JP2005033329A - 温度補償型圧電発振器 - Google Patents

温度補償型圧電発振器 Download PDF

Info

Publication number
JP2005033329A
JP2005033329A JP2003193781A JP2003193781A JP2005033329A JP 2005033329 A JP2005033329 A JP 2005033329A JP 2003193781 A JP2003193781 A JP 2003193781A JP 2003193781 A JP2003193781 A JP 2003193781A JP 2005033329 A JP2005033329 A JP 2005033329A
Authority
JP
Japan
Prior art keywords
temperature
low
mos capacitor
low temperature
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003193781A
Other languages
English (en)
Inventor
Yasuhiro Sakurai
保宏 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2003193781A priority Critical patent/JP2005033329A/ja
Publication of JP2005033329A publication Critical patent/JP2005033329A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

【課題】ノイズの発生源を有せず、高温部と低温部での温度補償を独立して行うことができるより精度の高い温度補償型水晶発振器を提供することを目的とする。
【解決手段】水晶発振回路(110)と、水晶発振回路に接続された低温度用MOS容量素子(130)と、水晶発振回路に接続された高温度用MOS容量素子(140)とを並列接続し、温度検出信号を生成するための温度検出回路(150、160)と、低温度用バイアス信号を生成する低温度用バイアス信号生成回路(180)と、高温度用バイアス信号を生成する高温度用バイアス信号生成回路(170)とを有することを特徴とする。低温度用MOS容量素子による低温度領域の温度補償と、高温度用MOS容量素子による高温度領域の温度補償を独立して行えるように構成した。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、温度補償型圧電発振器、特にMOS容量素子を用いた温度補償型発振器に関する。
【0002】
【従来の技術】
図8に、ATカット水晶振動子の温度特性(温度に対応した周波数偏差の変化)の一例を示す。図8に示す曲線のように、温度T〜Tの間(常温度で一般には25℃±15℃近辺を言う)は、温度に拘わらずほぼ一定の周波数偏差を示している。しかしながら、温度T付近以下(常温度近傍以下の領域801)になると急激に周波数偏差が小さくなるように変化し、また温度T付近以上(常温度近傍以上の領域802)になると急激に周波数偏差が大きくなるように変化してしまう。即ち、ATカット水晶振動子の温度特性は、3次曲線的に変化する。
【0003】
このようなATカット水晶振動子の温度特性を相殺するために、従来の温度補償型水晶発振器では、同様の曲線関数電圧信号を発生させていた。しかしながら、このような信号を発生させるためには、個別回路が必要であり、さらに信号には種々の雑音が重畳され易く、信号に雑音が重畳すると、発振信号に混入し、発振器の出力特性が劣化するという問題があった。
【0004】
そこで、ATカット水晶振動子の温度特性と同様の曲線関数電圧信号を発生させる代わりに、MOS容量素子を用いて、ATカット水晶振動子の温度特性を補償する方法が提案されている(例えば、特許文献1参照)。
【0005】
MOS容量素子は、一般に、所定値以上の高電圧又は所定値以下の低電圧がMOS容量素子の電極間に印加された場合には、印加電圧に拘わらずほぼ一定の容量を示し、所定範囲の電圧が前記MOS容量素子の電極間に印加された場合には、印加電圧に応じて容量が変化するという、容量―電圧特性を有している。
【0006】
図9に、このようなMOS容量素子を用いた従来の温度補償型水晶発振器300の回路例を示す。図9において、水晶振動子310の一端は、発振増幅用のトランジスタTRと接続され、他端には低温補償用のMOS容量素子MOS及び高温補償用のMOS容量素子MOSが同一極性方向に直列に接続されている。また、制御回路320は、温度センサ330からの検出出力を用いて、2つのMOS容量素子MOS及びMOSへ、制御電圧信号V及びVを供給している。さらに、基準バイアス発生回路340より基準電圧Vが、2つのMOS容量素子MOS及びMOSの接続点に供給されている。
【0007】
図9に示す回路では、制御電圧信号V、V及び基準電圧Vによって、低温補償用MOS容量素子MOSの印加電圧に応じて容量が上昇してほぼ一定になる領域を、水晶振動子310の温度T以下の急激に周波数偏差が減少する部分に使用し、高温補償用MOS容量素子MOSの印加電圧に応じて容量が減少してほぼ一定になる領域を、水晶振動子310の温度T以上の急激に周波数偏差が増加する部分に使用している。このようにして、図9に示す回路では、水晶振動子310の温度特性を相殺するために、温度特性に類似した制御電圧信号を生成するのではなく、水晶振動子310の温度補償を行うことを可能としていた。
【0008】
【特許文献1】
特開2001−60828号公報(第3、4頁、第1図)
【0009】
【発明が解決しようとする課題】
しかしながら、図9に示す回路では、低温補償用MOS容量素子MOSと高温補償用MOS容量素子MOSとが直列に接続されているために、高温部と低温部とで独立して温度補償を設定することができなかった。例えば、水晶振動子の温度特性において、低温部において周波数偏差が減少していく曲線部(図8の領域801参照)と高温部において周波数偏差が増加していく曲線部(図8の領域802参照)との変化率が異なる場合に、的確に対応させることができなかった。
【0010】
また、1つの基準電圧Vを基準にして高温部と低温部とに使用するから、図8に示す水晶振動子の温度特性における、T〜T間の様に、ほぼ修正を行わなくて良い領域があると、そのような領域を跨いで、的確に高温部と低温部のカーブを一致させることはできなかった。
【0011】
そこで、本発明は、より正確に温度補償を行うことができる温度補償型圧電発振器を提供することを目的とする。
【0012】
また、本発明は、ノイズの発生源を有せず、高温部と低温部での温度補償を独立して設定することができるより精度の良い温度補償型圧電発振器を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る温度補償型圧電発振器は、圧電発振回路と、圧電発振回路に接続された低温度用MOS容量素子と、圧電発振回路に接続された高温度用MOS容量素子と、温度検出信号を生成するための温度検出回路と、低温度用MOS容量素子による圧電発振回路の発振周波数における低温度領域の温度補償を行うための低温度用バイアス信号を生成する低温度用バイアス信号生成回路と、高温度用MOS容量素子による圧電発振回路の発振周波数における高温度領域の温度補償を行うための高温度用バイアス信号を生成する高温度用バイアス信号生成回路とを有することを特徴とする。低温度用MOS容量素子による低温度領域の温度補償と、高温度用MOS容量素子による高温度領域の温度補償を独立して行えるように構成した。
【0014】
また、上記の目的を達成するために、本発明に係る温度補償型圧電発振器は、圧電発振回路と、圧電発振回路と直列に接続された低温度用MOS容量素子と、圧電発振回路と直列に且つ低温度用MOS容量素子と並列に接続された高温度用MOS容量素子と、低温度用検出信号を出力するための低温度検出回路と、高温度用検出信号を出力するための高温度検出回路と、低温度用MOS容量素子による圧電発振回路の発振周波数における低温度領域の温度補償を行うための低温度用バイアス信号を生成する低温度用バイアス信号生成回路と、高温度用MOS容量素子による圧電発振回路の発振周波数における高温度領域の温度補償を行うための高温度用バイアス信号を生成する高温度用バイアス信号生成回路とを有し、低温度用検出信号及び低温度用バイアス信号が低温度用MOS容量素子の両電極に印加され、高温度用検出信号及び高温度用バイアス信号が高温度用MOS容量素子の両電極に印加されることを特徴とする。低温度用、高温度用検出信号及び低温度用、高温度用バイアス信号によって、低温度用MOS容量素子による低温度領域の温度補償と、高温度用MOS容量素子による高温度領域の温度補償を独立して行えるように構成した。
【0015】
また、上記の目的を達成するために、本発明に係る温度補償型圧電発振器は、圧電発振回路と、圧電発振回路の一端に接続された第1低温度用MOS容量素子と、圧電発振回路の一端に且つ第1低温度用MOS容量素子と並列に接続された第1高温度用MOS容量素子と、圧電発振回路の他端に接続された第2低温度用MOS容量素子と、圧電発振回路の他端に且つ第2低温度用MOS容量素子と並列に接続された第2高温度用MOS容量素子と、低温度用検出信号を出力するための低温度検出回路と、高温度用検出信号を出力するための高温度検出回路と、低温度用MOS容量素子による圧電発振回路の発振周波数における低温度領域の温度補償を設定するための低温度用バイアス信号を生成するための低温度用バイアス信号生成回路と、高温度用MOS容量素子による圧電発振回路の発振周波数における高温度領域の温度補償を設定するための高温度用バイアス信号を生成するための高温度用バイアス信号生成回路とを有し、低温度用検出信号が前記第1及び第2低温度用MOS容量素子のゲート電極に印加され、低温度用バイアス信号が第1及び第2低温度用MOS容量素子の対向電極に印加され、高温度用検出信号が第1及び第2高温度用MOS容量素子のゲート電極に印加され、及び高温度用バイアス信号が第1及び第2高温度用MOS容量素子の対向電極に印加されることを特徴とする。低温度領域の温度補償を行うための低温度用MOS容量素子と、高温度領域の温度補償を行うための高温度用MOS容量素子とを、それぞれ圧電発振回路の両端に設けた。
【0016】
【発明の実施の形態】
以下、本発明に係る温度補償型圧電発振器を、添付図面を参照して詳述する。なお、以下の説明では「圧電発振器」の内、代表的な水晶振動子を有する水晶発振器に関して説明を行うが、本発明は他の圧電発振器にも適用可能である。
【0017】
図1に、温度補償型水晶発振器100の概要を示す回路図を示す。図1において、温度補償型水晶発振器100は、主に、水晶発振回路110、可変容量回路120、高温用温度センサ回路150、低温用温度センサ回路160、高温用バイアス発生回路170、低温用バイアス発生回路180、抵抗R〜R及びコンデンサ素子Coutから構成されている。
【0018】
水晶発振回路110は、水晶振動子112、帰還抵抗素子114及びインバータ116を有し、それぞれは並列に接続されている。水晶発振回路110の一端は、可変容量回路120に接続され、他端はコンデンサ素子Coutを介して接地されている。水晶振動子112は、ATカット水晶振動子であって、前述した図8に示すような温度特性を有している。
【0019】
可変容量回路120は、コンデンサ素子122及び124、低温用MOS容量素子130、及び高温用MOS容量素子140、そしてコンデンサ素子126及び128から構成されている。コンデンサ素子122及び124は、インバータ116の直流電圧を遮断するために挿入され、コンデンサ素子126及び128は、直流成分だけを遮断してそれぞれ低温用MOS容量素子130及び高温用MOS容量素子140を高周波的に接地するために挿入されている。
【0020】
高温用温度センサ回路150からの出力VTHが、抵抗Rを介して高温用MOS容量素子140のゲート電極側に供給され、又高温用バイアス発生回路170からの出力VRHが、抵抗Rを介して高温用MOS容量素子140の対向電極側に供給されている。なお、高温用MOS容量素子140は、水晶振動子112の負荷容量として作用し、コンデンサ素子124及び128の作用により、その両端に印加される印加電圧の差(VTH−VRH)に応じて容量値が変化するように構成されている。
【0021】
また、低温用温度センサ回路160からの出力VTLが、抵抗Rを介して低温用MOS容量素子130のゲート電極側に供給され、低温用バイアス発生回路180からの出力VRLが、抵抗Rを介して低温用MOS容量素子130の対向電極側に供給されている。なお、低温用MOS容量素子130は、水晶振動子112の負荷容量として作用し、コンデンサ素子122及び126の作用により、その両端に印加される印加電圧の差(VTL−VRL)に応じて容量値が変化するように構成されている。
【0022】
図2に、低温用MOS容量素子130の断面図を示す。図に示すように、低温用MOS容量素子130(N型MOSキャパシタ素子)は、ゲート電極132と対向電極(下部電極とも言う)134がP型半導体基板136上のNウエル138上に形成されており、対向電極134を基準とした、ゲート電極132と対向電極134との間の電極間電圧(V)に応じて、図3に示す曲線300のように容量(pF)が変化する。即ち、低温用MOS容量素子130の容量は、印加される電極間電圧がVより高い場合又は−Vより低い場合には、印加電圧に拘わらずほぼ一定の容量を示し、印加されるゲート電圧がVから−Vの間は、電極間電圧が増加するにしたがって、容量が増加するように変化する。また、高温用MOS容量素子140も、低温用MOS容量素子130と同じN型MOSキャパシタ素子を使用することで、同様の容量―電極間電圧特性を有するものとすることができる。なお、図3の例は一例であって、これに限られるものではなく、高温用と低温用にP型MOSキャパシタ素子を使用することができるし、センサ回路やバイアス回路を工夫することで一方にN型、他方にP型を使用することも可能である。
【0023】
図4に、水晶振動子の周波数偏差(ppm)と水晶振動子の負荷容量(CL)との関係を示す。図4に示すように、負荷容量が増加すれば水晶振動子の周波数偏差が減少し、負荷容量が減少すれば水晶振動子の周波数偏差が増加する関係にある。即ち、負荷容量を変化させることによって、水晶振動子の周波数偏差を調整することが可能である。
【0024】
図5に、図1に示す回路で設定されている、高温用温度センサ回路150からの出力VTH及び低温用温度センサ回路160からの出力VTL、高温用バイアス回路170からの出力VRH、及び低温用バイアス回路180からの出力VRLの相互関係の一例を示す。図5に示すように、温度に対する高温用温度センサ回路150からの出力VTHの傾きより、低温用温度センサ回路160からの出力VTLの傾きの方が大きくなるように、またVRH>VRLとなるように設定されている。さらに、温度Tにおいて、VTL−VRL=Vとなるように、また温度Tにおいて、VTH−VRH=−Vとなるように設定されている。
【0025】
図6に、図5に示すように各種出力が設定された場合の、低温用MOS容量素子130の容量の温度に対する変化を示す曲線600、及び高温用MOS容量素子140の容量の温度に対する変化を示す曲線610を示す。
【0026】
低温用MOS容量素子130のゲート電極にVTLが、また対向電極にVRLが印加されているので、温度Tにおいて、電極間の電圧はVとなる。したがって、温度がT付近以下(常温度近傍以下)に下がると、図3のVから−Vへ向かう容量の変化に対応して、VTLの減少に応じて低温用MOS容量素子130の容量が減少する。また、温度がT以上に上がると、図3のVから電圧が増加する方向へ向かう容量の変化に対応して、VTLが増加しても低温用MOS容量素子130の容量はほとんど変化しない。以上より、低温用MOS容量素子130の容量の温度に対する変化は、曲線600のようになる。
【0027】
また、高温用MOS容量素子140のゲート電極にVTHが、また対向電極にVRHが印加されているので、温度Tにおいて、電極間の電圧は−Vとなる。したがって、温度がT近傍以上(常温度近傍以上)に上がると、図3の−VからVへ向かう容量の変化に対応して、VTHの増加に応じて高温用MOS容量素子140の容量が増加する。また、温度がT以下に下がると、図3の−Vから電圧が減少する方向へ向かう容量の変化に対応して、VTHが減少しても高温用MOS容量素子140の容量はほとんど変化しない。以上より、高温用MOS容量素子140の容量の温度に対する変化は、曲線610のようになる。
【0028】
さらに、図1に示すように、低温用MOS容量素子130と高温用MOS容量素子140は並列に接続されているので、その合計の容量は、両者を加算したものとなる。両者を加算した場合の容量の温度に対する変化を曲線620として示す。
【0029】
このように、図1に示す温度補償型水晶発振器100では、水晶振動子112の負荷容量が、温度変化に伴って主に曲線620に示すように変化することとなる。また、図8に示す水晶振動子の温度特性曲線は、図6に示す曲線620とほぼ同様である。したがって、図4に示したように、負荷容量と周波数偏差は反比例的に変化するので、図1に示す回路で、水晶振動子112の温度特性が相殺されるように制御されることが理解される。
【0030】
ここで、特に重要な点は、図5に示す各種出力(VTH、VTL、VRH及びVRL)を設定することによって、図8における水晶振動子の温度特性曲線において曲線が大きく変化し始める点(即ちT及びTの位置)に合わせて、温度に対する負荷容量の変化を設定することが可能である点である。また、図5に示すVTH及びVTLの傾きを設定することによって、図8における水晶振動子の低温部において周波数偏差が減少していく曲線部(図8の801参照)及び高温部において周波数偏差が増加していく曲線部(図8の802参照)のそれぞれに合わせて、温度に対する負荷容量の変化を設定することが可能である点である。すなわち、高温領域と低温領域とを、独立して的確に温度補償することができる。
【0031】
なお、図8における水晶振動子の低温部において周波数偏差が減少していく曲線部(図8の領域801参照)及び高温部において周波数偏差が増加していく曲線部(図8の領域802参照)がほぼ同じ場合には、2つのセンサ回路を持たずに、1つの温度センサ回路からの1出力のみを用いることも可能である。
【0032】
図7に他の温度補償型水晶発振器200の例を示す。図1と同じ構成には同じ番号を付している。図1に示す温度補償型発振器100との相違点は、水晶振動子112の両端に、それぞれ低温用MOS容量素子と高温用MOS容量素子を有する可変容量回路120及び220を有する点である。なお、可変容量回路220は、コンデンサ素子222及び224、低温用MOS容量素子230、及び高温用MOS容量素子240から構成されている。
【0033】
低温用MOS容量素子130と低温用MOS容量素子230の対向電極側を接続し、高温用MOS容量素子140と高温用MOS容量素子240の対向電極側を接続する。そして低温用MOS容量素子の対向電極に低温用バイアス回路180の出力VRLを抵抗Rを介して印加し、高温用MOS容量素子の対向電極に高温用バイアス回路170の出力VRHを抵抗Rを介して印加する。
【0034】
また、低温用MOS容量素子230のゲート電極に低温用温度センサ回路160の出力VTLが抵抗R12を介して、又対向電極に低温用バイアス回路180の出力VRLが抵抗Rを介して印加され、高温用MOS容量素子240のゲート電極に高温用温度センサ回路150の出力VTHが抵抗R11を介して、又対向電極に高温用バイアス回路170の出力VRHが抵抗Rを介して印加されるように構成されている。また、水晶振動子112の両端に可変容量回路120及び220を設けそれぞれの容量値を等しくすれば、図1に示すDCカット用のコンデンサ素子126及び128には電流が流れないので、図7の構成ではコンデンサ素子126及び128は設ける必要がない。
【0035】
図7の構成によれば、図1に設けたコンデンサ素子126は通常100pF以上の大容量が必要であるためIC内の占有面積が大変大きくなってしまうのに対し、図7の可変容量回路220が付加されていても1桁程度小さい容量を使用できるので、図7の構成は図1の構成よりIC内の占有面積を小さくでき、ひいては小型の温度補償型発振器を提供することができる。
【0036】
【発明の効果】
このように、本発明に係る温度補償型圧電発振器では、圧電振動子の温度特性に対応した曲線信号を作成する必要がないので、個別回路が不要であり、ノイズの発生源を有しないことから、発振周波数が劣化するという問題を防ぐことが可能となった。
【0037】
また、本発明に係る温度補償型圧電発振器では、圧電振動子の温度特性において、低温部と高温部を個別に温度補償することができるので、より精度のよい発振周波数を出力することが可能となった。
【図面の簡単な説明】
【図1】本発明に係る温度補償型圧電発振器の概略回路構成を示す図である。
【図2】MOS容量素子の断面図である。
【図3】MOS容量素子の容量−電極間電圧の特性を示す図である。
【図4】水晶振動子の周波数偏差と負荷容量の関係を示す図である。
【図5】図1において設定されている各種出力の電圧−温度の特性を示す図である。
【図6】図1における低温用MOS容量素子と高温用MOS容量素子の容量−温度の特性を示す図である。
【図7】本発明に係る他の温度補償型圧電発振器の概略回路構成を示す図である。
【図8】ATカット水晶振動子の温度特性を示す図である。
【図9】従来の温度補償型水晶発振器の概略回路構成を示す図である。
【符号の説明】
100、200…温度補償型水晶発振器
112…水晶振動子
130、230…低温用MOS容量素子
140、240…高温用MOS容量素子
150…高温用温度センサ回路
160…低温用温度センサ回路
170…高温用バイアス回路
180…低温用バイアス回路

Claims (9)

  1. 温度補償型圧電発振器であって、
    圧電発振回路と、
    前記圧電発振回路に接続された低温度用MOS容量素子と、
    前記圧電発振回路に接続された高温度用MOS容量素子と、
    温度検出信号を生成するための温度検出回路と、
    前記温度検出信号と協同して、前記低温度用MOS容量素子による前記圧電発振回路の発振周波数における低温度領域の温度補償を行うための低温度用バイアス信号を生成する低温度用バイアス信号生成回路と、
    前記温度検出信号と協同して、前記高温度用MOS容量素子による前記圧電発振回路の発振周波数における高温度領域の温度補償を行うための高温度用バイアス信号を生成する高温度用バイアス信号生成回路とを有することを特徴とする温度補償型圧電発振器。
  2. 前記圧電発振器は、水晶発振子を有する請求項1に記載の温度補償型圧電発振器。
  3. 前記低温度用MOS容量素子と前記高温度用MOS容量素子は、並列に接続されている請求項1又は2に記載の温度補償型圧電発振器。
  4. 温度補償型圧電発振器であって、
    圧電発振回路と、
    第1ゲート電極及び第1対向電極を有し、前記圧電発振回路と直列に接続された低温度用MOS容量素子と、
    第2ゲート電極及び第2対向電極を有し、前記圧電発振回路と直列に且つ前記低温度用MOS容量素子と並列に接続された高温度用MOS容量素子と、
    低温度用検出信号を出力するための低温度検出回路と、
    高温度用検出信号を出力するための高温度検出回路と、
    前記低温度用検出信号と協同して、前記低温度用MOS容量素子による前記圧電発振回路の発振周波数における低温度領域の温度補償を行うための低温度用バイアス信号を生成する低温度用バイアス信号生成回路と、
    前記高温度用検出信号と協同して、前記高温度用MOS容量素子による前記圧電発振回路の発振周波数における高温度領域の温度補償を行うための高温度用バイアス信号を生成する高温度用バイアス信号生成回路とを有し、
    前記低温度用検出信号が前記第1ゲート電極に印加され、前記低温度用バイアス信号が前記第1対向電極に印加され、前記高温度用検出信号が前記第2ゲート電極に印加され、前記高温度用バイアス信号が前記第2対向電極に印加されることを特徴とする温度補償型圧電発振器。
  5. 前記圧電発振器は、水晶発振子を有する請求項4に記載の温度補償型圧電発振器。
  6. 前記低温度用検出信号及び前記低温度用バイアス信号は、前記低温度用MOS容量素子のゲート電極及び対向電極間に、常温度近傍以下の温度範囲では、前記低温度用MOS容量素子の容量が急激に減少するような電位差を与え、
    前記高温度用検出信号及び前記高温度用バイアス信号は、前記高温度用MOS容量素子のゲート電極及び対向電極間に、常温度近傍以上の温度範囲では、前記高温度用MOS容量素子の容量が急激に増加するような電位差を与える請求項5に記載の温度補償型圧電発振器。
  7. 温度補償型圧電発振器であって、
    圧電発振回路と、
    ゲート電極及び対向電極を有し、前記圧電発振回路の一端に接続された第1低温度用MOS容量素子と、
    ゲート電極及び対向電極を有し、前記圧電発振回路の前記一端に且つ前記第1低温度用MOS容量素子と並列に接続された第1高温度用MOS容量素子と、
    ゲート電極及び対向電極を有し、前記圧電発振回路の他端に接続された第2低温度用MOS容量素子と、
    ゲート電極及び対向電極を有し、前記圧電発振回路の前記他端に且つ前記第2低温度用MOS容量素子と並列に接続された第2高温度用MOS容量素子と、
    低温度用検出信号を出力するための低温度検出回路と、
    高温度用検出信号を出力するための高温度検出回路と、
    前記低温度用検出信号と協同して、前記低温度用MOS容量素子による前記圧電発振回路の発振周波数における低温度領域の温度補償を設定するための低温度用バイアス信号を生成するための低温度用バイアス信号生成回路と、
    前記高温度用検出信号と協同して、前記高温度用MOS容量素子による前記圧電発振回路の発振周波数における高温度領域の温度補償を設定するための高温度用バイアス信号を生成するための高温度用バイアス信号生成回路とを有し、
    前記低温度用検出信号が前記第1及び第2低温度用MOS容量素子のゲート電極に印加され、前記低温度用バイアス信号が前記第1及び第2低温度用MOS容量素子の対向電極に印加され、前記高温度用検出信号が前記第1及び第2高温度用MOS容量素子のゲート電極に印加され、及び前記高温度用バイアス信号が前記第1及び第2高温度用MOS容量素子の対向電極に印加されることを特徴とする温度補償型圧電発振器。
  8. 前記圧電発振器は、水晶発振子を有する請求項7に記載の温度補償型圧電発振器。
  9. 前記低温度用検出信号及び前記低温度用バイアス信号は、前記第1及び第2低温度用MOS容量素子のゲート電極及び対向電極間に、常温度近傍以下の温度範囲では、前記低温度用MOS容量素子の容量が急激に減少するような電位差を与え、
    前記高温度用検出信号及び前記高温度用バイアス信号は、前記第1及び第2高温度用MOS容量素子のゲート電極及び対向電極間に、常温度近傍以上の温度範囲では、前記高温度用MOS容量素子の容量が急激に増加するような電位差を与える請求項8に記載の温度補償型圧電発振器。
JP2003193781A 2003-07-08 2003-07-08 温度補償型圧電発振器 Pending JP2005033329A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003193781A JP2005033329A (ja) 2003-07-08 2003-07-08 温度補償型圧電発振器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003193781A JP2005033329A (ja) 2003-07-08 2003-07-08 温度補償型圧電発振器

Publications (1)

Publication Number Publication Date
JP2005033329A true JP2005033329A (ja) 2005-02-03

Family

ID=34205149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003193781A Pending JP2005033329A (ja) 2003-07-08 2003-07-08 温度補償型圧電発振器

Country Status (1)

Country Link
JP (1) JP2005033329A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759641B1 (ko) 2005-03-09 2007-09-17 엡슨 토요콤 가부시키 가이샤 온도 보상형 압전 발진기
CN102931912A (zh) * 2011-08-11 2013-02-13 日本电波工业株式会社 温度补偿型晶体振荡器
CN103427829A (zh) * 2012-05-22 2013-12-04 精工爱普生株式会社 温度信息生成电路、振荡器、电子设备、温度补偿系统
CN105308946A (zh) * 2013-06-11 2016-02-03 索尼公司 信息处理装置、成像装置、信息处理方法以及程序

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759641B1 (ko) 2005-03-09 2007-09-17 엡슨 토요콤 가부시키 가이샤 온도 보상형 압전 발진기
CN102931912A (zh) * 2011-08-11 2013-02-13 日本电波工业株式会社 温度补偿型晶体振荡器
JP2013038737A (ja) * 2011-08-11 2013-02-21 Nippon Dempa Kogyo Co Ltd 温度補償型水晶発振器
US8896388B2 (en) 2011-08-11 2014-11-25 Nihon Dempa Kogyo Co., Ltd. Temperature-compensated crystal oscillator
CN103427829A (zh) * 2012-05-22 2013-12-04 精工爱普生株式会社 温度信息生成电路、振荡器、电子设备、温度补偿系统
CN105308946A (zh) * 2013-06-11 2016-02-03 索尼公司 信息处理装置、成像装置、信息处理方法以及程序

Similar Documents

Publication Publication Date Title
US7279998B2 (en) Voltage-controlled oscillator
WO2007069455A1 (ja) 電圧制御発振器
US6771135B2 (en) Temperature-compensated crystal oscillator
US7268636B2 (en) Voltage controlled oscillator
JP4233634B2 (ja) 温度補償型水晶発振器
JP2006060797A (ja) 電圧制御型発振器
US20070126485A1 (en) Voltage-controlled oscillator
JP2005033329A (ja) 温度補償型圧電発振器
US20190158021A1 (en) Temperature-compensated crystal oscillator, and electronic device using the same
WO2021205695A1 (ja) 可変容量素子及びそれを備えた発振器
JPS6234281B2 (ja)
EP0917764A2 (en) Oscillator frequency-drift compensation
US8610513B2 (en) Crystal oscillator
JP2602727B2 (ja) 圧電発振器
JP4424001B2 (ja) 温度補償型圧電発振器
JP2002135051A (ja) 圧電発振器
JP4440744B2 (ja) 温度補償型水晶発振器
JP3266883B2 (ja) 圧電発振器
JP4062058B2 (ja) 発振器の周波数調整回路
JP4314982B2 (ja) 温度補償型圧電発振器
JPH1013153A (ja) 電圧制御発振器
JP3319901B2 (ja) 圧電発振回路
JP2006135540A (ja) 温度補償型圧電発振器
JP2006033092A (ja) 圧電発振器
WO2022106617A1 (en) Amplitude regulator for crystal oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060609

A977 Report on retrieval

Effective date: 20080724

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A02 Decision of refusal

Effective date: 20081125

Free format text: JAPANESE INTERMEDIATE CODE: A02