JP2005043681A - 投射型表示装置 - Google Patents

投射型表示装置 Download PDF

Info

Publication number
JP2005043681A
JP2005043681A JP2003277916A JP2003277916A JP2005043681A JP 2005043681 A JP2005043681 A JP 2005043681A JP 2003277916 A JP2003277916 A JP 2003277916A JP 2003277916 A JP2003277916 A JP 2003277916A JP 2005043681 A JP2005043681 A JP 2005043681A
Authority
JP
Japan
Prior art keywords
projection
prism
light
screen
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003277916A
Other languages
English (en)
Other versions
JP4411030B2 (ja
Inventor
Katsuhide Hasegawa
勝英 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003277916A priority Critical patent/JP4411030B2/ja
Priority to US10/886,116 priority patent/US7281805B2/en
Priority to CNB2004100544577A priority patent/CN100440029C/zh
Publication of JP2005043681A publication Critical patent/JP2005043681A/ja
Application granted granted Critical
Publication of JP4411030B2 publication Critical patent/JP4411030B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/10Projectors with built-in or built-on screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7408Direct viewing projectors, e.g. an image displayed on a video CRT or LCD display being projected on a screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/72Modifying the appearance of television pictures by optical filters or diffusing screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7416Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof

Abstract

【課題】種々の原因によるゴーストが生じることなく、高画質で薄型の投射型表示装置を提供する。
【解決手段】投射型表示装置において、少なくとも1枚の平面ミラーを有する投射光学系を用いて被投射面に画像を投射する投射型表示装置であって、前記被投射面に入射する光の前記被投射面への入射角度の最小値をαmin、前記被投射面に入射する光の前記被投射面への入射角度の最大値をαmax、前記少なくとも1枚の平面ミラーのうち、前記投射光学系の光路上において前記被投射面に最も近いミラーの法線と、前記被投射面の法線とのなす角度をγとするとき、
45+αmin/2 < γ < 45+αmax/2
を満足するように構成する。
【選択図】 図1

Description

本発明は、投射型表示装置に関するものである。より詳しくは、スクリーンの裏側からビデオ映像やコンピュータ映像等を拡大投射するリアプロジェクション型映像装置の薄型化を実現する技術に関するものである。
近年、デジタルテレビ放送の開始など高画質の映像ソースが豊富になってきており、また、会議室でのプレゼンテーションなどでもコンピュータの映像を用いることが一般的になってきている。これらの用途に用いる映像装置への高画質化、大画面化の要求がますます強くなってきており、このような高画質化、大画面化を安価に実現する有力な技術としてリアプロジェクション型映像装置がある。周知のようにリアプロジェクション方式の映像装置は、高輝度CRTチューブや透過型液晶や反射型液晶、デジタルマイクロミラーデバイスなどに照明光を照射して、その像面からの映像光を投射光学系によって拡大投射し、この投射光をスクリーンの後方から投射して前面側から観察するものである。このため、大きく拡大するにはそれだけ投射光の光路長を長くする必要があり、装置の奥行きが大きくなってしまう。
このようなことから、奥行きを小さくするためにスクリーンに対して斜めに投射することが考えられ、種々の提案がなされている。例えば、特許文献1は、そのような投射光学系の性能を大幅に改善したものであり、そこには斜め入射方式を用いて高性能な映像装置が実現可能であることが示されている。
一方、このような斜め入射方式に用いるリアプロジェクションスクリーンについては、通常用いられる屈折式のフレネルレンズを使用した場合、入射角が大きいために入射面での表面反射率が非常に大きく十分な明るさが得られず、また、入射角が大きくなるにつれて急激に反射率が増大するために均一な明るさが得られないという問題がある。このような問題を解決するために、例えば、特許文献2では、円弧状に並んだプリズムを用いてプリズム内で全反射させることで急角度の入射角でも十分な明るさが得られる全反射プリズム式フレネルレンズを使用することが提案されている。
また、この斜め入射方式によって装置の奥行きと高さを小さくするためには、平面ミラーを用いて光路を折り畳むことが効果的であり、そのため、各種の提案が行なわれているが、例えば、前記の特許文献1にはスクリーンにほぼ平行なミラーを用いるものが示されており、また、前記の特許文献2にはスクリーンにほぼ垂直なミラーを用いるものが示されている。
特開2001−255462号公報 特開昭61−208041号公報
ところで、前述の従来例における投射光学系と全反射プリズム式フレネルレンズを用いることで、均一な明るさを有し奥行きの小さいリアプロジェクション型の映像装置が実現可能になるとされているが、実際にはいくつかの問題がある。例えば、全反射プリズム式のフレネルレンズにおいては、入射角度が比較的小さい場合、図11に示すように入射光線の一部が全反射面にあたらずに突き抜けてしまうため、プリズムの頂角θtを十分小さくする必要がある。
図11においてスクリーン2の法線21に対してαの角度で入射する光線bは、プリズム入射面81にθiの入射角で入射する。入射面81においてスネルの法則にしたがって屈折させられθrの角度で出射する屈折光線b’が、プリズムの全反射面82に臨界角以上
の角度で入射して100%反射されてスクリーンにほぼ垂直な光線cに曲げられるようにプリズムの頂角θtと入射面のスクリーン面に対する角度θsを設定してある。これが全反射プリズム式フレネルレンズの作用であるが、入射光線bより隣のプリズムの先端に近い光線b2は全反射面82にあたらずに光線b2’の方向に直進してしまうのである。このように直進してしまう光線b2’は単なる光量損失になるだけでなく、本来の位置と異なる位置に像が現れる現象、いわゆるゴーストを生じる原因となり、著しく映像の品位を損ねることになる。
これを防ぐには頂角θtを小さくすればよいのであるが、この場合は別の問題が生じる。図12は、図11と同じ入射角θに対してプリズムの頂角θtを小さくした場合を示している。図11と同等な部分には同じ記号を付してあり、同様に入射光線bはスクリーンにほぼ垂直な光線cに曲げられる。頂角θtを小さくしたことによって、隣接のプリズムの先端近くを通る光線b2も全反射面82に入射するので、光線c2となって正しい方向に曲げられている。ところが、プリズムの入射面での反射光線がとなりのプリズムの全反射面に裏側から入射してしまい、迷い光となってゴーストを生じてしまうという問題が生じる。すなわち、界面では必ず反射が生じるが、例えば、空気から屈折率1.49のアクリル樹脂に入射する場合には約4%程度が反射される。ここで、入射光線bの反射光は光線dであり、再びスクリーン側に戻ることはないが、光線b2の反射光線d2は隣のプリズムに入射し、光線s、t、uの方向に進んでスクリーン上にゴーストとなって現れてしまうことになる。なお、光線uは反射光線d2から3回界面を通過しているが、各界面で4%づつ反射して減衰したとしても約88%にしか減衰しないので、入射光線b2の4%×88%=3.5%もの光量があり、映像の品位を損ねてしまう。
また、奥行きを小さくするために光路を折り畳む平面ミラーとしてスクリーンとほぼ平行なミラーを採用した場合は、奥行き方向は半分程度になるが、高さ方向にはスクリーンの高さより大きく伸びてしまう。特に前述の入射角度が小さい場合の問題をさけるため、最小値を大きくしようとすると高さが非常に高くなってしまう問題がある。したがって、全反射プリズム方式フレネルレンズを用いたスクリーンでは、スクリーンにほぼ垂直なミラーを用いるほうがよく、この平面ミラーとスクリーンとの間の角度を垂直よりも若干小さくすることで奥行きを最小にすることができる。ところが、このようにすると、スクリーンのプリズム面からの反射光のうち、となりのプリズムに入射しなかった光線がこの平面ミラーに反射して再度スクリーンに戻ってしまい、ゴーストが生じるという問題があることがわかった。
この現象を図13を用いて説明する。図13はリアプロジェクションモニター装置1の内部の光路を示す側面からみた断面模式図である。光源ユニット4から投影光学系41によって投射される光線のうち、画面中央の光線aは平面ミラー3に反射されて光線bとなり、全反射フレネルスクリーン2に大きな入射角θで入射して曲げられて光線cとなって出射される。ここで、前述のようにフレネルの入射面(前記プリズムの入射面81)で反射された光の一部は再びプリズムに入射してゴーストになるのであるが、再びプリズムに入射しなかったものは光線dの方向に進み、平面ミラー3に反射されて、光線eとなってスクリーン2の別の場所に入射してしまう。本来の入射角とは異なるものの全反射フレネルの作用によってこの光線eは光線fのように曲げられて出射するのでゴーストとして観察されるのである。スクリーンの下辺方向に向かう光線gについても同様に光線j、kと進んで光線lがゴーストとなる。また、光線bを光線dの方向に反射する際の全反射フレネルスクリーン2の働きは、一種のフレネル凹面鏡として作用するため集光作用がある。このために非常に輝度の高いゴーストになってしまうという問題が生じる。
そこで、本発明は上記したゴーストが実質的に生じることのない、高画質で薄型の投射型表示装置を提供することを目的とするものである。
本発明は、以下のように構成した投射型表示装置を提供するものである。
すなわち、本発明の投射型表示装置は、少なくとも1枚の平面ミラーを有する投射光学系を用いて被投射面に画像を投射する投射型表示装置であって、前記被投射面に入射する光の前記被投射面への入射角度の最小値をαmin、前記被投射面に入射する光の前記被投射面への入射角度の最大値をαmax、前記少なくとも1枚の平面ミラーのうち、前記投射光学系の光路上において前記被投射面に最も近いミラーの法線と、前記被投射面の法線とのなす角度をγとするとき、
45+αmin/2 < γ < 45+αmax/2
を満足することを特徴としている。ここで、前記投射光学系の瞳と前記画像の中心とを通る光の光路を基準光軸としたとき、前記基準光軸が前記被投射面の法線に対して傾いていることを特徴としている。
ここで、60<αmin、さらには65<αminであることが好ましい。また、85>αmaxさらには80>αmaxであることが好ましい。
また、前記被投影面に配置されているスクリーンを有し、該スクリーンが該スクリーンの光入射側に、複数の同心円上にそれぞれプリズムが配置されているプリズム群を有することを特徴としている。
ここで、前記投射光学系の瞳と前記画像の中心とを通る光の光路を基準光軸とし、前記基準光軸と前記被投影面の法線を含む平面を基準平面としたとき、前記複数の同心円のうち第1の円上に配置されたプリズムの、前記基準平面における断面形状と、前記複数の同心円のうち前記第1の円とは異なる第2の円上に配置されたプリズムの、前記基準平面における断面形状とが互いに異なることを特徴としている。さらに、前記投射光学系の瞳と前記画像の中心とを通る光の光路を基準光軸とし、前記基準光軸と前記被投影面の法線を含む平面を基準平面としたとき、前記複数の同心円上に形成されているプリズムそれぞれの前記基準平面における断面形状が互いに異なるように構成すると尚良い。
また、前記投射光学系の瞳と前記画像の中心とを通る光の光路を基準光軸とし、前記基準光軸と前記被投影面の法線を含む平面を基準平面としたとき、前記複数の同心円のうち第3の円上に配置されたプリズムの前記基準平面上におけるプリズム頂角と、前記複数の同心円のうち前記第3の円とは異なる第4の円上に配置されたプリズムの前記基準平面上におけるプリズム頂角とが実質的に同じであることを特徴としている。
また、前記プリズム群の各プリズムの頂点部は0.02mm以下の曲率の平面を有していることを特徴としている。また、前記プリズム群の各プリズムは光入射面と光全反射面とを有しており、前記各プリズムの頂点部は、前記光入射面と光全反射面とが交わる点よりも前記被投射面に近く、前記各プリズムの頂点部と前記光入射面と光全反射面とが交わる点との距離は0.02mm以下であることを特徴としている。また、前記プリズム群の各プリズムは光入射面と光全反射面とを有しており、前記光入射面と光全反射面とが交わる点は、前記各プリズム間の歯底部よりも前記被投射面に近く、前記各プリズム間の歯底部と前記光入射面と光全反射面とが交わる点との距離は0.02mm以下であることを特徴としている。
また、本発明の投射型表示装置は、入射面側に同心円状に並んだプリズム群からなり、各プリズムが全反射面を有する全反射プリズム式フレネルレンズを含み、観察者に対して裏側から映像光線を入射して用いるリアプロジェクションスクリーンと、映像パネルからの光束を基準軸に対して傾斜した前記スクリーン面上に導光して、該スクリーン面に映像情報を形成する投射光学系と、前記投射光学系とスクリーンとの間に光路を折り曲げる少なくとも一枚の平面ミラーと、を有する映像表示装置において、前記投射光学系から前記スクリーンに入射する光線の角度αが、60度以上85度以下(より好ましくは65度以上80度以下)の範囲であるとともに、前記平面ミラーのうち最もスクリーンに近いものと前記スクリーン面との角度γが、(45+αの最小値/2)度以上(45+αの最大値/2)度以下であって、前記プリズムの頂角を該プリズムの入射面の反射光が前記最もスク
リーンに近い平面ミラーに映る前記スクリーンの虚像の方向よりスクリーンから離れる方向となるようにしたことを特徴としている。このように構成することで、奥行きと高さを共に非常に小さくすることができる。
また、本発明の投射型表示装置においては、前記プリズムの頂角θtを一定とし、前記プリズムの入射面の角度θsを前記スクリーンに入射する光線の角度αに応じて変化させて、出射光線がほぼスクリーンに垂直となるようにした構成を採ることができる。このようにすることで、全画面範囲で均一な明るさを高効率で得ることができ、しかもゴーストやフレアのないすっきりとした高品位な画像を表示できる投射型表示装置を低コストで実現することができる。
本発明によれば、種々の原因によるゴーストが生じることなく、高画質で薄型の投射型表示装置を実現することができる。
本発明を実施するための最良の形態について、以下の実施例に基づいて説明する。
本発明の実施例1における投射型表示装置について図1乃至図4を用いて説明する。
図2は投射型表示装置1の外装を一部切り取って中が見えるようにした状態を示す模式図である。下部に設けられた投射ユニット4から映像光が投射光学系41を通して上方に投射され、上部ミラー3で光路を下方に曲げられて透過型のスクリーン(被投射面)2に入射するようになっている。画面中央の光線である中心光線a(基準光軸)は投射光学系41の瞳5の中心を通り、上部ミラー3の中央部に当たって光線bとなってスクリーンの中央に入射している。また、画面の四隅の光線であるm、m’、g、g’も同様に瞳5から上部ミラー3の四隅部に当たって光線n、n’、h、h’となってスクリーン2の四隅に入射する。
中心光線aを含みスクリーン2に垂直な面で断面を取った断面図を図1(ア)に、またスクリーン2の部分の断面図を図1(イ)に、さらにスクリーン2のフレネル板85の断面の拡大図を図1(ウ)に示す。前述のように中心光線aは上部ミラー3に反射されて光線bとなりスクリーン2の中央に入射角α0で入射する。スクリーン2の光線入射側にはプリズム群(単体のプリズムで構わない)8が設けられており、光線bはプリズムの入射面81に入射し、プリズムの全反射面82に反射されて光線cとなってスクリーン2にほぼ垂直な方向に出射されるようになっている。同様に画面の四隅の光線であるm、g(m’、g’はm,gと重なっている)もスクリーン2の表面に設けられたプリズム群8の作用によりスクリーン2にほぼ垂直な光線o、iとなって出射される。このプリズム群8の作用については後でさらに詳しく述べる。図1(イ)に示すように、スクリーン2は上記のプリズム群8を有するフレネル板85と拡散機能を有するレンチキュラー板9、スクリーン全体の平面性を保ち、また傷つき防止などの保護機能のために設けられたガラス板95から構成されており、このレンチキュラー板の作用により前記光線c、o、iを含むスクリーンに入射する光をそれぞれ上下方向、左右方向に拡散するようにしている。このように構成することによって、スクリーンの正面(スクリーン面の法線方向)以外の斜め方向(スクリーン面の法線に対して傾いた方向)からも明るい画像が観察できるようになる。
本発明に用いる投射光学系41は、通常の光軸を中心とした中心部分を使用するものと異なり、光軸に対して大きく傾斜した方向にスクリーンの中心を配置している。すなわち、投射光学系41の中心を通り、スクリーン面の中心に入射する光の光路(これを基準光軸と称する)に対して、スクリーンを傾けて配置している。ここでは、スクリーン面の法
線と前述の基準光軸との角度が60度以上85度以下、より好ましくは65度以上80度以下とすると良い。これについてその配置を表す立体図である図3を用いて詳述する。なお、この図はわかりやすくするために上部ミラー3を取り除いた展開図てあるので、図1、2とは画面の上下が逆になっている。
図において、座標軸はスクリーン2の中心Oを原点としたxyz座標系であって、スクリーン有効部の大きさを横方向2x0、縦方向2y0とし、投射光学系の瞳の中心P0がy軸方向に−y1だけオフセットした位置に配されている。画面上の任意の点Pへの入射角αは、点P0と点O’(スクリーン面を含む平面に対して垂直で、且つ前述の瞳の中心P0を含む直線と、スクリーン面を含む平面との交点)間の距離と、点P0を点O’との距離z1の正接角として求めることができる。つまり、点O’を中心とするある円上では入射角αが一定である。したがって、点O’を中心とし、所定の半径の円上には、同一断面形状のプリズムを配置し、また半径の異なる円上には、その円上における光の入射角度を考慮した上で同一断面形状のプリズムを配置することにより、スクリーン面上での各々の入射角αとプリズム形状を対応させることができ、全画面範囲(スクリーンの少なくとも一部)で出射光線の方向をz軸方向になるように揃えられる。
ここで本発明を適用した本実施例の具体的な数値例を示す。スクリーンサイズが対角60インチ、縦横比9:16、すなわち2x0=1328mm、2y0=747mmであり、これに対してy1=1110mm、z0=340mmとした。したがって画面中央への入射角α0は72.97°である。また、最小入射角は画面の下辺中央Uの位置にあり、65.22°、最大入射角は画面の上辺左右端AおよびDの位置で78.19°である。ここで、スクリーン面への最小入射角60度(望ましくは65度)以上、最大入射角85度(望ましくは80度)以下を満足するのが好ましい。この理由は、前者は全反射プリズムの性能を最大限引き出すためであり、後者は、正接値が80度前後から急激に増大することで明らかなように、投射光線の投射方向がわずかな誤差を持っただけでも非常に大きな位置ずれを生じてしまい、投射ユニットとスクリーンの位置合わせの精度が非常に厳しくなってしまうこと、また同じ理由で投射光学系の諸収差がスクリーン上の像に与える影響が非常に大きくなってしまうことから制限されるものである。
なお、上記入射角の数字は投射光学系41の瞳5の中心を通る代表光線の値である。実際には瞳5が有限の大きさを持つために、わずかながら角度分散を有しスクリーン面上で一点に集まる光束なので、扱う特性によってはこの角度分散分を考慮する必要がある。
これらの入射角の数値でわかるように、本発明に用いる投射光学系41は中心光線を基準軸として大きく傾斜したスクリーン面に投影するものである。このような斜め投射の光学系については種々の方式が提案されており、いずれの方式でも使用可能である。したがって、ここでは説明を省略する。
このように大きな入射角で投射する光路を上部ミラー3で折り曲げることで非常に薄型の装置を実現している。再び図1を参照すると、上部ミラー3とスクリーン面のなす角γを本実施例では82°とした。これは、本発明における(45+αの最小値/2)=77.61度以上(45+αの最大値/2)=84.095度以下の範囲となっている。前者は図1の光線mがスクリーン2から離れるようにする条件であり、後者は光線gが上部ミラー3の後端より後方にはみ出さないようにする条件である。また、上部ミラー3はスクリーン2の上辺に近接して配置することで、ミラーの後ろ端とスクリーン面との距離はほぼz0の半分の180mmになる。したがって、装置の全体の奥行きを筐体外板の厚さなどを考慮しても200mm程度にすることが可能であり、従来450mm以上必要であったものが非常に薄型になっている。また、装置の高さについても、上部ミラー3で折り返したことによって光線aの長さが約800mmとなっているので、投射ユニット4の高さと筐体外装の厚さを考慮しても全高900mm程度とスクリーンの高さ2y0=747mmに対してわずかに大きい程度とすることが可能であり、非常に小型の装置が実現できている。
次にこのような入射角範囲としたときの全反射プリズムの作用について図1中に示した部分拡大図を用いて詳しく説明する。
プリズムの入射面81がスクリーン面となす角をθs、プリズムの頂角をθt、光線bのスクリーン面に対する入射角をαとすると、光線bのプリズム面81に対する入射角θiは、θi=α−θs(式1)である。また、入射面81で屈折されて出射する光線b’の出射角θrは、プリズムの屈折率をnとして、SIN(θr)=SIN(θi)/n(式2)である。したがって、光線b’の全反射面82への入射角θzは、θz=θt−θr(式3)となり、これが臨界角(n=1.49のとき42.16°)以上となるようにθtを選ぶ必要がある。全反射された出射光線cの方向がスクリーン面に垂直になる条件は、θz=180°−θt−θs(式4)なので、式1、2、3を用いて整理すると
TANθs=(SINα+nSIN2θt)/(COSα−nCOS2θt)(式5)
である。
すなわち、プリズムの材料としてアクリル樹脂(n=1.49)を用い、θt=58°として、α=72.97°の場合、θs=67.60°、θz=54.40°となる。
上記の式は画面内の任意の位置で成り立つから、αの最小値と最大値についても同様に、n=1.49、θt=58°としてθs、θzを求めると、
αmin=65.22°のときθs=64.49°、θz=57.51°となる。また、αmax=78.19°のときθs=69.69°、θz=52.31°となる。
したがって、θtを一定にしたまま、α=65.22°から78.19°に対して式5によって求まるθsとなるよう、θsを64.49°から69.69°まで徐々に変化させながら同心円状のプリズムを形成してプリズム群8とすることで、全画面範囲にわたって出射光線の方向をスクリーンに垂直にすることができる。つまり、基準光軸(中心光線a)とスクリーン面の法線を含む平面を基準平面としたとき、各プリズムのこの基準平面における断面図(すなわち図1(ウ)のこと)において、各々のプリズムの頂角を等しくし、尚且つ各プリズムの断面形状を互いに異ならしめている。このように構成することによって、投射光学系からの光を効率的に観察者側に導いている。
また全反射条件も満足されている。全反射条件については、前述した瞳5の大きさによって生じる角度分散と、さらに入射面81の表面粗さによる光線b’の拡散を考慮する必要がある。本例では瞳の大きさが直径28mmであり、最も角度分散が大きくなる最短投射距離の位置は画面の下辺中央Uでその距離は約811mmである。したがって角度分散は片側約1°である。入射面81の表面粗さによる拡散角は、本発明者らの実験によると片側約4°であった。これらを考慮したθzの最小値は約47.3°となるが、これは臨界角42.16°に対して十分大きい値である。
このように、画面内の全範囲で光線の方向をスクリーン面に対して垂直な方向に全反射によって方向変換して出射するようにしたので、光量損失が最小かつ全画面均一にでき、高効率でむらのない画面を得ることができる。
次に、全ての光線が全反射面に当たることを確認しておく。αの最小値と最大値の時のプリズム部分の拡大図を図4、5に示す。図5のようにαが大きい時は問題ないが、図4のようにαが小さくなってくると、隣のプリズムの頂点の近くを通る光線n2は全反射面82の歯底に近いところを通る。理想的な歯底の頂点からこの反射位置までの高さδが負になればその分の光線は全反射面82に当たらずに直進してしまう。さらには製造上、歯底と歯の頂点部は有限の丸みが必要である。したがってδはこれらの丸みを考慮しても必ず全反射面82に入射するよう十分大きくしておく必要がある。また、このプリズム個々の大きさは表示する画素の大きさより十分小さくなければならない。これは、全反射面で反射されることで、光線が上下反転するため、画素より大きなピッチではプリズムのピッチごとに画素の配列が上下逆転してしまうためである。プリズムのピッチと画素の大きさ
が近いとこれらの空間周波数間のビートがいわゆるモアレとなってしまうので、少なくとも画素の半分以下のピッチとすることが望ましく、できるだけ小さくしなければならない。したがって、プリズム個々の大きさに比して前述の頂点部の丸みの影響は無視できないものである。また、前述の全反射の時と同様に瞳5の大きさによる角度分散(約1°)と入射面81の表面粗さによる光線b’の拡散(約4°)を考慮に入れる必要がある。
本例の場合の数値を示すと、表示画像の画素数が縦1080、横1920、画素の大きさ約0.7mmであり、入射面プリズムのピッチを0.2mmとしてある。したがって、δの値は、αmin、α0(スクリーン面の中心に入射する光の入射角)、αmaxに対して、各々約0.04、0.09、0.12(単位mm)である。計算方法は煩雑なため省略する。すなわち、頂点部もしくは歯底部の丸みが0.02mm以下であればよく、十分製造可能な数値となっている。これは言い換えると、プリズムの頂点部に丸みが無い場合のプリズムの頂点部に比べて、実際のプリズムの頂点部がスクリーン面側(すなわち光出射側)に近く、尚且つプリズムの頂点部に丸みが無い場合のプリズムの頂点部と実際のプリズムの頂点部との距離が0.02mm以下であることを意味している。これを歯底部に置き換えると、各プリズム間の歯底部に丸みが無い場合のプリズム間の歯底部に比べて、実際のプリズムの歯底部が光入射側に近く、尚且つ各プリズム間の歯底部に丸みが無い場合のプリズムの歯底部と実際の各プリズム間の歯底部との距離が0.02mm以下であることを意味している。
このδの大きさはαが小さくなるほど、またθtを大きくするほど、小さくなる。たとえば、簡単にわかるように、α=60°、θt=60°ではθs=60°、すなわちプリズムは正三角形となり、δ=0である。したがって、δを十分確保するためには、α=60°の場合はθtを60°よりかなり小さくしなければならなくなる。しかし、θtを小さくすると、後述の別の問題が生じることになるため、実際にはαの最小値を60°以上、望ましくは65°以上とすることが必要となる。
このように、本発明を適用してαの最小値を定め、θtについてはαの最小値に応じて上限値を制限することで、全光線を全反射させることが可能になる。これによって、全反射面に反射されずに透過してしまうことによるフレアや光量損失を防ぐことができる。
ところで、プリズムの入射面81においては、透過光線b’だけでなく、反射光線dが生じる。この反射光線dの光量はプリズムの屈折率1.49の場合、反射率は約4%程度であり、これがスクリーン2に戻ると、目立ったゴースト像として観察されてしまう。これを防止する条件からθtの下限が制限される。
図6はこれを説明するための断面図であって、図1と対応する部分には同じ記号を付してある。図中2’は上部ミラー3に映るスクリーン2の虚像である。図6に示した矢印d’は、入射光線bがスクリーン2で反射されてスクリーンの虚像2’の上端に入射する方向を表すものであり、図1に示した実際の反射光線dがこの矢印d’より図中右方向すなわちスクリーン2からより離れる方向とすれば、スクリーン2に戻らないようにすることができる。この条件はスクリーン面上のすべての点で同様に成立しなければならないことはいうまでもなかろう。これは言い換えれば、反射光線dとスクリーン面の法線21のなす角度βがスクリーンの虚像2’に入射する角度ηより小さいことであり、これが本発明の要点である。
この角度βは前述の式1を用いて、β=α−2×θi=2×θs−α(式6)である。したがって、θsを小さくすればよいことがわかる。式5は、θtが60°前後のとき、θtを大きくするとθsが小さくなることを示している。したがって、この反射光線の方向βを小さくするためにはθtを大きくしなければならない、すなわちθtの下限を制限する条件となる。
この反射光線dの方向角度βについても、前述した瞳5の大きさによる角度分散(約1°)と入射面81の表面粗さによる反射光線dの拡散(約4°)を考慮に入れる必要がある
。すなわち瞳5を通る代表光線の反射角度βが角度ηに対してさらに約5°以上のマージンを持つようにすればよい。
本例の場合を作図によって求めた結果は、スクリーンへの入射角αmin、α0、αmaxに対して、βは各々、63.76°、62.23°、61.19°、ηは各々、74.4°、79.4°、82.7°であった。すなわちマージンは各々、10.64°、17.17°、21.51°となり十分確保されていることがわかろう。
このように、βがηより十分小さければ、反射光線dは上部ミラー3に反射された後も、図1に示した光線d’のように投射装置の内部のスクリーン以外の方向に進む。したがって、筐体の内面要所に反射防止措置を行なうことで画面への影響を完全になくすことは容易であり、ゴーストのないすっきりした画像が得られるものである。
ここで本例においてθtを一定としたことについてその利点について説明する。プリズム群を作成する方法としては、型を用いて熱間で基板材料を押し当て、圧力をかけて形状を転写させる方法と、型に紫外線硬化樹脂を滴下して透明な基板材料を密着させ紫外線を照射して固化させる方法などがあるが、いずれにしても型を用いることで量産性が向上する。この型は光学的に優れたプリズム面を得るためにダイヤモンドバイトを用いて彫刻して作成するが、このダイヤモンドバイトの頂角がプリズムの頂角θtそのものとなるので、θtを変化させるにはθtの種類に対応したダイヤモンドバイトが必要になってしまう。さらに、たとえ2〜3種類程度に減らせたとしてもバイトを変えるとつなぎ目ができてしまうため、このつなぎ目を目立たなくするには非常に高精度な位置合わせが必要になる。一方、本発明を実施してθtを全画面一定とすれば、バイトを交換することなく、その姿勢を徐々に変化させてθsを変化させながら彫刻するだけで良いので、高価なダイヤモンドバイトは一本でよく、またつなぎ目の問題もない。したがって、むらがなく高品位でコストも安いものを実現できる利点がある。
次に、レンチキュラー板9について図1および図7〜図10を用いて説明する。プリズム群8によってスクリーン面に垂直な方向に曲げられた光線cは、前述のように瞳5の大きさによる角度分散(約1°)と入射面81の表面粗さによる拡散(約4°)、および全反射面82による拡散(同様に約4°)の影響を受けた拡散光線であるが、その拡散角は、合計で9°程度である。したがって、スクリーンの正面方向から観察すれば非常に明るいが、わずかに上下左右にそれただけで急激に暗くなってしまう。実用的には左右方向は片側60°以上、上下方向も片側30°以上の視野角が望ましく、そのために拡散機能を有するレンチキュラー板9が設けられている。図7〜図10は、本例に用いたレンチキュラー板9の説明図であって、図7は光線入射側から、図8は観察側からみた部分拡大図、図9は側面から見た断面図、図10は上方向から見た断面図である。レンチキュラー板9の光線入射側には縦方向に伸びる半円柱を多数並べたものであるレンチキュラーレンズ91が設けられており、観察面側にはレンチキュラーレンズ91の各円柱と対向する位置に光透過部(開口部)を有する光吸収材料(遮光部材であれば構わない)を有するストライプ形状の遮光部材92が設けられている。ここで遮光部材は反射部材であっても構わないが、観察者側から入射した光が観察者側の視野角度内に反射させないように構成することが好ましい。例えば観察者側の面を吸収部材で構成する、もしくは観察者側から入射する光を観察者側の視野角度外に反射するように構成すればよい。また、レンチキュラー板9の板材中の観察面に近い側に偏在する分布で多数のレンチキュラー板の材料より屈折率が高い材料からなるビーズ(小球)93が混入されている。
全反射プリズムからなるフレネル板85でスクリーンに垂直な方向となった光線は、上下方向については図9の矢印のようにビーズ93によって拡散される。左右方向については図10のようにレンチキュラーレンズ91によって観察面側の板表面に設けられたストライプ形状の遮光部材92の開口部分に集光されて拡散光となる。このときビーズ93の
作用も受けるので上下方向よりも左右方向の方がより拡散の度合いが大きく、上下方向は約30°、左右方向は約60°の拡散角となっているのである。ここでビーズ93を観察面側に偏在させてあり、レンチキュラーレンズ91による集光をあまり損ねることがないので、ストライプ形状の遮光部材92の開口部をかなり狭くできる。このストライプ形状の遮光部材92は観察面側からの外光を吸収する働きがあり、明るい環境で画面コントラストを高く保つことができるものであるが、前述のように開口部を狭くしたので非常に高いコントラストが得られる。
なお、本例のレンチキュラー板9は上下方向と左右方向の視野角に差を設けて明るさと左右方向の広い視野角を両立させられ、しかも高いコントラストが得られる高性能なものであるが、必ずしもこれに限定されるわけではないことはいうまでもない。たとえば、レンチキュラー板に混入するビーズ93は、レンチキュラー板より屈折率の低い材料でできていても構わないし、ストライプ形状の遮光部材92の開口部を表面を粗い面にして入射する光を拡散させたり、光拡散シートをレンチキュラー板かフレネル板に貼り付けたり、あるいはレンチキュラー板でなく単純な光拡散板を用いてもよい。
以上の説明で用いた具体的な数値はこれに限定されるものでなく、本発明の主旨を逸脱しない範囲で変更可能であることはいうまでもない。たとえば、画面サイズや縦横比は自由であり、投射角度αが60〜85°の範囲となるよう距離z1およびy1を決めればよい。またプリズムの頂角θtも58°に限定されるものではなく、反射光がスクリーンに戻らない範囲で小さくしてもかまわない。
つぎに、実施例2においては上記実施例以外のその他の例について説明する。実施例1においては、θtを全画面範囲一定として型を製作する際に用いるダイヤモンドバイトが一本でできるようにしていたが、数本のθtの異なるバイトを用いて型加工を行なってもよい。この場合、つなぎ目を目立たぬようにする型加工は困難であるが、入射角αが大きい時はθtを大きく、αが小さいときはθtを小さくすることによって、入射面の反射光の戻り方向のマージンとプリズム歯先および歯底の丸みのマージンを共に大きくすることができる。
上記実施例1の説明において、プリズムの入射面81の反射光の角度βは、その表面粗さによる拡散角度を含めて角度ηに対してマージンを持つようにしていたが、入射面81の表面粗さを故意に粗くして拡散角度を十分大きくすれば、拡散角度すべてをマージンとしなくてもよい。実際上、反射光のエネルギーのスクリーンに戻る分が1%以下になるようなマージンがあれば輝度は十分小さくなり、ゴーストとして目立たなくなるので、本発明の主旨を実質的に実施したものと言える。
このように入射面81を粗面にすることは、サンドブラストや化学処理などの方法で型の表面を粗面にするなど非常に簡単に行なえ、視野角を拡大するレンチキュラー板の機能の一部を補う手段として有効である。全反射面82やフレネル板85の観察側の面を粗面にすることも併用可能であり、十分な拡散性が得られればレンチキュラー板へのビーズ混入をなくすなどにより低コスト化が可能である。
本発明の実施例1における投射型表示装置の構成を示す図であり、(ア)は中心光線aを含みスクリーンに垂直な面で断面を取った断面図、(イ)はスクリーン部分の断面図、(ウ)はスクリーンのフレネル板の断面の拡大図。 本発明の実施例1における投射型表示装置の外観図。 本発明の実施例1における映像表示装置の光学系の配置を表す立体図。 本発明の実施例1におけるプリズム部の拡大図。 本発明の実施例1におけるプリズム部の拡大図。 本発明の実施例1における投射型表示装置の側面図。 本発明の実施例1におけるレンチキュラー板の拡大図。 本発明の実施例1におけるレンチキュラー板の拡大図。 本発明の実施例1におけるレンチキュラー板の拡大図。 本発明の実施例1におけるレンチキュラー板の拡大図。 従来例のプリズム部の拡大図。 従来例のプリズム部の拡大図。 従来例の投射型表示装置の側面図。
符号の説明
1:投射型表示装置
2:スクリーン
3:ミラー
4:投射ユニット
41:投射光学系
5:投射光学系の瞳
8:プリズム群
81:プリズム入射面
82:プリズム全反射面
85:フレネル板
9:レンチキュラー板
95:ガラス板
a〜u:光線
α:スクリーンへの入射角
β:スクリーンからの反射角
γ:ミラーの傾斜角

Claims (13)

  1. 少なくとも1枚の平面ミラーを有する投射光学系を用いて被投射面に画像を投射する投射型表示装置であって、
    前記被投射面に入射する光の前記被投射面への入射角度の最小値をαmin、前記被投射面に入射する光の前記被投射面への入射角度の最大値をαmax、前記少なくとも1枚の平面ミラーのうち、前記投射光学系の光路上において前記被投射面に最も近いミラーの法線と、前記被投射面の法線とのなす角度をγとするとき、
    45+αmin/2 < γ < 45+αmax/2
    を満足することを特徴とする投射型表示装置。
  2. 前記投射光学系の瞳と前記画像の中心とを通る光の光路を基準光軸としたとき、前記基準光軸が前記被投射面の法線に対して傾いていることを特徴とする請求項1記載の投射型表示装置。
  3. 以下の条件式を満たすことを特徴とする請求項1又は2記載の投射型表示装置。
    60<αmin
  4. 以下の条件式を満たすことを特徴とする請求項1乃至3のいずれか1項に記載の投射型表示装置。
    65<αmin
  5. 以下の条件式を満たすことを特徴とする請求項1乃至4のいずれか1項に記載の投射型表示装置。
    85>αmax
  6. 以下の条件式を満たすことを特徴とする請求項1乃至5のいずれか1項に記載の投射型表示装置。
    80>αmax
  7. 前記被投影面に配置されているスクリーンを有し、該スクリーンが該スクリーンの光入射側に、複数の同心円上にそれぞれプリズムが配置されているプリズム群を有することを特徴とする請求項1乃至6のいずれか1項に記載の投射型表示装置。
  8. 前記投射光学系の瞳と前記画像の中心とを通る光の光路を基準光軸とし、前記基準光軸と前記被投影面の法線を含む平面を基準平面としたとき、前記複数の同心円のうち第1の円上に配置されたプリズムの、前記基準平面における断面形状と、前記複数の同心円のうち前記第1の円とは異なる第2の円上に配置されたプリズムの、前記基準平面における断面形状とが互いに異なることを特徴とする請求項7に記載の投射型表示装置。
  9. 前記投射光学系の瞳と前記画像の中心とを通る光の光路を基準光軸とし、前記基準光軸と前記被投影面の法線を含む平面を基準平面としたとき、前記複数の同心円上に形成されているプリズムそれぞれの前記基準平面における断面形状が互いに異なることを特徴とする請求項7又は8に記載の投射型表示装置。
  10. 前記投射光学系の瞳と前記画像の中心とを通る光の光路を基準光軸とし、前記基準光軸と前記被投影面の法線を含む平面を基準平面としたとき、前記複数の同心円のうち第3の円上に配置されたプリズムの前記基準平面上におけるプリズム頂角と、前記複数の同心円のうち前記第3の円とは異なる第4の円上に配置されたプリズムの前記基準平面上におけるプリズム頂角とが実質的に同じであることを特徴とする請求項7乃至9のいずれか1項
    に記載の投射型表示装置。
  11. 前記プリズム群の各プリズムの頂点部は0.02mm以下の曲率の平面を有していることを特徴とする請求項7乃至10のいずれか1項に記載の投射型表示装置。
  12. 前記プリズム群の各プリズムは光入射面と光全反射面とを有しており、前記各プリズムの頂点部は、前記光入射面と光全反射面とが交わる点よりも前記被投射面に近く、前記各プリズムの頂点部と前記光入射面と光全反射面とが交わる点との距離は0.02mm以下であることを特徴とする請求項7乃至11のいずれか1項に記載の投射型表示装置。
  13. 前記プリズム群の各プリズムは光入射面と光全反射面とを有しており、前記光入射面と光全反射面とが交わる点は、前記各プリズム間の歯底部よりも前記被投射面に近く、前記各プリズム間の歯底部と前記光入射面と光全反射面とが交わる点との距離は0.02mm以下であることを特徴とする請求項7乃至12のいずれか1項に記載の投射型表示装置。
JP2003277916A 2003-07-22 2003-07-22 投射型表示装置 Expired - Fee Related JP4411030B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003277916A JP4411030B2 (ja) 2003-07-22 2003-07-22 投射型表示装置
US10/886,116 US7281805B2 (en) 2003-07-22 2004-07-06 Projection-type display apparatus
CNB2004100544577A CN100440029C (zh) 2003-07-22 2004-07-22 投影式显示设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003277916A JP4411030B2 (ja) 2003-07-22 2003-07-22 投射型表示装置

Publications (2)

Publication Number Publication Date
JP2005043681A true JP2005043681A (ja) 2005-02-17
JP4411030B2 JP4411030B2 (ja) 2010-02-10

Family

ID=34074674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003277916A Expired - Fee Related JP4411030B2 (ja) 2003-07-22 2003-07-22 投射型表示装置

Country Status (3)

Country Link
US (1) US7281805B2 (ja)
JP (1) JP4411030B2 (ja)
CN (1) CN100440029C (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7259918B2 (en) 2005-07-12 2007-08-21 Pentax Corporation Projection device
US8591038B2 (en) 2010-03-23 2013-11-26 Mitsubishi Electric Corporation Projection type image display apparatus including screen configured to partially support mirror
JP2018013634A (ja) * 2016-07-21 2018-01-25 大日本印刷株式会社 透過型スクリーン、背面投射型表示装置
JP2018120008A (ja) * 2017-01-23 2018-08-02 大日本印刷株式会社 スクリーン、映像表示装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070165192A1 (en) * 2006-01-13 2007-07-19 Silicon Optix Inc. Reduced field angle projection display system
JP2005157313A (ja) * 2003-10-30 2005-06-16 Arisawa Mfg Co Ltd リアプロジェクションディスプレイ用スクリーン
US20070008498A1 (en) * 2005-07-11 2007-01-11 Shohei Matsuoka Projection display device
US20070014027A1 (en) * 2005-07-12 2007-01-18 Ken Agatsuma Projection device
JP2007024936A (ja) * 2005-07-12 2007-02-01 Pentax Corp 投影装置
US7530694B2 (en) * 2006-02-01 2009-05-12 Mitsubishi Digital Electronics America, Inc. Flat projection television
US7660477B2 (en) * 2006-02-28 2010-02-09 Cisco Technology, Inc. Multiple image artifact correction of images for a display having a partially-silvered surface
JP4906390B2 (ja) * 2006-04-21 2012-03-28 キヤノン株式会社 背面投射型表示装置および背面投射型表示装置の制御方法およびプログラム
US20080002158A1 (en) * 2006-06-30 2008-01-03 Pentax Corporation Projection Device
JP2008009201A (ja) * 2006-06-30 2008-01-17 Pentax Corp 投影装置
US20080123060A1 (en) * 2006-06-30 2008-05-29 Pentax Corporation Adjustment method for an image projection display device and an image projection display device
JP2008009223A (ja) * 2006-06-30 2008-01-17 Pentax Corp 投影光学系および投影装置
GB0821996D0 (en) 2008-12-02 2009-01-07 Musion Ip Ltd Mobile studio
US9033522B2 (en) 2008-07-14 2015-05-19 Holicom Film Limited Method and system for filming
GB0910117D0 (en) 2008-07-14 2009-07-29 Holicom Film Ltd Method and system for filming
US9563115B2 (en) 2008-12-24 2017-02-07 Musion Ip Limited Method of manufacturing foil for producing a pepper's ghost illusion
JP5392613B2 (ja) * 2009-09-28 2014-01-22 スタンレー電気株式会社 ヘッドアップディスプレイ
JP2011253130A (ja) * 2010-06-04 2011-12-15 Hitachi Consumer Electronics Co Ltd 背面投射型映像表示装置
JP2013205649A (ja) * 2012-03-28 2013-10-07 Toshiba Corp 表示装置
CA2969537A1 (en) * 2014-12-01 2016-06-09 Musion Ip Limited A method of manufacturing foil for producing a pepper's ghost illusion
US9989841B2 (en) * 2015-08-20 2018-06-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Rear projection display screen and device
CN114995042B (zh) * 2022-05-26 2023-11-03 成都菲斯特科技有限公司 一种投影屏幕及投影系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152601A (ja) * 1984-08-22 1986-03-15 Mitsubishi Rayon Co Ltd フレネルレンズシ−ト
JPS61208041A (ja) * 1985-03-11 1986-09-16 Mitsubishi Rayon Co Ltd 背面投影スクリ−ン
JPS62257140A (ja) * 1986-04-30 1987-11-09 Mitsubishi Rayon Co Ltd 背面投影スクリ−ン
JPS6459226A (en) * 1987-08-31 1989-03-06 Mitsubishi Rayon Co Projection type projector
JPH02153338A (ja) * 1988-12-05 1990-06-13 Canon Inc 背面投射型スクリーン及びそれを用いた背面投射型画像表示装置
JPH06165092A (ja) * 1992-11-24 1994-06-10 Casio Comput Co Ltd 投影型表示装置
JPH09101520A (ja) * 1995-10-05 1997-04-15 Shimura Kaken Kogyo Kk 液晶バックライト装置
JPH10268788A (ja) * 1997-03-27 1998-10-09 Shimada Shokai:Kk 液晶バックライト装置
JPH11345513A (ja) * 1998-06-03 1999-12-14 Shimada & Co Ltd バックライト装置
JP2001228540A (ja) * 2000-11-27 2001-08-24 Canon Inc 表示装置及びそれを用いた投射装置
JP2002207190A (ja) * 2000-10-13 2002-07-26 Nec Viewtechnology Ltd リアプロジェクションテレビ及びその投射方法
JP2004093918A (ja) * 2002-08-30 2004-03-25 Dainippon Printing Co Ltd フレネルレンズシート、及びこれを用いた透過型スクリーン

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8600184A (nl) * 1986-01-28 1987-08-17 Philips Nv Doorzichtprojektiesysteem.
NL8600684A (nl) * 1986-03-18 1987-10-16 Philips Nv Kompakt doorzichtprojektiesysteem met scheef invallende lichtbundel.
US5208620A (en) * 1988-10-04 1993-05-04 Canon Kabushiki Kaisha Display apparatus
US5504544A (en) * 1994-11-23 1996-04-02 Minnesota Mining And Manufacturing Company Projector with multiple lamp light source
JPH10319501A (ja) 1997-05-21 1998-12-04 Canon Inc リアプロジェクションモニタ
JPH11146307A (ja) 1997-11-10 1999-05-28 Canon Inc 映像表示方法および映像表示装置
JPH11163543A (ja) 1997-11-25 1999-06-18 Canon Inc 電子機器の筐体
JP3939458B2 (ja) * 1999-03-23 2007-07-04 株式会社クラレ 背面投写型スクリーン
US6616283B1 (en) 1999-09-22 2003-09-09 Canon Kabushiki Kaisha Projector
JP3840031B2 (ja) 2000-03-09 2006-11-01 キヤノン株式会社 投射光学系及びそれを用いた投射型表示装置
DE60122735T2 (de) * 2000-07-18 2007-09-20 Optaglio Ltd., Andover Achromatisches beugungselement
US6805447B2 (en) * 2000-10-13 2004-10-19 Nec Viewtechnology Ltd. Rear projection display device and projecting method used for the same
US6755534B2 (en) * 2001-08-24 2004-06-29 Brookhaven Science Associates Prismatic optical display
US6899433B2 (en) * 2003-06-19 2005-05-31 Brookhaven Science Associates Split image optical display

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152601A (ja) * 1984-08-22 1986-03-15 Mitsubishi Rayon Co Ltd フレネルレンズシ−ト
JPS61208041A (ja) * 1985-03-11 1986-09-16 Mitsubishi Rayon Co Ltd 背面投影スクリ−ン
JPS62257140A (ja) * 1986-04-30 1987-11-09 Mitsubishi Rayon Co Ltd 背面投影スクリ−ン
JPS6459226A (en) * 1987-08-31 1989-03-06 Mitsubishi Rayon Co Projection type projector
JPH02153338A (ja) * 1988-12-05 1990-06-13 Canon Inc 背面投射型スクリーン及びそれを用いた背面投射型画像表示装置
JPH06165092A (ja) * 1992-11-24 1994-06-10 Casio Comput Co Ltd 投影型表示装置
JPH09101520A (ja) * 1995-10-05 1997-04-15 Shimura Kaken Kogyo Kk 液晶バックライト装置
JPH10268788A (ja) * 1997-03-27 1998-10-09 Shimada Shokai:Kk 液晶バックライト装置
JPH11345513A (ja) * 1998-06-03 1999-12-14 Shimada & Co Ltd バックライト装置
JP2002207190A (ja) * 2000-10-13 2002-07-26 Nec Viewtechnology Ltd リアプロジェクションテレビ及びその投射方法
JP2001228540A (ja) * 2000-11-27 2001-08-24 Canon Inc 表示装置及びそれを用いた投射装置
JP2004093918A (ja) * 2002-08-30 2004-03-25 Dainippon Printing Co Ltd フレネルレンズシート、及びこれを用いた透過型スクリーン

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7259918B2 (en) 2005-07-12 2007-08-21 Pentax Corporation Projection device
US8591038B2 (en) 2010-03-23 2013-11-26 Mitsubishi Electric Corporation Projection type image display apparatus including screen configured to partially support mirror
JP2018013634A (ja) * 2016-07-21 2018-01-25 大日本印刷株式会社 透過型スクリーン、背面投射型表示装置
JP2018120008A (ja) * 2017-01-23 2018-08-02 大日本印刷株式会社 スクリーン、映像表示装置
JP2021105721A (ja) * 2017-01-23 2021-07-26 大日本印刷株式会社 スクリーン、映像表示装置
JP7056776B2 (ja) 2017-01-23 2022-04-19 大日本印刷株式会社 スクリーン、映像表示装置

Also Published As

Publication number Publication date
JP4411030B2 (ja) 2010-02-10
US7281805B2 (en) 2007-10-16
CN100440029C (zh) 2008-12-03
CN1577070A (zh) 2005-02-09
US20050018148A1 (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP4411030B2 (ja) 投射型表示装置
JP4967247B2 (ja) 画像表示装置及びそれに用いるスクリーン
KR100618601B1 (ko) 프레넬렌즈 시트 및 이를 구비한 투과형 스크린
CN110554500B (zh) 头戴式显示装置
JP6083149B2 (ja) 画像表示装置
JP2006154720A (ja) 投写映像表示装置及びそれに用いられる投写光学ユニット
US7697202B2 (en) Screen, fresnel lens sheet used for the same, and image display apparatus using the same
JP5055765B2 (ja) 画像表示装置、及び、それに用いるフレネルレンズシート並びにスクリーン
JP2007011154A (ja) スクリーン及びそれを用いた画像表示装置
JP2006133523A (ja) フレネルレンズシート,透過型スクリーン及び背面投射型表示装置
JP5168386B2 (ja) 画像表示装置及びそれに用いるスクリーン
JP2006301430A (ja) 透過型スクリーン及び投写型表示装置
JP2007193290A (ja) 画像表示装置、及びそれに用いるフレネルレンズシート
JP3272673B2 (ja) レンチキュルレンズシート
JP5866959B2 (ja) 映像表示装置
JP4581491B2 (ja) スクリーン及びそれに用いられるフレネルレンズシート、並びにそれを用いた画像表示装置
JP6458924B2 (ja) 投影ユニット、プロジェクター
TWI461820B (zh) 投影裝置
JP2008216797A (ja) 屈折型フレネルレンズ及び背面投射型表示装置
JP2004309542A (ja) プロジェクションスクリーン及びプロジェクションディスプレイ装置
KR100361500B1 (ko) 프로젝션 시스템의 후면 투사 스크린
JP2006171483A (ja) スクリーン及びそれに用いられるフレネルレンズシート、並びにそれを用いた画像表示装置
JP2005274936A (ja) プロジェクタ、遊技機、及び画像投影方法
JP2008032811A (ja) 光学シート、透過型スクリーンおよび背面投射型表示装置
JP2007121627A (ja) 透過型スクリーン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees