200532679 (1) 九、發明說明 【發明所屬之技術領域】 本發明係相關於一種光學拾取裝置以及繞 【先前技術】 近年來,在光學拾取裝置中,使用在用爲 光碟上之資訊以及用爲記錄在光碟上之資訊之 光之波長被做得越來越短,且例如實際使用每 爲40 5 nm之雷射光源(像是紫外光半導體雷射 SHG雷射),其藉由使用第二調波產生而執行 體雷射之波長轉換。 假如此些紫外光源被使用,當使用具有相同 (numerical aperture) ( ΝΑ)之物鏡於 DVD ( 能碟片)時,其可記錄15至20GB之資訊於直名 光碟,而當物鏡之NA增加至0.85時,其可記 之資訊於直徑12cm之光碟。此後在本說明書中 外光雷射光源之光碟以及磁性光碟一般係稱爲” 碟,,。 同時,對於光碟播放器以及記錄器之產品, 度光碟之記錄與再生資訊之容量並不足。當考虜 面上之各種資訊被記錄其上之DVD以及CD ( ff ,對於高密度光碟本身之執行記錄與再生資訊5 足,且儘管對於使用者所擁有之DVD與CD以利 光學元件 生記錄在 源之雷射 具有波長 及紫外光 外光半導 數値孔徑 數位多功 1 2 cm 之 23 -25 GB ,採用紫 高密度光 此種高密 在現在市 簡碟片) 能力並不 同方式而 200532679 4 (2) 執行記錄與再生資訊之其他能力將造成光碟播放器以及記 錄器之商業價値之提升。因此,需要使與高密度碟片之光 碟播放器與記錄器結合之光碟拾取裝置具有可適當執行資 訊之紀錄與再生之能力,同時保持對於任一高密度光碟, DVD與CD之相同性。 因爲用於記錄與再生資訊所必須之數値孔徑係對於每 個光碟而建立,因此必須提供一孔徑調整機構以得到所要 | 的數値孔徑,以相容於光學拾取裝置。 關於該孔徑調整機構,例如已知一種藉由一隔板( diaphragm )以機械擋住光射線之方法,一使用具有波長 對於光射線之透射率而有選擇性之方法,根據液晶而使用 一相態控制元件之方法以及結合上述之方法。(例如請參 考以下之專利文件1 ) 專利文件1係揭示一種光學拾取裝置,其係與一光學 元件而分離提供,其中立體照相係形成於以於光軸具有中 φ 心之形式之區域(中心區域),以及一繞射光柵形成於中 心區之圓周(周邊區域)上並具有折射式之物鏡。 在此裝置中,係透射用於DVD之波長63 5 nm之光通 量,而在中心區繞射波長爲7 8 0nm波長之光通量而用於 CD,而具有波長 63 5nm之光通量被發送而具有波長 7 8 Onm之光通量經由在周邊區域之繞射而被實質攔截。藉 由使波長爲63 5nm之光通量整體進入物鏡,以及藉由使具 有波長7 80nm之光通量以只使光通量經由中央區而傳送爲 被繞射發散而進入物鏡(如上述),記錄與再生資訊可藉 -5- 200532679 、 (3) 由包括DVD與CD之兩種物鏡而執行。 (專利文件) 國際公告第9 8 / 1 9 3 0 3小冊 然而,在專利文件1所揭示之裝置係爲在兩類光通量 之每個具有不同之波長,其一光通量係藉由立體照相光學 元件而繞射,而另一光通量係被傳送並經由物鏡而在光碟 上收斂。 p 因此,爲了使包括高密度光碟,DVD與CD之三種類 型之相容,使用於記錄與再生CD之光通量之波長(接近 7 8 Onm )係約爲兩倍於用於記錄與再生高密度光碟之光通 量之波長(接近40 Onm),因此其很難設計一種繞射結構 ,其可對於高密度光碟之光通量以及CD之光通量兩者之 最佳化繞射動作,而造成問題。由於必須解決上述問題, 因此困難使用在上述專利文件中之技術,因爲其係爲實現 對於三種類型之光碟之相容性。 φ 進一步,儘管當使用分光濾波器,其係困難形成一可 對於每個爲不同波長之三種類型光通量而適當調整孔之薄 膜,且其成本提高,而造成問題。 【發明內容】 在考慮上述問題,本發明之目的在提供一種光學拾取 裝置,具有一可對於包括使用紫外光雷射光源之高密度光 碟,DVD與CD等三種類型碟片而適當調整孔之光學元件 -6 - 200532679 (4) 爲了解決上述問題,關於本發明之光學拾取裝置係具 有將一繞射光學元件設置在第一至第三光通量之一般光學 路徑上,繞射光學元件之光學表面係分爲第一至第三區域 ,而第二與第三區域係個別設置有第一繞射結構以及第二 繞射結構。每個通過第一區域之第一至第三光通量形成一 收斂點於每個上述光碟之資訊記錄表面上,爲通過第二區 域之第一光源以及第二光源亦個別形成收斂點,而爲通過 g 第二區域之第三光通量不形成收斂點,因此爲通過第三區 域之第一光通量以及第二光通量之任一者形成一收斂點, 而通過第三區域之其他光通量以及第三光通量不形成一收 斂點。 在本說明書中,使用紫外光半導體雷射以及紫外光 SHG雷射而作爲記錄與再生資訊之光碟一般係稱爲”高密 度光碟”,其亦包括一採用保護層之厚度約爲0.6mm並以 具有NA爲0.65至0.67之物鏡系統而記錄與再生資訊之 φ 標準之光碟(例如,HD DVD ’此後稱爲HD ),以及採用 保護層之厚度爲約0.1mm而以具有NA爲0.85之物鏡系 統而紀錄與再生資訊之標準之光碟(例如藍光碟片,此後 稱爲BD )。進一步,除了具有該種保護層於其資訊紀錄 表面之光碟,亦包括在其資訊記錄表示具有數十微米厚度 之保護層之光碟以及保護層或保護膜之厚度爲零之光碟。 在本說明書中,該包密度光碟亦包括一使用紫外光半導體 雷射以及紫外光SHG雷射作爲光源以記錄與再生資訊之 磁性光碟。 v 200532679 (5) 在本說明書中,DVD係爲DVD系列之光碟之通稱, 像是 DVD-ROM, DVD-Video, DVD-Audio, DVD-RAM, DVD-R,DVD-RW,DVD + R 以及 DVD+RW,而 CD 係爲 CD系列之光碟之通稱,像是 CD-ROM,CD-Audio, CD-Video,CD-R 以及 CD-RW。 進一步,在本說明書中,”目標光學系統”係指一光 學系統,其設置在面相位於光學拾取裝置中之光碟之位置 | ’並包括至少一光收斂元件,其具有將每個射出自光源之 光通量收斂之功能以及具有在每個具有不同紀錄密度之光 碟之每個資訊記錄表面上具有不同之波長。該目標光學系 統亦可只由光收斂元件所構成。 進一步,當有光學元件藉由將上述光學收斂元件與傳 送裝置(actuator )結合而追蹤與聚焦時,包括光學元件 與光轉換元件之光學元件係爲目標光學系統。 【實施方式】 以下參考附圖而說明本發明之實施例。 根據本發明之光學拾取裝置係包含一射出波長爲λ 1 之第一光通量之第一光源,以射出波長爲λ2之第二光通 量之第二光源(λ2> λΐ),以射出具有波長爲λ3之第 三光通量之第三光源(λ3> λ2)以及一具有用以收斂第 一光通量,第二光通量以及第三光通量於具有保護基底厚 度ti之第一光碟之資訊記錄表面之光收斂元件之目標光 學系統,具有保護基底厚度t2 ( t2 - tl )之第二光碟之資 200532679 (6) 訊記錄表面以及保護基底厚度t3 ( t3 > t2 )之第三光碟之 資訊記錄表面。一繞射光學元件係設置在光學拾取裝置中 ,該繞射光學元件係設置在第一至第三光通量之共同光學 路徑,而該繞射光學元件之光學表面包括一第一區域其係 爲同心圓之形式而其中心在光軸處並包括該光軸,一第二 區域係爲同心圓形式具有其中心在光軸且係形成在該第一 區域之外側並具有一第一繞射結構,以及一第三區域係爲 p 同心圓形式具有其中心在光軸並形成在該第一區域之外側 並具有一第二繞射結構。之後,該通過第一區域以及光收 斂元件之第一至第三光通量分別在上述光碟之資訊記錄表 面形成收斂點,該通過第二區域與光收斂元件之第一至第 二光通量分別在上述光碟之資訊記錄表面形成收斂點,該 通過第二區域以及光收斂元件之第三光通量在上述光碟之 資訊記錄表面形成收斂點且該光收斂元件不形成收斂點於 第三光碟之資訊記錄表面上,而通過第三區域以及光收斂 φ 元件之第一光通量與第二光通量中之一形成一收斂點於上 述光碟之資訊記錄表面,而另一光通量以及第三光通量係 通過第三區域以及光收斂元件而不形成收斂點於上述光碟 之資訊記錄表面上。 最好係該繞射結構係藉由光學元件而形成。進一步, 最好該第二與第三區域係形成在光學元件的一光學表面, 或是該第二區域係形成在光學元件的一光學表面上,以及 第三區域係形成在光學元件之對向光學表面上。 因爲第二與第三區域係形成在上述光學元件之上,其 -9- 200532679 (7) 相較於形成第二與第三區域於數個光學元件,係可節省組 裝以及對準之時間以及精力。 進一步,其最好係該第一繞射結構具有一繞射動作於 通過第二區域之第三光通量,以及該第二繞射結構提供〜 繞射動作於通過第三區域之另外的第一光通量與第二光通 量。 因此,其可藉由繞射動作而實施孔徑調整。 使用繞射而製造光斑(flare ),其可某種程度自由於 光斑光之形狀並減少在光學資訊記錄表面上光斑光反射所 造成之雜訊。 其可藉由在第二區域形成第一繞射結構,藉由提供一 第二繞射結構於第三區域,以及藉由對於通過第一與第二 繞射結構之第三光通量給予繞射動作而得到不造成在如上 述於第三光碟之資訊記錄表面上造成光點形式之光斑構件 而使光碟拾取裝置具有關於第三光通量之孔徑調節。 進一步’其可使該光學拾取裝置藉由對於通過第二繞 射結構之第二光通量給予繞射動作而使關於第二光通量具 有孔徑調整功能’而得到不造成在第二光碟之資訊記錄表 面上形成光點之光斑部分。 因此,在具有對於三種光碟相容之光學拾取裝置中, 其不需要使用分光器或是液晶相態控制元件,例如且其可 減低光學拾取裝置之製造成本。 最好該第一繞射結構係以同心圓之形式之環狀區而構 成,每個而有由步階部分所形成之階梯結構(步階結構) -10- 200532679 (8) 以及有預設量之非連續部分’且其經設置實質對於 二區域之第一與第二光通量爲無相位差,且該第二 構係由同心圓形式之環狀區而形成,每個其中心係 上,其內具有由步階部分所形成之階梯結構(步階 以及預設量之非連續部分’且經建立爲對於實質於 三區域之其他光通量爲不具有相位差。 在此結構下可提供對於任意波長之光通量之繞200532679 (1) IX. Description of the invention [Technical field to which the invention belongs] The present invention relates to an optical pick-up device and its winding [prior art] In recent years, in optical pick-up devices, the information used on optical discs and the The wavelength of the light of the information recorded on the optical disc is made shorter and shorter, and, for example, a laser light source (such as an ultraviolet semiconductor laser SHG laser) every 40 5 nm is actually used. Modulation is generated to perform wavelength conversion of body laser. If these UV light sources are used, when an objective lens with the same (numerical aperture) (NA) is used on a DVD (energy disc), it can record 15 to 20 GB of information on a direct-named disc, and when the NA of the objective lens is increased to At 0.85, its memorable information is on a disc with a diameter of 12cm. Hereinafter in this manual, the optical discs and magnetic discs of external light laser light sources are generally referred to as “discs.” At the same time, for disc player and recorder products, the capacity of recording and reproducing information on the disc is not sufficient. All kinds of information are recorded on the DVD and CD (ff), which is sufficient for the high-density optical disc itself to perform recording and reproduction information, and although the DVDs and CDs owned by users are used to facilitate the optical components to be recorded at the source The laser has a wavelength and an external light semi-derivative, an aperture, a digital multifunction of 12 cm, 23 -25 GB, and uses purple high-density light, which is a high-density compact disc in the market today. The ability is different and 200532679 4 (2) Other capabilities to perform recording and reproduction of information will increase the commercial price of optical disc players and recorders. Therefore, it is necessary to make a disc pickup device combined with a high-density disc player and recorder have a record that can properly perform information And the ability to reproduce, while maintaining the same for any high-density optical disc, DVD and CD. Because it is necessary for recording and reproducing information The numerical aperture is established for each optical disc, so it is necessary to provide an aperture adjustment mechanism to obtain the desired numerical aperture to be compatible with the optical pickup device. Regarding this aperture adjustment mechanism, for example, a method of The method of using a diaphragm to mechanically block light rays, a method using wavelengths that are selective for the transmittance of light rays, a method of using a phase control element based on liquid crystal, and a method combining the above. (For example, please refer to The following Patent Document 1) Patent Document 1 discloses an optical pickup device provided separately from an optical element, in which a stereo camera is formed in a region (center region) having a center φ center on an optical axis, and A diffraction grating is formed on the circumference (peripheral area) of the central area and has a refractive objective lens. In this device, a light flux of 63 5 nm for DVD is transmitted, and the diffraction wavelength is 7 8 in the central area. A light flux with a wavelength of 0 nm is used for CD, while a light flux with a wavelength of 63 5 nm is transmitted and a light flux with a wavelength of 7 8 Onm passes through the peripheral area. The diffraction is substantially intercepted. By allowing a luminous flux with a wavelength of 63 5nm to enter the objective lens as a whole, and by passing a luminous flux with a wavelength of 7 80nm so that only the luminous flux is transmitted through the central region to be diffused and diverged into the objective lens (such as (Above), recording and reproduction of information can be performed by -5- 200532679, (3) two kinds of objective lenses including DVD and CD. (Patent Document) International Publication No. 9 8/1 9 3 0 3 The device disclosed in Document 1 has different wavelengths in each of the two types of light fluxes, one of which is diffracted by a stereo photographic optical element, and the other of which is transmitted and converged on an optical disc via an objective lens. p Therefore, in order to make the three types including high-density optical discs, DVDs, and CDs compatible, the wavelength of the luminous flux used to record and reproduce CDs (close to 7 8 Onm) is approximately twice that of high-density for recording and reproduction. The wavelength of the luminous flux of the optical disc (close to 40 Onm), so it is difficult to design a diffraction structure, which can optimize the diffraction action for both the luminous flux of the high-density optical disc and the luminous flux of the CD, causing problems. Since the above-mentioned problems must be solved, it is difficult to use the technology in the above-mentioned patent document because it is to achieve compatibility for the three types of optical discs. φ Further, although a spectroscopic filter is used, it is difficult to form a thin film that can appropriately adjust the holes for each of three types of light fluxes of different wavelengths, and its cost increases, causing problems. [Summary of the Invention] In consideration of the above problems, an object of the present invention is to provide an optical pickup device having a hole that can be appropriately adjusted for three types of discs including a high-density optical disc using a UV laser light source, a DVD, and a CD. Optical Element-6-200532679 (4) In order to solve the above problems, the optical pickup device of the present invention has a diffractive optical element disposed on a general optical path of first to third light fluxes, and an optical surface of the diffractive optical element The system is divided into first to third regions, and the second and third regions are respectively provided with a first diffraction structure and a second diffraction structure. Each of the first to third luminous fluxes passing through the first area forms a convergence point on the information recording surface of each of the above-mentioned optical discs. The first light source and the second light source passing through the second area also individually form a convergence point. g The third luminous flux in the second region does not form a convergence point, so a convergence point is formed to pass through either the first luminous flux and the second luminous flux in the third region, while the other luminous fluxes and the third luminous flux that pass through the third region do not form A convergence point. In this specification, optical discs that use ultraviolet semiconductor lasers and ultraviolet SHG lasers for recording and reproducing information are generally referred to as "high-density optical discs." They also include a protective layer with a thickness of about 0.6 mm and a A φ-standard optical disc having an objective lens system with NA of 0.65 to 0.67 for recording and reproduction of information (for example, HD DVD 'hereinafter referred to as HD), and an objective lens system having a protective layer thickness of about 0.1 mm and an NA of 0.85 A standard optical disc for recording and reproducing information (such as a Blu-ray disc, hereinafter referred to as BD). Further, in addition to the optical disc having such a protective layer on the information recording surface thereof, it also includes an optical disc whose information record indicates a protective layer having a thickness of several tens of micrometers and an optical disc having a protective layer or a protective film having a thickness of zero. In this specification, the package density optical disc also includes a magnetic optical disc using ultraviolet semiconductor laser and ultraviolet SHG laser as light sources to record and reproduce information. v 200532679 (5) In this manual, DVD is the general name of the DVD series, such as DVD-ROM, DVD-Video, DVD-Audio, DVD-RAM, DVD-R, DVD-RW, DVD + R and DVD + RW, and CD is the general name of CD series CDs, such as CD-ROM, CD-Audio, CD-Video, CD-R and CD-RW. Further, in the present specification, the "target optical system" refers to an optical system that is disposed at a position of a disc in a surface pickup position in an optical pickup device | 'and includes at least one light converging element having The function of light flux convergence and having a different wavelength on each information recording surface of each optical disc with a different recording density. The target optical system may be composed of only a light converging element. Further, when there is an optical element for tracking and focusing by combining the above-mentioned optical convergence element and a transmitter, the optical element including the optical element and the light conversion element is the target optical system. [Embodiment] An embodiment of the present invention will be described below with reference to the drawings. The optical pickup device according to the present invention includes a first light source emitting a first light flux with a wavelength of λ 1, a second light source emitting a second light flux with a wavelength λ 2 (λ 2 > λΐ), and a light source having a wavelength of λ 3 Third light source with a third light flux (λ3 > λ2) and a target optical having a light converging element for converging the first light flux, the second light flux, and the third light flux on the information recording surface of the first optical disc having a protective substrate thickness ti The system has a data recording surface for protecting a second optical disc with a substrate thickness t2 (t2-tl) 200532679 (6) and an information recording surface for a third optical disc with a protective substrate thickness t3 (t3 > t2). A diffractive optical element is disposed in the optical pickup device, the diffractive optical element is disposed on a common optical path of the first to third light fluxes, and the optical surface of the diffractive optical element includes a first region which is concentric In the form of a circle with its center at the optical axis and including the optical axis, a second region is a concentric circle with its center at the optical axis and is formed outside the first region and has a first diffraction structure, And a third region is a p-concentric circular type having a center on the optical axis and formed on the outer side of the first region and has a second diffraction structure. Thereafter, the first to third light fluxes passing through the first region and the light converging element form convergence points on the information recording surface of the optical disc, and the first to second light fluxes passing through the second region and the light converging element are respectively on the optical disc. The information recording surface forms a convergence point, the third light flux passing through the second region and the light convergence element forms a convergence point on the information recording surface of the optical disc and the light convergence element does not form a convergence point on the information recording surface of the third optical disc, One of the first luminous flux and the second luminous flux passing through the third region and the light converging φ element forms a convergence point on the information recording surface of the optical disc, and the other luminous flux and the third luminous flux pass through the third region and the light converging element. No convergence point is formed on the information recording surface of the optical disc. Preferably, the diffractive structure is formed by an optical element. Further, preferably, the second and third regions are formed on an optical surface of the optical element, or the second region is formed on an optical surface of the optical element, and the third region is formed on the opposite side of the optical element. Optical surface. Since the second and third regions are formed on the above-mentioned optical element, compared with the formation of the second and third regions on several optical elements, the time of assembly and alignment can be saved and energy. Further, it is preferable that the first diffractive structure has a third luminous flux diffracting to pass through the second region, and the second diffractive structure provides ~ a diffractive action to another first luminous flux passing through the third region. With the second luminous flux. Therefore, it can adjust the aperture by the diffraction action. The use of diffraction to create a flare is somewhat free of the shape of the flare and reduces the noise caused by the flare light reflection on the optical information recording surface. It can form a first diffraction structure in the second region, provide a second diffraction structure in the third region, and give a diffraction action to the third light flux passing through the first and second diffraction structures. As a result, a light spot member in the form of a light spot is not caused on the information recording surface of the third optical disc as described above, so that the optical disc pickup device has an aperture adjustment regarding the third light flux. Further, 'it enables the optical pickup device to have an aperture adjustment function with respect to the second light flux by giving a diffraction action to the second light flux passing through the second diffraction structure' so as not to cause an information recording surface on the second optical disc. Spots that form spots. Therefore, in an optical pickup device having compatibility with three types of optical discs, it does not need to use a beam splitter or a liquid crystal phase control element, for example, and it can reduce the manufacturing cost of the optical pickup device. Preferably, the first diffraction structure is constituted by an annular region in the form of a concentric circle, and each has a step structure (step structure) formed by a step portion -10- 200532679 (8) and has a preset Non-continuous part of the quantity 'and it is set to have substantially no phase difference for the first and second luminous fluxes of the two regions, and the second structure is formed by a concentric circular ring-shaped region, each with its center system, It has a step structure formed by step parts (steps and non-continuous parts of a preset amount ') and is established to have no phase difference for other luminous fluxes substantially in the three regions. Under this structure, it can provide for any Luminous flux of wavelength
I 最好滿足以下,其中η 1表示波長λ 1之繞射光 之繞射係數,d 1表示在第一繞射結構中在光軸方向 部分的深度,Μ 1 (整數)表示非連續部分之數目, 數)表示在第二繞射結構中之光軸方向之步階部分 ,而其中d =入l/(nl - 1 )。 4.8 X d^dl^5.2 x d? 2^M1^4 1.9 x d$d2S2.1 x d,4SM2S6 φ 滿足上述表示式將實現對於第一與第二光通量 質多數個整數之光學路徑差異,因此不會造成相位 無繞射產生,而相位差只對於第三光通量,而得繞 (在第一繞射結構)。另一方面,在第二繞射結構 予第一與第三光通量一實質多數之整數之光學路經 因爲無相位差異而不執行繞射,因此只對於第二光 相位差異而執行繞射動作。同時,當對於繞射光學 個別不同光學表面上形成第一繞射結構以及第二繞 將使此效果特別顯著。 通過第 繞射結 在光軸 形狀) 通過第 射動作 學元件 之步階 d2 (整 之深度 得到實 差異而 射動作 中,給 差異, 通量有 元件之 射結構 -11 - 200532679 (9) 最好該光學拾取裝置滿足以下表示式。 4.8 X d^dl^5.2 x d, 2^M1^4 0.9xdgd2$l.lxd,M2=2 滿足上述表示式將使得對於第一與第二光通量而給與 實質多數個整數的光學路徑差異,因此不造成相位差異而 無繞射產生,而只對於第三光通量給與相位差異,而執行 繞射動作(在第一繞射結構)。在第二繞射結構,另一方 p 面,係對於第一光通量而給與實質多數整數之光學路徑差 異,而因爲不造成相位差異而不執行繞射,因此對於第二 與第三光通量而給與相位差而執行繞射動作。同時,當第 一繞射結構與第二繞射結構個別形成在繞射光學元件之相 同光學表面上時將使效果特別顯著。 本發明之另一觀點爲包含一射出波長爲λΐ之第一光 通量之第一光源,射出波長爲λ2之第二光通量之第二光 源(λ2> λΐ),一射出波長λ3之第三光通量之第三光 φ 源(λ 3 > λ 2 ),以及一用以將分別在具有保護基底厚度 tl之第一光碟之資訊記錄表面、具有保護基底厚度t2 ( t2 -tl)之第二光碟之資訊記錄表面以及具有保護基底厚度 t3 ( t3>t2 )之第三光碟之資訊記錄表面上之第一光通量、 第二光通量以及第三光通量予以收斂之光收斂元件之物鏡 光學系統。一繞射光學元件係設置在光學拾取裝置,該繞 射光學元件係建構在第一至第三光通量之共同光學路徑上 ,而該繞射光學元件之光學表面包括一以同心圓形式而具 有中心在一光軸並包括該光軸且係具有一第一繞射結構的 -12- 200532679 (10) 一第一區域,一以同心圓之形式具有其中心在光軸上而形 成在該第一區域之外側並具有一第二繞射結構的一第二區 域’以及一问心圓形式具有其中心在光軸上而形成在該弟 一區域之外側的一第三區域。之後,該通過第一區域以及 光收斂元件之第一至第三光通量個別在預設光碟之資訊記 錄表面是形成經收斂之光點,通過第二區域以及光收斂元 件之第一與第二光通量個別在預設光碟之資訊記錄表面上 P 形成經收斂之光點,以及通過第二區域以及光收斂元件之 第三光通量不在第三光通量之資訊記錄表面上形成經收斂 之光點,而通過第三區域以及光收斂元件之第一光通量以 及第二光通量中任一個係在預設光碟之資訊記錄表面上形 成經收斂之光點,而通過第三區域與光收斂元件之其他光 通量與第三光通量不在預設光碟之資訊記錄表面上形成經 收斂之光點。 在上述結構中,其可使該光學拾取裝置具有關於第三 Φ 光通量之孔徑調節功能,因爲第一繞射結構係形成在第一 區域,第二繞射結構係位於第二區域,而通過第一與第二 繞射結構之第三光通量係爲光斑部分,其不會造成在第三 光碟之資訊記錄表面上之光點形成。 進一步’其可使該光學拾取裝置具有關於第二光通量 之孔徑調節功能,因爲通過第三區域之第二光通量係爲光 斑部分,其不會造成第二光碟之資訊記錄表面上之光斑形 成。 因此,在相容於三類型之光碟之光學拾取裝置中,其 -13- 200532679 (11) 不需使用分光器或是液晶相位控制元件而作爲孔徑機構, 而其可降低光學拾取裝置之製造成本。 最好該繞射結構係由一光學元件所形成。進一步,其 最好該第二與第三區域係在光學元件的一光學表面上形成 ,或是第二區域係價該光學元件的一光學表面上形成,而 第三區域係在光學元件之相對光學表面上形成。 因爲第二與第三區域係在上述的一光學元件上形成, I 其可節省時間以及組裝與對準之力,以及光學元件之空間 (相較於形成在數個光學元件上之第二與第三區域)。 進一步,最好該第一繞射結構具有繞射動作於通過第 一區域之第二光通量,而第二繞射結構提供繞射動作於通 過第二區域之第二光通量以及第三光通量。 如上述,其可藉由提供第一繞射結構而校正第二光通 量之球面像差,並增加對於相容光學拾取裝置之放大關係 之自由程度(例如當具有第一波長以及第二波長之無限大 Φ 光通量進入至物鏡光學元件時之放大關係)。 其可藉由形成同心圓之環狀區而組構該第一繞射結構 ,每個具有其中心在光軸上,具有由步階部分所形成之階 梯結構(步階結構)以及有預設量之非連續部分,且其經 設置實質對於通過第二區域之第一與第三光通量爲無相位 差,且該第二繞射結構係由同心圓形式之環狀區而形成, 每個其中心係在光軸上,其內具有由步階部分所形成之階 梯結構(步階形狀)以及預設量之非連續部分,且經建立 爲對於實質於通過第二區域之其他光通量爲不具有相位差 -14- 200532679 (12) 其可藉由此結構而提供一繞射動作於具有任意 光通量。 最好係滿足以下,其中n1表示波長λ 1之繞射 件之繞射係數,d 1表示在第一繞射結構中在光軸方 階部分的深度,Μ 1 (整數)表示非連續部分之數目 整數)表示在第二繞射結構中之光軸方向之步階部 度,而其中 d= λ 1/ ( nl — 1 )。 1.9 x d^dl^2.1 x d? 4^M1^6 4.8 x d$d2S5.2 x d,2$M2$4 滿足上述表示式將實現對於第一與第二光通量 質多數個整數之光學路徑差異,因此不會造成相位 無繞射產生,而相位差只對於第三光通量,而得繞 (在第一繞射結構)。另一方面,在第二繞射結構 予第一與第三光通量一實質多數之整數之光學路經 因爲無相位差異而不執行繞射,因此只對於第二光 相位差異而執行繞射動作。同時,當對於繞射光學 個別不同光學表面上形成第一繞射結構以及第二繞 將使此效果特別顯著。 最好該光學拾取裝置滿足以下表示式。 1.9 X d^dl^2.1 X d? 4^M1^6 〇·9 x d^d2S 1.1 χ d,2$M2S5 滿足上述表示式將使得對於第一與第二光通量 實質多數個整數的光學路徑差異,因此不造成相位 波長之 光學元 向之步 ,d2 ( 分之深 得到實 差異而 射動作 中,給 差異, 通量有 元件之 射結構 而給與 差異而 -15- 200532679 (13) 無繞射產生,而只對於第三光通量給與相位差異,而執行 繞射動作(在第一繞射結構)。在第二繞射結構,另一方 面,係對於第一光通量而給與實質多數整數之光學路徑差 異,而因爲不造成相位差異而不執行繞射,因此只對第二 與第三光通量而給予相位差而執行繞射動作。同時,當第 一繞射結構與第二繞射結構個別形成在繞射光學元件之相 同光學表面上時將使效果特別顯著。 | 光學拾取裝置之第二區域係爲同心圓之形狀,每個其 中心在光軸上,且係分割爲至少兩個區域,其包括較接近 於該光軸的2A區域,以及較遠於光軸之2B區域,而形成 在2A區域上之第二繞射結構係與形成在2B區域之第二繞 射結構之形狀不同。 藉由上述分割該區域,其可得到光斑線之形狀之自由 度以及減少由於在光學資訊記錄表面上之光斑線反射所造 成之雜訊。 φ 其最好波長λ 1 -波長λ 3在光學拾取裝置中滿足以 下。 3 70nm^ λ 1^ 440nm 62 Onm ^ λ 2 £ 690nm 750nmg Λ 3$ 820nm 最好在光學拾取裝置中之繞射光學元件係微型成物鏡 光學系統之透鏡。 同時,其最好該光學拾取裝置滿足以下等式, fl X ΝΑ > f2 χ NA2 > f3 x NA3 -16- 200532679 (14) 且最好對於通過第三區域之第二光通量執行繞射 〇 在以下表示式,每個f 1、f2以及f3表示每個波 物鏡光學元件之聚焦長度,而每個ΝΑΙ、NA2,以及 係表示記錄或再生每個光碟所必須之數値孔徑。 上述之繞射結構可在第三區域藉由繞射動作而得 二光通量光斑線。該繞射動作提供自由程度以設計該 p 拾取裝置,且可減少由於在光學資訊記錄表面上之光 反射所造成之雜訊。 最好該光學拾取裝置滿足以下表示式。 0.75 ^ NA1 ^ 0.90 0.60 ^ NA2 ^0.70 0.43 ^ NA3 ^0.55 因此,藉由繞射動作,而可在第三區域得到第二 量光斑線。該繞射動作提供光學拾取裝置在設計上之 φ 程度,而可減少由於在光學資訊記錄表面上之光斑線 所造成之雜訊。 最好該光學拾取裝置滿足以下表示式。 0.65 ^ NA1 ^ 0.70 0.60 ^ NA2 ^0.63 0.43 ^ NA3 ^0.55 因此,藉由繞射動作其可在第三區域中得到第二 量光斑線。該繞射動作提供對於光學拾取裝置在設計 自由度,並可減少由於在光學資訊記錄表面上之光斑 動作 長之 NA3 到第 光學 斑線 光通 自由 反射 光通 上之 反射 -17- 200532679 (15) 所造成之雜訊。 同時,最好該光學拾取裝置滿足以下表示式。 ΐ2 X ΝΑ2 > fl X ΝΑΙ > f3 χ NA3 且最好對於通過第三區域之第二光通量而執行繞射動 作。 在以上表示式中,每個Π、f2以及f3表示每個波長 之物鏡光學元件之聚焦長度,而每個ΝΑΙ、NA2,以及 | ΝA3係表示記錄或再生每個光碟所必須之數値孔徑。 上述之繞射結構可在第三區域藉由繞射動作而得到第 一光通量光斑線。該繞射動作提供自由程度以設計該光學 拾取裝置,且可減少由於在光學資訊記錄表面上之光斑線 反射所造成之雜訊。 最好該光學拾取裝置滿足以下表示式。 0.64 ^ ΝΑ1 ^ 0.65 0.64 ^ ΝΑ2 ^0.70 • 0.43 ^ ΝΑ3 ^0.55 因此,藉由繞射動作,而可在第三區域得到第一光通 量光斑線。該繞射動作提供光學拾取裝置在設計上之自由 程度’而可減少由於在光學資訊記錄表面上之光斑線反射 所造成之雜訊。 本發明之另一觀點爲包含一射出波長爲;11之第一光 通量之第一光源,射出波長爲λ2之第二光通量之第二光 源(λ2> Λ1),一射出波長λ3之第三光通量之第三光 源(λ 3 > λ 2 ),以及一用以將分別在具有保護基底厚度 •18- 200532679 (16) tl之第一光碟之資訊記錄表面、具有保護基底厚度t2 ( t2 -tl)之第二光碟之資訊記錄表面以及具有保護基底厚度 t3 ( t3>t2 )之第三光碟之資訊記錄表面上之第一光通量、 第二光通量以及第三光通量予以收斂之光收斂元件之物鏡 光學系統。一繞射光學元件係設置在光學拾取裝置,該繞 射光學元件係建構在第一至第三光通量之共同光學路徑上 ,而該繞射光學元件之光學表面包括一以同心圓形式而具 g 有中心在一光軸並包括該光軸且係具有一第一繞射結構的 一第一區域,一以同心圓之形式具有其中心在光軸上而形 成在該第一區域之外側並具有一第一繞射結構的一第二區 域,以及一同心圓形式具有其中心在光軸上而形成在該第 一區域之外側並具有一第二繞射結構的一第三區域。之後 ,該通過第一區域以及光收斂元件之第一至第三光通量個 別在預設光碟之資訊記錄表面是形成經收斂之光點,通過 第二區域以及光收斂元件之第一與第二光通量個別在預設 φ 光碟之資訊記錄表面上形成經收斂之光點,以及通過第二 區域以及光收斂元件之第三光通量不在第三光通量之資訊 記錄表面上形成經收斂之光點,而通過第三區域以及光收 斂元件之第一光通量以及第二光通量中任一個係在預設光 碟之資訊記錄表面上形成經收斂之光點,而通過第三區域 與光收斂元件之其他光通量與第三光通量不在預設光碟之 資訊記錄表面上形成經收斂之光點。 在上述結構中,其可使該光學拾取裝置具有關於第三 光通量之孔徑調節功能,因爲第一繞射結構係形成在第二 -19- 200532679 (17) 區域,第二繞射結構係位於第三區域,而通過第一與第二 繞射結構之第三光通量係爲光斑部分,其不會造成在第三 光碟之資訊記錄表面上之光點形成。 進一步,其可使該光學拾取裝置具有關於第二光通量 之孔徑調節功能,因爲通過第二繞射結構之第二光通量係 爲光斑部分,其不會造成第二光碟之資訊記錄表面上之光 斑形成。 p 因此,在相容於三類型之光碟之光學拾取裝置中,其 不需使用分光器或是液晶相位控制元件而作爲孔徑機構, 而其可降低光學拾取裝置之製造成本。 最好該繞射結構係由一光學元件所形成。進一步,其 最好該第二與第三區域係在光學元件的一光學表面上形成 ,或是第二區域係價該光學元件的一光學表面上形成,而 第三區域係在光學元件之相對光學表面上形成。 因爲第二與第三區域係在上述的一光學元件上形成, Φ 其可節省時間以及組裝與對準之力,以及光學元件之空間 (相較於形成在數個光學元件上之第二與第三區域)。 進一步,最好該第一繞射結構具有繞射動作於通過第 二區域之第三光通量,而第二繞射結構提供繞射動作於通 過第三區域之其他光通量。 因此,其可藉由執行繞射動作而實現孔徑調節。 藉由使用繞射動作而做出光斑’其可給予光斑光線之 形狀之自由度並藉由光斑光線反射而減少在光學資訊記錄 表面上之雜訊。 -20- 200532679 (18) 其可藉由形成同心圓之環狀區而組構該弟一繞 ,每個具有其中心在光軸上,具有由步階部分所形 梯結構(步階結構)以及有預設量之非連續部分’ 設置實質對於通過第二區域之第一與第二光通量爲 差,且該第二繞射結構係由同心圓形式之環狀區而 每個其中心係在光軸上,其內具有由步階部分所形 梯結構(步階形狀)以及預設量之非連續部分’且 g 爲對於實質於通過第三區域之其他光通量爲不具有 Ο 其可藉由此結構而提供一繞射動作於具有任意 光通量。 最好係滿足以下,其中η 1表示波長λ 1之繞射 件之繞射係數,d 1表示在第一繞射結構中在光軸方 階部分的深度,Μ 1 (整數)表示非連續部分之數目 整數)表示在第二繞射結構中之光軸方向之步階部 春 度,而其中d=Al/(nl-l)。 4.8 X d^dl^5.2 X d, 2^M1^4 1.9 x d^d2^2.1 x d? M2 滿足上述表示式將實現對於第一與第二光通量 質多數個整數之光學路徑差異,因此不會造成相位 無繞射產生,而相位差只對於第三光通量,而得繞 (在第一繞射結構)。另一方面,在第二繞射結構 予第一與第三光通量一實質多數之整數之光學路經 因爲無相位差異而不執行繞射,因此只對於第二光 射結構 成之階 且其經 無相位 形成, 成之階 經建立 相位差 波長之 光學元 向之步 ,d2 ( 分之深 得到實 差異而 射動作 中,給 差異, 通量有 -21 - 200532679 (19) 相位差異而執行繞射動作。同時,當對於繞射光學元件之 個別不同光學表面上形成第一繞射結構以及第二繞射結構 將使此效果特別顯著。 最好該光學拾取裝置滿足以下表示式。 4.8 X d^dl^5.2 x d? 2^M1^4 〇.9xd^d2^1.1xd?M2 = 2 滿足上述表示式將使得對於第一與第二光通量而給與 p 實質多數個整數的光學路徑差異,因此不造成相位差異而 無繞射產生,而只對於第三光通量給與相位差異,而執行 繞射動作(在第一繞射結構)。在第二繞射結構,另一方 面’係對於第一光通量而給與實質多數整數之光學路徑差 異’而因爲不造成相位差異而不執行繞射,因此只對第一 與第二光通量而給予相位差而執行繞射動作。同時,當第 一繞射結構與第二繞射結構個別形成在繞射光學元件之相 同光學表面上時將使效果特別顯著。 ϋ 本發明之光學拾取裝置之另一繞射光學元件係爲一光 學拾取裝置之繞射光學元件,包含一射出波長爲λ 1之第 一光通量之第一光源,射出波長爲λ2之第二光通量之第 二光源(λ2> λΐ),一射出波長λ3之第三光通量之第 三光源(λ 3 > λ 2 ),以及一用以將分別在具有保護基底 厚度tl之第一光碟之資訊記錄表面、具有保護基底厚度 t2 ( t2 - tl )之第二光碟之資訊記錄表面以及具有保護基 底厚度t3 ( t3>t2 )之第三光碟之資訊記錄表面上之第一 光通量、第二光通量以及第三光通量予以收斂之物鏡光學 -22- 200532679 (20) 系統。該繞射光學元件係設置在光學拾取裝置之光學系統 中,該繞射光學元件係建構在第一至第三光通量之共同光 學路徑上,而該繞射光學元件之光學表面包括一以同心圓 形式而具有中心在一光軸並包括該光軸且係具有一第一繞 射結構的一第一區域,一以同心圓之形式具有其中心在光 軸上而形成在該第一區域之外側並具有一第二繞射結構的 一第二區域,以及一同心圓形式具有其中心在光軸上而形 p 成在該第一區域之外側的一第三區域。之後,該通過第一 區域以及光收斂元件之第一至第三光通量個別在預設光碟 之資訊記錄表面是形成經收斂之光點,通過第二區域以及 光收斂元件之第一與第二光通量個別在預設光碟之資訊記 錄表面上形成經收斂之光點,以及通過第二區域以及光收 斂元件之第三光通量不在第三光通量之資訊記錄表面上形 成經收斂之光點,而通過第三區域以及光收斂元件之第一 光通量以及第二光通量中任一個係在預設光碟之資訊記錄 φ 表面上形成經收斂之光點,而通過第三區域與光收斂元件 之其他光通量與第三光通量不在預設光碟之資訊記錄表面 上形成經收斂之光點。 在上述結構中,其可使該光學拾取裝置具有關於第三 光通量之孔徑調節功能,因爲第一繞射結構係形成在第一 區域,第二繞射結構係位於第二區域,而通過第一與第二 繞射結構之第三光通量係爲光斑部分,其不會造成在第三 光碟之資訊記錄表面上之光點形成。 進一步,其可使該光學拾取裝置具有關於第二光通量 -23- 200532679 (21) 之孔徑調節功能,因爲通過第三區域之第二光通量係爲光 斑部分,其不會造成第二光碟之資訊記錄表面上之光斑形 成。 因此,在相容於三類型之光碟之光學拾取裝置中,其 不需使用分光器或是液晶相位控制元件而作爲孔徑機構, 而其可降低光學拾取裝置之製造成本。 最好該繞射結構係由一光學元件所形成。進一步,其 p 最好該第二與第三區域係在光學元件的一光學表面上形成 ,或是第二區域係價該光學元件的一光學表面上形成,而 第三區域係在光學元件之相對光學表面上形成。 因爲第二與第三區域係在上述的一光學元件上形成, 其可節省時間以及組裝與對準之力,以及光學元件之空間 (相較於形成在數個光學元件上之第二與第三區域)。 進一步,最好該第一繞射結構具有繞射動作於通過第 一區域之第二光通量,而第二繞射結構提供繞射動作於通 φ 過第二區域之第二光通量以及第三光通量。 如上述,其可藉由提供第一繞射結構而校正第二光通 量之球面像差,並增加對於相容光學拾取裝置之放大關係 之自由程度(例如當具有第一波長以及第二波長之無限大 光通量進入至物鏡光學元件時之放大關係)。 其可藉由形成同心圓之環狀區而組構該第一繞射結構 ,每個具有其中心在光軸上,具有由步階部分所形成之階 梯結構(步階結構)以及有預設量之非連續部分,且其經 設置實質對於通過第二區域之第一與第三光通量爲無相位 -24- 200532679 (22) 差,且該第二繞射結構係由同心圓形式之環狀區而 每個其中心係在光軸上,其內具有由步階部分所形 梯結構(步階形狀)以及預設量之非連續部分,且 爲對於實質於通過第二區域之其他光通量爲不具有 〇 其可藉由此結構而提供一繞射動作於具有任意 光通量。 p 最好係滿足以下,其中η 1表示波長λ 1之繞射 件之繞射係數,d 1表示在第一繞射結構中在光軸方 階部分的深度,Μ 1 (整數)表示非連續部分之數目 整數)表示在第二繞射結構中之光軸方向之步階部 度,而其中 d=Al/(nl — 1)。 1.9 X dl ^ 2.1 X d5 Ml ^ 6 4.8 x d^d2^5.2 x d, 4^M2^6 滿足上述表示式將實現對於第一與第二光通量 φ 質多數個整數之光學路徑差異,因此不會造成相位 無繞射產生,而相位差只對於第三光通量,而得繞 (在第一繞射結構)。另一方面,在第二繞射結構 予第一與第三光通量一實質多數之整數之光學路經 因爲無相位差異而不執行繞射,因此只對於第二光 相位差異而執行繞射動作。同時,當對於繞射光學 個別不同光學表面上形成第一繞射結構以及第二繞 將使此效果特別顯著。 最好該光學拾取裝置滿足以下表示式。 形成, 成之階 經建立 相位差 波長之 光學元 向之步 ,d2 ( 分之深 得到實 差異而 射動作 中,給 差異, 通量有 元件之 射結構 -25- 200532679 (23) 1.9 x d$dl€2.1 x d,4SM1S6 0.9xd^d2^1.1xd92^M2^5 滿足上述表示式將使得對於第一與第二光通量而給與 實質多數個整數的光學路徑差異,因此不造成相位差異而 無繞射產生,而只對於第三光通量給與相位差異,而執行 繞射動作(在第一繞射結構)。在第二繞射結構,另一方 面,係對於第一光通量而給與實質多數整數之光學路徑差 _ 異,而因爲不造成相位差異而不執行繞射,因此只對第二 與第三光通量而給予相位差而執行繞射動作。同時,當第 一繞射結構與第二繞射結構個別形成在繞射光學元件之相 同光學表面上時將使效果特別顯著。 光學拾取裝置之第二區域係爲同心圓之形狀,每個其 中心在光軸上,且係分割爲至少兩個區域,其包括較接近 於該光軸的2A區域,以及較遠於光軸之2B區域,而形成 在2A區域上之第二繞射結構係與形成在2B區域之第二繞 φ 射結構之形狀不同。 藉由上述分割該區域,其可得到光斑線之形狀之自由 度以及減少由於在光學資訊記錄表面上之光斑線反射所造 成之雜訊。 其最好波長λ 1 -波長λ 3在光學拾取裝置中滿足以 下。 3 70nm ^ λ 1 ^ 440nm 6 2 0 n m ^ λ 690nm 7 5 0nm ^ λ 3 ^ 8 2 0nmI preferably satisfies the following, where η 1 represents the diffraction coefficient of the diffracted light of the wavelength λ 1, d 1 represents the depth of the portion in the optical axis direction in the first diffraction structure, and M 1 (integer) represents the number of discontinuous portions , Number) represents the step portion in the direction of the optical axis in the second diffractive structure, where d = into l / (nl-1). 4.8 X d ^ dl ^ 5.2 xd? 2 ^ M1 ^ 4 1.9 xd $ d2S2.1 xd, 4SM2S6 φ Satisfying the above expressions will realize the difference of the optical paths for the first and second luminous flux with most integers, so it will not cause The phase is not diffracted, and the phase difference is only for the third luminous flux, and has to be wound (in the first diffractive structure). On the other hand, the optical path given a substantial majority of the first and third light fluxes in the second diffraction structure does not perform diffraction because there is no phase difference, so the diffraction action is performed only for the second light phase difference. At the same time, when the first diffraction structure and the second diffraction are formed on different optical surfaces of the diffractive optics, this effect is particularly remarkable. Pass the first diffraction knot in the shape of the optical axis) Pass the step d2 of the first kinematical element (whole depth to get the real difference, and in the radiating action, give the difference, the flux has the element's radiating structure-11-200532679 (9) most Fortunately, the optical pickup device satisfies the following expression: 4.8 X d ^ dl ^ 5.2 xd, 2 ^ M1 ^ 4 0.9xdgd2 $ l.lxd, M2 = 2 satisfying the above expression will make the first and second light fluxes The optical path difference of most integers does not cause a phase difference without diffraction. Instead, a phase difference is performed only for the third luminous flux, and a diffraction action is performed (in the first diffraction structure). In the second diffraction The structure, on the other side, is the optical path difference that gives a substantial majority of the integer for the first luminous flux, and does not perform diffraction because it does not cause a phase difference. Therefore, it is performed for the second and third luminous fluxes. Diffraction action. At the same time, when the first diffraction structure and the second diffraction structure are individually formed on the same optical surface of the diffractive optical element, the effect is particularly remarkable. Another aspect of the present invention is to include an emission wavelength. A first light source with a first luminous flux of λΐ, a second light source (λ2 > λΐ) emitting a second luminous flux with a wavelength of λ2, a third light φ source (λ3 > λ2) emitting a third luminous flux with a wavelength of λ3 ), And an information recording surface for a first optical disc with a protective substrate thickness t1, an information recording surface for a second optical disc with a protective substrate thickness t2 (t2-t1), and a protective substrate thickness t3 (t3 > t2) An objective optical system of a first light flux, a second light flux, and a light converging element on which the third light flux converges on the information recording surface of the third optical disc. A diffractive optical element is provided in the optical pickup device, and the diffractive optical element The element is constructed on a common optical path of the first to third luminous fluxes, and the optical surface of the diffractive optical element includes a concentric circle with a center on an optical axis and including the optical axis, and has a first winding -12- 200532679 (10) a radiating structure, a first region, having a center on the optical axis in the form of a concentric circle, formed outside the first region, and having a second diffractive structure A second region 'and a center circle form have a third region whose center is on the optical axis and is formed on the outside of the first region. Then, the first through third regions passing through the first region and the light converging element are formed. The light flux individually forms a convergent light spot on the information recording surface of the preset optical disc. The first and second light fluxes passing through the second region and the light converging element individually form a convergent light spot on the information recording surface of the preset optical disc. And the third luminous flux passing through the second region and the light converging element does not form a convergent light spot on the information recording surface of the third luminous flux, and either the first luminous flux and the second luminous flux passing through the third region and the light converging element Convergent light spots are formed on the information recording surface of the preset optical disc, and other light fluxes and third light fluxes passing through the third region and the light converging element do not form convergent light spots on the information recording surface of the preset optical disc. In the above structure, it can make the optical pickup device have an aperture adjustment function with respect to the third Φ light flux, because the first diffraction structure is formed in the first area, the second diffraction structure is located in the second area, and the first The third luminous flux of the first and second diffractive structures is a light spot portion, which does not cause the formation of light spots on the information recording surface of the third optical disc. Further, it enables the optical pickup device to have an aperture adjustment function with respect to the second light flux, because the second light flux passing through the third area is a light spot portion, which does not cause a light spot on the information recording surface of the second optical disc to form. Therefore, in the optical pickup device compatible with the three types of optical discs, its -13-200532679 (11) does not require the use of a beam splitter or a liquid crystal phase control element as the aperture mechanism, and it can reduce the manufacturing cost of the optical pickup device . Preferably, the diffractive structure is formed by an optical element. Further, preferably, the second and third regions are formed on an optical surface of the optical element, or the second region is formed on an optical surface of the optical element, and the third region is formed on the opposite side of the optical element. Formed on an optical surface. Because the second and third regions are formed on one of the above-mentioned optical elements, they can save time and the force of assembly and alignment, as well as the space of the optical elements (compared to the second and third regions formed on several optical elements). Third area). Further, preferably, the first diffractive structure has a second luminous flux that diffracts through the first region, and the second diffractive structure provides a second luminous flux and a third luminous flux that diffractive through the second region. As described above, it can correct the spherical aberration of the second luminous flux by providing the first diffraction structure, and increase the degree of freedom for the magnification relationship of compatible optical pickup devices (for example, when the first wavelength and the second wavelength are infinite) Magnification relationship when large Φ light flux enters the objective optical element). The first diffractive structure can be structured by forming an annular region of concentric circles, each having a center on the optical axis, a stepped structure (stepped structure) formed by a stepped portion, and a preset Non-continuous part of the quantity, and it is set to have substantially no phase difference for the first and third luminous fluxes passing through the second area, and the second diffraction structure is formed by a concentric circular ring-shaped area, each of which The center is on the optical axis, which has a step structure (step shape) formed by a step portion and a non-continuous portion of a preset amount, and is established to have no other luminous flux substantially passing through the second region. Phase difference -14- 200532679 (12) This structure can provide a diffractive action with an arbitrary luminous flux. It is preferable to satisfy the following, where n1 represents the diffraction coefficient of a diffractive member with a wavelength of λ1, d1 represents the depth in the first-order diffraction structure at the square-order portion of the optical axis, and M1 (integer) represents the non-continuous portion. (Integer number) represents the step size in the direction of the optical axis in the second diffraction structure, where d = λ 1 / (nl — 1). 1.9 xd ^ dl ^ 2.1 xd? 4 ^ M1 ^ 6 4.8 xd $ d2S5.2 xd, 2 $ M2 $ 4 satisfying the above expressions will realize the difference in optical path between the first and second luminous flux quality of most integers, so it will not As a result, no diffraction occurs in the phase, and the phase difference is only for the third luminous flux, and has to be wound (in the first diffraction structure). On the other hand, the optical path given a substantial majority of the first and third light fluxes in the second diffraction structure does not perform diffraction because there is no phase difference, so the diffraction action is performed only for the second light phase difference. At the same time, when the first diffraction structure and the second diffraction are formed on different optical surfaces of the diffractive optics, this effect is particularly remarkable. Preferably, the optical pickup device satisfies the following expression. 1.9 X d ^ dl ^ 2.1 X d? 4 ^ M1 ^ 6 〇9 xd ^ d2S 1.1 χ d, 2 $ M2S5 satisfying the above expression will make the optical path difference for the first and second luminous flux substantially a whole number of integers, Therefore, it does not cause the step of the optical wavelength of the phase wavelength. In the action of d2 (deep depth), the difference is given, and the difference is given. The flux has the radiation structure of the element and the difference is given. -15- 200532679 (13) No diffraction Generated, while only giving a phase difference to the third luminous flux, and performing a diffractive action (in the first diffractive structure). In the second diffractive structure, on the other hand, a substantial majority of the integer is given to the first luminous flux. The optical path is different, and diffraction is not performed because it does not cause a phase difference. Therefore, only the second and third light fluxes are given a phase difference to perform a diffraction action. At the same time, when the first diffraction structure and the second diffraction structure are separate The effect is particularly pronounced when formed on the same optical surface of the diffractive optical element. | The second area of the optical pickup device is a concentric circle shape, each centered on the optical axis, and is divided into at least two areas Which includes The 2A region close to the optical axis and the 2B region farther from the optical axis, and the second diffraction structure formed on the 2A region is different from the shape of the second diffraction structure formed on the 2B region. By dividing this area, it is possible to obtain the freedom of the shape of the light spot and reduce the noise caused by the reflection of the light spot on the optical information recording surface. Φ The best wavelength λ 1 -wavelength λ 3 is satisfied in the optical pickup device. The following: 3 70nm ^ λ 1 ^ 440nm 62 Onm ^ λ 2 £ 690nm 750nmg Λ 3 $ 820nm The diffractive optical element in the optical pickup device is preferably a lens of a miniature objective lens optical system. At the same time, it is preferable that the optical pickup The device satisfies the following equation, fl X ΝΑ > f2 χ NA2 > f3 x NA3 -16- 200532679 (14) and preferably performs diffraction for the second luminous flux passing through the third region. In the following expression, each f 1, f2, and f3 represent the focal length of each wave objective optical element, and each NA, NA2, and the number of apertures necessary to record or reproduce each disc. The above diffraction structure can be borrowed in the third area By winding The two light flux speckles are obtained by the action. The diffraction action provides a degree of freedom to design the p pickup device, and can reduce noise caused by light reflection on the optical information recording surface. It is preferable that the optical pickup device satisfy the following expression 0.75 ^ NA1 ^ 0.90 0.60 ^ NA2 ^ 0.70 0.43 ^ NA3 ^ 0.55 Therefore, by the diffraction action, a second light spot can be obtained in the third region. This diffraction action provides a degree of φ in the design of the optical pickup device, and can reduce noise caused by light spots on the optical information recording surface. Preferably, the optical pickup device satisfies the following expression. 0.65 ^ NA1 ^ 0.70 0.60 ^ NA2 ^ 0.63 0.43 ^ NA3 ^ 0.55 Therefore, it can obtain a second amount of light spots in the third region by the diffraction action. This diffraction action provides freedom in designing the optical pickup device, and can reduce the reflection on the freely reflected light flux from NA3 to the optical light flux due to the long light spot motion on the optical information recording surface. 17- 200532679 (15 ). Meanwhile, it is preferable that the optical pickup device satisfies the following expression. ΐ2 X ΝΑ2 > fl X ΝΑΙ > f3 χ NA3 and it is preferable to perform a diffraction action on the second luminous flux passing through the third region. In the above expressions, each of Π, f2, and f3 represents the focal length of the objective optical element of each wavelength, and each of NAI, NA2, and | NA3 represents the number of apertures necessary to record or reproduce each optical disc. The above-mentioned diffraction structure can obtain the first luminous flux light spot through the diffraction action in the third region. The diffraction action provides a degree of freedom to design the optical pickup device, and can reduce noise caused by reflection of light spots on the optical information recording surface. Preferably, the optical pickup device satisfies the following expression. 0.64 ^ ΝΑ1 ^ 0.65 0.64 ^ ΝΑ2 ^ 0.70 • 0.43 ^ ΝΑ3 ^ 0.55 Therefore, by the diffraction action, the first light flux spot can be obtained in the third region. This diffraction action provides a degree of freedom in the design of the optical pickup device 'and can reduce noise caused by speckle reflection on the optical information recording surface. Another aspect of the present invention includes a first light source having a first luminous flux having a wavelength of 11; a second light source having a second luminous flux having a wavelength of λ2 (λ2 >Λ1); and a third light flux having a third luminous flux having a wavelength of λ3. A third light source (λ 3 > λ 2), and an information recording surface for the first optical disc with a protective substrate thickness of 18-200532679 (16) tl, and a protective substrate thickness t2 (t2 -tl) Objective optical system of the first optical flux, the second optical flux, and the third optical flux on the information recording surface of the second optical disc and the third optical disc with a protective substrate thickness t3 (t3> t2) . A diffractive optical element is disposed in the optical pickup device. The diffractive optical element is constructed on a common optical path of the first to third luminous fluxes. The optical surface of the diffractive optical element includes a concentric circular shape with a g A center having an optical axis and including the optical axis and a first region having a first diffractive structure, and having a center in the form of a concentric circle on the optical axis and formed outside the first region and having A second region of a first diffractive structure, and a third region of a concentric circle having a center on the optical axis and formed outside the first region and having a second diffractive structure. Thereafter, the first to third luminous fluxes passing through the first region and the light converging element individually form convergent light spots on the information recording surface of the preset optical disc, and the first and second luminous fluxes passing through the second region and the light converging element. Individually, a convergent light spot is formed on the information recording surface of a preset φ disc, and the third light flux passing through the second region and the light converging element does not form a convergent light spot on the information recording surface of the third light flux, and passes the first Either the first luminous flux and the second luminous flux of the three regions and the light converging element form a convergent light spot on the information recording surface of the preset optical disc, and the other luminous flux and the third luminous flux passing through the third region and the light converging element No convergent light spots are formed on the information recording surface of the preset disc. In the above structure, it can make the optical pickup device have an aperture adjustment function with respect to the third light flux, because the first diffraction structure is formed in the second-19-200532679 (17) region, and the second diffraction structure is located in the second Three areas, and the third luminous flux passing through the first and second diffractive structures is a light spot portion, which does not cause the formation of light spots on the information recording surface of the third optical disc. Further, it can make the optical pickup device have an aperture adjustment function with respect to the second light flux, because the second light flux passing through the second diffraction structure is a light spot portion, which does not cause light spot formation on the information recording surface of the second optical disc . Therefore, in the optical pickup device compatible with the three types of optical discs, it does not need to use a beam splitter or a liquid crystal phase control element as the aperture mechanism, and it can reduce the manufacturing cost of the optical pickup device. Preferably, the diffractive structure is formed by an optical element. Further, preferably, the second and third regions are formed on an optical surface of the optical element, or the second region is formed on an optical surface of the optical element, and the third region is formed on the opposite side of the optical element. Formed on an optical surface. Because the second and third regions are formed on one of the optical elements described above, Φ can save time and the force of assembly and alignment, as well as the space of the optical elements (compared to the second and third regions formed on several optical elements). Third area). Further, preferably, the first diffractive structure has a third luminous flux that diffracts through the second region, and the second diffractive structure provides other luminous flux that diffracts through the third region. Therefore, it can realize the aperture adjustment by performing the diffraction action. Making a spot by using a diffraction action 'can give the spot a degree of freedom in the shape of the light and reduce the noise on the optical information recording surface by reflecting the light of the spot. -20- 200532679 (18) It can be structured by forming concentric circles, each having its center on the optical axis, and having a ladder structure (step structure) shaped by step parts And a non-continuous portion with a predetermined amount 'setting is substantially different for the first and second luminous fluxes passing through the second area, and the second diffractive structure is formed by a concentric circular ring-shaped area, and each of its centers is On the optical axis, there is a ladder structure (step shape) formed by a step portion and a non-continuous portion of a preset amount ', and g is no for the other luminous flux substantially passing through the third region. This structure provides a diffractive action with an arbitrary light flux. It is preferable to satisfy the following, where η 1 represents the diffraction coefficient of a diffractive member with a wavelength of λ 1, d 1 represents the depth of the square-order portion of the optical axis in the first diffraction structure, and M 1 (integer) represents a discontinuous portion The number of integers) represents the spring degree of the step portion in the direction of the optical axis in the second diffraction structure, where d = Al / (nl−l). 4.8 X d ^ dl ^ 5.2 X d, 2 ^ M1 ^ 4 1.9 xd ^ d2 ^ 2.1 xd? M2 satisfies the above expressions to realize the difference in optical path between the first and second luminous flux with most integers, so it will not cause The phase is not diffracted, and the phase difference is only for the third luminous flux, and has to be wound (in the first diffractive structure). On the other hand, the optical path that gives a substantial majority of the first and third luminous fluxes in the second diffraction structure does not perform diffraction because there is no phase difference, so only for the order of the second light diffraction structure and its No phase is formed. The order of success is determined by the step of establishing the optical element direction of the phase difference wavelength. D2 (deep depth to obtain a real difference, and in the shooting action, for the difference, the flux is -21-200532679 (19) Phase difference is performed around At the same time, this effect is particularly remarkable when the first diffraction structure and the second diffraction structure are formed on the individual different optical surfaces of the diffractive optical element. Preferably, the optical pickup device satisfies the following expression. 4.8 X d ^ dl ^ 5.2 xd? 2 ^ M1 ^ 4 〇9xd ^ d2 ^ 1.1xd? M2 = 2 Satisfying the above expression will make p for the first and second luminous fluxes give p a substantial majority of the integer optical path difference, so Does not cause phase difference without diffraction, and only gives phase difference for the third luminous flux, and performs diffraction action (in the first diffraction structure). In the second diffraction structure, on the other hand, it is for the first Luminous flux The difference between the optical path and the substantial majority of integers' does not perform diffraction because it does not cause a phase difference. Therefore, only the first and second light fluxes are given a phase difference to perform a diffraction action. At the same time, when the first diffraction structure and the first The two diffractive structures are individually formed on the same optical surface of the diffractive optical element to make the effect particularly remarkable. 另一 Another diffractive optical element of the optical pickup device of the present invention is a diffractive optical element of an optical pickup device, including A first light source emitting a first light flux with a wavelength of λ 1, a second light source emitting a second light flux with a wavelength of λ 2 (λ 2 > λΐ), a third light source emitting a third light flux with a wavelength of λ 3 (λ 3 > λ 2), and an information recording surface for a first optical disc with a protective substrate thickness t1, an information recording surface for a second optical disc with a protective substrate thickness t2 (t2-tl), and a protective substrate thickness t3 ( t3 > t2) Objective optics on which the first light flux, the second light flux, and the third light flux on the information recording surface of the third optical disc converge-22- 200532679 (20) The diffractive optical element is disposed in an optical system of an optical pickup device, the diffractive optical element is constructed on a common optical path of the first to third light fluxes, and the optical surface of the diffractive optical element includes an A concentric circular form having a center on an optical axis and including the optical axis, a first region having a first diffraction structure, and a concentric circle having a center on the optical axis and formed on the first region A second region on the outer side and having a second diffractive structure, and a concentric circular form having a center on the optical axis and a third region formed on the outer side of the first region. Thereafter, the first to third luminous fluxes passing through the first region and the light converging element individually form convergent light spots on the information recording surface of the preset optical disc, and the first and second luminous fluxes passing through the second region and the light converging element. Individually, a convergent light spot is formed on the information recording surface of the preset optical disc, and the third luminous flux passing through the second region and the light converging element does not form a convergent light spot on the information recording surface of the third luminous flux. Any one of the first luminous flux and the second luminous flux of the region and the light converging element forms a convergent light spot on the information recording surface φ of the preset optical disc, and the other luminous flux and the third luminous flux passing through the third region and the light converging element No convergent light spots are formed on the information recording surface of the preset disc. In the above structure, it can make the optical pickup device have an aperture adjustment function with respect to the third light flux, because the first diffraction structure is formed in the first area, the second diffraction structure is located in the second area, and the first The third luminous flux with the second diffraction structure is a light spot portion, which does not cause the formation of light spots on the information recording surface of the third optical disc. Further, it can make the optical pickup device have an aperture adjustment function regarding the second light flux-23- 200532679 (21), because the second light flux passing through the third area is a light spot portion, which will not cause information recording of the second optical disc Spots on the surface are formed. Therefore, in the optical pickup device compatible with the three types of optical discs, it does not need to use a beam splitter or a liquid crystal phase control element as the aperture mechanism, and it can reduce the manufacturing cost of the optical pickup device. Preferably, the diffractive structure is formed by an optical element. Further, it is preferable that the second and third regions are formed on an optical surface of the optical element, or the second region is formed on an optical surface of the optical element, and the third region is formed on the optical element. Opposite optical surfaces are formed. Because the second and third regions are formed on the above-mentioned one optical element, it can save time and the force of assembly and alignment, as well as the space of the optical element (compared to the second and first regions formed on several optical elements). Three zones). Further, preferably, the first diffractive structure has a second luminous flux diffractive to pass through the first region, and the second diffractive structure provides a second luminous flux and a third luminous flux to diffract to pass φ through the second region. As described above, it can correct the spherical aberration of the second luminous flux by providing the first diffraction structure, and increase the degree of freedom for the magnification relationship of compatible optical pickup devices (for example, when the first wavelength and the second wavelength are infinite) Magnification relationship when a large luminous flux enters the objective optical element). The first diffractive structure can be structured by forming an annular region of concentric circles, each having a center on the optical axis, a stepped structure (stepped structure) formed by a stepped portion, and a preset Non-continuous part of the amount, and it is set to be substantially phase-free for the first and third luminous fluxes passing through the second region -24- 200532679 (22) difference, and the second diffraction structure is formed by a concentric circular ring Each of its centers is on the optical axis, which has a ladder structure (step shape) formed by a step portion and a non-continuous portion of a preset amount, and is for other luminous flux substantially passing through the second area is Without it, it can provide a diffractive action with any light flux by this structure. p preferably satisfies the following, where η 1 represents the diffraction coefficient of a diffractive member with a wavelength of λ 1, d 1 represents the depth in the first-order diffraction structure at the square order portion of the optical axis, and M 1 (integer) represents a discontinuity The number of parts is an integer) represents the step in the direction of the optical axis in the second diffraction structure, where d = Al / (nl — 1). 1.9 X dl ^ 2.1 X d5 Ml ^ 6 4.8 xd ^ d2 ^ 5.2 xd, 4 ^ M2 ^ 6 Satisfying the above expressions will realize the difference in optical paths for the first and second luminous flux φ prime multiple integers, so it will not cause The phase is not diffracted, and the phase difference is only for the third luminous flux, and has to be wound (in the first diffractive structure). On the other hand, the optical path given a substantial majority of the first and third light fluxes in the second diffraction structure does not perform diffraction because there is no phase difference, so the diffraction action is performed only for the second light phase difference. At the same time, when the first diffraction structure and the second diffraction are formed on different optical surfaces of the diffractive optics, this effect is particularly remarkable. Preferably, the optical pickup device satisfies the following expression. Formation, the order of formation is through the step of establishing the optical element direction of the phase difference wavelength, d2 (deep depth to get the real difference, and in the shooting action, giving the difference, the flux has the element's shooting structure-25- 200532679 (23) 1.9 xd $ dl € 2.1 xd, 4SM1S6 0.9xd ^ d2 ^ 1.1xd92 ^ M2 ^ 5 Satisfying the above expression will make the optical path difference of a substantial majority of integers for the first and second luminous fluxes, so there is no phase difference without winding The diffraction is generated, and only the third luminous flux is given a phase difference, and a diffraction action is performed (in the first diffraction structure). In the second diffraction structure, on the other hand, the first luminous flux is given a substantial majority integer The optical path difference is different, and the diffraction is not performed because it does not cause a phase difference. Therefore, only the second and third luminous fluxes are given a phase difference to perform the diffraction action. At the same time, when the first diffraction structure and the second diffraction The diffractive structure formed on the same optical surface of the diffractive optical element will make the effect particularly remarkable. The second area of the optical pickup device is a concentric circle shape, each centered on the optical axis, and is divided into There are two regions, including the 2A region closer to the optical axis and the 2B region farther from the optical axis, and the second diffraction structure formed on the 2A region and the second diffraction φ formed on the 2B region The shape of the radiation structure is different. By dividing the area as described above, it can obtain the freedom of the shape of the light spot and reduce the noise caused by the reflection of the light spot on the optical information recording surface. Its best wavelength λ 1 -wavelength λ 3 satisfies the following in an optical pickup device: 3 70nm ^ λ 1 440nm 6 2 0 nm ^ 690nm 7 5 0nm ^ λ 3 ^ 8 2 0nm
A 26- 200532679 (24) 最好該光學拾取裝置滿足以下表示式。 0.75 ^ NA1 ^ 0.90 0.60 ^ NA2 ^0.70 0.43 ^ NA3 ^0.55 最好對於通過第三區域之第二光通量執行繞射動作。 該繞射動作提供設計該光學拾取裝置之自由度’並可減少 由於光斑光線在光學資訊記錄表面上反射所造成之雜訊。 最好該光學拾取裝置滿足以下表示式。 0.65 ^ NA1 ^0.70 0.60 ^ NA2 ^0.63 0.43 ^ NA3 ^0.55 最好對於通過第三區域之第二光通量執行繞射動作。 該繞射動作提供設計該光學拾取裝置之自由度’並可減少 由於光斑光線在光學資訊記錄表面上反射所造成之雜訊。 最好該光學拾取裝置滿足以下表示式。 0.64 ^ NA1 ^ 0.65 0.64 ^ NA2 ^0.70 0.43 ^ NA3 ^0.55 最好對於通過第三區域之第二光通量執行繞射動作。 該繞射動作提供設計該光學拾取裝置之自由度’並可減少 由於光斑光線在光學資訊記錄表面上反射所造成之雜訊。 根據本發明之光學拾取裝置之另一繞射光學元件係爲 一光學拾取裝置,用以記錄且/或再生於具有預設厚度之 保護基底之光碟之資訊記錄表面上之資訊,包含:一第一 -27- 200532679 (25) 光源,射出具有波長λ 1之第一光通量,用以記錄且/或再 生資訊於具有厚度11之保護基底之第一光碟之光學記錄 表面上;一第二光源,射出具有波長λ2( λ2> λΐ)之 第二光通量以將資訊記錄且/或再生於具有厚度t2 ( t2- tl )之保護基底之第二光碟之光學記錄表面上;一第二光源 ,射出波長λ2( λ3> A2)之第三光通量以將資訊記錄 且/或再生於具有厚度t3 ( t3>t2)之保護基底之第三光碟 p 之光學記錄表面上;一繞射光學元件以射出第一至第三光 通量;以及一物鏡光學系統具有一光收斂元件用以將通過 該繞射光學元件之第一至第三光通量個別收斂至第一至第 三光碟。該繞射光學元件包括一第一區域其中係中心係在 光軸受;一第二區域,以環狀而形成並沿著垂直於光軸而 建構在第一區域之外側;一第三區域,以環狀形成並沿著 垂直於光軸方向而建構在第二區域外側;且該第_區域、 第二區域以及第三區域具有對於第一至第三光通量爲相互 φ 不同之光學特性,該第三區域不形成在通過第三區域以及 光收斂元件之第一至第三光通量之第二光通量爲在對應光 碟之資訊記錄表面上之收斂光斑。 最好該光學拾取裝置,滿足以下表示式。 370nm^ λ 1^44Onm 620nm ^ λ 2 ^ 690nm 750nm^ λ 820nm 該第二區域包含第-繞射結構,具有多數個環狀區 其中心係在該光軸上,並提供一繞射動作至該第一至第 -28- 200532679 (26) 光通量之一’第一繞射結構之多數個垣狀區之每個包含一 步階結構,該步階結構包括預設數目之不連續部分以及步 階部分, 該第三區域包含一第二繞射結構’具有多數個環狀區 ,其中心在光軸上,提供一繞射動作至該第一至第三光通 量的一個,且具有一與第一繞射結構不同之結構, 第二繞射結構之多數個環狀區之每個包含一步階結構 | ,該步階結構包括一預設數目之不連續部分以及步階部分 ,且該第三區域不將通過第三區域以及光收斂元件之第一 至第三光通量中之第二光通量以及第三光通量予以形成爲 在第二與第三光碟之資訊記錄表面上之收斂光斑。 最好該光學拾取裝置,滿足以下表示式。 3 70nm^ λ 1^ 440nm 620nm^ λ 690nm 750nm^ λ 820nm 第一區域包含第一繞射結構,具有多數個環狀區,其 中係在光軸上並提供一繞射動作於該第一至第三光通量之 -- , 第一繞射結構之多數個環狀區的一個係包含一步階結 構,該步階結構包括一預設數目之非連續部分以及步階部 分, 該第二區域包含一第二繞射結構,具有多數個環狀區 ,其中心係在光軸上,提供一繞射動作於第一至第三光通 量的一個,並具有一與第一繞射結構不同之結構’ -29- 200532679 (27) 該第二繞射結構之多數個環狀區之每個包含一步階結 構’該步階結構包括一預設數目之非連續部分以及步階部 分’而該第三區不對於在通過第三區以及光收斂元件之第 一至第三光通量中之第二光通量以及第三光通量形成爲在 第二與第三光碟之資訊記錄表面上之收斂光斑。 最好該繞射光學元件係由一光學元件所組成,而該光 學元件的一光學表面係包括第二區域以及第三區域。 _ 最好該繞射光學元件係由一光學元件所組成,該光學 元;件的一光學表面係包括第二區域,且對向光學表面包括 第三區域。 最好該光學拾取裝置滿足以下表示式。 0.65 ^ NA1 ^ 0.70 0.60 ^ NA2 ^0.63 0.43 ^ NA3 ^0.55 其中ΝΑΙ、NA2以及NA3係分別爲使用於記錄或是 φ 再生第一、第二以及第三光碟之數値孔徑。 最好該光學拾取裝置滿足以下表示式。 0.64^ NA1 ^ 0.65 0.64 ^ NA2 ^0.70 0.43 ^ NA3 ^0.55 其中ΝΑΙ、NA2、NA3係分別爲使用於記錄或是再生 第一、第二以及第三光碟之數値孔徑。 在本發明中,”給予繞射動作”或是”提供繞射動作 ”係等效於將通過繞射結構之光通量滿足巴格(Gragg ) -30- 200532679 (28) 條件之情形,即,該繞射結構產生根據入射光通量之波長 而具有特定繞射順序數字之光線,其絕對値爲相較於其他 繞射順序數字(包括〇)爲高之繞射效率時爲〇或是更多 ,以及特別是產生2 5 %或是更高之繞射效率之光線。 進一步,在本說明書中,”光斑”係爲具有不小於不 造成在所述資訊紀錄表面上記錄或再生所必須之光點形成 之預設數目之數値孔徑之入射光通量。例如,當記錄或是 _ 再生CD之情形中,該光斑光線係爲產生對於對應於較記 錄或再生CD所必須之數値孔徑(0-0.43或是0.45 )爲高 之數値孔徑之入射光通量具有〇.〇7A3rms之波前色差( aberration)之光線。”得出光斑光線”係指當入射光射 入於資訊記錄表面之上時而提供入射光通量一特性以使得 入射光通量具有上述色差之光通量。 在本說明書中,”實質產生無相位差”或是”提供實 質無相位差”係指在通過繞射結構之光通量係使由繞射結 φ 構之階梯結構所造成移相係在± 0.2 7Γ之內。 本發明可得到一具有可對於包括採用紫外線雷射光源 ’ DVD以及CD之高密度光碟之三種類型光碟予以執行適 當孔徑調節之光學元件之光學拾取裝置。 本發明之較佳實施例之實施可參考附圖而解釋如後。 (第一實施例) 圖1係爲展示可對於高密度光碟HD (第一光碟), DVD (第二光碟)以及CD (第三光碟)之任一種適當執 -31 - 200532679 (29) 行資訊之記錄與再生之第一光學拾取裝置PU 1之結構之結 構圖。 在高密度光碟HD之光學規格中,第一波長λ 1係爲 408 nm,第一保護成之厚度tl係爲0.85,在DVD之光學 規格中,第二波長;I 2係爲65 8nm,第二保護層PL2之厚 度t2係爲0.6mm而數値孔徑NA2係爲0.60,而在CD之 光學規格中,第三波長λ 3係爲7 8 5 nm,第三保護層PL3 p 之厚度t3係爲1.2mm而數値孔徑NA3係爲0.45。 第一光碟至第三光碟之個別記錄密度(P 1至P3)係 滿足p3< p2< p 1,而在個別對於第一光碟至第三光碟 執行記錄且/或再生資訊之物鏡光學系統OBJ之放大率( 第一放大率Ml至第三放大率M3 )係滿足Ml = M2 = M3 =〇。同時,波長,保護層厚度,數値孔徑,記錄密度以 及放大率係不限定於上述者。 光學拾取PU 1係實質由以下構成:在執行記錄與再生 φ 高密度光碟HD之資訊時射出波長40 8nm波長之雷射光通 量(第一光通量)之紫外光半導體雷射LD1 (第一光源) ,當執行DVD之資訊之記錄與再生時射出波長65 8nm之 雷射光通量(第二光通量)之紅色半導體雷射LD2,當對 於用以接收來自高密度碟HD之資訊記錄表面RL1之反射 光通量的第一光偵測器Ρ Η 1以及C D之資訊之記錄與再生 時射出具有波長爲785 nm之雷射光通量(第三光通量)之 紅外線半導體雷射LD3 (第三光源),接收來自 DVD之 資訊記錄表面RL2或是來自CD之資訊記錄表面之經反射 32- 200532679 (30) 光通量之第二光偵測器PD2,其內具有繞射結構形 學表面上之繞射光學元件L 1以及表示兩側非球面 有將分別在資訊紀錄表面RL1, RL2以及RL3上經 光學元件L 1傳送之雷射光通量予以收斂之功能之 元件L2之物鏡光學系統OBJ,雙軸致動器AC1, 高密度光碟HD之數値孔徑HA之光圈STO,第一 極化光束分隔器(splitter ) BS1至BS4,第一至第 | 透鏡 C0L1至C0L3,光束擴展器EXP,第一感 SEN1以及第二感應透鏡SEN2。 在該光學拾取裝置PU1中,當對於高密度光碟 行記錄與再生時,照射紫外線半導體雷射LD 1 (如 示實線爲其光線路徑)。射出自紫外線半導體雷射 光通量在由第一對準透鏡C0L1而轉換爲平行光通 而經由第一極化光束分隔器B S 1而傳送,之後在經 擴展器EXP以及第二極化光束分隔器BS2之傳送 0 光圈ST0以光通量直徑而調節,而經由第一保護 而在資訊記錄表面RL1上而由物鏡光學系統OBJ 光點。該物鏡光學系統OBJ以建構在物鏡光學系' 之周圍之雙軸致動器AC1而執行聚焦以及追蹤。 該由在資訊記錄表面RL1上之資訊坑(pit ) 之經反射光通量再次經由物鏡光學系統OBJ,第二 束分隔器BS2以及光束擴展器EXP,而之後由第一 束分隔器BS1而反射,之後由感應透鏡SEN 1而 astigmatism ),並在第一光偵測器P D 1之光接收表 成在光 透鏡具 由繞射 光收斂 對應於 至第四 三對準 應透鏡 HD執 圖1所 LD1之 量之後 由光束 後而由 層 PL1 而形成 統 OBJ 所調變 極化光 極化光 像散( 面上而 -33- 200532679 (31) 由第三對準透鏡COL3而轉換爲一經收斂之光通量。因此 ,其可藉由使用第一光偵測器PD1之輸出信號而在高密度 光碟HD上讀取經記錄之資訊。 當執行DVD之資訊之記錄與再生時,首先照射紅色 半導體雷射LD2。射出自紅色半導體雷射LD2之發散光通 量通過第三極化光束分隔器以及第四極化光束分隔器(其 光線路徑係如圖1虛線所示),且藉由第二對準透鏡 | COL2而收斂爲一平行光通量。之後,該光通量由第二光 束分隔器BS2所反射並在資訊記錄表面RL2上經由第二 保護層PL2而由物鏡光學系統OBJ而形成一光點。該物 鏡光學系統OBJ以建構在物鏡光學系統OBJ周圍之雙軸 致動器AC 1而執行聚焦以及追蹤。該經反射由資訊坑所調 變在資訊記錄表面RL2上之光通量再次通過物鏡光學系統 OBJ,並反射在第二極化光束分隔器BS2,之後鏡由第二 對準透鏡C0L2而被轉換爲收斂之光通量,且由第四極化 φ 光束分隔器BS4而反射,之後由第二感應透鏡SEN2而像 散,而收斂在第二光偵測器PD2之光接收表面上。因此, 其可使用第二光偵測器PD2之輸出信號而讀取在DVD上 記錄之資訊。 當執行CD之資訊之記錄與再生,係照射紅外線半導 體雷射LD3。射出自紅外光半導體雷射LD3之發散光通量 係由第三極化光束分隔器所反射,而通過第四極化光束分 隔器(如圖1所示爲其光線路徑),而由第二對準透鏡 C0L2而收斂成平行光通量。之後,該光通量由第二光束 -34- 200532679 (32) 分隔器BS2而反射,並經由第三保護層PL3而在資訊記錄 表面RL3而由物鏡光學系統OBJ而形成一光點。該物鏡 光學系統0BJT以建構在物鏡光學系統OBJ周圍之雙軸致 動器AC1而執行聚焦以及追蹤。該由在資訊記錄表面RL3 上之資訊坑所調變之所反射光通量再次通過物鏡光學系統 OBJ,而反射在第二極化光束分隔器BS2,之後由第二對 準透鏡 C0L2而轉換爲收斂光通量,並由第四對準透鏡 B COL2而反射,之後而由第二感應器透鏡SEN2而像散, 而收斂在第二光偵測器PD2之光接收表面上。因此,其可 藉由使用第二光偵測器PD2之輸出信號而讀取記錄在CD 上之資訊。 接著,解釋物鏡光學系統OBJ之結構。繞射光學元件 L1係爲塑膠透鏡,其對於d線之繞射率nd係爲1.5 09 1, Abbe之數目yd係爲56.5,而;11之繞射率係爲1.5064, 而λ 3之繞射率爲1.5 05 0。光收斂元件L2係爲塑膠透鏡 φ ,其對於d線之繞射率係爲1.5 43 5而Abbe之數目ν d係 爲5 6 · 3。同時,雖然省去圖式,但是光學功能部分(用於 繞射光學元件L 1之區域,經由該區域而使第一光通量通 過以及用於光線收斂元件L2 )在其四周具有凸緣部分, 每個該凸緣部分係個別與每個光學功能部分結合,而該當 每個凸緣部分之一部份與另一凸緣部分連接時該光學功能 部分被堅固結合。 同時,當繞射光學元件L 1以及光收斂元件L2係堅固 結合時’其亦可經由爲另一'構件之透鏡框而結合。 -35- 200532679 (33) 更接近半導體雷射光源之繞射光學元件L 1之光學表 面(入射表面)被分割成爲封應每個具有中心在光軸上之 N A 3內之區域的同心圓形式並包括光軸光軸L之第一區域 AREA1,係爲對應於每個具有中心在光軸上之NA2內之 區域之同心圓形式並形成在第一區域 A R E A 1之爲側並設 置有第一繞射結構10之第二區域AREA1,以及係爲以對 應於N A 1之內之區域之同心圓形式並形成在第一區域 g AREA外側並裝備有第二繞射結構20之第三區域AREA3 〇 同時,當BD或HD DVD之孔徑直徑大於DVD之孔 徑直徑時,滿足 fl X ΝΑΙ > f2 χ NA2 > f3 x NA3 且,其最好對於通過第三區域之第二光通量給予繞射 動作。 在上述表示式中,每個f 1、f2以及f3係表示對於每 φ 個波長之物鏡光學元件之焦點長度,而每個ΝΑΙ、NA2以 及NA3表示用以記錄或是再生每個光碟所必要之數値孔 徑。 上述結構之開口孔徑ΝΑΙ、NA2以及NA3係例如滿 足: 0.75 ^ NA1 ^ 0.90 0.60 ^ NA2 ^ 0.70 0.43 ^ NA3 ^0.55 進一步,具有開口孔徑ΝΑΙ、NA2以及NA3之結構 -36- 200532679 (34) 滿足以下表示式。 0.65 ^ NA1 ^ 0.70 0.60 ^ NA2 ^0.63 0.43 ^ NA3 ^0.55 當DVD之孔徑直徑大於BD或是HD DVD之孔徑 徑時, f2 X NA2 > fl X ΝΑΙ > f3 χ NA3 p 而最好對於經過第三區域之第一光通量執行繞射動 〇 在上述表示式中,每個Π、f2以及f3係表示對於 個波長之物鏡光學元件之焦點波長,而每個ΝΑΙ、NA2 及ΝΑ3係表示用以記錄與再生每個光碟所必須之數値 徑。 上述結構之開口孔徑ΝΑΙ、ΝΑ2以及ΝΑ3滿足以 表示式。 • 0.64 ^ ΝΑ1 ^ 0.65 0.64 ^ ΝΑ2 ^0.70 0.43 ^ ΝΑ3 ^0.55 對於第一繞射結構1 0以及第二繞射結構2 0,其具 由週期形成同心圓形式之環狀區域1 3所構成之結構, 個同心圓具有其中心在光軸L上,其內具有由所規定量 步階部分1 1以及非連續部分1 2所形成之階梯結構(步 結構)(如圖3 ( a )以及圖3 ( b )所示)(此後,此 射結構稱爲”繞射結構 HOE ” ),一由多數個環狀區 直 作 每 以 孔 下 有 每 之 階 繞 -37- 15 200532679 (35) 所構成之結構,並具有包括鋸齒狀形式之光軸L之局部圖 之形式(如圖4 ( a )以及4 ( b )所示),以及其由步階 部分1 6之方向係與有效直徑方向相同並具有包括階梯形 式之光軸之局部圖之形式之多數個環狀區1 7所構成之結 構(如圖5(a)以及5(b)所示)。同時,圖3(a)至 圖5 ( b )之每個係爲結構展示每個繞射結構形成在平面上 ,且每個繞射結構之情形,而每個繞射結構亦可形成在球 面上或是非球面上。 在本實施例中,形成在第二區域AREA2上之第一繞 射結構1〇以及形成在第三區域ARE A3上之第二繞射結構 20可由繞射結構HOE所構成(如圖3 ( a )以及3 ( b )) 〇 特別是,經建立位準差d 1以及d2,非連續部分之數 目Ml以及M2,以滿足 4.8 X d^dl^5.2 x d, 2^M1^4 1.9 x d^d2^2.1 x d? 4^M2^6 而每個Ml以及M2爲2,當在nl表示波長λΐ之繞 射光學元件L 1之繞射率,d 1表示第一繞射結構中之光軸 中之步階部分之深度,Μ 1表示非連續部分之數目(整數 ),d2表示在第二繞射結構20中之光軸方向上之步階部 分之深度,而M2表示非連續部分之數目(整數)之情況 下而成立d=Al/(nl-l)。 當具有波長λ 1之第一光通量以及具有波長λ2之第 二光通量進入第一繞射結構,其中在光軸方向上之步階部 -38-A 26- 200532679 (24) Preferably, the optical pickup device satisfies the following expression. 0.75 ^ NA1 ^ 0.90 0.60 ^ NA2 ^ 0.70 0.43 ^ NA3 ^ 0.55 It is preferable to perform a diffraction action for the second luminous flux passing through the third region. The diffraction action provides a degree of freedom in designing the optical pickup device and can reduce noise caused by the reflection of the spot light on the optical information recording surface. Preferably, the optical pickup device satisfies the following expression. 0.65 ^ NA1 ^ 0.70 0.60 ^ NA2 ^ 0.63 0.43 ^ NA3 ^ 0.55 It is best to perform a diffraction action for the second luminous flux passing through the third region. The diffraction action provides a degree of freedom in designing the optical pickup device and can reduce noise caused by the reflection of the spot light on the optical information recording surface. Preferably, the optical pickup device satisfies the following expression. 0.64 ^ NA1 ^ 0.65 0.64 ^ NA2 ^ 0.70 0.43 ^ NA3 ^ 0.55 It is best to perform a diffraction action for the second luminous flux passing through the third region. The diffraction action provides a degree of freedom in designing the optical pickup device and can reduce noise caused by the reflection of the spot light on the optical information recording surface. Another diffractive optical element of the optical pickup device according to the present invention is an optical pickup device for recording and / or reproducing information on an information recording surface of an optical disc having a protective substrate with a predetermined thickness, including: a first -27- 200532679 (25) a light source emitting a first light flux having a wavelength λ 1 for recording and / or reproducing information on an optical recording surface of a first optical disc having a protective substrate with a thickness of 11; a second light source, Emitting a second light flux having a wavelength λ2 (λ2 > λΐ) to record and / or reproduce information on an optical recording surface of a second optical disc having a protective substrate having a thickness t2 (t2-tl); a second light source, emitting a wavelength The third luminous flux of λ2 (λ3 > A2) records and / or reproduces information on the optical recording surface of the third optical disc p with a protective substrate having a thickness t3 (t3 >t2); a diffractive optical element to emit the first To a third light flux; and an objective optical system having a light converging element for converging the first to third light fluxes passing through the diffractive optical element to the first to third optical discs individually. The diffractive optical element includes a first region in which the center is received on the optical axis; a second region formed in a ring shape and constructed along the perpendicular to the optical axis outside the first region; a third region to The ring shape is formed outside the second area along the direction perpendicular to the optical axis; and the _th area, the second area, and the third area have optical characteristics different from each other φ for the first to third light fluxes. The three areas do not form the second light flux that passes through the third area and the first to third light fluxes of the light converging element are convergent light spots on the information recording surface of the corresponding optical disc. Preferably, the optical pickup device satisfies the following expression. 370nm ^ λ 1 ^ 44Onm 620nm ^ λ 2 ^ 690nm 750nm ^ λ 820nm The second region contains a first diffraction structure with a plurality of annular regions whose center is on the optical axis and provides a diffraction action to the First to -28- 200532679 (26) One of the luminous fluxes, each of the plurality of truncated regions of the first diffraction structure includes a step structure including a predetermined number of discontinuous portions and step portions The third region includes a second diffractive structure having a plurality of annular regions, the center of which is on the optical axis, providing a diffractive action to one of the first to third luminous fluxes, and having a first and a third diffractive structure. Structures with different projection structures, each of the plurality of annular regions of the second diffraction structure includes a step structure, the step structure includes a predetermined number of discontinuous portions and step portions, and the third region does not The second luminous flux and the third luminous flux among the first to third luminous fluxes passing through the third region and the light converging element are formed as convergent light spots on the information recording surfaces of the second and third optical discs. Preferably, the optical pickup device satisfies the following expression. 3 70nm ^ λ 1 ^ 440nm 620nm ^ λ 690nm 750nm ^ λ 820nm The first region contains the first diffraction structure and has a plurality of annular regions, which are on the optical axis and provide a diffraction action on the first to the first. Among the three luminous fluxes, one of the plurality of annular regions of the first diffraction structure includes a step structure, the step structure includes a predetermined number of discontinuous portions and step portions, and the second region includes a first A two-diffraction structure with a plurality of annular regions, the center of which is on the optical axis, provides a diffractive action on one of the first to third luminous fluxes, and has a structure different from the first diffraction structure '-29 -200532679 (27) each of the plurality of annular regions of the second diffraction structure includes a step structure 'the step structure includes a predetermined number of discontinuous portions and step portions' and the third region is not The second light flux and the third light flux among the first to third light fluxes passing through the third area and the light converging element are formed as convergent light spots on the information recording surfaces of the second and third optical discs. Preferably, the diffractive optical element is composed of an optical element, and an optical surface of the optical element includes a second region and a third region. _ Preferably, the diffractive optical element is composed of an optical element, and an optical surface of the element includes a second region, and the opposite optical surface includes a third region. Preferably, the optical pickup device satisfies the following expression. 0.65 ^ NA1 ^ 0.70 0.60 ^ NA2 ^ 0.63 0.43 ^ NA3 ^ 0.55 where NAI, NA2, and NA3 are the numerical apertures of the first, second, and third optical discs used for recording or φ reproduction, respectively. Preferably, the optical pickup device satisfies the following expression. 0.64 ^ NA1 ^ 0.65 0.64 ^ NA2 ^ 0.70 0.43 ^ NA3 ^ 0.55 where NAI, NA2, and NA3 are the numerical apertures of the first, second, and third optical discs used for recording or reproduction, respectively. In the present invention, "giving a diffraction action" or "providing a diffraction action" is equivalent to a case where the light flux passing through the diffraction structure satisfies the condition of Gragg -30- 200532679 (28), that is, the The diffractive structure generates light having a specific diffraction order number according to the wavelength of the incident light flux, and its absolute 値 is diffractive efficiency of 0 or more compared to other diffraction order numbers (including 0), and Especially light with a diffraction efficiency of 25% or higher. Further, in the present specification, a "light spot" is an incident light flux having a number of apertures that is not less than a preset number of light spots necessary for recording or reproduction on the information recording surface. For example, in the case of recording or reproducing CD, the spot light is to generate an incident luminous flux corresponding to a numerical aperture (0-0.43 or 0.45) higher than the numerical aperture necessary for recording or reproducing CD. Light with a wavefront chromatic aberration of 0.07A3rms. "Resulting spot light" refers to a light flux that provides an incident light flux characteristic when the incident light is incident on the information recording surface so that the incident light flux has the above-mentioned chromatic aberration. In this specification, "substantially no phase difference" or "providing substantially no phase difference" means that the phase shift caused by the staircase structure of the diffraction structure φ is within ± 0.2 7Γ through the light flux of the diffraction structure. within. The present invention can provide an optical pickup device having an optical element capable of performing appropriate aperture adjustment on three types of optical discs including a high-density optical disc using a DVD laser light source 'DVD and a CD. The implementation of the preferred embodiment of the present invention can be explained as follows with reference to the drawings. (First Embodiment) FIG. 1 is a diagram showing the proper execution of any one of the high-density disc HD (first disc), DVD (second disc), and CD (third disc) -31-200532679 (29) A structural diagram of the structure of the first optical pickup device PU 1 for recording and reproduction. In the optical specifications of the high-density optical disc HD, the first wavelength λ 1 is 408 nm, and the thickness of the first protection layer tl is 0.85. In the optical specifications of the DVD, the second wavelength is 65 8 nm. The thickness t2 of the second protective layer PL2 is 0.6 mm and the numerical aperture NA2 is 0.60. In the optical specifications of the CD, the third wavelength λ 3 is 7 8 5 nm, and the thickness t3 of the third protective layer PL3 p is The diameter is 1.2 mm and the NA3 series is 0.45. The individual recording densities (P1 to P3) of the first to third discs satisfy p3 < p2 < p1, and in the objective optical system OBJ which performs recording and / or reproduction of information on the first to third discs individually The magnifications (the first magnification M1 to the third magnification M3) satisfy M1 = M2 = M3 = 0. Meanwhile, the wavelength, the thickness of the protective layer, the aperture diameter, the recording density, and the magnification are not limited to those described above. The optical pickup PU 1 essentially consists of the following: an ultraviolet semiconductor laser LD1 (first light source) that emits a laser light flux (first luminous flux) with a wavelength of 40 8nm when performing recording and reproduction of information of φ high-density optical disc HD, When performing information recording and reproduction of DVD information, the red semiconductor laser LD2, which emits a laser light flux (second light flux) with a wavelength of 65 8nm, is the first one to receive the reflected light flux from the information recording surface RL1 of the high-density disc HD. A photodetector P Η 1 and the recording and reproduction of CD information emits an infrared semiconductor laser LD3 (third light source) with a laser light flux (third light flux) with a wavelength of 785 nm, and receives information records from a DVD The surface RL2 or the reflected light from the information recording surface of the CD 32- 200532679 (30) The second light detector PD2 of the luminous flux, which has the diffractive optical element L 1 on the morphological surface of the diffraction structure and the two sides Aspheric surface has objective lens optical system of element L2 which functions to converge the laser light flux transmitted through optical element L1 on information recording surfaces RL1, RL2 and RL3, respectively. OBJ, dual-axis actuator AC1, high-density optical disc HD number aperture HA aperture STO, first polarized beam splitter BS1 to BS4, first to first | lenses C0L1 to C0L3, beam expander EXP , The first sensing SEN1 and the second sensing lens SEN2. In this optical pickup device PU1, when recording and reproduction is performed on a high-density optical disc, an ultraviolet semiconductor laser LD1 is irradiated (as shown by a solid line as its light path). The light flux emitted from the ultraviolet semiconductor laser is converted into a parallel light flux by the first alignment lens C0L1 and transmitted through the first polarized beam splitter BS1, and then transmitted through the expander EXP and the second polarized beam splitter BS2. The transmission 0 aperture ST0 is adjusted by the luminous flux diameter, and is spotted by the objective optical system OBJ on the information recording surface RL1 through the first protection. This objective optical system OBJ performs focusing and tracking with a two-axis actuator AC1 built around the objective optical system '. The reflected light flux from the information pit on the information recording surface RL1 passes through the objective optical system OBJ, the second beam splitter BS2, and the beam expander EXP again, and is then reflected by the first beam splitter BS1, after which Astigmatism by the sensing lens SEN 1), and the light receiving table at the first photodetector PD 1 is formed by the light lens having converged by the diffracted light corresponding to the amount of LD1 to the fourth to third alignment lens HD shown in Figure 1 Later, the astigmatism of the polarized light is modulated by the light beam and then by the layer PL1 to form a unified OBJ (face-33-200532679 (31) is converted by the third alignment lens COL3 into a convergent luminous flux. Therefore It can read the recorded information on the high-density optical disc HD by using the output signal of the first photodetector PD1. When the recording and reproduction of the information of the DVD is performed, the red semiconductor laser LD2 is first irradiated. The divergent light flux from the red semiconductor laser LD2 passes through the third polarized beam splitter and the fourth polarized beam splitter (the light path is shown in the dashed line in Figure 1), and is converged by the second alignment lens | COL2 Is a parallel light flux. After that, the light flux is reflected by the second beam splitter BS2 and forms a light spot on the information recording surface RL2 via the second protective layer PL2 by the objective optical system OBJ. The objective optical system OBJ is constructed by The biaxial actuator AC 1 around the objective optical system OBJ performs focusing and tracking. The reflected light modulated by the information pit on the information recording surface RL2 passes through the objective optical system OBJ again and is reflected at the second pole. The beam splitter BS2 is converted, and the rear mirror is converted into a convergent light flux by the second alignment lens C0L2, and is reflected by the fourth polarized φ beam splitter BS4, and then astigmatized by the second induction lens SEN2 and converged. On the light receiving surface of the second photodetector PD2. Therefore, it can use the output signal of the second photodetector PD2 to read the information recorded on the DVD. When the recording and reproduction of the information of the CD is performed, The infrared semiconductor laser LD3 is irradiated. The divergent light flux emitted from the infrared semiconductor laser LD3 is reflected by the third polarized beam splitter, and passes through the fourth polarized beam splitter ( Figure 1 shows its light path), and the second alignment lens C0L2 converges into a parallel light flux. After that, the light flux is reflected by the second beam -34- 200532679 (32) divider BS2, and passes through the third protection A layer PL3 is formed on the information recording surface RL3 and a light spot is formed by the objective optical system OBJ. The objective optical system 0BJT performs focusing and tracking with a two-axis actuator AC1 constructed around the objective optical system OBJ. The reflected light flux modulated by the information pit on the recording surface RL3 passes through the objective optical system OBJ again, and is reflected by the second polarized beam splitter BS2, and then converted by the second alignment lens C0L2 into a convergent light flux, and is converted by the first The four-lens lens B COL2 reflects and is then astigmatized by the second sensor lens SEN2 and converges on the light receiving surface of the second photodetector PD2. Therefore, it can read the information recorded on the CD by using the output signal of the second photodetector PD2. Next, the structure of the objective optical system OBJ is explained. The diffractive optical element L1 is a plastic lens, and its diffractive index nd for the d line is 1.5 09 1, the number of Abbe yd is 56.5, and the diffractive index of 11 is 1.5064, and the diffraction of λ 3 is The rate is 1.5 05 0. The light converging element L2 is a plastic lens φ, and its diffraction rate for the d-line is 1.5 43 5 and the number of Abbe ν d is 5 6 · 3. Meanwhile, although the drawing is omitted, the optical function portion (the area for diffractive optical element L 1 through which the first light flux passes and for the light converging element L 2) has a flange portion around it, each Each of the flange portions is individually combined with each optical function portion, and the optical function portion is firmly bonded when one portion of each flange portion is connected to the other flange portion. At the same time, when the diffractive optical element L1 and the light converging element L2 are firmly combined, it can also be combined via a lens frame which is another 'member. -35- 200532679 (33) The optical surface (incident surface) of the diffractive optical element L 1 that is closer to the semiconductor laser light source is divided into concentric circular forms that seal each region having NA 3 centered on the optical axis The first area AREA1 including the optical axis and the optical axis L is a concentric circular form corresponding to each area having a center in NA2 on the optical axis and is formed on the side of the first area AREA 1 and is provided with a first The second area AREA1 of the diffractive structure 10 and the third area AREA3 of the concentric circular shape corresponding to the area within NA 1 and formed outside the first area g AREA and equipped with the second diffractive structure 20 Meanwhile, when the aperture diameter of the BD or HD DVD is larger than the aperture diameter of the DVD, it satisfies fl X ΝΑΙ > f2 χ NA2 > f3 x NA3, and it is preferable to give a diffraction action to the second luminous flux passing through the third region. In the above expressions, each f 1, f2, and f3 represents the focal length of the objective optical element for each φ wavelength, and each NA, NA2, and NA3 represents necessary for recording or reproducing each optical disc. Number of apertures. The opening apertures NAI, NA2, and NA3 of the above structure satisfy, for example: 0.75 ^ NA1 ^ 0.90 0.60 ^ NA2 ^ 0.70 0.43 ^ NA3 ^ 0.55. Furthermore, the structure having the opening apertures NAI, NA2, and NA3 -36- 200532679 (34) satisfies the following Expression. 0.65 ^ NA1 ^ 0.70 0.60 ^ NA2 ^ 0.63 0.43 ^ NA3 ^ 0.55 When the aperture diameter of a DVD is larger than the aperture diameter of a BD or HD DVD, f2 X NA2 > fl X ΝΑΙ > f3 χ NA3 p The first luminous flux in the third region performs diffraction. In the above expressions, each of Π, f2, and f3 represents the focal wavelength of the objective optical element for each wavelength, and each NA, NA2, and NA3 represents the The number of paths necessary to record and reproduce each disc. The opening apertures NAI, NA2, and NA3 of the above structure satisfy the expression. • 0.64 ^ ΝΑ1 ^ 0.65 0.64 ^ ΝΑ2 ^ 0.70 0.43 ^ ΝΑ3 ^ 0.55 For the first diffractive structure 10 and the second diffractive structure 2 0, it has a ring region 13 formed by periodically forming a concentric circle. Structure, each concentric circle has a center on the optical axis L, and has a step structure (step structure) formed by a predetermined amount of step portions 11 and discontinuous portions 12 (see FIG. 3 (a) and FIG. As shown in 3 (b)) (hereinafter, this diffractive structure is called "diffraction structure HOE"), a ring-shaped area is directly made by each ring and each step is wound under the hole -37- 15 200532679 (35) The structure is structured and has the form of a partial diagram including a zigzag-shaped optical axis L (as shown in Figs. 4 (a) and 4 (b)), and its direction system and effective diameter direction by the step portion 16 A structure composed of a plurality of annular regions 17 that are the same and have the form of a partial diagram including a stepped optical axis (as shown in FIGS. 5 (a) and 5 (b)). In the meantime, each of the systems of Figs. 3 (a) to 5 (b) shows the structure of each diffraction structure formed on a plane and each diffraction structure, and each diffraction structure can also be formed on a spherical surface. On or aspheric. In this embodiment, the first diffractive structure 10 formed on the second area AREA2 and the second diffractive structure 20 formed on the third area AREA2 may be composed of the diffractive structure HOE (see FIG. 3 (a ) And 3 (b)) 〇 In particular, by establishing the level differences d 1 and d2, the number of discontinuous parts M1 and M2, to satisfy 4.8 X d ^ dl ^ 5.2 xd, 2 ^ M1 ^ 4 1.9 xd ^ d2 ^ 2.1 xd? 4 ^ M2 ^ 6 and each Ml and M2 is 2. When nl represents the diffraction rate of the diffractive optical element L 1 of wavelength λΐ, d 1 represents the optical axis in the first diffraction structure. The depth of the step portion, M 1 represents the number of discontinuous portions (integer), d2 represents the depth of the step portion in the optical axis direction in the second diffraction structure 20, and M2 represents the number of discontinuous portions (integer) ) And d = Al / (nl-l). When the first luminous flux having a wavelength λ 1 and the second luminous flux having a wavelength λ 2 enter the first diffraction structure, the step portion in the direction of the optical axis -38-
200532679 (36) 分之深度d 1以及非連續部分之數目M 1經鍵歷史 上述範圍時,其產生一'光學路徑差異’其貫貞爲 階梯結構之間的λ 1 (微米)以及λ 2 (微米)之 數,而第一光通量以及第二光通量兩者皆不賓質 差異。因此,光通量被傳送而無繞射而進入光 L2 (其稱爲” 〇次繞射光”)。 爲了記錄與再生CD之資訊’而使用在第三为 經過第~'區域AREA1之光通量。因此’通過提供 射結構1 〇之第二區域AREA2之第三光通量係爲1 光。因此,該繞射動作係由第一繞射結構1 〇所結 得具有通過第一繞射結構1 〇之第三光通量不在寶 表面RL3上收斂,而藉此,在具有所產生不同 order )之繞射光之中具有相對高繞射效能(例如 更多)之繞射光成爲光斑。同時,有某些情形,多 射光(例如+ 1因次繞射光以及-1因次繞射光)( 約爲4 0 % )。此時,具有高繞射效能或是不想要右 資訊gB錄表面RL3上被收斂之繞射光之所有多數個 成爲光斑。 進一步,當具有波長λ 1之第一光通量進入第 結構20 ’其中在光軸方向之步階部分之深度以 續部分之數目M2經鍵歷史得其滿足上述範圍時, 一光學路徑差異,其係爲在相鄰階梯結構之間之· (微米)之倍數,而該第一光通量實質不給予相位 因此,光通量被傳送而0因次之繞射光到達光收 其滿足 於相鄰 數之倍 予相位 斂元件 通量中 第一繞 需要的 予,使 訊記錄 因次( 30%或 數個繞 例如大 CD之 繞射光 二繞射 及非連 其產生 ,數λ 1 差異。 斂元件 •39- 200532679 (37) L2。 進一步,爲了記錄與再生DVD以及CD之資訊,具 通過第三區域AREA3 (其處提供第二繞射結構2〇 )之 二光通量以及第三光通量成爲不需要的光。因此,藉由 二繞射結構2 0而得到繞射動作,使得通過第二繞射結 20之第二光通量以及第三光通量不個別在DVD以及 之資訊記錄表面RL2以及RL3上收斂,而藉此,在繞 | 光線之間距有相對高繞射效能(例如3 0 %或是更多)而 有不同所產生因次之繞射光線成爲光斑。同時,在某些 形係多數個繞射光(例如+ 1因此繞射光以及-1因次繞 光)具有相同繞射效能(例如大約爲40% )。此時,具 高繞射效能之所有繞射光或是不要在DVD與CD之資訊 錄表面RL2與RL3上被收斂之繞射光成爲光斑。 同時,第一至第三光通量不在第一區域AREA 1繞 ,並通過之。 φ 之後,通過第一區域AREA 1之該第一至第三光通 通過繞射光學元件L1,之後,在光收斂元件L2中接受 射動作,而個別在規定之光碟之資訊記錄表面上形成被 斂之光點。 進一步,具有通過第二區域AREA2之第一與第二 通量通過繞射光學元件L1,之後,在光收斂元件L2中 受繞射動作,而個別在規定光碟之資訊記錄表面上形成 收斂之光斑。 進一步,通過第三區域ARE A 3之第一光通量通過 有 第 第 構 CD 射 具 情 射 有 記 射 量 繞 收 光 接 經 繞 -40- 200532679 (38) 射光學元件L 1,之後在光收斂元件L2中接受繞射動作, 而在高密度光碟之資訊記錄表面上形成經收斂之光斑。 在繞射光學元件L 1之本實施例中,在半導體雷射光 源上之光學表面 S 1 (入射表面)係分割爲第一區域 ARE A1至第三區域ARE A3,而第一繞射結構10係形成在 第二區域AREA2,而第二繞射結構20係形成在第三區域 AREA3。然而,其可分隔入射表面 S1成爲第一區域 | AREA1以及第二區域AREA2,並在第二區域AREA2形成 第一繞射結構10並在光學表面S2上形成第三區域ARE A 3 (產生表面)並在第三區域AREA3上形成繞射結構20 ( 如圖6所示),但是不限制於此。 當個別在不同光學表面上提供第一繞射結構1 〇以及 第二繞射結構20時,其最好使得在第一繞射結構1 0之光 軸方向之步階部分之深度d 1,非連續部分之數目Μ 1 (.整 數),在第二繞射結構20之光軸方向之步階部分之深度 φ d2,以及非連續部分之數値M2 (整數)係在以下範圍: 4.8 X d‘ dl S 5.2 X d,2$ Ml S 4 0.9xd^d2^1.1xd?M2=2 如本實施例所示,藉由形成第一繞射結構l 〇於其上 之第二區域AREA2以及將第二繞射結構20形成在繞射光 學元件L1之相同光學表面(例如,入射表面)之第三區 域ARE A3,其可分別提供用以校正由於光通量之間的波長 不同所造成之色像差(chromatic aberration)之結構以及 用以改變由於溫度改變於所造成之球形像差之結構(在突 -41 - 200532679 (39) 出體(emergence)之表面)。 在本實施例所示之光學拾取裝置PU1中,該第一繞射 結構10係形成在對應於NA2之第二區域AREA2,之後第 二繞射結構2 0係位於對應於N A 1內側之區域,而通過第 一繞射結構1 0以及第二繞射結構20之第三光通量係成爲 光斑構件,其構成在CD之資訊記錄表面形成光斑,而使 得物鏡光學元件OBJ具有相對於NA3之孔徑調節功能。 B 進一步,通過第二繞射結構20之第二光通量成爲光 斑構件,其造成在DVD之資訊記錄表面上形成光點,其 使得物鏡光學元件OBJ具有相對於NA2之孔徑調節功能 〇 因此,在具有相容於三種類之光碟之光學拾取裝置中 ,其不需要使用分光器或是液晶相位控制元件爲孔徑調節 機構,因此其可維持光學拾取裝置之製造成本之下降。 φ (第二實施例) 在本實施例之光學拾取裝置之結構係實質等於第一實 施例之結構,除了以下解釋之繞射光學元件L1之結構。 繞射光學元件L 1之入射表面S 1係分割爲以同心圓形 式之第一區域AREA1,每個同心圓具有其中心在對應於 NA3之區域之光軸上,並包括該光軸以及具有第一繞射結 構1 0,一以同心圓形式之第二區域AREA2,每個其中心 係在對應於NA2內之區域之光軸L上,並形成在第一區 域AREA1之外側區域並具有第二繞射結構20,以及以同 -42- 200532679 (40) 心圓形式之第三區域 AREA3,每個其中心係在對應於 NA1內之區域的光軸L上,並形成在第一區域AREA 1之 外側區域上。 該第二區域AREA2進一步分割爲以同心圓形式之2A 區域,每個同心圓之中心在光軸L上並較接近遠離於光軸 之光軸L以及2B區域,以及形成在2A區域之第二繞射 結構20之行是以及形成在設計爲相互不同之2B區域上之 _ 第二繞射結構20。 特別是,如在圖3 ( a )以及圖3 ( b )所示結構之繞 射結構HOE係以第一繞射結構1 0以及第二繞射結構20 之每個而形成,而在當nl表示波長λΐ之繞射光學元件 L 1之繞射率,d 1表示第一繞射結構1 0中之光軸中之步階 部分之深度,Μ 1 (整數)表示非連續部分之數目,d2表 示在第二繞射結構20中之光軸方向上之步階部分之深度 ,而M2(整數)表示非連續部分之數目,位準差異dl與 φ d2以及非連續部分Μ 1與M2之數目經建立之情況下而成 立又1/ ( nl-l ),使得滿足 1.9 X d^dl^2.1 X d? 4^M1^6 0.9 x d2^ 1.1 x d, M2^ 5 而Ml爲5,在2A區域之M2爲3,而在2B區域之 M2爲5,如圖7所示。 當具有波長λΐ之第一光通量以及具有波長λ3之第 三光通量進入第一繞射結構1 0,其中在光軸方向中之步階 部分之深度d1以及非連續部分之數目Μ1經建立,使得其 -43- (41) (41)200532679 可滿足上述範圍,其產生一光學路徑差異,其係實質爲在 相鄰階梯結構之間之λ 1 (微米)以及λ 3 (微米)之整數 的倍數,而第一光通量以及第三光通量兩者皆非有相位差 異。因此,光通量被傳送而無繞射之零因次繞射光而到達 光收斂元件L2。 另一方面,當具有波長λ2之第二光通量進入第一繞 射結構1 〇,第二光通量由介於相鄰階梯結構所產生之光學 路徑差異而繞射,而具有在第二光通量之間之較高繞射效 能之繞射光係收斂在DVD之資訊記錄表面上。 當具有波長λ 1之第一光通量進入至第二繞射結構20 時,其中在光軸方向中之步階部分之深度d2以及非連續 部分之數目 M2經建立,使得其可滿足上述範圍,其產生 一光學路徑差異,其係實質爲在λ 1 (微米)之整數之倍 數,而第一光通量實質具有相位差異。因此,光通量被傳 送而以零因次繞射光而到達光收斂元件L2。 另一方面,當具有波長λ2之第二光通量以及具有波 長λ 3之第三光通量繫入至第二繞射結構20時,第二光通 量以及第三光通量係由產生在相鄰階梯結構之間之光學路 徑差異所繞射,而在第二光通量之間之最高繞射效能之繞 射光被收斂在DVD之資訊記錄表面RL上,而第三光通量 之繞射光成爲光斑,使得其不被收斂在C D之資訊記錄表 面上。 同時,在通過第三區域ARE A 3之在第一至第三光通 量中之第二光通量以及第三光通量係藉由光收斂元件L2 -44 - 200532679 (42) 而受到繞射動作,藉此而變成光斑使得其兩者不個別收斂 在所規疋之光碟上。 資後,通過第一區域AREA 1之第一光通量至第三光 通量通過繞射光學元件L1,而之後在光收斂元件L2中得 到繞射動作,而個別在所規定光碟之資訊記錄表面上而形 成收斂光點。 進一步,通過第二區域ARE A2之第一光通量以及第 p 二光通量通過繞射光學元件L1,而之後在該光收斂元件 L2中得到收斂動作,而個別在所規定之光碟之資訊記錄 表面上形成收斂之光點。 進一步’通過第二區域 AREA3之第一*光通量通過繞 射光學元件L i,而之後在光收斂元件L2中得到繞射動作 ’而形成收斂光點於高密度光碟HD之資訊記錄表面RL 1 〇 在本實施例所示之光學拾取裝置中,該第一繞射結構 φ 10係形成在對應於NA3之第一區域AREA 1之上,而第二 繞射結構20係爲在對應於NA2之內側之區域上,而通過 第一繞射結構1 0以及第二繞射結構20之第三光通量成爲 一光斑構件,其不會造成在CD之資訊記錄表面RL3上光 點之形成,其可使物鏡光學元件OBJ具有相對於NA3之 孔徑調節功能。 進一步,通過第三區域ARE A3之第二光通量成爲一 光斑構件,其不會造成在DVD之資訊記錄表面RL2上形 成光點,其使得物鏡光學元件OBJ具有相對於NA2之孔 -45- 200532679 (43) 徑調節功能。 因此,在具有相容於三種光碟之光學拾取裝置中 不需要使用分光濾波器或是液晶相位控制元件’而作 徑調節機構,而因此可使得光學拾取裝置之製造成本 〇 第二區域AREA2分割爲包括2A區域以及2B區 兩個區域,且形成在2A區域之第二繞射結構20之形 p 與形成在2 B區域之第二繞射結構2 0之形式設計爲相 同。因此,來自第一區域AREA 1至2A區域之第三光 之縱向球形像差成爲不連續,因此,其可對於第二光 器PD2之第三光通量之反射光之偵測之改良得到改進 同時,2A區域亦可設置在突出體S2側之表面上 儘管如此,來自第一區域AREA 1至2A區域之第三光 之縱向球形像差爲不連續,而其可對於第二光偵測器 之第三光通量之反射光之偵測之改良得到改進。 φ 同時,光學拾取裝置之結構並不限於圖1所示者 其可自由修改爲如圖8所示之結構。 圖8所示之光學拾取裝置PU2係由以下構成:高 光碟HD與DVD之雷射模組LM1 (由以下構成:第 射出點EP 1 (第一光源),其在執行記錄與再生高密 碟時而射出具有波長408nm之雷射光通量(第一光通 ,第二光射出點EP2 (第二光源),其在執行DVD 錄與再生資訊時射出具有波長爲6 5 8 nm之雷射光通量 二光通量),第一光接收部分D S 1,其接收來自高密 ,其 爲孔 下降 域之 式係 互不 通量 偵測 〇 ,且 通量 PD2 ,而 密度 一光 度光 釁) 之記 (第 度光 •46- 200532679 (44) 碟HD之資訊記錄表面RL 1之反射光通量,第二光接收部 分DS2,其接收來自DVD之資訊記錄表面RL2之反射光 通量,以及菱鏡),CD之模組MD1,其中在執行CD之 記錄與再生資訊時射出具有波長爲7 8 5nm之雷射光通量( 第三光通量)的紅外線半導體雷射光LD3 (第三光源)以 及光偵測器PD3係堅固結合,物鏡光學系統OBJ係由以 下構成:將繞射結構作爲相位結構而形成在光學表面上之 p 之像差校正元件L 1以及具有非球形表面於其兩側之光收 斂元件L2而具有將傳送經過在資訊紀錄表面RL1,RL2 與RL3之每個上之雷射光通量予以收斂之功能,雙軸致能 器AC1,單軸致能器AC2,對應於高密度光碟HD之數値 孔徑NA1之隔板STO,極化光束分隔器BS,對準透鏡 C0L,耦合透鏡CUL以及光束成形元件SH。 在上述本實施例中,繞射光學元件係至爲構成物鏡光 學元件之部分。然而,繞射光學元件亦可建構爲與物鏡光 φ 學元件分離,而不限於上述者。 進一步,在上述本實施例中,其可最好考慮爲:繞射 光學元件L1之光學表面(入射表面S1以及突出物表面 S 2 )係爲平面形式,而在光軸方向之步階部分之深度d 1 以及d2係在係在上述犯爲之內(當第一繞射結構1 〇以及 第二繞射結構20係形成在平面形式之光學表面上。然而 ,其亦可形成第一繞射結構1 0以及第二繞射結構20於球 形表面或是非球形表面之光學表面上(如上述),且當繞 射光學元件L1之光學表面係與入射光以所規定角度或是 -47- 200532679 (45) 更多(例如’ 1 〇度或更多)而傾斜時,其可經設計使得進 入弟一繞射結構1 〇以及% 一繞射結構2 0之光通量之光學 路徑長度係在關於dl與d2之上述範圍之內。 例子 接著,以下解釋例子1。 在本例子中,圖1所示之光學拾取裝置係使用爲將圖 6所示之繞射光學元件之入射表面(第一表面)分割爲第 一區域 AREA1 (與光軸之高度h係滿足 0.00mm S h $ 1.27mm)以及第二區域 ARE A2(1.27mm$h),而第一繞 射結構係形成在第二區域 AREA2,第三區域 AREA3 ( 1 .6 3 5 mmS h )係爲在繞射光學單元之突出物表面(第二表 面〇,而第二繞射結構係形成在第三區域ARE A3。同時’ 第一區域AREA1係爲繞射介面。 關於每個第一繞射結構以及第二繞射結構’其形成繞 射結構HOE,其中係週期的形成同心圓形式之環狀區’每 個其中心係在光軸上,其內具有由以規定量之步階部分以 及非連續部分所構成之階梯結構(如圖3 ( a )以及3 ( b )所示)。 -48- 200532679 46200532679 (36) Depth d 1 and the number of discontinuous parts M 1 When the above range of bond history is generated, it produces an 'optical path difference' whose sequence is λ 1 (microns) and λ 2 ( Micrometers), and the first luminous flux and the second luminous flux are not different. Therefore, the light flux is transmitted without diffraction and enters the light L2 (which is referred to as "zero-order diffraction light"). In order to record and reproduce the information of the CD ', the light flux passing through the third area AREA1 is used. Therefore, the third luminous flux of the second area AREA2 provided by the radiation structure 10 is 1 light. Therefore, the diffraction action is obtained by the first diffraction structure 10, and the third luminous flux passing through the first diffraction structure 10 does not converge on the treasure surface RL3, and thereby, it has a different order generated) The diffracted light having a relatively high diffraction efficiency (for example, more) among the diffracted lights becomes a light spot. At the same time, in some cases, multiple diffracted light (for example, + 1-dimensional diffracted light and -1-dimensional diffracted light) (approximately 40%). At this time, all of the majority of the diffracted diffracted light on the right information gB recording surface RL3 becomes a light spot with high diffraction efficiency. Further, when the first luminous flux having a wavelength λ 1 enters the structure 20 ′, where the depth of the step portion in the direction of the optical axis and the number of subsequent portions M 2 pass through the bond history to satisfy the above range, an optical path difference, which is Is a multiple of (micron) between adjacent step structures, and the first luminous flux does not substantially give a phase. Therefore, the luminous flux is transmitted and the zero-order diffracted light reaches the light and it is satisfied that it is a multiple of the adjacent number to the phase. Concentration of the first winding in the flux of the element, which makes the recording of factors (30% or several diffractions such as large CDs, diffracted light, second diffraction and non-continuous generation, the number λ 1 difference. Convergence element • 39- 200532679 (37) L2. Furthermore, in order to record and reproduce information on DVDs and CDs, the second luminous flux and the third luminous flux passing through the third area AREA3 (where the second diffraction structure 20 is provided) become unnecessary light. Therefore, The diffraction action is obtained by the second diffraction structure 20, so that the second light flux and the third light flux passing through the second diffraction junction 20 do not individually converge on the DVD and the information recording surfaces RL2 and RL3, but borrow Therefore, there is a relatively high diffraction efficiency (such as 30% or more) between the diffracted rays, and the resulting diffracted rays become spots. At the same time, in some forms, most of the diffracted rays ( For example, +1 and therefore diffracted light and -1 factor diffracted light have the same diffractive performance (for example, about 40%). At this time, all diffracted light with high diffractive performance or not on the information recording surface of DVD and CD The converged diffracted lights on RL2 and RL3 become light spots. At the same time, the first to third light fluxes do not circulate through the first area AREA 1 and pass through them. Φ, then pass the first to third light fluxes of the first area AREA 1 After passing through the diffractive optical element L1, the light converging element L2 is then subjected to the radiating action, and individually converged light spots are formed on the information recording surface of a prescribed optical disc. Further, the first and the first passing through the second area AREA2 are provided. The two fluxes pass through the diffractive optical element L1, and thereafter, are subjected to the diffractive action in the light converging element L2, and individually form a convergent light spot on the information recording surface of the prescribed optical disc. Further, the first area passing through the third area ARE A 3 Luminous flux After having the first structure, the CD shooter has a recorded amount of winding light, and then passes through -40-200532679 (38) to irradiate the optical element L1, and then receives the diffraction action in the light converging element L2, and in the high-density optical disc A convergent light spot is formed on the information recording surface. In this embodiment of the diffractive optical element L 1, the optical surface S 1 (incident surface) on the semiconductor laser light source is divided into a first area ARE A1 to a third The area AREA A3 is formed, and the first diffraction structure 10 is formed in the second area AREA2, and the second diffraction structure 20 is formed in the third area AREA3. However, it can separate the incident surface S1 into a first area | AREA1 and a second area AREA2, and form a first diffraction structure 10 in the second area AREA2 and a third area ARE A 3 on the optical surface S2 (producing surface) A diffraction structure 20 is formed on the third area AREA3 (as shown in FIG. 6), but it is not limited thereto. When the first diffractive structure 10 and the second diffractive structure 20 are separately provided on different optical surfaces, it is preferable that the depth d 1 in the step portion of the optical axis direction of the first diffractive structure 10 is not The number of consecutive parts M 1 (. Integer), the depth φ d2 of the step part in the optical axis direction of the second diffraction structure 20, and the number of discontinuous parts 部分 M2 (integer) are in the following range: 4.8 X d 'dl S 5.2 X d, 2 $ Ml S 4 0.9xd ^ d2 ^ 1.1xd? M2 = 2 As shown in this embodiment, by forming a second region AREA2 on which the first diffraction structure 10 is formed, and The second diffractive structure 20 is formed in the third area ARE A3 of the same optical surface (for example, the incident surface) of the diffractive optical element L1, which can provide corrections for chromatic aberrations caused by different wavelengths between the light fluxes, respectively. The structure of chromatic aberration and the structure used to change the spherical aberration caused by temperature changes (on the surface of protrusion -41-200532679 (39)). In the optical pickup device PU1 shown in this embodiment, the first diffractive structure 10 is formed in the second area AREA2 corresponding to NA2, and the second diffractive structure 20 is located in the area corresponding to the inner side of NA1. The third luminous flux passing through the first diffraction structure 10 and the second diffraction structure 20 becomes a light spot member, which forms a light spot on the information recording surface of the CD, so that the objective optical element OBJ has an aperture adjustment function relative to NA3. . B Further, the second light flux passing through the second diffractive structure 20 becomes a light spot member, which causes a light spot to be formed on the information recording surface of the DVD, which makes the objective optical element OBJ have an aperture adjustment function with respect to NA2. In the optical pickup device compatible with the three types of optical discs, it does not require the use of a beam splitter or a liquid crystal phase control element as the aperture adjustment mechanism, so it can maintain a reduction in the manufacturing cost of the optical pickup device. ? (Second Embodiment) The structure of the optical pickup device in this embodiment is substantially the same as that of the first embodiment, except for the structure of the diffractive optical element L1 explained below. The incident surface S 1 of the diffractive optical element L 1 is divided into a first area AREA1 in the form of a concentric circle. Each concentric circle has its center on the optical axis of the area corresponding to NA3, and includes the optical axis and the first A diffractive structure 10, a second area AREA2 in the form of a concentric circle, each centered on an optical axis L corresponding to the area inside NA2, and formed in a region outside the first area AREA1 and having a second The diffractive structure 20 and the third area AREA3 in the same circle shape as -42- 200532679 (40), each centered on the optical axis L corresponding to the area within NA1 and formed in the first area AREA 1 Outside area. The second area AREA2 is further divided into 2A areas in the form of concentric circles, the center of each concentric circle is on the optical axis L and is closer to the optical axes L and 2B areas far from the optical axis, and the second area formed in the 2A area The diffractive structure 20 is a second diffractive structure 20 formed on a 2B area designed to be different from each other. In particular, the diffractive structure HOE of the structure shown in FIG. 3 (a) and FIG. 3 (b) is formed by each of the first diffractive structure 10 and the second diffractive structure 20, and when nl Represents the diffraction rate of the diffractive optical element L 1 at the wavelength λΐ, d 1 represents the depth of the step portion in the optical axis in the first diffraction structure 10, M 1 (integer) represents the number of discontinuous portions, and d 2 Represents the depth of the step portion in the direction of the optical axis in the second diffraction structure 20, and M2 (integer) represents the number of discontinuous portions, the level difference dl and φ d2, and the number of discontinuous portions M 1 and M2 After the establishment of the case, it is also 1 / (nl-l), so that 1.9 X d ^ dl ^ 2.1 X d? 4 ^ M1 ^ 6 0.9 x d2 ^ 1.1 xd, M2 ^ 5 and Ml is 5, in 2A The M2 in the area is 3, and the M2 in the 2B area is 5, as shown in FIG. 7. When the first luminous flux with a wavelength λΐ and the third luminous flux with a wavelength λ3 enter the first diffractive structure 10, the depth d1 of the step portion in the optical axis direction and the number of discontinuous portions M1 are established such that -43- (41) (41) 200532679 satisfies the above range, which produces an optical path difference, which is essentially a multiple of an integer of λ 1 (microns) and λ 3 (microns) between adjacent step structures, There is no phase difference between the first luminous flux and the third luminous flux. Therefore, the light flux is transmitted without diffraction, and the zero-order diffraction light reaches the light converging element L2. On the other hand, when the second luminous flux having a wavelength λ2 enters the first diffraction structure 10, the second luminous flux is diffracted by an optical path difference between adjacent stepped structures, and has a comparison between the second luminous fluxes. Diffraction light with high diffraction efficiency converges on the information recording surface of DVD. When a first light flux having a wavelength λ 1 enters the second diffraction structure 20, the depth d2 of the step portion in the optical axis direction and the number of discontinuous portions M2 are established so that it can satisfy the above range, which An optical path difference is generated, which is substantially a multiple of an integer of λ 1 (micrometers), and the first luminous flux has a substantially phase difference. Therefore, the light flux is transmitted and reaches the light converging element L2 with zero-order diffraction light. On the other hand, when the second light flux with a wavelength λ2 and the third light flux with a wavelength λ3 are incorporated into the second diffractive structure 20, the second light flux and the third light flux are generated between adjacent stepped structures. Diffraction by the optical path difference, while the diffraction light with the highest diffraction efficiency between the second light flux is converged on the information recording surface RL of the DVD, and the diffraction light of the third light flux becomes a light spot, so that it is not converged on the CD Information on the surface. At the same time, the second luminous flux and the third luminous flux among the first to third luminous fluxes passing through the third area ARE A 3 are subjected to the diffraction action by the light converging element L2 -44-200532679 (42), whereby Become a light spot so that the two do not individually converge on the specified disc. After that, the first to third luminous fluxes passing through the first area AREA 1 pass through the diffractive optical element L1, and then the diffractive action is obtained in the light converging element L2, and are formed individually on the information recording surface of the prescribed optical disc Convergent light spot. Further, the first luminous flux and the p-th second luminous flux passing through the second area ARE A2 pass through the diffractive optical element L1, and then a convergence action is obtained in the light converging element L2, and each is formed on the information recording surface of a prescribed optical disc Convergent light spot. Further 'the first * luminous flux passing through the second area AREA3 passes through the diffractive optical element L i and then obtains a diffractive action in the light converging element L2' to form a convergent light spot on the information recording surface RL 1 of the high-density optical disc HD. In the optical pickup device shown in this embodiment, the first diffraction structure φ 10 is formed on the first area AREA 1 corresponding to NA3, and the second diffraction structure 20 is on the inside corresponding to NA2. Area, and the third luminous flux passing through the first diffraction structure 10 and the second diffraction structure 20 becomes a light spot member, which will not cause the formation of light spots on the information recording surface RL3 of the CD, which can make the objective lens The optical element OBJ has an aperture adjustment function relative to NA3. Further, the second light flux passing through the third area ARE A3 becomes a light spot member, which does not cause a light spot to be formed on the information recording surface RL2 of the DVD, which makes the objective optical element OBJ have a hole relative to NA2-45- 200532679 ( 43) diameter adjustment function. Therefore, it is not necessary to use a spectroscopic filter or a liquid crystal phase control element as the diameter adjustment mechanism in an optical pickup device compatible with three types of optical discs, and thus the manufacturing cost of the optical pickup device can be reduced. The second area AREA2 is divided into The shape p of the second diffractive structure 20 including the 2A area and the 2B area is the same as that of the second diffractive structure 20 formed in the 2B area. Therefore, the vertical spherical aberration of the third light from the first area AREA 1 to 2A area becomes discontinuous. Therefore, it can improve the improvement of the detection of the reflected light of the third light flux of the second optical device PD2. The 2A area can also be provided on the surface of the protruding body S2. However, the longitudinal spherical aberration of the third light from the AREA 1 to 2A areas of the first area is discontinuous, and it can be used for the second light detector. Improved the detection of the reflected light of the three luminous flux. φ At the same time, the structure of the optical pickup device is not limited to that shown in Fig. 1 and can be freely modified to the structure shown in Fig. 8. The optical pickup device PU2 shown in FIG. 8 is composed of a laser module LM1 of a high-definition disc HD and a DVD (consisting of: a first ejection point EP 1 (first light source), which performs recording and reproduction of a high-density disc And emit a laser light flux with a wavelength of 408nm (first light flux, second light emission point EP2 (second light source), which emits a laser light flux with a wavelength of 6 5 8 nm when performing DVD recording and reproduction information ), The first light-receiving part DS 1, which receives from high density, which is a hole descending domain, is a system of mutual flux detection 0, and the flux PD2, and the density is a photometric photo) (the first light • 46- 200532679 (44) The reflected light flux of the information recording surface RL 1 of the disc HD, the second light receiving part DS2, which receives the reflected light flux of the information recording surface RL2 of the DVD, and a diamond mirror), the module MD1 of the CD, of which When performing CD recording and reproduction information, the infrared semiconductor laser light LD3 (third light source) with a laser light flux (third light flux) with a wavelength of 7 8 5nm is emitted and the light detector PD3 is firmly combined. The objective lens optical system is O The BJ system is composed of an aberration correction element L 1 of p formed with a diffraction structure as a phase structure on an optical surface, and a light converging element L 2 having an aspherical surface on both sides thereof, and having a transmission path in an information record. The function of converging the laser light flux on each of the surfaces RL1, RL2, and RL3. The biaxial enabler AC1 and the uniaxial enabler AC2 correspond to the partition STO of the high-density optical disc HD and the aperture NA1. A beam splitter BS, an alignment lens C0L, a coupling lens CUL, and a beam shaping element SH. In this embodiment described above, the diffractive optical element is a part constituting the optical element of the objective lens. However, the diffractive optical element may be configured to be separated from the objective optical phi element, and is not limited to the above. Further, in the above-mentioned embodiment, it may be best considered that the optical surfaces (incident surface S1 and protrusion surface S 2) of the diffractive optical element L1 are in the form of a plane, and in the step portion of the optical axis direction, The depths d 1 and d 2 are within the above-mentioned crimes (when the first diffraction structure 10 and the second diffraction structure 20 are formed on the optical surface in a planar form. However, they may also form the first diffraction The structure 10 and the second diffractive structure 20 are on the optical surface of a spherical surface or an aspherical surface (as described above), and when the optical surface of the diffractive optical element L1 is at a predetermined angle with the incident light or -47- 200532679 (45) When tilted more (for example, '10 degrees or more), it can be designed so that the optical path length of the light flux entering the di-diffractive structure 10 and the di-diffractive structure 20 is about dl Within the above range of d2. Example Next, Example 1 is explained below. In this example, the optical pickup device shown in FIG. 1 is used as the incident surface (first surface) of the diffractive optical element shown in FIG. 6. Split into first area AR EA1 (the height h with the optical axis satisfies 0.00mm S h $ 1.27mm) and the second area AREA A2 (1.27mm $ h), and the first diffraction structure is formed in the second area AREA2 and the third area AREA3 ( 1.6 mm 5 h) is the protrusion surface (second surface 0) of the diffractive optical unit, and the second diffractive structure is formed in the third area ARE A3. At the same time, the first area AREA1 is diffractive With respect to each of the first diffraction structure and the second diffraction structure, 'which forms a diffraction structure HOE, in which a concentric circular ring-shaped region is formed periodically', each center of which is on the optical axis and has A step structure made up of a specified number of step parts and discontinuous parts (as shown in Figures 3 (a) and 3 (b)). -48- 200532679 46
η·8/τι"εςΓ\1·ετ/τΛ白 οπε0ς·0=ενΝ ς9·0=ζνΝ S · ΟΛνΝ sf«>« _8ε·νΜ7震卜00·3=^圓0〇〇.7心fes«51« 1丨1逛撇 繞射表面 繞射表面 非球形表面 非球形表面 ni (785nm) I 1.5111 I 1.0000 1.6002 1.0000 I 1.5704 I di (785nm) 20.64962 1.00000 0-10000 2.50000 0.51117 1.20000 ni (655nm) 1.51436 丨1.00000 I | 1.60423 | I 1.00000 I | 1.57721 I i di (655nm) 32.60744 1.00000 0.10000 | 2.50000 | 0.76461 0.60000 ! ni (407nm) | 1.52994 | | l.ooooo | | 1.62417 | | 1.00000 | | 1.61869 | di (407nm) 8 | 1.00000 | 0.10000 | 2.50000 | | 0.84612 | 0-10000 M 8 8 1.58727 一5.93291 8 8 璧}s mM ο Η (NJ 00 L〇 KD 蟶酲*N®«(I.±)搬削®*1 鹕 «I16*IP 黯+ -49- (47)200532679 表格1 - 2 繞射資料 第一表面 0.0mm<h<1.27mm 無繞射表面 1.27mm<h 光學路徑差函數之係數 B2 4.58000E+00 *每個繞射環狀區之非連續部份之 數目=2 位準差之量=5χ407/0·53ητη (具有5χ波長407nm之光學路徑 差之位準差之量) 第二表面 0.0mm<h<l .635mm 無繞射表面 1.635mm<h 光學路徑差函數之係數 B2 4.58000E+00 *每個繞射環狀區之非連續部份之 數目=2 位準差之量=4x407/0.53nm (具有2x波長407nm之光學路徑 差之位準差之量) 非球形表面資料 第三表面 非球形表面係數 κ -6.70012E-01 A4 8.07946E-03 A6 6.72041E-04 A8 -4.91558E-05 A10 3.14894E-04 A12 -9.03986E-05 A14 -7.00670E-06 A16 1.10458E-05 A18 -1.80902E-06 第四表面 非球形表面係數 κ -2.56348E+02 A4 3.05938E-02 A6 -1.26555E-03 A8 -8.74183E-03 A10 3.51990E-03 A12 -3.84247E-04 A14 -1.98538E-05 -50- 200532679 (48) 在表格1-1以及1-2中,ri表示曲率半徑,di表示第 一表面至第(i + Ι)表面之間隔’而ni表示每個表面之繞 射率。 如表格1 - 1以及1 - 2所示,在當射出自第一光源之波 長又;[爲40 7nm之情形下聚焦長度fl被設定爲2.30mm, 影像側數値孔徑N A 1係爲〇 · 8 5 ’而成像放大率m係爲〇 ,在射出自第二光源之波長爲6 5 5 nm之情形中聚焦長度 g f2被設定爲2.37mm,影像側數値孔徑NA2設定爲0.65, 而成像放大率m被設定爲-1/13.25’而在當射出自第三光 源之波長λ3爲78 5nm之情形下聚焦長度f3被設定爲 2.3 8mm,影像側數値孔徑NA3設定爲0·5,而成像放大率 m係爲-1/8.14 (在本例子中之光學拾取裝置中)。 進一步,在第一繞射結構之非連續部分之數値Μ 1爲 2,而在第二繞射結構之非連續部分之數値M2爲2。 每個的繞射光學元件之入射表面(第一表面)以及突 φ 出物表面(第二表面〇以及光收斂元件之入射表面(第Ξ 表面)以及突出物表面(第四表面)係形成爲非球形表面 ,其係由數値表示式而規定,其中表格1 - 1以及1 - 2所示 之係數係個別以數値1取代,而旋轉對稱於光軸。 (數値1 ) =—^ 及)—一+ l + Vl-(l + /c)(A/i?)2 /=0 在上述表示式中,x(h)表示在光軸方向中之軸(光 行進方向爲正),/C表示圓錐常數,而A2i表示非球形表 -51 - 200532679 (49) 面之係數。 由每個的第一繞射結構以及第二繞射結構所給予之具 有波長之每個光通量係由數値表示式所規定,其中在表格 1 _ 1以及1 - 2所示之係數係以數値2之光學路徑差函數所 取代。 (數値2 ) Φ(^) = y]B2ih /=0 在上述表示式中,B2i表示光學路徑差函數之係數。 在第一繞射結構中之光軸方向之步階部分的深度d 1 係經建立以得到等於λ 1 x5波長之光學路徑差,因此,約 等於約3波長之光學路徑差給至波長λ 2之第二光通量, 相位改變之量對於波長爲λ 1之第一光通量以及波長爲λ 2 之第二光通量係爲較小,而不產生繞射動作。只有對於波 長λ 3之第三光通量,而得到等於約0.5波長(7Γ )之相 位差,而產生繞射動作。 經建立第二繞射結構之光軸方向中之步階部分的深度 d2使得得到等於λ 1 x4之光學路徑差,因此,將約等於2 波長之光學路徑差給至第二光通量,但是,對於第一光通 量以及第三光通量,相位改變之量係較小,而不產生繞射 動作。只有對於第二光通量,得到約0.5波長(7Γ )之相 位差,而產生繞射動作。 圖9展示分別對於第一光通量(BD)、第二光通量( DVD)以及第三光通量(CD)之縱向球形像差圖。 圖9展示該縱向球形像差係對於所有第一至第三光通 200532679 (50) 量之必要數値孔徑予以控制’而縱向球形像差在自光軸起 之高度超過必要之數値孔徑之區域中係爲不連續,而物鏡 光學系統具有對於第二與第三光通量之優異孔徑調節功能 〇 接著,以下解釋例子2 ° 在本例子中,圖1所示之光學拾取裝置係使用爲將圖 7所示之繞射光學元件之入射表面(第一表面)分隔爲第 _ 一區域 AREAl(0.00mm$h<1.17mm),第 2A 區域( 1.17mm^ h< 1.44),第 2B 區域(1.44$h< 1.54mm)而 第三區域AREA3 ( 1 .54 $ h )而第一繞射結構係形成在第 一區域AREA1之上,而第二繞射結構係形成在每個的第 2A以及第2B區域上。同時,第三區域ARE A3係爲繞射 介面。進一步,繞射光學元件之每個的入射表面以及突出 物表面係爲平面表面狀。 對於每個的第一繞射結構以及第二繞射結構,其係形 φ 成繞射結構Η Ο E,其中係週期的形成同心圓形式之環狀區 ,每個其中心係在光軸上,其內具有由以規定量之步階部 分以及非連續部分所構成之階梯結構(如圖3 ( a )以及3 (b )所示)。 透鏡資料係如表格2-1以及2-2所示。 -53- Q: (51) 200532679 霍 0SSM«¥i« ^τ·8/τ丨Η曰 LOK0=s 震8PO·νη3: one S9.0=C\JVN 麵卜 ε .<Ν=^ one s.o=IVN 函οε ·ζ=^ 繞射表面 繞射表面 非球形表面 非球形表面 i ni (785nm) I 1.5111 1 1.0000 1.6002 1.0000 1.5704 di (785nm) 20.40952 1.00000 0.10000 2.50000 0.51456 1.20000 ni (655nm) | 1.51436 I 1.00000 1 1.60423 1 1.00000 1.57721 di (655nm) 8 1.00000 0,10000 2,50000 0.58350 0.60000 ni (407nm) | 1.52994 | 1.00000 1.62417 1.00000 | 1.61869 | di (407nm) 8 1.00000 0.10000 2.50000 0.84612 0.10000 -H 8 8 1.58727 一5.93291 8 8 o rH CM ro LO 醒酲*Ns*(I.i)城WH®*丨撕ffille«ip 黯您. -54- (52)200532679 表格2-2 繞射資料 第一表面 0.0mm<h<1.17mm *每個繞射環狀區之非連續部份之 光學路徑差函數之係數 數目=5 B4 -5.4454E-04 位準差之量=2x407/0.53nm B6 -6.1686E-05 (具有2x波長407nm之光學路徑 B8 -1.4718E-05 差之位準差之量) 0.17mm<h<l .44mm *每個繞射環狀區之非連續部份之 光學路徑差函數之係數 數目=3 B4 -5.4454E-04 位準差之量=lx407/0.53nm B6 -6.1686E-05 (具有1 X波長407nm之光學路徑 B8 -1.4718E-05 差之位準差之量) 1.44mm<h< 1.5mm *每個繞射環狀區之非連續部份之 光學路徑差函數之係數 數目=5 B4 -5.4454E-04 位準差之量=2x407/0.53nm B6 -6.1686E-05 (具有2x波長407nm之光學路徑 B8 -1.4718E-05 差之位準差之量) 1.54mm<h 無繞射表面 非球形表面資料 第三表面 第四表面 非球形表面係數 K -6.70012E-01 A4 8.07946E-03 A6 6.72041E-04 A8 -4.91558E-05 A10 3.14894E-04 A12 -9.03986E-05 A14 -7.00670E-06 A16 1.10458E-05 A18 -1.80902E-06 非球形表面係數 K -2.56348E+02 A4 3.05938E-02 A6 -1.26555E-03 A8 -8.74183E-03 A10 3.51990E-03 A12 -3.84247E-04 A14 -1.98538E-05 -55- 200532679 (53) 如表個2 -1以及2 -2所示,在當射出自第一光源之波 長又1爲40 7nm之情形下聚焦長度Π被設定爲2.30 mm, 影像側數値孔徑ΝΑ 1係爲〇. 8 5,而成像放大率m係爲〇 ,在射出自第二光源之波長爲6 5 5 nm之情形中聚焦長度 被設定爲2.3 7mm,影像側數値孔徑NA2設定爲0.85, 而成像放大率m被設定爲- W13.25,而在當射出自第三光 源之波長;I 3爲7 8 5 nm之情形下聚焦長度f3被設定爲 _ 2.3 8mm,影像側數値孔徑NA3設定爲0.45,而成像放大 率m係爲-1/8.14(在本例子中之光學拾取裝置中)。 進一步,在第一繞射結構之非連續部分之數値Μ 1爲 5,在第二繞射結構之間的2Α區域中之非連續部分之數値 M2爲2,而在2Β區域之非連續部分之數値M2爲5。 光收斂元件之每個的入射表面(第三表面)以及突出 物表面(第四表面)係形成爲非球形表面,該球形表面係 由一數値表示式所規定,其中在表格2-1以及2-2所示之 φ 係數係個別由數値1所取代。 由每個的第一繞射結構以及第二繞射結構所給予至具 有每個波長之每個光通量的光路徑長度係由一數値表示式 所規定,其中在表格2-1以及2-2之係數係由數値2之光 學路徑差函數所取代。 在第一繞射結構中之光軸方向中之步階部分的深度d 1 經建立使得到等於λ 2x2波長之光學路徑差異,且因此, 等於約1波長之光學路徑差異給至第三光通量,因此,相 位改變之亮對於第一光通量以及第三光通量係較小,而不 -56- 200532679 (54) 產生繞射動作。只對於第二光通量,得到等於約0.2波長 (〇·4 7Γ )之相位差異,而產生繞射動作。 在2 A區域之第二繞射結構中之光軸方向上之步階部 分的深度d2·經建立使得得到等於λ 1x1波長之光學路徑差 ,因此,第一光通量之相位保持不變,而不產生繞射動作 。對於第二光通量,得到等於約0.4波長(0.8 7Γ )之相位 差,而對於第三光通量,得到等於約0 · 5波長(7Γ )之相 | 位差,而產生繞射動作。 進一步,在2Β區域之第二繞射結構20中之光軸方向 中之步階部分的深度d2經建立以得到等於λ 1 χ2之光學路 徑差,因此,得到等於約1波長之光學路徑差,因此,第 一光通量以及第三光通量之相位保持不變,而不產生繞射 動作。對於第二光通量,得到等於約0.2波長(0.4 7Γ )之 相位差,而產生繞射動作。 圖1〇爲個別對於第一光通量(BD),第二光通量( φ DVD )以及第三光通量(CD )之縱向球形像差圖。 圖1 〇展示縱向球形像差係以對於所有第一至第三光 通量皆必要之數値孔徑所控制,而縱向球形像差係在自光 軸開始之高度超過必須的數値孔徑時之區域中而非連續, 而物鏡光學系統具有對於第二與第三光通量有優異的孔徑 調節功能。 接者’以下解釋例子3。 在本例子中,圖1所示之光學拾取裝置係使用爲將圖 11所示之繞射光學元件之入射表面(第一表面)分割爲第 -57- 200532679 (55) 一區域 AREAl(0.00mm‘h< 1.644mm),第二區域 AREA2 ( 1.644mm^ h< 1.902mm),第三區域 A RE A3 ( 1 . 9 0 2 m m ^ h ) ’而第一繞射結構1 〇係形成在第二區域 AREA2之上,而第二繞射結構20係形成在第三區域。同 時,該第一區域AREA1係爲繞射介面。 對於每個的第一繞射結構以及第二繞射結構,其形成 繞射結構HOE,其中週期的形成同心圓形式之環狀區,每 _ 個其中心係在光軸上,其內具有由以規定量之步階部分以 及非連續部分所構成之階梯結構(如圖3 ( a )以及3 ( b )所示)。 透鏡資料係如表格3 - 1以及3 -2所示。η · 8 / τι " εςΓ \ 1 · ετ / τΛ 白 οπε0ς · 0 = ενΝ ς9 · 0 = ζνΝ S · ΟΛνΝ sf «>« _8ε · νΜ7 震 卜 00 · 3 = ^ 圆 0〇〇.7 heart fes «51« 1 丨 1 Skimming diffraction surface Diffraction surface Aspheric surface Aspheric surface ni (785nm) I 1.5111 I 1.0000 1.6002 1.0000 I 1.5704 I di (785nm) 20.64962 1.00000 0-10000 2.50000 0.51117 1.20000 ni (655nm) 1.51436丨 1.00000 I | 1.60423 | I 1.00000 I | 1.57721 I i di (655nm) 32.60744 1.00000 0.10000 | 2.50000 | 0.76461 0.60000! Ni (407nm) | 1.52994 | | l.ooooo | | 1.62417 | | 1.00000 | | 1.61869 | di (407nm ) 8 | 1.00000 | 0.10000 | 2.50000 | | 0.84612 | 0-10000 M 8 8 1.58727-5.93291 8 8 璧) s mM ο Η (NJ 00 L〇KD 蛏 酲 * N® «(I. ±) 1 Pelican «I16 * IP Dim + -49- (47) 200532679 Table 1-2 Diffraction data First surface 0.0mm < h < 1.27mm Non-diffraction surface 1.27mm < h Coefficient of optical path difference function B2 4.58000E + 00 * Number of non-continuous parts of each diffractive ring zone = amount of 2 level difference = 5χ407 / 0 · 53ητη (with 5χ wavelength 407nm Amount of level difference of optical path difference) Second surface 0.0mm < h < l.635mm Non-diffractive surface 1.635mm < h Coefficient of optical path difference function B2 4.58000E + 00 * Negative of each diffraction annular region Number of consecutive parts = 2 quasi-difference amount = 4x407 / 0.53nm (amount with quasi-difference of optical path difference of 2x wavelength 407nm) Aspheric surface data Third surface aspherical surface coefficient κ -6.70012E-01 A4 8.07946E-03 A6 6.72041E-04 A8 -4.91558E-05 A10 3.14894E-04 A12 -9.03986E-05 A14 -7.00670E-06 A16 1.10458E-05 A18 -1.80902E-06 Fourth surface non-spherical surface Coefficient κ -2.56348E + 02 A4 3.05938E-02 A6 -1.26555E-03 A8 -8.74183E-03 A10 3.51990E-03 A12 -3.84247E-04 A14 -1.98538E-05 -50- 200532679 (48) in the table In 1-1 and 1-2, ri represents the radius of curvature, di represents the interval from the first surface to the (i + I) th surface, and ni represents the diffraction rate of each surface. As shown in Tables 1-1 and 1-2, when the wavelength emitted from the first light source is again; [in the case of 40 7nm, the focal length fl is set to 2.30 mm, and the number of image sides 値 aperture NA 1 is 0 · 8 5 'and the imaging magnification m is 0, in the case of a wavelength of 6 5 5 nm emitted from the second light source, the focal length g f2 is set to 2.37 mm, the number of image sides 値 aperture NA2 is set to 0.65, and the imaging The magnification m is set to -1 / 13.25 'and the focal length f3 is set to 2.38mm when the wavelength λ3 emitted from the third light source is 78 5nm, the number of image sides 値 aperture NA3 is set to 0.5, and The imaging magnification m is -1 / 8.14 (in the optical pickup device in this example). Further, the number 値 M1 of the discontinuous parts in the first diffraction structure is 2, and the number 値 M2 in the discontinuous parts of the second diffraction structure is 2. The incident surface (first surface) and protruding surface (second surface 0) of each diffractive optical element and the incident surface (the Ξ surface) and the protruding surface (the fourth surface) of the light converging element are formed as Non-spherical surfaces are specified by the expression 値, where the coefficients shown in Tables 1-1 and 1-2 are replaced by 个别 1, and rotationally symmetric to the optical axis. (数 値 1) = — ^ And) —a + l + Vl- (l + / c) (A / i?) 2 / = 0 In the above expression, x (h) represents the axis in the direction of the optical axis (the direction of light travel is positive) , / C represents the conic constant, and A2i represents the coefficient of the non-spherical table-51-200532679 (49) plane. Each luminous flux having a wavelength given by each of the first diffractive structure and the second diffractive structure is specified by a mathematical expression, wherein the coefficients shown in Tables 1 _ 1 and 1-2 are expressed by numbers The optical path difference function of 値 2 is replaced. (Number 2) Φ (^) = y] B2ih / = 0 In the above expression, B2i represents the coefficient of the optical path difference function. The depth d 1 of the step portion in the direction of the optical axis in the first diffraction structure is established to obtain an optical path difference of a wavelength equal to λ 1 x5. Therefore, an optical path difference of about 3 wavelengths is given to a wavelength λ 2 The second luminous flux and the amount of phase change are relatively small for the first luminous flux having a wavelength of λ 1 and the second luminous flux having a wavelength of λ 2 without causing a diffraction action. Only for the third luminous flux with a wavelength of λ 3, a phase difference equal to about 0.5 wavelength (7Γ) is obtained, and a diffraction action occurs. The depth d2 of the step portion in the optical axis direction of the second diffractive structure is established such that an optical path difference equal to λ 1 x4 is obtained. Therefore, an optical path difference approximately equal to 2 wavelengths is given to the second luminous flux. However, for The amount of phase change of the first light flux and the third light flux is relatively small, and no diffraction action occurs. Only for the second luminous flux, a phase difference of about 0.5 wavelength (7Γ) is obtained, and a diffraction action occurs. FIG. 9 shows longitudinal spherical aberration diagrams for the first luminous flux (BD), the second luminous flux (DVD), and the third luminous flux (CD), respectively. Figure 9 shows that the longitudinal spherical aberration is controlled for the necessary number of apertures of all the first to third luminous fluxes 200532679 (50), and the height of the longitudinal spherical aberration from the optical axis exceeds the necessary number of apertures. The area is discontinuous, and the objective optical system has excellent aperture adjustment functions for the second and third luminous fluxes. Next, an example 2 is explained below. In this example, the optical pickup device shown in FIG. The incident surface (first surface) of the diffractive optical element shown in 7 is divided into a first area AREAl (0.00mm $ h < 1.17mm), a 2A area (1.17mm ^ h < 1.44), and a 2B area (1.44 $ h < 1.54mm) and the third area AREA3 (1.54 $ h) and the first diffraction structure is formed on the first area AREA1, and the second diffraction structure is formed on each of the 2A and 2B area. At the same time, the third area ARE A3 is a diffraction interface. Further, the incident surface and the projection surface of each of the diffractive optical elements are planar surfaces. For each of the first diffraction structure and the second diffraction structure, the system φ forms a diffraction structure Η Ο E, where the system forms a concentric circular ring-shaped region, each centered on the optical axis. , Which has a step structure composed of a predetermined amount of step parts and discontinuous parts (as shown in Figure 3 (a) and 3 (b)). The lens data is shown in Tables 2-1 and 2-2. -53- Q: (51) 200532679 Huo 0SSM «¥ i« ^ τ · 8 / τ 丨 ΗLOK0 = s tremor 8PO · νη3: one S9.0 = C \ JVN noodles ε. ≪ Ν = ^ one so = IVN function οεζ = ^ Diffraction surface Diffraction surface Non-spherical surface Non-spherical surface i ni (785nm) I 1.5111 1 1.0000 1.6002 1.0000 1.5704 di (785nm) 20.40952 1.00000 0.10000 2.50000 0.51456 1.20000 ni (655nm) | 1.51436 I 1.00000 1 1.60423 1 1.00000 1.57721 di (655nm) 8 1.00000 0,10000 2,50000 0.58350 0.60000 ni (407nm) | 1.52994 | 1.00000 1.62417 1.00000 | 1.61869 | di (407nm) 8 1.00000 0.10000 2.50000 0.84612 0.10000 -H 8 8 1.58727 -5.93291 8 8 o rH CM ro LO Wake up * Ns * (Ii) city WH® * 丨 tear ffille «ip shame you. -54- (52) 200532679 Table 2-2 Diffraction data first surface 0.0mm < h < 1.17 mm * Number of coefficients of the optical path difference function of the discontinuous part of each diffractive ring zone = 5 B4 -5.4454E-04 Amount of level difference = 2x407 / 0.53nm B6 -6.1686E-05 (with 2x wavelength 407nm optical path B8 -1.4718E-05 difference in level) 0.17mm < h < l.44mm * Each diffraction ring Number of coefficients of the optical path difference function of the discontinuous part = 3 B4 -5.4454E-04 Amount of level difference = lx407 / 0.53nm B6 -6.1686E-05 (optical path with 1 X wavelength 407nm B8 -1.4718E -05 The amount of difference in level) 1.44mm < h < 1.5mm * The number of coefficients of the optical path difference function of the discontinuous part of each diffractive ring zone = 5 B4 -5.4454E-04 Amount = 2x407 / 0.53nm B6 -6.1686E-05 (the amount of difference between the optical path B8 -1.4718E-05 with 2x wavelength 407nm) 1.54mm < h Non-diffraction surface non-spherical surface data third surface Four-surface non-spherical surface coefficient K -6.70012E-01 A4 8.07946E-03 A6 6.72041E-04 A8 -4.91558E-05 A10 3.14894E-04 A12 -9.03986E-05 A14 -7.00670E-06 A16 1.10458E-05 A18 -1.80902E-06 Aspheric surface coefficient K -2.56348E + 02 A4 3.05938E-02 A6 -1.26555E-03 A8 -8.74183E-03 A10 3.51990E-03 A12 -3.84247E-04 A14 -1.98538E-05 -55- 200532679 (53) As shown in Tables 2 -1 and 2 -2, the focal length Π is set to 2.30 mm when the wavelength emitted from the first light source is 1 40 7nm. The number of image sides, the aperture NA, 1 is 0.85, and the imaging magnification m is 0. In the case where the wavelength emitted from the second light source is 6 5 5 nm, the focus length is set to 2.37 mm, and the number of image sides値 The aperture NA2 is set to 0.85, and the imaging magnification m is set to -W13.25, and the focal length f3 is set to _ 2.3 8mm when the wavelength emitted from the third light source; I 3 is 7 8 5 nm The image side number / aperture NA3 is set to 0.45, and the imaging magnification m is -1 / 8.14 (in the optical pickup device in this example). Further, the number of discontinuous parts in the first diffraction structure 结构 M 1 is 5, the number of discontinuous parts in the 2A area between the second diffraction structures 値 M2 is 2, and the discontinuity in the 2B area is 2 The number of parts 値 M2 is 5. The incident surface (third surface) and the protrusion surface (fourth surface) of each of the light converging elements are formed as non-spherical surfaces. The spherical surface is defined by a mathematical expression, in Table 2-1 and The φ coefficients shown in 2-2 are individually replaced by the number 値 1. The optical path length given by each of the first and second diffractive structures to each luminous flux with each wavelength is specified by a mathematical expression, where Tables 2-1 and 2-2 The coefficient is replaced by an optical path difference function of the number 値 2. The depth d 1 of the step portion in the direction of the optical axis in the first diffraction structure is established so that the optical path difference to a wavelength equal to λ 2x2, and therefore, the optical path difference equal to about 1 wavelength is given to the third luminous flux, Therefore, the phase change brightness is small for the first luminous flux and the third luminous flux, without -56- 200532679 (54) causing a diffraction action. Only for the second luminous flux, a phase difference equal to about 0.2 wavelength (0.47Γ) is obtained, and a diffraction action is generated. The depth d2 of the step portion in the direction of the optical axis in the second diffraction structure in the 2 A region is established so that an optical path difference equal to a wavelength of λ 1x1 is obtained. Therefore, the phase of the first light flux remains unchanged without Generates diffraction action. For the second luminous flux, a phase difference equal to about 0.4 wavelength (0.8 7Γ) is obtained, and for the third luminous flux, a phase | phase difference equal to about 0.5 wavelength (7Γ) is obtained, resulting in diffraction action. Further, the depth d2 of the step portion in the optical axis direction in the second diffraction structure 20 in the 2B region is established to obtain an optical path difference equal to λ 1 χ2, and therefore, an optical path difference equal to about 1 wavelength is obtained, Therefore, the phases of the first luminous flux and the third luminous flux remain unchanged, and no diffraction action occurs. For the second luminous flux, a phase difference equal to about 0.2 wavelength (0.4 7Γ) is obtained, and a diffraction action is generated. FIG. 10 is a longitudinal spherical aberration diagram for the first luminous flux (BD), the second luminous flux (φ DVD), and the third luminous flux (CD). Fig. 10 shows that the longitudinal spherical aberration is controlled by a numerical aperture necessary for all the first to third luminous fluxes, and the longitudinal spherical aberration is in a region where the height from the optical axis exceeds the required numerical aperture. Instead of continuous, the objective optical system has an excellent aperture adjustment function for the second and third light fluxes.接 者 'Example 3 is explained below. In this example, the optical pickup device shown in FIG. 1 is used to divide the incident surface (first surface) of the diffractive optical element shown in FIG. 11 into -57- 200532679 (55) an area ARAl (0.00mm 'h < 1.644mm), the second area AREA2 (1.644mm ^ h < 1.902mm), the third area A RE A3 (1.920 mm ^ h)' and the first diffraction structure 10 is formed in the first The second area AREA2 is above, and the second diffraction structure 20 is formed in the third area. At the same time, the first area AREA1 is a diffraction interface. For each of the first diffractive structure and the second diffractive structure, it forms a diffractive structure HOE, in which a concentric circular ring-shaped region is formed periodically, and each of its centers is on the optical axis, which has A step structure composed of a predetermined amount of step parts and discontinuous parts (as shown in Figures 3 (a) and 3 (b)). The lens information is shown in Tables 3-1 and 3-2.
-58- 200532679 (56)-58- 200532679 (56)
卜CNJ,卜 τ/τ-=6 82·99τ/τι=ε s .38/1=曰»+<w#1s olo.ohpovnlo9-〇=c\1vn 59·0=τνΝ sfffls 麵卜 τ·ε=^es.oonzj iLOo-ponTJ 秘«鋦_I-Sm 繞射表面 非球形表面 非球形表面 ni (785nm) 1 1.5035 1 1 l.oooo I 1.5372 1.0000 1.5704 di (785nm) O 00 KD- L〇 1.00000 0.10000 ί 1.87000 0.51746 1.20000 ni (655nm) 1 1.50673 1 | l.ooooo | 1.54073 1.00000 [1.57721 I di (655nm) L〇 σ\ ro 1.00000 0.10000 1.87000 1.72623 0.60000 ni (407nm) 1 1.52491 1 11.00000 | 1.56013 1 1.00000 1 1 1.61949 | di (407nm) o o o L〇 CM 1 0.80000 0.10000 1.87000 1.57967 1 0.60000 1 •H 8 8 1.92607 -9.84753 8 8 1® mm o \~1 CM ΡΟ LO SE:?H*(I.±)紙m®«—紙《长«Φ 黯您 + -59- (57)200532679 表格3-2 繞射資料 第一表面 0.0mm<h<l .644mm 無繞射表面 1.644mm<h<l .902mm 光學路函數之係數 B4 -9.5828E-01 *每個繞射環狀區之非連續部份之 數目=2 位準差之量=3x407/0.525nm (具有1 X波長407nm之光學路徑 差之位準差之量) 1.902mm<h 光學路徑差函數之係數 B4 -9.5828E-01 *每個繞射環狀區之非連續部份之 數目=3 位準差之量=lx655/0.507nm (具有1 X波長655nm之光學路徑 差之位準差之量) 非球形表面資料 第三表面 非球形表面係數 n -0.766990 A4 4.96273E-03 A6 6.18596E-04 A8 -1.30980E-05 A10 2.12263E-05 A12 -2.29629E-06 第四表面 非球形表面係數 κ -4.51771E+01 A4 9.72492E-03 A6 -2.00947E-03 A8 2.33032E-04 A10 -1.32931E-05 -60- 200532679 (58) 如表個3 -1以及3 -2所示,在當射出自第一光源之波 長;I 1爲407nm之情形下聚焦長度Π被設定爲3.05mm, 影像側數値孔徑ΝΑΙ係爲0.65,而成像放大率m係爲 1 /82.64,在射出自第二光源之波長爲6 5 5 nm之情形中聚 焦長度f 2被設定爲3 . 1 6 m m,影像側數値孔徑N A 2設定爲 0.65,而成像放大率m被設定爲-1/166.28,而在當射出自 第三光源之波長λ3爲7 8 5 nm之情形下聚焦長度f3被設 定爲3. 17mm,影像側數値孔徑NA3設定爲0.5,而成像 放大率m係爲-1/17.27(在本例子中之光學拾取裝置中) 〇 進一步,在第一繞射結構之非連續部分之數値Μ 1爲 2,在第二繞射結構之非連續部分之數値M2爲3。 光收斂元件之每個的入射表面(第三表面)以及突出 物表面(第四表面)係形成爲非球形表面,該球形表面係 由一數値表示式所規定,其中在表格3-1以及3-2所示之 係數係個別由數値1所取代。 由每個的第一繞射結構以及第二繞射結構所給予至具 有每個波長之每個光通量的光路徑長度係由一數値表示式 所規定,其中在表格3-1以及3-2之係數係由數値2之光 學路徑差函數所取代。 在第一繞射結構中之光軸方向中之步階部分的深度d 1 經建立使得到等於λ 1 x3波長之光學路徑差異,且因此, 等於約2波長之光學路徑差異給至第三光通量,因此,相 位改變之亮對於第一光通量以及第三光通量係較小,而不 -61 - 200532679 (59) 產生繞射動作。只對於第二光通量,得到等於約0.5波長 (π )之相位差異,而產生繞射動作。 在第二區域之第二繞射結構中之光軸方向上之步階部 分的深度d2經建立使得得到等於又2x1波長之光學路徑差 ,因此,第二光通量之相位保持不變,而不產生繞射動作 。對於第一光通量,得到等於約0.4波長(0.8 7Γ )之相位 差,而對於第三光通量,得到等於約〇. 5波長(7Γ )之相 p 位差,而產生繞射動作。 圖12爲個別對於第一光通量(HD DVD),第二光通 量(DVD)以及第三光通量(CD)之縱向球形像差圖。 圖1 2展示縱向球形像差係以對於所有第一至第三光 通量皆必要之數値孔徑所控制,而縱向球形像差係在自光 軸開始之高度超過必須的數値孔徑時之區域中而非連續, 而物鏡光學系統具有對於第二與第三光通量有優異的孔徑 調節功能。 【圖式簡單說明】 圖1係爲光學拾取裝置之結構之主要部分之平面圖。 圖2係爲繞射光學元件之例子之側面圖。 圖3 ( a )以及圖3 ( b )係爲繞射光學元件之例子之 側面圖。 圖4 ( a )以及圖4 ( b )係爲繞射光學元件之例子之 側面圖。 圖5 ( a )以及圖5 ( b )係爲繞射光學元件之例子之 -62 - 200532679 (60) 側面圖。 圖6爲繞射光學元件例子之側面圖。 圖7爲繞射光學元件例子之側面圖。 圖8係展示光學拾取裝置結構之主要部分之平面圖。 圖9係在例1之縱向球形偏離圖。 圖1 〇係在例2之縱向球形偏離圖。 圖1 1係展示繞射光學元件例子之側面圖。 | 圖1 2係在例3之縱向球形偏離圖。 【主要元件符號說明】 LD1 :紫外光半導體雷射 LD2 :紅色半導體雷射 LD3 :紅外線半導體雷射 COL1 :第一對準透鏡 COL2 :第二對準透鏡 φ COL3 :第三對準透鏡 SEN1 :第一感應透鏡 SEN2 :第二感應透鏡 B S 1 :第一極化光束分隔器 BS2:第二極化光束分隔器 B S 3 :第三極化光束分隔器 BS4 :第四極化光束分隔器 P D 1 :第一光偵測器 PD2 :第二光偵測器 -63- 200532679 (61) PU1 :第一光學拾取裝置 EXP :光束擴展器 STO :光圈 〇 B J :物鏡光學系統 AC1 :雙軸致動器 RL1,RL2,RL3 :資訊言己錄表面 PL1 :第一保護層 _ PL2 :第二保護層 PL3 :第三保護層 L 1 :繞射光學元件 L2 :光收斂元件 HD :高密度光碟 DVD :數位多功能碟片 CD :精簡碟片 1 〇 :第一繞射結構 φ 1 1 :步階部分 1 2 :非連續部分 1 3 :環狀區域 1 5 :環狀區 1 6 :步階部分 1 7 :環狀區 20 :第二繞射結構 PU2 :光學拾取裝置 EP1 :第一光射出點 ./Γ -64- 200532679 (62) LM1 :雷射模組 D S 1 :第一光接收部分 D S 2 :第二光接收部分 AC1 :雙軸致能器 AC2 :單軸致能器 S Τ Ο :隔板 BS:極化光束分隔器 _ COL :對準透鏡 CUL :耦合透鏡 M D 1 :模組 PD3 :光偵測器Bu CNJ, Bu τ / τ- = 6 82 · 99τ / τι = ε s .38 / 1 = say »+ < w # 1s olo.ohpovnlo9-〇 = c \ 1vn 59 · 0 = τνΝ sfffls ε = ^ es.oonzj iLOo-ponTJ Secret 鋦 I_I-Sm Diffraction surface Aspheric surface Aspheric surface ni (785nm) 1 1.5035 1 1 l.oooo I 1.5372 1.0000 1.5704 di (785nm) O 00 KD- L〇 1.00000 0.10000 ί 1.87000 0.51746 1.20000 ni (655nm) 1 1.50673 1 | l.ooooo | 1.54073 1.00000 [1.57721 I di (655nm) L〇σ \ ro 1.00000 0.10000 1.87000 1.72623 0.60000 ni (407nm) 1 1.52491 1 11.00000 | 1.56013 1 1.00000 1 1 1.61949 | di (407nm) ooo L〇CM 1 0.80000 0.10000 1.87000 1.57967 1 0.60000 1 • H 8 8 1.92607 -9.84753 8 8 1® mm o \ ~ 1 CM ΡΟ LO SE:? H * (I. ±) paper m ® «—Paper" Long «Φ Shade You + -59- (57) 200532679 Table 3-2 Diffraction Data First Surface 0.0mm < h < l .644mm Non-diffraction Surface 1.644mm < h < l .902mm Optical Path Coefficient of function B4 -9.5828E-01 * Number of discontinuous parts of each diffractive ring zone = 2 amount of quasi-difference = 3x407 / 0.525nm (position with optical path difference of 1 X wavelength 407nm Amount of difference) 1.902mm < h Coefficient of optical path difference function B4 -9.5828E-01 * Number of discontinuous parts of each diffractive ring zone = 3 level difference amount = lx655 / 0.507nm (with 1 X-wavelength 655nm optical path difference level difference amount) Aspheric surface data Third surface aspheric surface coefficient n -0.766990 A4 4.96273E-03 A6 6.18596E-04 A8 -1.30980E-05 A10 2.12263E-05 A12 -2.29629E-06 Fourth non-spherical surface coefficient κ -4.51771E + 01 A4 9.72492E-03 A6 -2.00947E-03 A8 2.33032E-04 A10 -1.32931E-05 -60- 200532679 (58) As shown in the table As shown in 3 -1 and 3 -2, when the wavelength emitted from the first light source; I 1 is 407 nm, the focal length Π is set to 3.05 mm, the number of image sides 値 aperture ΝΑΙ is 0.65, and the imaging magnification is m is 1 / 82.64, in the case of a wavelength of 65 5 nm emitted from the second light source, the focal length f 2 is set to 3. 16 mm, the number of image sides 値 aperture NA 2 is set to 0.65, and the imaging magnification 17mm The rate m is set to -1 / 166.28, and the focal length f3 is set to 3. 17mm when the wavelength λ3 emitted from the third light source is 7 8 5 nm The number of image side apertures NA3 is set to 0.5, and the imaging magnification m is -1 / 17.27 (in the optical pickup device in this example) 〇 Further, the number of discontinuous portions in the first diffraction structure 値 Μ 1 Is 2 and the number of discontinuous parts 第二 M2 in the second diffraction structure is 3. The incident surface (third surface) and the protrusion surface (fourth surface) of each of the light converging elements are formed as non-spherical surfaces, and the spherical surface is specified by a mathematical expression, in Table 3-1 and The coefficients shown in 3-2 are individually replaced by the number 値 1. The length of the optical path given by each of the first and second diffractive structures to each luminous flux with each wavelength is specified by a mathematical expression, in Tables 3-1 and 3-2 The coefficient is replaced by an optical path difference function of the number 値 2. The depth d 1 of the step portion in the optical axis direction in the first diffraction structure is established so that the optical path difference to a wavelength equal to λ 1 x3, and therefore, the optical path difference equal to about 2 wavelengths is given to the third luminous flux. Therefore, the brightness of the phase change is small for the first luminous flux and the third luminous flux, and does not cause a diffraction action of -61-200532679 (59). Only for the second luminous flux, a phase difference equal to about 0.5 wavelength (π) is obtained, and a diffraction action is generated. The depth d2 of the step portion in the direction of the optical axis in the second diffraction structure in the second region is established so that an optical path difference equal to another 2x1 wavelength is obtained. Therefore, the phase of the second light flux remains unchanged without generating Diffraction action. For the first luminous flux, a phase difference equal to about 0.4 wavelength (0.8 7Γ) is obtained, and for the third luminous flux, a phase p phase difference equal to about 0.5 wavelength (7Γ) is obtained, resulting in a diffraction action. FIG. 12 is a longitudinal spherical aberration diagram for the first luminous flux (HD DVD), the second luminous flux (DVD), and the third luminous flux (CD). Figure 12 shows that the longitudinal spherical aberration is controlled by the numerical aperture necessary for all the first to third luminous fluxes, and the longitudinal spherical aberration is in the area when the height from the optical axis exceeds the required numerical aperture Instead of continuous, the objective optical system has an excellent aperture adjustment function for the second and third light fluxes. [Brief Description of the Drawings] FIG. 1 is a plan view of a main part of a structure of an optical pickup device. Fig. 2 is a side view of an example of a diffractive optical element. Figures 3 (a) and 3 (b) are side views of examples of diffractive optical elements. 4 (a) and 4 (b) are side views of examples of diffractive optical elements. Figures 5 (a) and 5 (b) are -62-200532679 (60) side views of examples of diffractive optical elements. Fig. 6 is a side view of an example of a diffractive optical element. Fig. 7 is a side view of an example of a diffractive optical element. FIG. 8 is a plan view showing a main part of the structure of the optical pickup device. FIG. 9 is a longitudinal spherical deviation diagram in Example 1. FIG. FIG. 10 is a longitudinal spherical deviation diagram in Example 2. FIG. Fig. 11 is a side view showing an example of a diffractive optical element. Figure 1 2 is a longitudinal spherical deviation diagram of Example 3. [Description of main component symbols] LD1: Ultraviolet semiconductor laser LD2: Red semiconductor laser LD3: Infrared semiconductor laser COL1: First alignment lens COL2: Second alignment lens φ COL3: Third alignment lens SEN1: No. An induction lens SEN2: a second induction lens BS1: a first polarized beam splitter BS2: a second polarized beam splitter BS3: a third polarized beam splitter BS4: a fourth polarized beam splitter PD1: First photodetector PD2: Second photodetector-63- 200532679 (61) PU1: First optical pickup device EXP: Beam expander STO: Aperture 〇BJ: Objective optical system AC1: Biaxial actuator RL1 , RL2, RL3: Information record surface PL1: First protective layer_PL2: Second protective layer PL3: Third protective layer L1: Diffractive optical element L2: Light converging element HD: High-density optical disc DVD: Digitally more Functional CD: Compact disc 1 〇: First diffraction structure φ 1 1: Step part 1 2: Discontinuous part 1 3: Ring area 1 5: Ring area 1 6: Step part 1 7: Ring zone 20: second diffraction structure PU2: optical pickup device EP1: first light exit point. / Γ -64- 200532679 (62) LM1: Laser module DS 1: First light receiving part DS 2: Second light receiving part AC1: Biaxial enabler AC2: Uniaxial enabler S Τ Ο: Shelf BS: Polarized beam Separator_ COL: Alignment lens CUL: Coupling lens MD 1: Module PD3: Photodetector