得られる深さとの間になるように設定することで、前述したように波長λ3が780nmである第3レーザー光L3に対しても略最大回折効率が得られるために、超高密度光ディスク1,DVD2,CD3を良好に記録又は再生できる。
尚、以上詳述した実施例1,この実施例1を一部変形した変形例の収差補正素子組立体21,21’では、回折格子基板25の下面(25b)に形成した凸レンズ状の球面(又は非球面)25b1により液晶層24の上面に凹レンズ状の球面(又は非球面)屈折機能を持たせたが、これに限らず、ここでの図示を省略するものの、回折格子基板25の下面(25b)を平坦に形成し且つ光透過性基板23,23’の上面23aに凸レンズ状の球面(又は非球面)を形成すれば、液晶層24の下面に凹レンズ状の球面(又は非球面)屈折機能を持たせることができる。この場合には、光透過性基板23,23’及び回折格子基板25を前記したSILICA(合成石英)よりも屈折率が高い材料を用い、液晶層24の非動作時に液晶層24の屈折率を光透過性基板23,23’及び回折格子基板25の屈折率と略同じ値になるように高く設定し、一方、液晶層24の動作時に液晶層24の屈折率を光透過性基板23,23’及び回折格子基板25の屈折率よりも低い値となるように液晶層24に電圧を印加すれば良いものである。
図13は本発明に係る実施例2光ピックアップ装置の全体構成を示した図、
図14は図13に示した実施例2における収差補正素子組立体を説明するための図であり、(a)は上面図,(b)は正面図,(c)は凹凸状回折格子パターン部の凹凸形状図、
図15は図14に示した収差補正素子組立体と、図3に示した対物レンズとにより、超高密度光ディスクを記録又は再生する場合を模式的に示した図、
図16は図14に示した収差補正素子組立体と、図3に示した対物レンズとにより、DVDを記録又は再生する場合を説明するための光線図、
図17は図14に示した収差補正素子組立体と、図3に示した対物レンズとにより、CDを記録又は再生する場合を説明するための光線図、
図18は図14に示した収差補正素子組立体と、図3に示した対物レンズとにより、DVD,CDを記録又は再生した時に、DVD,CDに対して対物レンズシフト時の最良像面での波面収差を示した図である。
図13に示した本発明に係る実施例2の光ピックアップ装置10Bは、先に図1を用いて説明した本発明に係る実施例1の光ピックアップ装置10Aに対して収差補正素子組立体51のみが異なるものであり、ここでは説明の便宜上、先に示した構成部材に対しては同一の符号を付して図示し、且つ、実施例1に対して異なる構成部材に新たな符号を付して異なる点を中心にして説明する。
図13に示した如く、本発明に係る実施例2の光ピックアップ装置10Bも、実施例1と同様に、超高密度光ディスク1と、超高密度光ディスク1よりも記録密度が低く且つ超高密度光ディスク1よりもディスク基板厚さが厚いDVD2と、DVD2よりも記録密度が低く且つDVD2よりもディスク基板厚さが厚いCD3と、第1〜第3光記録媒体1〜3の各信号面1b〜3bを適宜組み合わせて一体的に積層した組み合わせ型光記録媒体とを選択的に記録又は再生できるように開発したものである。
この際、超高密度光ディスク用に設計した対物レンズ26は、実施例1と同じ仕様であるので説明を省略するが、レンズホルダ20の下方部位に実施例2の要部となる収差補正素子組立体51が収納されている点が実施例1に対して異なる点である。
即ち、図14(a),(b)に示した如く、実施例2の要部となる収差補正素子組立体51では、枠体52が上下を開口され且つ外側面及び内側面が正方形状に形成されており、この枠体52内の下方部位に収納された光透過性基板53と、枠体52内の上方部位に収納された回折格子基板55との間に液晶層54が封入されている。
この際、光透過性基板53及び回折格子基板55は、光透過性のあるSILICA(合成石英)とか、BK7(ホウケイ酸クラウンガラス)とか、透明樹脂などを用いて外形形状が5mm角の正方形状に形成されているが、この実施例2でも両基板53,55共に厚さが1mmのSILICA(合成石英)を用いている。
まず、枠体52内の下方部位に収納される光透過性基板53は、実施例1と同じように、液晶層54と接する上面53aと、第1〜第3レーザー光L1〜L3が選択的に入射する下面53bとが共に平坦面に形成されており、且つ、上面53aに液晶層54を動作させるための下側透明電極(図示せず)が膜付けされている一方、下面53bに光透過性平坦部53b1が中心“O”を中心にして直径φ1.87mm以内の内周領域に円形状に形成され、且つ、光透過性平坦部53b1の外周に隣接して直径φ1.87mm以上で直径φ2.64mm以下の内側外周領域内に第3レーザー光L3に対して対物レンズ26への開口数(NA)を0.45相当に開口制限する第3レーザー光用開口制限部53b2がダイクロイック膜を用いてリング状に成膜されており、更に、第3レーザー光用開口制限部53b2の外周に隣接して直径φ2.64mm以上で直径φ3.74mm以下の外周領域内に第2レーザー光L2に対して対物レンズ26への開口数(NA)を0.6相当になるように開口制限する第2レーザー光用開口制限部53b3がダイクロイック膜を用いてリング状に成膜されている。
従って、光透過性基板53は、第1〜第3レーザー光源11,31,41(図1)側の下面53bに、円形状の光透過性平坦部53b1と、リング状の第3レーザー光用開口制限部53b2と、リング状の第2レーザー光用開口制限部53b3とが中心“O”から外周に向かって順に形成されていることになる。この際、第3,第2レーザー光用開口制限部53b2,53b3に成膜される各ダイクロイック膜の波長選択特性は実施例1と同じである。
次に、枠体52内の上方部位に収納される回折格子基板55は、実施例1と同様に、第1〜第3レーザー光L1〜L3が対物レンズ26(図1)側に出射する上面55aと、液晶層54が接する下面55bとを有し、上面55a中で光透過性基板53の光透過性平坦部53b1と液晶層54を介して対向し、且つ、中心“O”を中心にした直径φ2.64mmの内周領域内に凹凸状回折格子パターン部55a1が形成されていると共に、この凹凸状回折格子パターン部55a1の外周に隣接した外周領域は凹凸状回折格子パターン部が形成されていない平坦な上面(平坦面)55aとなっている。
また、図14(c)に示した如く、回折格子基板55の上面55aに形成した凸状回折格子パターン部55a1は、凹凸部が径方向に複数本リング状に形成され、且つ、凹凸部の繰り返し周期Tが内周部から外周部に向かうにつれて徐々に狭めて形成されていると共に、凹凸状回折格子パターン部55a1中の凹部の深さdは先に説明した数1により設定され、また、凹凸状回折格子パターン部55a1の中心“O”からの半径方向の距離xにおける位相差は先に説明した数2及び表1により設定されている。
また、回折格子基板55は、液晶層54と接する下面55b側が実施例1に対して異なっており、この下面55b側で中心“O”を中心にした直径φ2.64mmの内周領域内に階段状回折格子面(又はブレーズ状回折格子面)55b1が形成されることで、液晶層54の上面に回折機能が付加されると共に、この階段状回折格子面(又はブレーズ状回折格子面)55b1の外周に隣接した外周領域は階段状回折格子面(又はブレーズ状回折格子面)が形成されていない平坦な下面55bとなっている。尚、ブレーズ状回折格子面の図示を省略しているものの、ブレーズ状回折格子面は鋸歯状の回折格子が複数本リング状に形成されているものである。
そして、回折格子基板55の下面55bに形成した階段状回折格子面(又はブレーズ状回折格子面)55b1に沿って液晶層54を動作させるための上側透明電極(図示せず)が膜付けされている。
この際、階段状回折格子面(又はブレーズ状回折格子面)55b1は、階段の段数を増やしてブレーズ形状に近づけるほど、高い回折効率が得られると共に、先に説明した数2によって求まるBIN2面(回折面)に形成されている。
ここで、先に説明した数2において、階段状回折格子面(又はブレーズ状回折格子面)55b1に対する位相差関数Φ(x)中の位相差関数係数A〜Aの一例を下記の表8に示す。
Figure 2005085340
上記から回折格子基板55は、液晶層54に接する下面55bに階段状回折格子面(又はブレーズ状回折格子面)55b1を形成することで液晶層54の上面に回折機能を付加し、且つ、対物レンズ26側の上面55aの内周領域に階段状回折格子面(又はブレーズ状回折格子面)55b1と異なる形状で凹凸状回折格子パターン部55a1を形成すると共にこの凹凸状回折格子パターン部55a1の外側を平坦に形成したものである。
次に、光透過性基板53の上面53aと、光透過性を有する回折格子基板55の下面55bとの間に封入される液晶層54は、実施例1と同様に、例えば、ゲストホスト型液晶で一軸性の複屈折材料からなり、厚さが0.05mm程度である。また、液晶層54の屈折率は実施例1と同じであり、非動作時の屈折率NL1は略1.45〜1.47程度に設定され、一方、動作時の屈折率NL2は略1.7程度に上昇する。
従って、この実施例2では、前述したように回折格子基板55の下面55bに階段状回折格子面(又はブレーズ状回折格子面)55b1が形成されているために、この階段状回折格子面(又はブレーズ状回折格子面)55b1によって液晶層54の上面は回折機能が働くことになる。尚、図14〜図17中では1mm厚さの光透過性基板53及び回折格子基板55に対して、厚さが0.05mm程度の液晶層54を誇張して厚く図示している。
ここで、上記のように構成した収差補正素子組立体51と対物レンズ26とをレンズホルダ20内に収納した時に、超高密度光ディスク1,DVD2,CD3に対する各光学面関係についてそれぞれ下記の表9,表10,表11に順に示す。
Figure 2005085340
Figure 2005085340
Figure 2005085340
上記した表9〜表11では、先に実施例1で説明した表5〜表7に対して液晶層54の面形状が回折格子基板55の下面55bに形成した階段状回折格子面(又はブレーズ状回折格子面)55b1によるBIN2面(回折面)になっている点が異なるものである。
これに伴って、収差補正素子組立体51と対物レンズ26とをレンズホルダ20内に収納した時に、超高密度光ディスク1,DVD2,CD3を記録又は再生する時の光線図は図15,図16,図17に示した如くとなる。
ここで、図15,図16,図17にそれぞれ示した超高密度光ディスク1,DVD2,CD3への各動作は、先に説明した実施例1で図4,図5,図6を用いて説明した各動作と略同じであるので以下簡略に説明する。
まず、図15に示した如く、超高密度光ディスク1を記録又は再生する場合には、収差補正素子組立体51内の液晶層54を非動作状態に設定した上で、第1レーザー光L1の平行光を収差補正素子組立体51内の光透過性基板53の下面53bに形成した光透過性平坦部53b1及び第3,第2レーザー光用開口制限部53b2,53b3と、液晶層54とを順に透過させ、この後、回折格子基板55の上面55aに形成した凹凸状回折格子パターン部55a1で回折させることなくそのまま透過して0次光による平行光を対物レンズ26に入射している。
また、図16に示した如く、DVD2を記録又は再生する場合には、収差補正素子組立体51内の液晶層54を非動作状態に設定した上で、第2レーザー光L2の平行光を収差補正素子組立体51内の光透過性基板53の下面53bに形成した第2レーザー光用開口制限部53b3で対物レンズ26への開口数が0.6相当になるように開口制限させるも、光透過性基板53の下面53bに形成した光透過性平坦部53b1及び第3レーザー光用開口制限部53b2と、液晶層54とを順に透過させ、この後、回折格子基板55の上面55aに形成した凹凸状回折格子パターン部55a1で回折させた1次光によって球面収差を補正してこの1次光による拡散光を対物レンズ26に入射している。
また、図17に示した如く、CD3を記録又は再生する場合には、収差補正素子組立体51内の液晶層54を動作状態に設定した上で、第3レーザー光L3の平行光を収差補正素子組立体51内の光透過性基板53の下面53bに形成した第3,第2レーザー光用開口制限部53b2,53b3で対物レンズ26への開口数が0.45相当になるように開口制限させるも、光透過性基板53の下面53bに形成した光透過性平坦部53b1を透過させ、この後、回折格子基板55の下面55bに形成した階段状回折格子面(又はブレーズ状回折格子面)55b1により液晶層54の上面で回折機能を働かせて第3レーザー光L3を外側に向かって僅かに回折させ、更に、回折格子基板25の上面25aに形成した凹凸状回折格子パターン部25a1で第2レーザー光L2よりも拡散度を強めて回折させた1次光によって球面収差を補正してこの1次光による拡散光を対物レンズ26に入射させている。
そして、実施例2における光ピックアップ装置10B内で対物レンズ26のシフト量の許容範囲を±300μm以内として対物レンズ26を100μm間隔でシフトした時の、DVD2,CD3に対するそれぞれの波面収差は図18に示した結果が得られた。
図18から、DVD2,CD3ともに対物レンズシフト時の波面収差は、マレシャルクライテリオンの0.07λ rms.以下である。この実施例2でも、DVD2を記録又は再生する場合に、波長λ2が660nmである第2レーザー光L2を収差補正素子組立体51に平行光の状態で入射させることにより、DVD2に対して対物レンズシフト時の波面収差が良好になっている。また、CD3を記録又は再生する場合にも、波長λ3が780nmである第3レーザー光L3を収差補正素子組立体51に平行光の状態で入射させることにより、CD3に対しても対物レンズシフト時の波面収差が良好になっていると共に、回折格子基板55の下面55bに形成した階段状回折格子面(又はブレーズ状回折格子面)55b1を精度良く形成することで、先に図7で示した実施例1よりもCD3に対して対物レンズシフト時の波面収差がより改善できた。
また、実施例2の収差補正素子組立体51でも、回折格子基板55の上面55aに形成した凹凸状回折格子パターン部55a1中の凹部の深さdを、先に図8を用いて説明したと同様に、波長λ1が405nmである第1レーザー光L1に対して略最大回折効率が得られる深さと、波長λ2が660nmである第2レーザー光L2に対して略最大回折効率が得られる深さとの間になるように設定することで、前述したように波長λ3が780nmである第3レーザー光L3に対しても略最大回折効率が得られるために、超高密度光ディスク1,DVD2,CD3を良好に記録又は再生できる。
次に、本発明に係る実施例2の光ピックアップ装置10Bにおいて、先に説明した収差補正素子組立体51内で光透過性基板53の下面53bの外周領域に形成した第2レーザー光用開口制限部53b3を削除して、一部簡素化を図った変形例の収差補正素子組立体51’を適用した場合について、先に説明した図13と、新たな図19〜図22とを用いて説明する。尚、図19〜図22中において、実施例2と同じ構成部材は同じ符番を付して図示し、詳細な説明を省略する。
図19は本発明に係る実施例2の光ピックアップ装置において、一部簡素化を図った変形例の収差補正素子組立体を説明するための図であり、(a)は上面図,(b)は正面図,(c)は凹凸状回折格子パターン部の凹凸形状図、
図20は図19に示した変形例の収差補正素子組立体と、図3に示した対物レンズとにより、超高密度光ディスクを記録又は再生する場合を模式的に示した図、
図21は図19に示した変形例の収差補正素子組立体と、図3に示した対物レンズとにより、DVDを記録又は再生する場合を説明するための光線図、
図22は図19に示した変形例の収差補正素子組立体と、図3に示した対物レンズとにより、CDを記録又は再生する場合を説明するための光線図である。
本発明に係る実施例2の光ピックアップ装置10Bにおいて、先に説明した収差補正素子組立体51に代えて一部簡素化を図った変形例の収差補正素子組立体51’は、図18に示したように、レンズホルダ20内の下方部位に収納されており、この収差補正素子組立体51’の上方部位に対物レンズ26が収納されている。
図19(a),(b)に示した如く、一部簡素化を図った変形例の収差補正素子組立体51’は、先に図14(a),(b)を用いて説明した収差補正素子組立体51と略同様に、枠体52内の下方部位に収納された光透過性基板53’と、枠体52内の上方部位に収納された回折格子基板55との間に液晶層54が封入されており、ここでは光透過性基板53’の下面53bのみが先に説明した収差補正素子組立体51内の光透過性基板53の下面53bに対して一部異なっているだけである。
即ち、上記した光透過性基板53’の下面53bには、光透過性平坦部53b1が中心“O”を中心にして直径φ1.87mm以内の内周領域に円形状に形成され、且つ、光透過性平坦部53b1の外周に隣接して直径φ1.87mm以上で直径φ3.74mm以下の外周領域内に第3レーザー光L3に対して対物レンズ26への開口数(NA)を0.45相当になるよう開口制限する第3レーザー光用開口制限部53b4がダイクロイック膜を用いてリング状に成膜されている。
従って、光透過性基板53’の下面53bに形成した第3レーザー光用開口制限部53b4は、先に、図14(a),(b)で説明した第3,第2レーザー光用開口制限部53b2,53b3を含む領域に成膜されており、第2レーザー光用開口制限部53b3が成膜されない分だけ、変形例の収差補正素子組立体51’を安価に製作できるものである。
そして、上記のように構成した変形例の収差補正素子組立体51’と対物レンズ26とをレンズホルダ20内に収納して、超高密度光ディスク1,DVD2,CD3を記録又は再生する時の光線図は図20,図21,図22に示した如くとなる。
ここで、図20,図21,図22にそれぞれ示した超高密度光ディスク1,DVD2,CD3への各動作は、先に説明した実施例1の変形例で図10,図11,図12を用いて説明した各動作と略同じであるので以下簡略に説明する。
まず、図20に示した如く、超高密度光ディスク1を記録又は再生する場合には、収差補正素子組立体51’内の液晶層54を非動作状態に設定した上で、第1レーザー光L1の平行光を収差補正素子組立体51’内の光透過性基板53’の下面53bに形成した光透過性平坦部53b1及び第3レーザー光用開口制限部53b4と、液晶層54とを順に透過させ、この後、回折格子基板55の上面55aに形成した凹凸状回折格子パターン部55a1で回折させることなくそのまま透過して0次光による平行光を対物レンズ26に入射している。
また、図21に示した如く、DVD2を記録又は再生する場合には、収差補正素子組立体51’内の液晶層54を非動作状態に設定した上で、第2レーザー光L2の平行光を収差補正素子組立体51’内の光透過性基板53’の下面53bに形成した光透過性平坦部53b1及び第3レーザー光用開口制限部53b4と、液晶層54とを順に透過させ、この後、回折格子基板55の上面55aに形成した凹凸状回折格子パターン部55a1で回折させた1次光によって球面収差を補正してこの1次光による拡散光を対物レンズ26に入射している。この際、光透過性基板53’の下面53bに入射させた平行光のうちで回折格子基板55の上面55aの内周領域に形成した凹凸状回折格子パターン部55a1より外側でφ2.64mm以上の外周領域の平行光は凹凸状回折格子パターン部が形成されていない平坦な上面55aの外周領域をそのまま透過させて対物レンズ26に入射させているので、対物レンズ26を通過した外周光はDVD2の信号面2b上でスポット形成に寄与しない。
一方、光透過性基板53’の下面53bに入射させた平行光のうちで回折格子基板55の上面55aの内周領域に形成した凹凸状回折格子パターン部55a1より内側でφ2.64mm以内の内周領域の平行光のみを凹凸状回折格子パターン部55a1で回折させた1次光によって球面収差を補正して対物レンズ26の第1面26aに入射させているので、DVD2の信号面2b上でスポットが形成される。
また、図22に示した如く、CD3を記録又は再生する場合には、収差補正素子組立体51’内の液晶層54を動作状態に設定した上で、第3レーザー光L3の平行光を収差補正素子組立体51’内の光透過性基板53’の下面53bに形成した第3レーザー光用開口制限部53b4で対物レンズ26への開口数が0.45相当になるように開口制限させるも、光透過性基板53’の下面53bに形成した光透過性平坦部53b1を透過させ、この後、回折格子基板55の下面55bに形成した階段状回折格子面(又はブレーズ状回折格子面)55b1により液晶層54の上面で回折機能を働かせて第3レーザー光L3を外側に向かって僅かに回折させ、更に、回折格子基板25の上面25aに形成した凹凸状回折格子パターン部25a1で第2レーザー光L2よりも拡散度を強めて回折させた1次光によって球面収差を補正してこの1次光による拡散光を対物レンズ26に入射させている。
そして、上記した変形例の収差補正素子組立体51’でも第2実施例と略同様な効果が得られる。
尚、以上詳述した実施例2,この実施例2を一部変形した変形例の収差補正素子組立体51,51’では、回折格子基板55の下面55bに形成した階段状回折格子面(又はブレーズ状回折格子面)55b1により液晶層54の上面に回折機能を持たせたが、これに限らず、ここでの図示を省略するものの、回折格子基板55の下面55bを平坦に形成し且つ光透過性基板53,53’の上面53aに階段状回折格子面(又はブレーズ状回折格子面)を形成すれば、液晶層54の下面に回折機能を持たせることができる。この場合にも実施例1で述べたと同様に、光透過性基板53,53’及び回折格子基板55を前記したSILICA(合成石英)よりも屈折率が高い材料を用い、液晶層54の非動作時に液晶層54の屈折率を光透過性基板53,53’及び回折格子基板55の屈折率と略同じ値になるように高く設定し、一方、液晶層54の動作時に液晶層54の屈折率を光透過性基板53,53’及び回折格子基板55の屈折率よりも低い値となるように液晶層54に電圧を印加すれば良いものである。
本発明に係る実施例1の光ピックアップ装置の全体構成を示した図である。 図1に示した実施例1における収差補正素子組立体を説明するための図であり、(a)は上面図,(b)は正面図,(c)は凹凸状回折格子パターン部の凹凸形状図である。 超高密度光ディスク用として無限共役に最適化された対物レンズを用いて、超高密度光ディスク,DVD,CDを記録又は再生する場合を拡大して示した図である。 図2に示した収差補正素子組立体と、図3に示した対物レンズとにより、超高密度光ディスクを記録又は再生する場合を模式的に示した図である。 図2に示した収差補正素子組立体と、図3に示した対物レンズとにより、DVDを記録又は再生する場合を説明するための光線図である。 図2に示した収差補正素子組立体と、図3に示した対物レンズとにより、CDを記録又は再生する場合を説明するための光線図である。 図2に示した収差補正素子組立体と、図3に示した対物レンズとにより、DVD,CDを記録又は再生した時に、DVD,CDに対して対物レンズシフト時の最良像面での波面収差を示した図である。 図2に示した収差補正素子組立体に、波長λ1〜λ3の第1〜第3レーザー光が入射した時の各回折効率と、凹凸状回折格子パターン部中の凹部の深さとの関係を示した図である。 本発明に係る実施例1の光ピックアップ装置において、一部簡素化を図った変形例の収差補正素子組立体を説明するための図であり、(a)は上面図,(b)は正面図,(c)は凹凸状回折格子パターン部の凹凸形状図である。 図9に示した変形例の収差補正素子組立体と、図3に示した対物レンズとにより、超高密度光ディスクを記録又は再生する場合を模式的に示した図である。 図9に示した変形例の収差補正素子組立体と、図3に示した対物レンズとにより、DVDを記録又は再生する場合を説明するための光線図である。 図9に示した変形例の収差補正素子組立体と、図3に示した対物レンズとにより、CDを記録又は再生する場合を説明するための光線図である。 本発明に係る実施例2光ピックアップ装置の全体構成を示した図である。 図13に示した実施例2における収差補正素子組立体を説明するための図であり、(a)は上面図,(b)は正面図,(c)は凹凸状回折格子パターン部の凹凸形状図である。 図14に示した収差補正素子組立体と、図3に示した対物レンズとにより、超高密度光ディスクを記録又は再生する場合を模式的に示した図である。 図14に示した収差補正素子組立体と、図3に示した対物レンズとにより、DVDを記録又は再生する場合を説明するための光線図である。 図14に示した収差補正素子組立体と、図3に示した対物レンズとにより、CDを記録又は再生する場合を説明するための光線図である。 図14に示した収差補正素子組立体と、図3に示した対物レンズとにより、DVD,CDを記録又は再生した時に、DVD,CDに対して対物レンズシフト時の最良像面での波面収差を示した図である。 本発明に係る実施例2の光ピックアップ装置において、一部簡素化を図った変形例の収差補正素子組立体を説明するための図であり、(a)は上面図,(b)は正面図,(c)は凹凸状回折格子パターン部の凹凸形状図である。 図19に示した変形例の収差補正素子組立体と、図3に示した対物レンズとにより、超高密度光ディスクを記録又は再生する場合を模式的に示した図である。 図19に示した変形例の収差補正素子組立体と、図3に示した対物レンズとにより、DVDを記録又は再生する場合を説明するための光線図である。 図19に示した変形例の収差補正素子組立体と、図3に示した対物レンズとにより、CDを記録又は再生する場合を説明するための光線図である。 従来の光ヘッド装置の形態を示した図である。 (a)〜(c)は従来の光ヘッド装置において、3種類の光学系からの出射光を3種類の光ディスクにそれぞれ照射する状態を模式的に示した図である。 従来の光ヘッド装置において、DVD及びCDに対して対物レンズシフト時の波面収差を示した図である。
符号の説明
1…第1光記録媒体(超高密度光ディスク)、
1a…レーザービーム入射面、1b…信号面、
2…第2光記録媒体(DVD)、2a…レーザービーム入射面、2b…信号面、
3…第3光記録媒体(DVD)、3a…レーザービーム入射面、3b…信号面、
5…光ディスク駆動装置、6…スピンドルモータ、7…ターンテーブル、
10A…本発明に係る実施例1の光ピックアップ装置、
10B…本発明に係る実施例2の光ピックアップ装置、
11…第1レーザー光源(青色半導体レーザー)、
12…コリメータレンズ、13…偏光ビームスプリッタ、
14…第1ダイクロイックプリズム、15…位相板、
16…第2ダイクロイックプリズム、17…平面ミラー、20…レンズホルダ、
21…実施例1の収差補正素子組立体、
21’…実施例1の収差補正素子組立体を一部変形させた変形例の収差補正素子組立体、
22…枠体、23,23’…光透過性基板、23a…上面、23b…下面、
23b1…光透過性平坦部、23b2…第3レーザー光用開口制限部、
23b3…第2レーザー光用開口制限部、23b4…第3レーザー光用開口制限部、
24…液晶層、
25…回折格子基板、25a…上面、25a1…凹凸状回折格子パターン部、
25b…下面、25b1…凸レンズ状の球面(又は非球面)、
26…対物レンズ、26a…第1面、26b…第2面、
30…DVD用集積デバイス、
31…第2レーザー光源(赤色半導体レーザー)、
34…コリメータレンズ、
40…CD用集積デバイス、
41…第3レーザー光源(赤外半導体レーザー)、
44…コリメータレンズ、45…位相板、
51…実施例2の収差補正素子組立体、
51’…実施例2の収差補正素子組立体を一部変形させた変形例の収差補正素子組立体、
52…枠体、53,53’…光透過性基板、53a…上面、53b…下面、
53b1…光透過性平坦部、53b2…第3レーザー光用開口制限部、
53b3…第2レーザー光用開口制限部、53b4…第3レーザー光用開口制限部、
54…液晶層、
55…回折格子基板、
55a…上面、55a1…凹凸状回折格子パターン部、55b…下面、
55b1…階段状回折格子面(又はブレーズ状回折格子面)、
d…回折格子基板の凹凸状回折格子パターン部中の凹部の深さ、
L1〜L3…第1〜第3レーザー光、
λ1〜λ3…第1〜第3レーザー光の波長。

Claims (4)

  1. 第1光記録媒体と、前記第1光記録媒体よりも記録密度が低く且つ前記第1光記録媒体よりも基板厚さが厚い第2光記録媒体と、前記第2光記録媒体よりも記録密度が低く且つ前記第2光記録媒体よりも基板厚さが厚い第3光記録媒体と、前記第1〜第3光記録媒体の各信号面を適宜組み合わせて一体的に積層した組み合わせ型光記録媒体とを選択的に記録又は再生する光ピックアップ装置において、
    前記第1光記録媒体に対応して第1レーザー光を出射させる第1レーザー光源と、
    前記第2光記録媒体に対応して前記第1レーザー光よりも波長が長い第2レーザー光を出射させる第2レーザー光源と、
    前記第3光記録媒体に対応して前記第2レーザー光よりも波長が長い第3レーザー光を出射させる第3レーザー光源と、
    第1光記録媒体用として開口数(NA)が0.75以上に設定され、且つ、互いに対向する第1,第2面のうち少なくとも一方の面が非球面に形成されて、前記第1〜第3レーザー光を前記第1〜第3光記録媒体の各信号面に集光させる対物レンズ、
    前記第1〜第3レーザー光源と前記対物レンズとの間に設けられ、前記第1〜第3光記録媒体の各基板厚さの異なりによって発生する球面収差を補正するために、枠体内で光透過性基板と光透過性を有する回折格子基板との間に液晶層を封入した収差補正素子組立体とを備え、
    前記光透過性基板は、前記液晶層が接する上面と前記第1〜第3レーザー光がそれぞれ平行光の状態で選択的に入射する下面とを有し、前記下面中で所定径の内周領域に光透過性平坦部が円形状に形成され、且つ、前記光透過性平坦部に連接した外周領域に前記第3,第2レーザー光に対して前記対物レンズへの開口数をそれぞれ所定値に制限する第3,第2レーザー光用開口制限部が外周に向かって順にリング状に形成され、
    前記回折格子基板は、前記第1〜第3レーザー光が前記対物レンズ側に出射する上面と前記液晶層が接する下面とを有し、前記上面中で前記光透過性基板の前記光透過性平坦部と前記液晶層を介して対向する内周領域に前記第1レーザー光を透過させ且つ前記第2,第3レーザー光を回折させる回折格子パターン部が形成される共にこの回折格子パターン部の外側に平坦面が形成され、
    前記液晶層は、前記回折格子基板の下面(又は前記光透過性基板の上面)に凸レンズ状の球面(又は非球面)を形成することで凹レンズ状の球面(又は非球面)屈折機能が付加されると共に、前記第1,第2光記録媒体に対して非動作状態に設定して前記第1,第2レーザー光をそのまま透過させる一方、前記第3光記録媒体に対して動作状態に設定して前記第3レーザー光を前記凹レンズ状の球面(又は非球面)屈折機能により屈折させることを特徴とする光ピックアップ装置。
  2. 第1光記録媒体と、前記第1光記録媒体よりも記録密度が低く且つ前記第1光記録媒体よりも基板厚さが厚い第2光記録媒体と、前記第2光記録媒体よりも記録密度が低く且つ前記第2光記録媒体よりも基板厚さが厚い第3光記録媒体と、前記第1〜第3光記録媒体の各信号面を適宜組み合わせて一体的に積層した組み合わせ型光記録媒体とを選択的に記録又は再生する光ピックアップ装置において、
    前記第1光記録媒体に対応して第1レーザー光を出射させる第1レーザー光源と、
    前記第2光記録媒体に対応して前記第1レーザー光よりも波長が長い第2レーザー光を出射させる第2レーザー光源と、
    前記第3光記録媒体に対応して前記第2レーザー光よりも波長が長い第3レーザー光を出射させる第3レーザー光源と、
    第1光記録媒体用として開口数(NA)が0.75以上に設定され、且つ、互いに対向する第1,第2面のうち少なくとも一方の面が非球面に形成されて、前記第1〜第3レーザー光を前記第1〜第3光記録媒体の各信号面に集光させる対物レンズ、
    前記第1〜第3レーザー光源と前記対物レンズとの間に設けられ、前記第1〜第3光記録媒体の各基板厚さの異なりによって発生する球面収差を補正するために、枠体内で光透過性基板と光透過性を有する回折格子基板との間に液晶層を封入した収差補正素子組立体とを備え、
    前記光透過性基板は、前記液晶層が接する上面と前記第1〜第3レーザー光がそれぞれ平行光の状態で選択的に入射する下面とを有し、前記下面中で所定径の内周領域に光透過性平坦部が円形状に形成され、且つ、前記光透過性平坦部に連接した外周領域に前記第3レーザー光に対して前記対物レンズへの開口数を所定値に制限する第3レーザー光用開口制限部が外周に向かってリング状に形成され、
    前記回折格子基板は、前記第1〜第3レーザー光が前記対物レンズ側に出射する上面と前記液晶層が接する下面とを有し、前記上面中で前記光透過性基板の前記光透過性平坦部と前記液晶層を介して対向する内周領域に前記第1レーザー光を透過させ且つ前記第2,第3レーザー光を回折させる回折格子パターン部が形成される共にこの回折格子パターン部の外側に平坦面が形成され、
    前記液晶層は、前記回折格子基板の下面(又は前記光透過性基板の上面)に凸レンズ状の球面(又は非球面)を形成することで凹レンズ状の球面(又は非球面)屈折機能が付加されると共に、前記第1,第2光記録媒体に対して非動作状態に設定して前記第1,第2レーザー光をそのまま透過させる一方、前記第3光記録媒体に対して動作状態に設定して前記第3レーザー光を前記凹レンズ状の球面(又は非球面)屈折機能により屈折させることを特徴とする光ピックアップ装置。
  3. 第1光記録媒体と、前記第1光記録媒体よりも記録密度が低く且つ前記第1光記録媒体よりも基板厚さが厚い第2光記録媒体と、前記第2光記録媒体よりも記録密度が低く且つ前記第2光記録媒体よりも基板厚さが厚い第3光記録媒体と、前記第1〜第3光記録媒体の各信号面を適宜組み合わせて一体的に積層した組み合わせ型光記録媒体とを選択的に記録又は再生する光ピックアップ装置において、
    前記第1光記録媒体に対応して第1レーザー光を出射させる第1レーザー光源と、
    前記第2光記録媒体に対応して前記第1レーザー光よりも波長が長い第2レーザー光を出射させる第2レーザー光源と、
    前記第3光記録媒体に対応して前記第2レーザー光よりも波長が長い第3レーザー光を出射させる第3レーザー光源と、
    第1光記録媒体用として開口数(NA)が0.75以上に設定され、且つ、互いに対向する第1,第2面のうち少なくとも一方の面が非球面に形成されて、前記第1〜第3レーザー光を前記第1〜第3光記録媒体の各信号面に集光させる対物レンズ、
    前記第1〜第3レーザー光源と前記対物レンズとの間に設けられ、前記第1〜第3光記録媒体の各基板厚さの異なりによって発生する球面収差を補正するために、枠体内で光透過性基板と光透過性を有する回折格子基板との間に液晶層を封入した収差補正素子組立体とを備え、
    前記光透過性基板は、前記液晶層が接する上面と前記第1〜第3レーザー光がそれぞれ平行光の状態で選択的に入射する下面とを有し、前記下面中で所定径の内周領域に光透過性平坦部が円形状に形成され、且つ、前記光透過性平坦部に連接した外周領域に前記第3,第2レーザー光に対して前記対物レンズへの開口数をそれぞれ所定値に制限する第3,第2レーザー光用開口制限部が外周に向かって順にリング状に形成され、
    前記回折格子基板は、前記第1〜第3レーザー光が前記対物レンズ側に出射する上面と前記液晶層が接する下面とを有し、前記上面中で前記光透過性基板の前記光透過性平坦部と前記液晶層を介して対向する内周領域に前記第1レーザー光を透過させ且つ前記第2,第3レーザー光を回折させる回折格子パターン部が形成される共にこの回折格子パターン部の外側に平坦面が形成され、
    前記液晶層は、前記回折格子基板の下面(又は前記光透過性基板の上面)に階段状回折格子面(又はブレーズ状回折格子面)を形成することで回折機能が付加されると共に、前記第1,第2光記録媒体に対して非動作状態に設定して前記第1,第2レーザー光をそのまま透過させる一方、前記第3光記録媒体に対して動作状態に設定して前記第3レーザー光を前記回折機能により回折させることを特徴とする光ピックアップ装置。
  4. 第1光記録媒体と、前記第1光記録媒体よりも記録密度が低く且つ前記第1光記録媒体よりも基板厚さが厚い第2光記録媒体と、前記第2光記録媒体よりも記録密度が低く且つ前記第2光記録媒体よりも基板厚さが厚い第3光記録媒体と、前記第1〜第3光記録媒体の各信号面を適宜組み合わせて一体的に積層した組み合わせ型光記録媒体とを選択的に記録又は再生する光ピックアップ装置において、
    前記第1光記録媒体に対応して第1レーザー光を出射させる第1レーザー光源と、
    前記第2光記録媒体に対応して前記第1レーザー光よりも波長が長い第2レーザー光を出射させる第2レーザー光源と、
    前記第3光記録媒体に対応して前記第2レーザー光よりも波長が長い第3レーザー光を出射させる第3レーザー光源と、
    第1光記録媒体用として開口数(NA)が0.75以上に設定され、且つ、互いに対向する第1,第2面のうち少なくとも一方の面が非球面に形成されて、前記第1〜第3レーザー光を前記第1〜第3光記録媒体の各信号面に集光させる対物レンズ、
    前記第1〜第3レーザー光源と前記対物レンズとの間に設けられ、前記第1〜第3光記録媒体の各基板厚さの異なりによって発生する球面収差を補正するために、枠体内で光透過性基板と光透過性を有する回折格子基板との間に液晶層を封入した収差補正素子組立体とを備え、
    前記光透過性基板は、前記液晶層が接する上面と前記第1〜第3レーザー光がそれぞれ平行光の状態で選択的に入射する下面とを有し、前記下面中で所定径の内周領域に光透過性平坦部が円形状に形成され、且つ、前記光透過性平坦部に連接した外周領域に前記第3レーザー光に対して前記対物レンズへの開口数を所定値に制限する第3レーザー光用開口制限部が外周に向かってリング状に形成され、
    前記回折格子基板は、前記第1〜第3レーザー光が前記対物レンズ側に出射する上面と前記液晶層が接する下面とを有し、前記上面中で前記光透過性基板の前記光透過性平坦部と前記液晶層を介して対向する内周領域に前記第1レーザー光を透過させ且つ前記第2,第3レーザー光を回折させる回折格子パターン部が形成される共にこの回折格子パターン部の外側に平坦面が形成され
    前記液晶層は、前記回折格子基板の下面(又は前記光透過性基板の上面)に階段状回折格子面(又はブレーズ状回折格子面)を形成することで回折機能が付加されると共に、前記第1,第2光記録媒体に対して非動作状態に設定して前記第1,第2レーザー光をそのまま透過させる一方、前記第3光記録媒体に対して動作状態に設定して前記第3レーザー光を前記回折機能により回折させることを特徴とする光ピックアップ装置。
JP2003314583A 2003-09-05 2003-09-05 光ピックアップ装置 Pending JP2005085340A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003314583A JP2005085340A (ja) 2003-09-05 2003-09-05 光ピックアップ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003314583A JP2005085340A (ja) 2003-09-05 2003-09-05 光ピックアップ装置

Publications (1)

Publication Number Publication Date
JP2005085340A true JP2005085340A (ja) 2005-03-31

Family

ID=34415132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003314583A Pending JP2005085340A (ja) 2003-09-05 2003-09-05 光ピックアップ装置

Country Status (1)

Country Link
JP (1) JP2005085340A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115262A1 (ja) * 2005-04-21 2006-11-02 Kabushiki Kaisha Kenwood 光ピックアップ装置
JP2007294029A (ja) * 2006-04-26 2007-11-08 Ricoh Co Ltd 光ピックアップおよび光情報処理装置
US7990832B2 (en) 2004-04-28 2011-08-02 Sony Corporation Optical pickup including plural light sources and recording and/or reproducing apparatus for an optical recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7990832B2 (en) 2004-04-28 2011-08-02 Sony Corporation Optical pickup including plural light sources and recording and/or reproducing apparatus for an optical recording medium
WO2006115262A1 (ja) * 2005-04-21 2006-11-02 Kabushiki Kaisha Kenwood 光ピックアップ装置
JP2006302433A (ja) * 2005-04-21 2006-11-02 Kenwood Corp 光ピックアップ装置
US7738342B2 (en) 2005-04-21 2010-06-15 Kabushiki Kaisha Kenwood Optical pickup device
JP4645894B2 (ja) * 2005-04-21 2011-03-09 株式会社ケンウッド 光ピックアップ装置
JP2007294029A (ja) * 2006-04-26 2007-11-08 Ricoh Co Ltd 光ピックアップおよび光情報処理装置

Similar Documents

Publication Publication Date Title
JP4300914B2 (ja) 光ピックアップ装置及び光学素子
JP2006073076A (ja) 光記録媒体用対物光学系およびこれを用いた光ピックアップ装置
JP2004030724A (ja) 光ピックアップ装置
JPWO2005098840A1 (ja) 多焦点対物レンズ、光ピックアップ装置及び光情報記録再生装置
TW200532679A (en) Optical pickup apparatus and diffractive optical element for optical pickup apparatus
JP4254469B2 (ja) 光ピックアップ装置及び光記録媒体駆動装置
US7206275B2 (en) Optical pickup device
JP4846975B2 (ja) 光学素子、対物光学系および光ピックアップ装置
JPWO2007058348A1 (ja) 光ピックアップ、光ディスク装置、コンピュータ及び光ディスクレコーダ
WO2006115081A1 (ja) 光ピックアップ装置用対物光学素子、光ピックアップ装置用光学素子、光ピックアップ装置用対物光学素子ユニット及び光ピックアップ装置
JP2006216142A (ja) 光ピックアップ装置
JP4339182B2 (ja) 光ピックアップとこれを用いた光情報処理装置
JP4196818B2 (ja) 光ピックアップ装置
JP2005322301A (ja) 波長選択素子、対物光学系、光ピックアップ装置、及び光ディスクのドライブ装置
JP2004111012A (ja) 光ピックアップ及びこれを用いる光情報処理装置
JP2005085340A (ja) 光ピックアップ装置
JP2005011466A (ja) 光ピックアップ装置
JP4252806B2 (ja) 光ピックアップ及びこれを用いる光情報処理装置
JP2005166173A (ja) 光ピックアップ装置及び光情報記録再生装置
JP2008276823A (ja) 光ピックアップおよび光情報処理装置
JP4294460B2 (ja) 対物レンズ,光ピックアップ装置及び光ディスク装置
JP4254640B2 (ja) 光ピックアップ装置
JP2006107686A (ja) 光記録媒体用対物光学系、光ピックアップ光学系およびこれを用いた光ピックアップ装置
JP4179148B2 (ja) 光ピックアップ装置
JP2005293777A (ja) 光ピックアップ装置