JP2005069644A - 多段電動膨張弁及び冷凍装置 - Google Patents

多段電動膨張弁及び冷凍装置 Download PDF

Info

Publication number
JP2005069644A
JP2005069644A JP2003303365A JP2003303365A JP2005069644A JP 2005069644 A JP2005069644 A JP 2005069644A JP 2003303365 A JP2003303365 A JP 2003303365A JP 2003303365 A JP2003303365 A JP 2003303365A JP 2005069644 A JP2005069644 A JP 2005069644A
Authority
JP
Japan
Prior art keywords
refrigerant
electric expansion
valve
throttle
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003303365A
Other languages
English (en)
Other versions
JP4285155B2 (ja
Inventor
Toru Yukimoto
徹 雪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2003303365A priority Critical patent/JP4285155B2/ja
Publication of JP2005069644A publication Critical patent/JP2005069644A/ja
Application granted granted Critical
Publication of JP4285155B2 publication Critical patent/JP4285155B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

【課題】 複雑な構造や制御を必要とせずに、冷媒減圧量を任意に可変することができ、気液二相状態の冷媒の通過音を低減した多段電動膨張弁及びこの多段電動膨張弁を用いた冷凍装置を提供することを目的とする。
【解決手段】 冷媒の出入口1、2を備えた筺体3と、筺体3内に形成された弁座4と、弁座4に対し進退可能に形成された弁体5とを有し、弁体5及び弁座4は、両者間に多段の絞り通路6a、6bを形成するように構成されてなり、多段の絞り通路6a、6bは、一つの絞り通路6bが全閉可能に形成され、他の絞り通路6aが全閉不可能に形成されてなり、さらに、全閉可能な絞り通路6bは、全閉不可能な絞り通路6aに比し冷媒流通抵抗が大きくなるように形成されてなる多段電動膨張弁。
【選択図】 図1

Description

本発明は、多段電動膨張弁及び冷凍装置に関し、より詳細には、空気調和装置等の冷凍装置に用いられる電動膨張弁の冷媒通過音を低下することができる多段電動膨張弁及びこれを用いた冷凍装置に関する。
従来から、冷凍装置において、ステッピングモータで駆動される電動膨張弁が用いられている。
この電動膨張弁は、図14に示すように、冷媒出入口191、192を備えた筺体193内に、その先端部195aがニードル形状に形成された弁体195を備えて構成される。筐体193は、その下方に弁座194を有しており、この弁座194の中央部が一方の冷媒出入口191に連通している。また、筐体193は、その側壁に他方の冷媒出入口192を有している。弁体195は、筐体193の上部に配置されたステッピングモータ(図示せず)により駆動される構造を有している。
このように構成された電動膨張弁は、ステッピングモータ(図示せず)を駆動し、その回転角度を制御することにより、弁座194に対しニードル形状の先端部195aを有する弁体195を進退させて、弁体195と弁座194との間に形成される絞り部の冷媒通過面積を変化させる。これにより、この電動膨張弁を通過する冷媒の減圧量を変化させることができる。
しかし、この電動膨張弁では、絞り部の冷媒通過面積を可変とするものであり、絞り部の長さが極めて短いため、一段階で減圧する場合には、局所的な冷媒の流速は非常に大きくなる。これにより、音エネルギに変換されるエネルギーが大きくなり、冷媒通過音が大きくなる。
そこで、絞り部の冷媒通過速度を低減するために、多段、例えば二段電動膨張弁が提案されている(例えば、特許文献1)。
この多段電動膨張弁は、絞り前後の圧力差と冷媒音との関係に着目して、任意の絞り量に調整することができ、かつ絞り作用を2段階に分けて、絞り作用1回あたりの減圧量を低下させる絞り構造を形成している。
特開平5−322381号公報
しかし、空気調和機などの冷凍装置においては、一般的に、据付条件や運転条件の変化により、膨張弁入口までの液管内で気泡が発生して二相冷媒流となり、この二相冷媒流中の気泡が大きく成長して冷媒流れ中に大きな気泡が断続的に存在するスラグ流やプラグ流となることがある。このようなスラグ流やプラグ流が発生すると、絞り部を通過する液冷媒とガス冷媒との間に速度差を生じる。この速度差は、不連続な圧力変動を生じさせ、結果として「チュルチュル」と表現されるような不連続の冷媒流動音が発生する。そして、このような気液冷媒の速度差による圧力変動は、絞り部の冷媒通過速度が速いほど大きくなる。
また、特許文献1に記載の二段電動膨張弁は、二段の絞りの間は中間圧になるように設計されているが、大きく絞った状態でも中間圧になるためには、極限的に全閉時には二段の絞りの両方が全閉にならなくてはならない。これを実現するためには、加工精度、組み立て精度とも高度な技術が必要になり、その精度のばらつきによっては、いずれの絞りでも全閉にならず、必要な絞り量が得られない。
さらに、この二段電動膨張弁は、気液二相流入する場合であっても一段電動膨張弁に比べて低騒音ではあるが、二段の絞り比を等しくしても気泡を含む冷媒がスムーズに絞りに流入できないという点で不連続音の改善には不十分である。
本発明は、このような従来技術に存在する課題に着目してなされたものであり、複雑な構造や制御を必要とせずに、冷媒減圧量を任意に可変することができ、気液二相状態の冷媒の通過音を低減した多段電動膨張弁及びこの多段電動膨張弁を用いた冷凍装置を提供することを目的とする。
本発明の多段電動膨張弁は、冷媒の出入口を備えた筺体と、筺体内に形成された弁座と、弁座に対し進退可能に形成された弁体とを有し、弁体及び弁座は、両者間に多段の絞り通路を形成するように構成されてなり、多段の絞り通路は、一つの絞り通路が全閉可能に形成され、他の絞り通路が全閉不可能に形成されてなり、さらに、全閉可能な絞り通路は、全閉不可能な絞り通路に比し冷媒流通抵抗が大きくなるように形成されてなることを特徴とする。
本発明の多段膨張弁は、多段絞り通路が、冷媒流通方向から見て全閉可能な絞り通路の上流側に少なくとも一つの全閉不可能な絞り通路を有するように構成されていてもよい。また、多段絞り通路が、3段の絞り通路として構成されてなり、冷媒流通方向における中間部の絞り通路が全閉可能な絞り通路に形成されていてもよい。さらに、全閉可能な絞り通路の上流側に配置される全閉不可能な絞り通路が、流体慣性力が作用する面が衝撃緩衝材により形成されていてもよい。特に、衝撃緩衝材が多孔質体により形成されていてもよい。また、全閉不可能に形成された絞り通路は、冷媒流通方向の長さを可変とすることにより冷媒流通抵抗を可変とするように構成されていてもよい。さらに、全閉不可能に形成された絞り通路は、冷媒流通方向の長さ及び冷媒通過面積を同時に可変とすることにより冷媒流通抵抗を可変とするように構成されていてもよく、特に、冷媒通路に螺旋溝を設けて構成されていてもよい。
また、本発明の冷凍装置は、上記多段電動膨張弁を用いることを特徴とする。
本発明の多段電動膨張弁によれば、多段の絞り通路は、一つの絞り通路が全閉可能に形成され、他の絞り通路が全閉不可能に形成されてなるため、少なくとも全閉可能な絞り通路の加工、組み立て精度を確保することで、全閉に至るまで、必要な絞り量を確保することができる。また、冷媒を多段階で絞ることにより、膨張弁内での最大流速を低減することができる。したがって、急激な圧力変動を緩和させることが可能となる。これらの結果、冷媒に気泡が含有されているような気液二相冷媒であっても、確実に騒音及び異常音を低減することが可能となる。
特に、多段絞り通路が、冷媒流通方向から見て全閉可能な絞り通路の上流側に少なくとも一つの全閉不可能な絞り通路を有するように構成されてなる場合には、容易に、上流側の絞り通路の減圧量を、下流側の絞り通路の減圧量よりも小さく設定することが可能になり、絞り比を最適化することで全閉可能な絞りに流入する冷媒の気泡を細かくすることができ、上述した効果をより発揮させることが可能となる。
また、多段絞り通路が、3段の絞り通路として構成されてなり、冷媒流通方向における中間部の絞り通路が全閉可能な絞り通路に形成されてなる場合には、膨張弁への冷媒の流入方向にかかわらず、つまり、冷媒出入口のいずれから冷媒が流入しても、最も大きな圧力変動を発生させる主絞り部に流入する冷媒に含まれる気泡を、予め補助絞り部において均一に細分化することができる。加えて、必ず必要な絞り量を、主絞り部における全閉状態までの微調整により確保することができる。また、補助絞り部をさらに主絞り部の下流に設けることにより、主絞り部からの冷媒流の速度を、補助絞り部においてさらに低減させることができる。しがって、上述した効果により有利となる。
さらに、全閉可能な絞り通路の上流側に配置される全閉不可能な絞り通路は、流体慣性力が作用する面が衝撃緩衝材により形成されてなる場合には、振動を低減することができ、さらに騒音及び異常音をより低減することができる。つまり、気相二相流が絞り部を通過する場合、気泡が絞り部を高速で通過した後、気泡末端境界に接する液冷媒が、気泡と同様に高速に絞り部に流入しようとするが、粘性抵抗等の影響で液冷媒はスムーズに絞り部に流入することができず、絞り部の入口部分に衝突して、いわゆるウォーターハンマーに似た現象が生じる。衝撃緩衝材は、このようなウォーターハンマー現象を緩和することができ、ひいては膨張弁の弁体及び弁座等の振動を低減することができ、ひいては騒音をも低減することが可能となる。
特に、衝撃緩衝材が多孔質体からなる場合には、上述したような衝撃を緩和させるのみならず、多孔質体に冷媒が衝突することにより、気泡の細分化が促進され、均一化されることとなり、次段の絞り部で発生する圧力変動をさらに低減することができる。
また、絞り通路が、冷媒流通方向の長さを可変とすることにより冷媒流通抵抗を可変とするように構成される場合には、絞り通路の断面積のみを小さくした場合に比較して、絞り通路を通過した冷媒速度をより小さくすることができ、騒音の低減に有利となる。
さらに、絞り通路が、冷媒流通方向の長さ及び冷媒通過面積を同時に可変とすることにより冷媒流通抵抗を可変とするように構成される場合には、より、全閉可能な絞り通路入口での冷媒の流れをスムーズにしながら、絞り通路を通過した冷媒速度を小さくすることができ、さらなる騒音の低減に有利となる。
特に、全閉不可能に形成された絞り通路が、冷媒通路に螺旋溝を設けて構成されるばあいには、絞り通路を通過する冷媒に旋回成分を付与することができるため、気液二相流において、より気泡を均一化することができる。
また、本発明の上述した多段電動膨張弁を用いた冷凍装置によれば、その運転音をより静粛にすることができる。
以下に、この発明を具体化した多段電動膨張弁についての実施の形態を、図面に基づいて詳細に説明する。
この実施例の多段電動膨張弁は、図1(a)に示したように、主として、冷媒出入口1、2を備えた略円筒状の筐体3と、この筐体3内の一端面側に形成された弁座4と、この弁座4に対して進退可能に形成された弁体5とから構成される。
弁座4は、その下方中央部に、平面形状が円形の弁孔4aが形成されており、この弁孔4aが一方の冷媒出入口1に連通されている。また、この冷媒出入口1に連通された弁孔4aと連通するように、弁孔4aの上方に、平面形状が円形で弁孔4aよりも大径の弁孔4bが形成されている。なお、弁座4の弁孔4bは、筐体3の内壁よりも若干内側に形成されている。
弁体5は、略円柱形状で、その一端面側がテーパー状に形成された先端部5aを有している。
このような形状の弁座4と弁体5とが接近することにより、弁座4の弁孔4bの外縁部と、弁体5のテーパー状の先端部5aとが近接し、絞り部6aが構成される。この絞り部6aは全閉しないように、補助絞り部として形成されている。
また、弁座4の弁孔4aの外周縁部と弁体5のテーパー状の先端部5aとが近接し、絞り部6bが構成される。この絞り部6bは、弁座4の弁孔4aの外周縁部と弁体5のテーパー状の先端部5aとが密着することにより、全閉可能に、主絞り部として形成されている。
弁体5は、筐体3の上部に配置されたステッピングモータ(図示せず)により駆動されるように構成されており、ステッピングモータを駆動し、その回転角度を制御することにより、弁座4に対し弁体5を進退させることができる。
この電動膨張弁では、図1(b)の矢印Aに示したように、冷媒が冷媒出入口2から流入した場合、冷媒は、弁体5と弁座4との間を通って、絞り部6aを通過する。続いて、冷媒は、絞り部6aに隣接する空間6に入り、その後、絞り部6bを通過して、弁孔4aから冷媒出入口1を通って流出する。この際、絞り部6aと絞り部6bとで、単純に各絞り部における減圧量を分配するのではなく、主絞りとして機能する絞り部6bに流入する気泡を最大限に細分化することができるように、絞り部6bと、その上流に位置する補助絞りとして機能する絞り部6aとの減圧比を最適化する。つまり、絞り部6aの減圧量を、絞り部6bの減圧比よりも小さくする。
このように、各絞り部6a、6bの絞り量を調整することにより、図1(b)に示した空間6における冷媒に含有される気泡を均一とすることができるとともに、冷媒の膨張弁内で多段階減圧することができ、急激な圧力変動を緩和させることが可能となる。また、必要な絞り量を、主絞り部における全閉状態までの微調整により確保することができる。
これらの結果、冷媒に気泡が含有されているような気液二相冷媒であっても、確実に騒音及び異常音を低減することが可能となる。
なお、上述した電動膨張弁では、絞り部6aが補助絞り、絞り部6bが主絞りとして機能するような構成として説明したが、その逆、つまり絞り部6aが主絞り、絞り部6bが補助絞りとして機能するような構成とし、絞り部6bの減圧量を、絞り部6aの減圧比よりも小さく設定してもよい。
このような構成とする場合には、図1(c)の矢印Bに示したように、冷媒出入口1から流入した冷媒は、弁座4の弁孔4aを通って、絞り部6bを通過する。続いて、冷媒は、絞り部6bに隣接する空間6に入り、その後、絞り部6aを通過し、弁体5と弁座4との間を通って冷媒出入口2から流出する。この際、補助絞りとして機能する絞り部6bと、主絞りとして機能する絞り部6aとの減圧比が最適化されており、絞り部6aと絞り部6bとで、主絞りとして機能する絞り部6aに流入する気泡を最大限に細分化することができる。
これにより、上記と同様の効果を得ることができる。
この実施例の多段電動膨張弁は、実施例1における電動膨張弁の弁体及び弁座の形状を変更したものである。
つまり、この電動膨張弁は、図2に示したように、弁座14は、その下方中央部に、平面形状が円形の弁孔14aが形成されており、この弁孔14aが一方の冷媒出入口1に連通されている。また、弁孔14aの上方に、その上端が弁孔14aよりも大径で、下端が弁孔14aと同径で、かつ冷媒出入口1に連通された弁孔14aと連通するように、テーパー状の弁孔14bが形成されている。なお、弁座14の弁孔14bは、筐体13の内壁よりも若干内側に形成されている。
弁体15は、弁座14に形成された弁孔14bの上端よりも小径を有する略円柱形状で、その一端面側が、環状にその弁体15の外周を肩部15bとして残して、テーパー状に形成された先端部15aを有している。
このような形状の弁座14と弁体15とが接近することにより、弁座14の弁孔14bの側面と、弁体15の肩部15bとが近接し、絞り部16aが構成される。この絞り部16aは全閉しないように、補助絞り部として形成されている。
また、弁座14の弁孔14aの外縁部と弁体15のテーパー状の先端部15aとが近接し、絞り部16bが構成される。この絞り部16bは、弁座14の弁孔14aの外縁部と弁体15のテーパー状の先端部15aとが密着することにより、全閉可能に、主絞り部として形成されている。
その他の構成は、実施例1と同様である。
したがって、この多段膨張弁は、冷媒が、図2中の矢印方向に流入する場合には、上述した実施例1と同様の作用効果を有する。また、絞り部16a、16bの機能を逆にすることにより、実施例1と同様に、冷媒が逆方向へ流通した場合においても、同様の作用効果を有する。
この実施例の多段電動膨張弁は、実施例2における電動膨張弁の弁体の形状を変更したものである。
つまり、図3に示したように、略円柱形状の弁体25の直径が、弁座14に形成された弁孔14bの上端部よりも大径であり、さらに弁体55の肩部25bが若干のテーパー形状を有している以外、実施例2と同様の構成である。
この多段電動膨張弁では、弁座14と弁体25とが接近することにより、弁座14の弁孔14bの上縁部と、弁体25の肩部25bとが近接し、絞り部26aが構成される。この絞り部26aは全閉しないように、補助絞り部として形成されている。
また、弁座14の弁孔14aの外縁部と弁体25のテーパー状の先端部25aとが近接し、絞り部26bが構成される。この絞り部26bは、弁座14の弁孔14aの外縁部と弁体25のテーパー状の先端部25aとが密着することにより、全閉可能に、主絞り部として形成されている。
このような構成により、この多段膨張弁では、冷媒が、図3中の矢印方向に流入する場合には、実施例2と同様に作用するため、実施例2と同様の効果を有する。また、絞り部26a、26bの機能を逆にすることにより、実施例1と同様に、冷媒が逆方向へ流通した場合においても、同様の作用効果を有する。
この実施例の多段電動膨張弁は、実施例1における電動膨張弁の弁座の形状を変更したものである。
つまり、この電動膨張弁は、図4に示したように、弁座34が、その下方中央部に、平面形状が円形の弁孔34aを有しており、この弁孔34aの上方に、その上端が弁孔34aよりも大径であり、かつ弁体5よりも若干大径の弁孔34bが形成されている。なお、弁孔34bを構成する弁座34における壁部34cは、実施例1のそれよりも若干高めに設定されている。
その他の構成は、実施例1と同様である。
このような形状の弁座34と弁体5とが接近し、弁座34の弁孔34bに弁体5が嵌挿されることにより、弁座34の弁孔34bの壁部34cと弁体5の側面との間で、冷媒流通方向の長さが変化し、その冷媒流通抵抗を変化させることができる絞り部36aを構成する。この絞り部36aは全閉しないように、補助絞り部として形成されている。
また、弁座34の弁孔34aの外縁部と弁体5のテーパー状の先端部5aとが近接し、絞り部36bが構成される。この絞り部36bは、弁座34の弁孔34aの外周縁部と弁体55のテーパー状の先端部5aとが密着することにより、全閉可能に、主絞り部として形成されている。
したがって、この多段膨張弁では、冷媒が、図4中の矢印方向に流入する場合には、絞り部36aの冷媒流通方向の長さ方向の抵抗をもつため、絞り部36aを通過した冷媒速度を、実施例1よりさらに小さくすることができ、冷媒音の低減をより有効に行うことができる。
この実施例の多段電動膨張弁は、実施例1における電動膨張弁の弁体の形状を変更したものである。
つまり、この電動膨張弁は、図5に示したように、弁体45が、略円柱形状で、その一端面側がテーパー状に形成されたテーパー部45aを有しており、さらにテーパー部45aの先端に、弁体45よりも小径の略円柱形状の先端部45bを有している。
その他の構成は、実施例1と同様である。
このような形状の弁座4と弁体45とが接近することにより、絞り部46aが構成される。この絞り部46aは、弁座4の弁孔4bの外縁部と弁体45のテーパー部5aとが密着することにより、全閉可能に、主絞り部として形成されている。
また、弁座4の弁孔4a内に、弁体45の先端部45bが嵌挿されることにより、冷媒流通方向の長さが変化し、その冷媒流通抵抗を変化させることができる絞り部46bを構成する。この絞り部46bは全閉しないように、補助絞り部として形成されている。
このような構成により、図5の矢印に示した冷媒の流れ方向では、実施例4と同様の作用効果を有する。
また、絞り部46bの冷媒流通方向の長さを変化させることにより、その冷媒流通抵抗をより微細に調整することができため、実施例4と同様に、絞り部46bを通過した冷媒速度を、さらに小さくすることができ、冷媒音の低減をより有効に行うことができる。
さらに、絞り部46a、46bの機能を逆にすることにより、実施例1と同様に、冷媒が逆方向へ流通した場合においても、同様の作用効果を有する。
この実施例の多段電動膨張弁は、実施例1における電動膨張弁の弁座の形状を変更したものである。
つまり、この電動膨張弁は、図6に示したように、弁座54の下方中央部に、平面形状が円形の弁孔54aが形成されており、この弁孔54aと連通するように、弁孔54aの上方に、平面形状が円形で弁孔54aよりも大径の弁孔54bが形成されており、さらに、この弁孔54bの上方に、平面形状が円形で弁孔54bよりも大径の弁孔54cが形成されている。なお、弁座54の弁孔54cは、筐体53の内壁よりも若干内側に形成されている。
その他の構成は、実施例1と同様である。
このような形状の弁座54と弁体5とが接近することにより、弁座54に形成された弁孔54c、弁孔54b及び弁孔54aの外縁部と、テーパー状の先端部5aとによって、それぞれ、絞り部56a、56b、56cが構成される。絞り部56a、56cは、全閉不可能な補助絞りとして形成されており、絞り部56bは、弁座54の弁孔54bの外縁部と弁体5の先端部5aとが密着することにより、全閉可能な主絞り部として形成されている。
この電動膨張弁では、図6中白矢印で示すように、冷媒が冷媒出入口2から流入した場合、冷媒は、弁体5と弁座54との間を通って、絞り部56aを通過する。その後、冷媒は、絞り部56b、56cを順次通過して、弁孔54aから冷媒出入口1を通って流出する。
また、図6中黒矢印で示すように、冷媒が冷媒出入口1から流入した場合、冷媒は、弁座54の弁孔54aを通って、絞り部56cを通過する。その後、絞り部56b、56aを順次通過し、弁体5と弁座54との間を通って冷媒出入口2から流出する。
ここで、絞り部56a〜56cで、単純に各絞り部における減圧量を分配するのではなく、主絞りとして機能する絞り部56bに流入する気泡を最大限に細分化することができるように、補助絞りとして機能する絞り部56a、56cと、絞り部56bとの減圧比を最適化する。つまり、絞り部56a、56cの減圧量を、絞り部56bの減圧比よりも小さくする。
つまり、この電磁膨張弁では、冷媒が冷媒出入口1、2のいずれから流入する場合においても、最も上流側の絞り部が補助絞り部として機能し、次段の絞り部が、全閉可能な主絞り部として構成されているために、最も大きな圧力変動を発生させる主絞り部に流入する冷媒に含まれる気泡を、予め補助絞り部において均一に細分化することができる。また、必ず必要な絞り量を、主絞り部における全閉状態までの微調整により確保することができる。さらに、補助絞り部をさらに主絞り部の下流に設けることにより、主絞り部からの冷媒流の速度を、補助絞り部においてさらに低減させることができ、より低騒音化に有利となる。
この実施例の多段電動膨張弁は、実施例4及び5における電動膨張弁の弁座と弁体の形状を組み合わせるように変更したものである。
つまり、この電動膨張弁は、図7に示したように、弁座64の下方中央部に、平面形状が円形の弁孔64aが形成されており、この弁孔64aと連通するように、弁孔64aの上方に、平面形状が円形で弁孔64aよりも大径の弁孔64bが形成されており、さらに、この弁孔64bの上方に、平面形状が円形で弁孔64bよりも大径の弁孔64cが形成されている。なお、弁孔64cを構成する壁部64dは実施例6のそれよりも若干高めに設定されている。また、弁座64の弁孔64cは、筐体63の内壁よりも若干内側に形成されている。
弁体65は、略円柱形状で、その一端面側がテーパー状に形成されたテーパー部65aを有しており、さらにテーパー部65aの先端に、弁体65よりも小径の略円柱形状の先端部65bを有している。
その他の構成は、実施例1と同様である。
このような形状の弁座64と弁体65とが接近することにより、弁座64に形成された弁孔64cの側部と弁体の側面とで絞り部66aが構成され、弁座64の弁孔64bの外縁部と弁体65のテーパー部65aとで絞り部66bが構成され、弁孔64aの側面と弁体65の先端部65bとで絞り部66cが構成される。絞り部66a、66cは、弁孔64c、弁孔64a内に弁体65が嵌挿されることにより、冷媒流通方向の長さが変化し、その冷媒流通抵抗を変化させることができる絞り部を構成する。この絞り部66a、66cは全閉しないように、補助絞り部として形成されている。絞り部66bは、弁座64の弁孔64bの外縁部と弁体65のテーパー部65aとが密着することにより、全閉可能な主絞り部として形成されている。
この電動膨張弁では、図7中白矢印で示すように、冷媒が冷媒出入口2から流入した場合、冷媒は、絞り部66aを通過する。その後、冷媒は、絞り部66b、66cを順次通過して、弁孔64aから冷媒出入口1を通って流出する。
また、図7中黒矢印で示すように、冷媒が冷媒出入口1から流入した場合、冷媒は、弁座64の弁孔64aを通って、絞り部66cを通過する。その後、絞り部66b、66aを順次通過し、冷媒出入口2から流出する。
ここで、絞り部66a、66cと絞り部66bとで、単純に各絞り部における減圧量を分配するのではなく、主絞りとして機能する絞り部66bに流入する気泡を最大限に細分化することができるように、補助絞りとして機能する絞り部66a、66cと、絞り部66bとの減圧比を最適化する。つまり、絞り部66a、66cの減圧量を、絞り部66bの減圧比よりも小さくする。
したがって、実施例6と同様の作用により、同様の効果を発揮させることができる。
また、補助絞りとして機能する絞り部66a、66cが、冷媒流通方向の長さ方向に抵抗をもつことにより、絞り部を通過した冷媒速度を、さらに小さくすることができ、冷媒音の低減をより有効に行うことができる。
この実施例の多段電動膨張弁は、図8に示したように、実施例6の多段電動膨張弁の弁体と弁座とにおいて、最も大きく流体慣性力が作用する面に衝撃緩衝材を備えるように変更したものである。
つまり、実施例6と同様の形状を有する弁座74の最上面が、多孔質体からなる衝撃緩衝材71aで形成されている。この弁座74の最上面は、冷媒が、冷媒出入口2から流入して絞り部を通過する際に大きな流体慣性力が作用する箇所であり、冷媒の流入方向の正面に位置する。
また、弁体75において、先端部75aの端面が、多孔質体からなる衝撃緩衝材71bで形成されている。この先端部75aの端面は、冷媒が、冷媒出入口1から流入して絞り部を通過する際に大きな流体慣性力が作用する箇所である、冷媒の流入方向の正面に位置する。
その他の構造は実施例6と同様である。
したがって、実施例6と同様の作用効果により、冷媒の騒音及び異常音を低減することが可能となる。
また、気泡が絞り部を高速で通過した後、気泡末端境界に接する液冷媒が、気泡と同様に高速に絞り部に流入しようとするが、粘性抵抗等の影響で液冷媒はスムーズに絞り部に流入することができず、絞り部の入口部分に衝突して、いわゆるウォーターハンマーに似た現象が生じる。しかし、この実施例の多段電動膨張弁において、冷媒が冷媒出入口1、2のいずれから流入した場合においても、冷媒が直接的に衝突する箇所に衝撃緩衝材71a、71bが設けられているので、このようなウォーターハンマー現象を緩和することができ、それによって生じる振動と騒音との双方を、効果的に低減することができる。
特に、衝撃緩衝材が多孔質体からなる場合には、上述したような衝撃を緩和させるのみならず、多孔質体に冷媒が衝突することにより気泡が細分化され、次段の絞り部で発生する圧力変動をさらに低減することができる。
さらに、この実施例では、多孔質体からなる衝撃緩衝材が、冷媒通路を完全に覆うことがないため、多孔質体の目詰まり、研磨等による変形が生じたとしても、絞り機能は確保させるため、膨張弁としての機能を確保することができる。
この実施例の多段電動膨張弁は、図9に示したように、実施例4の多段電動膨張弁の弁体と弁座との噛み合せ形状において、冷媒流通方向の長さと冷媒通過面積とを同時に可変とすることにより冷媒流通抵抗を可変とするような絞り通路を構成するように、変更したものである。
つまり、弁体85において、冷媒流通方向の長さを可変とする部分である、先端部85aとの境界部近傍の外周面に、螺旋状の溝85bが形成されている。これにより、補助絞りとして機能する絞り部86aにおいて、冷媒流通方向の長さと冷媒通過面積とが同時に大きくなる。
その他の構成は、実施例4と同様であり、従って、実施例4と同様の作用効果をより有効に発揮させることができ、冷媒の騒音及び異常音をさらに低減することが可能となる。
さらに、絞り部86aに螺旋状の溝85bが形成されることにより、この絞り部86aの出口からの冷媒の流れに旋回成分を与えることができ、次段における絞り部に流入する気液二相冷媒の気泡をより均一にすることができ、冷媒の騒音及び異常音をより効果的に低減することができる。
この実施例の多段電動膨張弁は、図10に示したように、実施例5の多段電動膨張弁の弁体と弁座との噛み合せ形状において、冷媒流通方向の長さと冷媒通過面積とを同時に可変とすることにより冷媒流通抵抗を可変とするような絞り通路を構成するように、変更したものである。
つまり、弁体95において、冷媒流通方向の長さを可変とする部分である、テーパー部95aの先端の略円柱形状の先端部95bに、螺旋状の溝95cが形成されている。これにより、補助絞りとして機能する絞り部96bにおいて、冷媒流通方向の長さと冷媒通過面積とが同時に大きくなる。
その他の構成は、実施例5と同様であり、従って、実施例5と同様の作用効果をより有効に発揮させることができ、冷媒の騒音及び異常音をさらに低減することが可能となる。
さらに、絞り部96bに螺旋状の溝95cが形成されることにより、この絞り部96bの出口からの冷媒の流れに旋回成分を与えることができ、次段における絞り部に流入する気液二相冷媒の気泡をより均一にすることができ、冷媒の騒音及び異常音をより効果的に低減することができる。
(変形例)
なお、この発明は、次のように変更して具体化することもできる。
(1)実施例1〜5において、2段の絞り部、実施例6〜8において3段の絞り部を有する構成を示しているが、一つの絞り通路が全閉可能に形成され、他の絞り通路が全閉不可能に形成されてなり、さらに、全閉可能な絞り通路は、全閉不可能な絞り通路に比し冷媒流通抵抗が大きくなるように形成されている限り、4段以上の絞り部を有するような構成にしてもよい。
このような構成により、冷媒の圧力変動をより緩和することができるとともに、冷媒が気液二相流であっても、気泡を細分化し、均一化することが可能となり、有効に冷媒通過音が低減される。
(2)実施例4、5及び7において、冷媒流通方向の長さを可変とする弁体と弁座とによる絞り部は、垂直方向に形成された壁によって形成されているが、この部分の壁を、テーパーを有する壁に変更することにより、冷媒流通方向の長さ及び通路面積を可変とする構成としてもよい。また、実施例9、10においても同様に、螺旋状の溝が形成された壁を、テーパーを有する壁に変更することにより、冷媒流通方向の長さ及び通路面積の可変をより大きくする構成としてもよい。
(3)実施例8における衝撃緩衝材は、ゴム、樹脂類、バネなどの弾性部材、網状部材、多孔質体(例えば、発泡金属等)等のいずれであってもよい。特に網状部材は、多孔質材と同様に、衝撃緩衝のみならず、気泡を細分化することができるため、好ましい。これらの材料は、1種以上を用いてもよいが、2種以上を組み合わせて用いてもよい。また、実施例8では、弁座及び弁体の双方に衝撃緩衝材を配置しているが、弁座のみ、弁体のみに配置してもよい。さらに、その位置は、全閉可能な絞り部を構成する部分以外の部分であれば、冷媒が衝突し得る部分のいずれでもよい。
(4)実施例9、10における螺旋状の溝は、弁体にのみ形成されているが、弁座のみに形成してもよく、さらに、弁体と弁座との間に冷媒が流通し得る隙間を有している限り、弁体と弁座との双方に、螺合するように形成してもよい。
(5)本発明の実施例においては、筐体が円筒状、弁座、弁体が円柱状、弁孔の平面形状が円形として説明したが、これらの平面形状は円形のみならず、楕円形、多角形、略円形、略楕円形、略多角形等であってもよく、それらの組み合わせ、例えば、筐体が円筒状で弁座及び弁体が円柱状で、弁孔等が正方形のような組み合わせであってもよい。
(6)本発明の実施例においては、弁体がテーパー形状、弁座が段差を有する形状に形成されているが、その逆、つまり、弁体が段差を有する形状、弁座がテーパー形状に形成されていてもよい。
(7)実施例2及び3においては、主絞り及び補助絞りを逆転させることにより、冷媒出入口1から冷媒を流入させるための電動膨張弁として構成させてもよい。
(応用例)
次に、上記のように構成された多段電動膨張弁の応用例について簡単に説明する。
上記構成の多段電動膨張弁は、冷凍装置であればどのようなものにも使用することができるが、特に多段電動膨張弁における冷媒通過音が問題視され易い室内機に用いると効果がある。
応用例1.
応用例1はヒートポンプ式多室用分離型空気調和機に応用した例であり、図11にその冷媒回路を示す。
応用例1の空気調和機は、この図に示されるように、室外ユニット1Aに対し連絡配管1B、1Cを使用して複数台の室内ユニット1Dが接続されている。
また、図11に示されるように、室外ユニット1Aには、圧縮機161、室外コイル162、室外ファン163、従来公知の暖房専用の多段電動膨張弁164、四路切換弁165などが収納され冷媒配管により接続されている。また、室内ユニット1Dには、室内コイル166、室内ファン167、本発明に係る多段電動膨張弁168などが収納され冷媒配管により接続されている。
そして、冷房運転時は、四路切換弁165を図示実線の切換位置とし、多段電動膨張弁164を全開とするとともに、室内コイル166の出口の過熱度が所定値となるように多段電動膨張弁168も冷媒減圧量を調整することにより、冷媒を実線矢印のように流し、室内コイル166を蒸発器として作用させることにより冷房を行っている。
また、暖房運転時は、四路切換弁165を図示破線の切換位置とし、多段電動膨張弁168で少し減圧するようにするとともに、室外コイル162の出口の過熱度が所定値となるように多段電動膨張弁164も冷媒減圧量を調整することにより、冷媒を破線矢印のように流し、室内コイル166を凝縮器として作用させることにより暖房を行っている。
このようなヒートポンプ式多室用分離型空気調和機では、運転条件や据付条件の変化が大きく多段電動膨張弁168にはスラグ流やプラグ流が流れ易く、冷媒通過音が問題となりやすいが、本膨張弁を使用することにより冷媒通過音を低減することができる。
応用例2.
応用例2は冷房、暖房及び除湿運転可能な分離型空気調和機に応用した例であり、図12にその冷媒回路を示す。
応用例2の空気調和機は、この図に示されるように、室外ユニット2Aに対し連絡配管2B、2Cにより室内ユニット2Dが接続されている。
また、図12に示されるように、室外ユニット2Aには、圧縮機171、室外コイル172、室外ファン173、従来公知の多段電動膨張弁174、四路切換弁175などが収納され、冷媒配管により接続されている。また、室内ユニット2Dには、第1室内コイル176、第2室内コイル177、室内ファン178、本発明に係る多段電動膨張弁179などが収納されている。
そして、冷房運転時には、四路切換弁175は図示実線の切換位置とし、多段電動膨張弁179を全開とするとともに、多段電動膨張弁174を室内コイル177の出口の過熱度が所定値となるように多段電動膨張弁174も冷媒減圧量を調整することにより、冷媒を実線矢印のように流し、室内コイル176、177を蒸発器として作用させることにより冷房を行っている。
また、暖房運転時には、四路切換弁175を図示破線の切換位置とし、多段電動膨張弁179を全開とするとともに、室外コイル172の出口の過熱度が所定値となるように多段電動膨張弁174も冷媒減圧量を調整することにより、冷媒を破線矢印のように流し、室内コイル176、177を凝縮器として作用させることにより暖房を行っている。
また、除湿運転時には、四路切換弁175を図示実線の切換位置とし、多段電動膨張弁174を全開とするとともに、室内コイル177の出口の過熱度が所定値となるように多段電動膨張弁179も冷媒減圧量を調整することにより、冷媒を波線矢印のように流し、室内コイル176を再熱器(凝縮器)とし、室内コイル177を蒸発器として作用させることにより除湿を行っている。
このような冷房、暖房及び除湿用の空気調和機においても、本発明に係る多段電動膨張弁を使用することにより冷媒通過音を小さくすることができる。
応用例3.
応用例3はヒートポンプ式分離型空気調和機に応用した例であり、図13にその冷媒回路を示す。
応用例3の空気調和機は、この図に示されるように、室外ユニット3Aに対し連絡配管3B、3Cを使用して複数台の室内ユニット3Dが接続されている。
また、図13に示されるように、室外ユニット3Aには、圧縮機181、室外コイル182、室外ファン183、本発明に係る多段電動膨張弁184、四路切換弁185などが収納され冷媒配管により接続されている。また、室内ユニット3Dには、室内コイル186、室内ファン187などが収納され冷媒配管により接続されている。
そして、冷房運転時は、四路切換弁185を図示実線の切換位置とし、室内コイル186の出口の過熱度が所定値となるように多段電動膨張弁184も冷媒減圧量を調整することにより、冷媒を実線矢印のように流し、室内コイル186を蒸発器として作用させることにより冷房を行っている。
また、暖房運転時は、四路切換弁185を図示破線の切換位置とし、室外コイル182の出口の過熱度が所定値となるように多段電動膨張弁184も冷媒減圧量を調整することにより、冷媒を破線矢印のように流し、室内コイル186を凝縮器として作用させることにより暖房を行っている。
この応用例のように、室外ユニットの多段電動膨張弁に使用してもよく、この場合には、室外ユニットの運転音を小さくすることができる。
(a)は本発明の実施例1に係る多段電動膨張弁の断面図であり、(b)は冷媒出入口2から冷媒が流入する場合、(c)は冷媒出入口1から冷媒が流入する場合を、それぞれ示す多段電動膨張弁の断面図である。 本発明の実施例2に係る多段電動膨張弁の断面図である。 本発明の実施例3に係る多段電動膨張弁の断面図である。 本発明の実施例4に係る多段電動膨張弁の断面図である。 本発明の実施例5に係る多段電動膨張弁の断面図である。 本発明の実施例6に係る多段電動膨張弁の断面図である。 本発明の実施例7に係る多段電動膨張弁の断面図である。 本発明の実施例8に係る多段電動膨張弁の断面図である。 本発明の実施例9に係る多段電動膨張弁の断面図である。 本発明の実施例10に係る多段電動膨張弁の断面図である。 本発明に係る多段電動膨張弁の応用例1を示す冷媒回路図である。 本発明に係る多段電動膨張弁の応用例2を示す冷媒回路図である。 本発明に係る多段電動膨張弁の応用例3を示す冷媒回路図である。 従来のステッピングモータで駆動される多段電動膨張弁の基本的な構造図である。
符号の説明
1、2冷媒出入口
3、13、33、53、63、73 筐体
4、14、34、54、64、74、 弁座
5、15、25、45、65、75、85、95 弁体
4a、4b、14a、14b、34a、34b、54a〜54c、64a〜64c 弁孔
5a、15a、25a、45b、65b、75a、85a、95b 先端部
6a、6b、16a、16b、26a、26b、36a、36b、46a、46b、56a〜56c、66a〜66c、86a、96b 絞り部(絞り通路)
15b、25b 肩部
34c、64d 壁部
45a、65a、95a テーパー部
71a、71b 衝撃緩衝材
85b、95c 螺旋状の溝
161、171、181 圧縮機
162、172、182 室外コイル
163、173、183 室外ファン
164、174、184 電動膨張弁
165、175、185 四路切換弁
166、176、177、186 室内コイル
167、178、187 室内ファン
168、179 電動膨張弁
1A、2A、3A 室外ユニット
1B、2B、3B 連絡配管
1D、2D、3D 室内ユニット

Claims (9)

  1. 冷媒の出入口を備えた筺体と、筺体内に形成された弁座と、弁座に対し進退可能に形成された弁体とを有し、弁体及び弁座は、両者間に多段の絞り通路を形成するように構成されてなり、多段の絞り通路は、一つの絞り通路が全閉可能に形成され、他の絞り通路が全閉不可能に形成されてなり、さらに、全閉可能な絞り通路は、全閉不可能な絞り通路に比し冷媒流通抵抗が大きくなるように形成されてなることを特徴とする電動膨張弁。
  2. 多段絞り通路は、冷媒流通方向から見て全閉可能な絞り通路の上流側に少なくとも一つの全閉不可能な絞り通路を有するように構成されてなる請求項1に記載の電動膨張弁。
  3. 多段絞り通路は、3段の絞り通路として構成されてなり、冷媒流通方向における中間部の絞り通路が全閉可能な絞り通路に形成されてなる請求項1に記載の電動膨張弁。
  4. 全閉可能な絞り通路の上流側に配置される全閉不可能な絞り通路は、流体慣性力が作用する面が衝撃緩衝材により形成されてなる請求項2又は3項に記載の電動膨張弁。
  5. 衝撃緩衝材は、多孔質体からなる請求項4に記載の電動膨張弁。
  6. 全閉不可能に形成された絞り通路は、冷媒流通方向の長さを可変とすることにより冷媒流通抵抗を可変とするように構成されてなる請求項1〜5の何れか1項に記載の電動膨張弁。
  7. 全閉不可能に形成された絞り通路は、冷媒流通方向の長さ及び冷媒通過面積を同時に可変とすることにより冷媒流通抵抗を可変とするように構成されてなる請求項1〜5の何れか1項に記載の電動膨張弁。
  8. 全閉不可能に形成された絞り通路は、冷媒通路に螺旋溝を設けて構成される請求項6又は7の何れか1項に記載の電動膨張弁。
  9. 請求項1〜8の何れか1つに記載の多段電動膨張弁を用いた冷凍装置。





JP2003303365A 2003-08-27 2003-08-27 多段電動膨張弁及び冷凍装置 Expired - Fee Related JP4285155B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003303365A JP4285155B2 (ja) 2003-08-27 2003-08-27 多段電動膨張弁及び冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003303365A JP4285155B2 (ja) 2003-08-27 2003-08-27 多段電動膨張弁及び冷凍装置

Publications (2)

Publication Number Publication Date
JP2005069644A true JP2005069644A (ja) 2005-03-17
JP4285155B2 JP4285155B2 (ja) 2009-06-24

Family

ID=34407380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003303365A Expired - Fee Related JP4285155B2 (ja) 2003-08-27 2003-08-27 多段電動膨張弁及び冷凍装置

Country Status (1)

Country Link
JP (1) JP4285155B2 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093149A1 (ja) * 2005-02-28 2006-09-08 Daikin Industries, Ltd. 膨張弁及び冷凍装置
JP2006258381A (ja) * 2005-03-17 2006-09-28 Sharp Corp 空気調和機
WO2008001803A1 (fr) 2006-06-29 2008-01-03 Daikin Industries, Ltd. Valve d'expansion avec structure de division du débit et unité de réfrigeration l'utilisant
CN102878733A (zh) * 2012-10-26 2013-01-16 温岭市恒发空调部件有限公司 一种膨胀阀组件和单向膨胀阀及双向流通膨胀阀
CN103388939A (zh) * 2012-05-11 2013-11-13 浙江三花股份有限公司 一种电子膨胀阀
JP2015086996A (ja) * 2013-11-01 2015-05-07 株式会社不二工機 電気的駆動弁
JP2019002492A (ja) * 2017-06-15 2019-01-10 株式会社鷺宮製作所 流量制御弁及び冷凍サイクルシステム
JP2019019983A (ja) * 2018-09-25 2019-02-07 株式会社不二工機 電気的駆動弁
KR20190027896A (ko) * 2016-07-13 2019-03-15 스톤 마운틴 테크놀로지스, 인크. 다수의 오리피스 판을 갖는 전자 팽창 밸브
JP2022187265A (ja) * 2021-06-07 2022-12-19 株式会社不二工機 電動弁
JP2023046812A (ja) * 2021-09-24 2023-04-05 株式会社不二工機 電動弁
WO2024078720A1 (de) * 2022-10-13 2024-04-18 Pierburg Gmbh Expansionsventil

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388694B (zh) 2012-05-11 2016-07-27 浙江三花股份有限公司 一种电子膨胀阀
WO2013170542A1 (zh) 2012-05-18 2013-11-21 浙江三花股份有限公司 一种电子膨胀阀
CN103453699B (zh) * 2012-05-29 2016-08-10 浙江三花股份有限公司 一种电子膨胀阀
CN103512288B (zh) 2012-06-20 2016-07-06 浙江三花股份有限公司 一种电子膨胀阀
WO2014023014A1 (zh) 2012-08-10 2014-02-13 浙江三花股份有限公司 一种电子膨胀阀

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093149A1 (ja) * 2005-02-28 2006-09-08 Daikin Industries, Ltd. 膨張弁及び冷凍装置
US7832653B2 (en) 2005-02-28 2010-11-16 Daikin Industries, Ltd. Expansion valve having a grooved valve member and refrigeration device including the same
JP2006258381A (ja) * 2005-03-17 2006-09-28 Sharp Corp 空気調和機
JP4550635B2 (ja) * 2005-03-17 2010-09-22 シャープ株式会社 空気調和機
WO2008001803A1 (fr) 2006-06-29 2008-01-03 Daikin Industries, Ltd. Valve d'expansion avec structure de division du débit et unité de réfrigeration l'utilisant
KR101045759B1 (ko) * 2006-06-29 2011-06-30 다이킨 고교 가부시키가이샤 냉매 분류 구조를 구비한 팽창 밸브 및 이를 이용한 냉동 장치
US8052064B2 (en) 2006-06-29 2011-11-08 Daikin Industries, Ltd. Expansion valve with refrigerant flow dividing structure and refrigeration unit utilizing the same
CN103388939A (zh) * 2012-05-11 2013-11-13 浙江三花股份有限公司 一种电子膨胀阀
US9297562B2 (en) 2012-05-11 2016-03-29 Zhejiang Sanhua Co., Ltd. Electronic expansion valve
CN103388939B (zh) * 2012-05-11 2016-06-01 浙江三花股份有限公司 一种电子膨胀阀
CN102878733A (zh) * 2012-10-26 2013-01-16 温岭市恒发空调部件有限公司 一种膨胀阀组件和单向膨胀阀及双向流通膨胀阀
JP2015086996A (ja) * 2013-11-01 2015-05-07 株式会社不二工機 電気的駆動弁
US11162719B2 (en) 2016-07-13 2021-11-02 Stone Mountain Technologies, Inc. Electronic expansion valves having multiple orifice plates
KR20190027896A (ko) * 2016-07-13 2019-03-15 스톤 마운틴 테크놀로지스, 인크. 다수의 오리피스 판을 갖는 전자 팽창 밸브
JP2019521307A (ja) * 2016-07-13 2019-07-25 ストーン・マウンテン・テクノロジーズ,インコーポレーテッド 複数のオリフィスプレートを備えた電子膨張弁
KR102173688B1 (ko) * 2016-07-13 2020-11-02 스톤 마운틴 테크놀로지스, 인크. 다수의 오리피스 판을 갖는 전자 팽창 밸브
JP2021121758A (ja) * 2017-06-15 2021-08-26 株式会社鷺宮製作所 流量制御弁及び冷凍サイクルシステム
JP2019002492A (ja) * 2017-06-15 2019-01-10 株式会社鷺宮製作所 流量制御弁及び冷凍サイクルシステム
JP7256225B2 (ja) 2017-06-15 2023-04-11 株式会社鷺宮製作所 流量制御弁及び冷凍サイクルシステム
JP2019019983A (ja) * 2018-09-25 2019-02-07 株式会社不二工機 電気的駆動弁
JP2022187265A (ja) * 2021-06-07 2022-12-19 株式会社不二工機 電動弁
JP2023046812A (ja) * 2021-09-24 2023-04-05 株式会社不二工機 電動弁
JP7438549B2 (ja) 2021-09-24 2024-02-27 株式会社不二工機 電動弁
WO2024078720A1 (de) * 2022-10-13 2024-04-18 Pierburg Gmbh Expansionsventil

Also Published As

Publication number Publication date
JP4285155B2 (ja) 2009-06-24

Similar Documents

Publication Publication Date Title
JP4285155B2 (ja) 多段電動膨張弁及び冷凍装置
JP5696093B2 (ja) 電動弁
JP5480753B2 (ja) 電動弁
JP5395775B2 (ja) 電動弁
JP6119489B2 (ja) エジェクタ
JP2006275452A (ja) 膨張弁
JP2006266667A (ja) 膨張弁及び冷凍装置
JP3490640B2 (ja) 絞り装置
EP3550193B1 (en) Electronic expansion valve and refrigeration system having same
JP6659624B2 (ja) 電動弁及び冷凍サイクルシステム
AU2005210939B2 (en) Expansion valve of refrigerating apparatus
JP4285156B2 (ja) 多段電動膨張弁及び冷凍装置
JP2017115989A (ja) 電動弁
WO2016002022A1 (ja) 膨張弁、及び、冷凍サイクル装置
JP2006266663A (ja) 膨張弁および空気調和機
JP6966416B2 (ja) 弁装置および冷凍サイクルシステム
JP4476757B2 (ja) 弁装置および冷凍サイクル装置
JP3824019B1 (ja) 膨張弁及び冷凍装置
JPH0626738A (ja) 空気調和装置
JP2004257727A (ja) 膨張弁
JP2008128603A (ja) 電動膨張弁
JP4265347B2 (ja) 電動膨張弁及び冷凍装置
JP2002071241A (ja) 空調装置及びその冷媒制御用絞り弁
JP2017072352A (ja) 冷凍装置
JP4306366B2 (ja) 冷媒制御弁

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees