JP2005024249A - レーザ計測装置 - Google Patents

レーザ計測装置 Download PDF

Info

Publication number
JP2005024249A
JP2005024249A JP2003186544A JP2003186544A JP2005024249A JP 2005024249 A JP2005024249 A JP 2005024249A JP 2003186544 A JP2003186544 A JP 2003186544A JP 2003186544 A JP2003186544 A JP 2003186544A JP 2005024249 A JP2005024249 A JP 2005024249A
Authority
JP
Japan
Prior art keywords
gas
laser
scattered light
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003186544A
Other languages
English (en)
Inventor
Yoshihiro Deguchi
祥啓 出口
Shinsaku Dobashi
晋作 土橋
Tomonori Koyama
智規 小山
Osamu Shinada
治 品田
Kazuhiro Ota
一広 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003186544A priority Critical patent/JP2005024249A/ja
Publication of JP2005024249A publication Critical patent/JP2005024249A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】例えば石炭ガス化の生成ガス等に適用されるレーザ計測装置を提供することを課題とする。
【解決手段】計測場20内の被測定ガス21にレーザー光22を照射するレーザー手段23と、前記レーザー光22の照射により前記ガス21から生じるラマン散乱光24により波長毎の強度の計測を行う分光器25と、前記レーザー光22の照射により前記ガス21中のダストから生じるミー散乱光27の計測を行う光検出器28と、前記計測の結果から前記ガス21の発熱量及びダスト量を算出する計算部であるデータ処理手段29とを具備する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、例えば石炭ガス化の生成ガス等に適用されるレーザ計測装置に関する。
【0002】
【背景の技術及び発明が解決しようとする課題】
石炭ガスを使用した火力発電では、石炭ガス化炉にて生成される生成ガスを燃料として、ガスタービン等の発電設備に導いて使用している。発電設備では、目標とする発電量が設定されており、それに応じて生成ガスの発熱量を制御することが重要である。そして、それに対応して、ガス化炉において生成ガスの発熱量(組成)が許容範囲に入るように制御することが、非常に重要である。
発電所の発電目標設定値は、常に一定ではなく、電力の使用量の変化や、時間帯等により短時間で変更されることも多い。従って、それに応じて、ガス化炉において生成される生成ガスの発熱量も迅速に制御される必要がある。
【0003】
従来の生成ガス発熱量の制御では、発熱量は生成ガスを分析し、その分析結果を解析することで制御を行っていた。
図12を参照して、ガス化炉1における発熱量制御について説明する。ガス化炉01、生成ガス02、サンプリング管03、前処理部04、ガスクロマトグラフ05、計算部06、制御部07、燃料供給弁08、空気供給弁09、配管010、ガスタービン011からなる。ガス化炉01は、燃料(石炭)供給弁08及び空気供給弁09を経由して石炭及び空気の供給を受け、ガスタービン011用の高温・高圧(例えば400℃、30気圧)の生成ガス02を生成する。生成ガス02は、ガスタービン011に送られる配管010の途中で、その一部が、サンプリング管03によりサンプリングされ、発熱量を測定する測定系へ流入する。サンプリングガスは、前処理部04において、降圧、冷却、除塵、除湿等の前処理を行い、常圧・常温で乾燥し、かつ塵を含まない状態にする。
その後、サンプリングガスをガスクロマトグラフ05へ送る。ガスクロマトグラフ05では、サンプリングガスである生成ガス02が分析され、ガスの組成が測定される。
【0004】
ここで通常、石炭ガス化生成ガスの場合は、およそ一酸化炭素(CO)10〜30%、水素(H)4〜10%、メタン(CH)0.1〜1%、二酸化炭素(CO)5〜10%、窒素(N)55〜70%の範囲の体積分率を有する。そして、上記分析結果に基づいて、計算部06において、単位体積当たりの発熱量Q(kcal/Nm)が計算される。生成ガス02の発熱量Qの計算結果は、制御部07へ出力される。そして、この結果とその時点での発熱量目標値との相違に基づいて、ガス化炉01内へ投入される石炭量、空気量が設定される。設定に基づき、それぞれ燃料供給弁08及び空気供給弁09により石炭及び空気の供給量が制御され、生成ガス02の発熱量が常に許容範囲に入るように制御される。
【0005】
このように従来の石炭ガス化による発電においては、ガス化炉01による生成ガス02の発熱量をガスクロマトグラフ05で測定し、その値によってガス化炉01を制御していた。しかし、ガスクロマトグラフ05では、分析に要する時間が5分程度以上必要とされるため速やかな制御が出来なかった。
【0006】
これに対し、近年の火力発電では、昼間と夜間との使用電力が大幅に違うため、従来に比べて負荷(発電量)の時間的変動が大きくなっており、これに対処するため最大負荷を100%とすると、少なくとも1分間当たり3%程度の負荷を増減できる制御速度が要求されている。従って、この速度に対応できるガス化炉が必要であり、これに組み合わせるガス発熱量測定装置が要求されている。また、前処理部04において、降圧、冷却、除塵、除湿時にトラブルが起きる場合があり、メインテナンスに労力を要していた。
【0007】
また、前処理部04において、除湿しているので、熱交換器等の漏洩があった場合に、迅速に水蒸気の測定をすることができない、という問題がある。
【0008】
また、ガス中のダスト濃度を計測する場合には、図13に示すように、レーザ装置020からのレーザ光021を光検出器022で検出し、光吸収法によりそのダスト量を計測していた。
【0009】
従って、本発明の目的は、ガスの組成を高速に測定すると共にダスト濃度も同時に計測することが可能なレーザ計測装置を提供することである。
【0010】
本発明の他の目的としては、ガスの組成を低ノイズで計測することが可能なレーザ計測装置を提供することである。
【0011】
【特許文献1】
特開平11−173989号公報
【0012】
【課題を解決するための手段】
上記課題を解決する本発明の第1の発明は、計測場内の被測定ガスにレーザ光を照射するレーザ手段と、
上記レーザ光の照射により上記ガスから生じるラマン散乱光により波長毎の強度の計測を行う分光器と、
上記レーザ光の照射により上記ガス中のダストから生じるミー散乱光の計測を行う光検出器と、
上記計測の結果から上記ガスの発熱量及びダスト量を算出する計算部と、
を具備することを特徴とするレーザ計測装置にある。
【0013】
第2の発明は、第1の発明において、
上記計側部が、上記ラマン散乱光の計測結果から水蒸気量を計測することを特徴とするレーザ計測装置にある。
【0014】
第3の発明は、第1又は2の発明において、
上記散乱光以外のノイズ散乱光の散乱を防止する散乱防止手段を計測場内に具備することを特徴とするレーザ計測装置にある。
【0015】
第4の発明は、第1乃至3のいずれか一の発明において、
上記散乱光の測定に際し、レーザ光発振の時間だけ信号を測定することを特徴とするレーザ計測装置にある。
【0016】
第5の発明は、第1乃至4のいずれか一の発明において、
上記ガスは、有機芳香族物質と計測対象ガスとを含み、
上記レーザ光の波長が、上記有機芳香族物質からの散乱光の強度が上記計測対象ガスからの散乱光の強度より小さいように選択されていることを特徴とするレーザ計測装置にある。
【0017】
第6の発明は、第1乃至5のいずれか一の発明において、
上記レーザ光が、波長が400nm以上であることを特徴とするレーザ計測装置にある。
【0018】
第7の発明は、第1乃至6のいずれか一の発明において、
上記レーザ光が、偏向した光であることを特徴とするレーザ計測装置にある。
【0019】
第8の発明は、燃料と空気の供給により、燃焼用の生成ガスを生成するガス化炉と、
第1乃至7のいずれか一のレーザ計測装置と、
上記算出の結果に基づいて、上記燃料及び上記空気の供給の制御又はガス精製手段の制御を行う制御手段とを具備することを特徴とするガス化装置にある。
【0020】
第9の発明は、計測場内の被測定ガスにレーザ光を照射するステップと、 上記レーザ光の照射により上記ガスから生じる散乱光の波長毎の強度の計測を行うステップと、
上記レーザ光の照射により上記ガス中のダストから生じるミー散乱光の計測を行うステップと、
上記計測の結果から上記ガスの発熱量及びダスト量を算出するステップとを具備することを特徴とするレーザ計測方法にある。
【0021】
第10の発明は、第9の発明において、
上記散乱光以外のノイズ散乱光の散乱を防止しつつ測定することを特徴とするレーザ計測方法にある。
【0022】
第11の発明は、燃料と空気の供給により、燃焼用の生成ガスを生成するステップと、
上記ガスにレーザ光を照射するステップと、
上記レーザ光の照射により上記ガスから生じる散乱光の波長毎の強度の計測を行うステップと、
上記レーザ光の照射により上記ガス中のダストから生じるミー散乱光の計測を行うステップと、
上記計測の結果から上記ガスの発熱量及びダスト量を算出するステップと、
上記算出の結果に基づいて、上記燃料及び上記空気の供給の制御を行うステップと、
上記算出の結果に基づいて、ガス精製の制御を行うステップとを具備することを特徴とするガス化方法にある。
【0023】
第12の発明は、第11の発明において、
上記レーザ光の照射により上記ガスから生じるラマン散乱光より水蒸気量を算出するステップと、
上記算出の結果に基づいて、上記熱交換手段の制御を行うステップを具備することを特徴とするガス化方法にある。
【0024】
なお、本明細書中における「散乱光」には、蛍光を含んでいる。
【0025】
【発明の実施の形態】
以下、本発明であるガス化装置の実施の形態に関して、添付図面を参照して説明する。
本実施例においては、発電用ガスタービンに用いられるガス化装置を例に示して説明するが、他の用途に用いられるガス化装置においても、適用可能である。
【0026】
[第1の実施の形態]
図1は、本実施の形態にかかるレーザ計測装置の概略図である。
図1に示すように、本実施の形態にかかるレーザ計測装置100は、計測場20内の被測定ガス21にレーザ光22を照射するレーザ手段23と、
上記レーザ光22の照射により上記ガス21から生じるラマン散乱光24により波長毎の強度の計測を行う分光器25と、
上記レーザ光22の照射により上記ガス21中のダストから生じるミー散乱光27の計測を行う光検出器28と、
上記計測の結果から上記ガス21の発熱量及びダスト量を算出する計算部であるデータ処理手段29とを具備するものである。
本実施の形態では、上記被測定ガス21は、例えば石炭ガス火炉の生成ガス例に示して説明するが、他の用途に用いられるガス化装置においても、適用可能である。
【0027】
また、図1に示すように、レーザ計測装置は、レーザ手段23からのレーザ光22をミラー31を介して反射させて、集光手段33により集光し、次いで計測窓32a,32bを透過した後、計測場20内に入射させ、被測定ガス21へ照射する機能を有する。
計測場20は被測定ガス21を内部に保持又は流通させる機能を有する。
本実施の形態では、ガス火炉からの生成ガスをタービンへ送給する送給管の一部を計測場としているが、送給管から分枝するようにしてもよい。
【0028】
また、分光器25はICCD(Intensified Charge Coupled Device)カメラ34を具備し、被測定ガス21からのラマン散乱光24を分光し、測定データ(図3参照)として取り出す機能を有する。
【0029】
また、光検出器28は、被測定ガス21中の固体成分であるダストからのミー散乱光24をミラー26を介して反射させた後に分光し、測定データとして取り出す機能を有する。
【0030】
データ処理手段29は、測定データに基づいて、測定ガスの発熱量及びダスト濃度を計算する機能を有する。
よって、レーザ光22を用いた本計測装置により、短時間に正確にガスの発熱量を計算することが可能である。これと同時に、ダスト量を計測することができる。
【0031】
また、ラマン散乱光24からの測定データ中の水分量を計測することで、図4に示すように、ガス火炉側に設けた熱交換器等の熱交換手段からの水蒸気の漏洩(チューブリーク)を同時に計測することができる。
【0032】
以下に、レーザ計測装置の各構成部材について図1を参照しつつ説明する。
【0033】
まず、レーザ光22を出力し被測定ガス21へ照射する機能を有するレーザ手段23について説明する。
レーザ手段23は、レーザ発信によりレーザ光22を出力する。使用するレーザにより、レーザ光22の波長は、所望のものを使用できる。本発明では、波長が可視光域(400nm〜700nm)のものを使用する。ここでは、532nmのものを用いている。
【0034】
なお、図示しないパワーメータは、レーザ手段23から出力されるレーザ光22の進行方向上の、レーザ手段23の先にやや離れて設けられている。これは、レーザ光22を通過させることにより、レーザ光22の出力を正確に計測することが出来る計算機器である。この数値をフィードバックし、レーザ手段23の出力を調整する。
【0035】
また、ミラー31は、出力されたレーザ光22の進行方向を、被測定ガス21の存在する計測場20の方向へ、反射により向けさせるミラーである。このミラー31の角度を調整することにより、計測場20の任意の位置での計測を可能としている。
【0036】
また、集光手段33は、レーザ光22の進行方向上であって、ミラー31から少し離れた位置に設けられており、レーザ光22が測定場20の所定位置で焦点を結ぶように、レーザ光22を絞るようにしている。
【0037】
次に、レーザ光22が照射できるような形で測定ガスを保持又は流通させる機能を有する計測場20について説明する。計測場20は、測定ガスが内部に存在しており、それを外部(レーザ部や分光器25を含む)にリークさせないような構造をしている。測定用のレーザ光22及び被測定ガス21からのラマン散乱光24,ミー散乱光27は、石英窓32a,32bから出入りする。
【0038】
石英窓32a,32bは、計測場20の端にあり、レーザ光22の進行方向上の、集光手段33の先にやや離れてある。測定ガスを外部へ流出させないための石英ガラス製の窓である。石英ガラス製にしているのは、その窓をレーザ光が透過できるようにするためである。また、2重にしているのは、石英ガラス1枚が破損しても、ガスがリークしないようにするためである。
【0039】
なお、電磁弁が設けられており、通常は、閉じている。これは、長期間に亙って計測場側の石英窓32aを測定ガスに曝しておくと、ガス中の不純物により、石英窓が汚れてしまい、その汚れの為にレーザによる測定が困難となるからである。測定時には開口される。
【0040】
計測場20は、レーザ光22の進行方向上の測定ガスが存在している測定領域を含む場所であり、該領域に存在するガス21にレーザ光22が照射されることにより測定がなされる。ただし、被測定ガス21は、この場所で留まっている必要は無く、ガス供給用の配管の途中であって、その配管中をガスが滞留することなく流れている(動いている)状態であっても測定可能である。
【0041】
次に、被測定ガス21からのラマン散乱光24を分光し、測定データとして取り出す機能を有する分光器25について説明する。ここで、測定領域中心部から散乱されたラマン散乱光24は、レーザ光22からある角度をなして、計測場20から分光器25へ入る。
【0042】
上記分光器25には、フィルタが配設されており、特定の波長の散乱光24のみ透過させるようにしている。本実施の形態では、570〜700nmの光が透過するフィルターを使用する。
【0043】
分光器25にはICCDカメラ34が接続されている。光の強度を計測する光電子増倍型のデバイスである。ここで。分光器25で分光された各波長の光の強度を計測する。
【0044】
また、本実施の形態では、被測定ガス21からのミー散乱光27を光検出器28で検出するようにしている。
ミー散乱光27は、ガス中のダスト成分等の固体物質からの散乱光であり、該ミー散乱光の濃度によりダスト量を計測する。
【0045】
次に、測定データに基づいて、サンプルガスの発熱量を計算する機能を有するデータ処理手段29について説明する。
データ処理手段29は、各波長毎のラマン散乱光24の強度から、ガスの体積分率を計算する。そのガスの体積分率から、ガスの発熱量が計算できる。
また、水のラマン散乱光24の強度から、ガス中の水分量を計算することができる。
【0046】
また、データ処理手段29は、ミー散乱光を検出する光分光器28の情報からから、ガス中のダスト量を計算することができる。
【0047】
次に、本発明であるレーザ計測装置の動作について、図1を参照して説明する。
【0048】
まず、レーザ計測装置に用いられるラマン散乱分光法の測定原理について説明する。なお、図3はラマン散乱光の測定例を示す図である。
波数ν(波長λの逆数)のレーザ光を物質に照射し、その散乱光を分光すると、ν、ν±ν、ν±ν、…のような波数を持つ散乱光が得られる。この内、ν±νに相当する散乱をラマン散乱といい、ν−νを持つ成分をストークスラマン散乱、ν+νを持つ成分をアンチストークスラマン散乱という。通常、ラマン散乱として測定されるのは、ストークスラマン散乱である。また、νをラマンシフトといい、物質固有の値を取る。すなわち、ラマン散乱光におけるラマンシフトνを計測すると、レーザ光を散乱した物質が何であるかの定性分析が可能となる。物質は混合されていても構わない。加えて、ラマン散乱光の強度は存在する分子数に比例するので、散乱光の強度を測定することで定量分析も可能である。図3において、縦軸はラマン散乱光の強度、横軸は散乱光の波長(=1/(ν−ν))である。各物質(CO、CO、Nなど)により、ラマン散乱光の波長が決まっているので、その波長の位置で物質が同定でき、また、各散乱光強度から、各物質の体積分率が計算できる。
【0049】
以上から、ラマン散乱が、混合物の定性及び定量分析において有用であることが分かる。ただし、測定する物質の量が多く存在する必要がある。また、ラマン散乱光の強度は、νの4乗に比例し、波長が長いレーザ光を使用する場合、散乱光の強度は著しく低下する。従って、波長の長過ぎるレーザは用いられない。
【0050】
そして、レーザ計測装置において、ガスの各成分からの発熱量及びダスト量を計測するには、以下のようにする。
まず、図1において、レーザ手段23からレーザ光22が発射される。本実施の形態では、レーザ光22は、パルスの形で発射し、それと同期を取った分光器25及びICCDカメラ34によりラマン散乱光24の計測が行われる。また、継続的にレーザ光22を発射し、それの散乱光24を計測することも可能である。
【0051】
また、本実施の形態では、可視光である波長532nmのレーザを使用する。
レーザ波長の選択は、以下のような観点から行った。もし、400nmより波長の短い355nmの紫外光レーザでは、測定ガス中の有機化学物質の芳香族成分からの散乱光が強くなり、それがノイズ光として測定に悪影響を及ぼす。また、逆に、波長が長すぎると、ラマン散乱光の強度が低下してしまい、検出が困難になる。従って、本実施例では、測定ガス中の芳香族成分からの散乱光がほとんど無く、かつ、測定対象物質(CO,CO,N,CH,HO,H)からの散乱光が十分の強度を得られる、レーザ波長を選択した。
【0052】
また、レーザ光22は、偏向した光である偏光を用いるようにしてもよい。偏光のレーザ光を出力するレーザを使用しても良いし、偏光素子を通過させたレーザ光を使用しても良い。そのようなレーザ光22を用いると、測定ガスからの散乱光24の内、ラマン散乱光以外の単なる散乱光は偏光ではないので、図2に示すように、途中に入れた偏光素子35により、それらのほとんどはカットされる。従って、偏光であるラマン散乱光のみが、偏光素子35を透過することができ、ノイズ光の抑制された測定結果が得られるのである。
【0053】
最終的に得られたラマン散乱光24は、分光器25に入る。そこで、各波長毎のチャンネルに分けられる。そして、各波長毎の光の強度をICCDカメラ34により測定することにより測定結果が得られる。
【0054】
測定された各波長におけるラマン散乱光の分析結果(各波長における散乱光24の強度のデータ)は、データ処理手段29に出力され、そこで発熱量が計算される。計算は、ガスの分析結果において、波形の強度のピークを示す波長から物質を同定し、強度からその物質の体積分率を計算する。そして、その体積分率に、各ガス成分の標準状態における単位体積当たりの発熱量を掛け合わせれば、各ガス成分毎の単位体積当たりの発熱量が計算できる。その合計が、生成ガス21全体の単位体積当たりの発熱量である。
【0055】
本実施の形態のレーザ計測装置では、(1)レーザ光22をガスに照射させて、ガス中に含まれる有機芳香族物質からのラマン散乱光により、各成分の濃度を求め、発熱量を計測することができる。(2)また、水分の濃度からガス中に水蒸気が漏洩したことを検出することができる。
(3)さらに、ガス中にダスト成分が含まれた場合には、レーザ光22の照射により該ダストからのミー散乱光を計測することで、ダスト量を同時に計測することができる。
【0056】
なお、本実施例で使用されている、ミラーおよびレンズは、レーザ、計測部および分光器の位置関係により、本発明の技術的思想の範囲で増減することや、位置が変更することが可能であり、上記実施例の形態に拘束されるものではない。
【0057】
[第2の実施の形態]
図5は、本実施の形態にかかるレーザ計測装置の要部概略図である。
図5に示すように、本実施の形態にかかるレーザ計測装置の計測場20には、信号光であるラマン散乱光24、ミー散乱光27以外のノイズ散乱光によるノイズを防止するために、散乱防止手段41を設けている。
まず、図6に示すように、レーザ光22の照射により、ノイズ散乱光42が計測場20内に発生する。このノイズ散乱光42は、計測場内の壁面からの散乱光であり、このノイズ散乱光42の一部が信号光であるラマン散乱光24及びミー散乱光27と同一軸上で検出手段に入るとノイズとなる。
【0058】
このノイズ散乱光42は図7に示すように、ラマン散乱光24、ミー散乱光27よりは検出器に到達する時間が遅れるので、パルスレーザ光を使用し、信号光(ラマン散乱光24、ミー散乱光27)に時間ゲートをかけて計測ゲートを短くすることである程度はノイズの影響を防止することができる。
【0059】
さらに、信号光が弱い場合或いはノイズ散乱光が多量に発生する場合には、ノイズ散乱光42が検出器側に入らないことを避けるために、散乱防止手段41を設けてこれを防止している。
【0060】
図8は上記散乱防止手段41の概略図である。図8に示すように、散乱防止手段41は、散乱防止手段本体43の内部に凹凸面44を設けており、入射したレーザ光22のノイズ散乱光42を封じ込め、外部へ反射させないようにしている。これにより、レーザ光22による計測場20でのノイズ散乱光の発生を防止している。
【0061】
また、図9に示すように、上記散乱防止手段41を複数設けるようにしてもよい。
すなわち、図9に示すように、入射したレーザ光22の散乱防止用の散乱防止手段41をレーザ光22の光軸上の計測場の内壁面に設けると共に、発生した信号光(ラマン散乱光及びミー散乱光)の散乱防止用の散乱防止手段41をレーザ光22の光軸上の計測場の内壁面に設けている。
これにより、ノイズ散乱光の吸収により、ノイズのない信号光のみを検出することができる。
【0062】
[第3の実施の形態]
図10は、本実施の形態にかかるレーザ計測装置を備えたガス化システムの概略図である。
本実施の形態では、発電用ガスタービンに用いられるガス化装置を例に示して説明するが、他の用途に用いられるガス化装置においても、適用可能である。
【0063】
以下、本発明であるガス化装置の実施例の構成に関して、添付図面を参照して説明する。
図10を参照して、本実施の形態では、燃料及び空気をガス化炉101へ供給し、生成した生成ガス102は、配管110を通り、該配管110に介装されるポーラスフィルタ120、脱硫手段121及び除塵手段122を通過し、ガスタービン111へ供給される。その際、ガスタービン111に供給する生成ガス102の発熱量を正確に制御する必要がある。その制御は、第1の実施の形態で説明したレーザ計測装置100を使用して行う。すなわち、第1の実施の形態のレーザ計測装置100をガス化装置に組み込む。そして、配管110の途中において、該配管110内を流れる生成ガス102のラマン散乱光及びミー散乱光の測定を行う。その測定結果に基づき、データ処理手段29にて生成ガス102の組成を計算する。計算から計算結果が出るまでの時間は非常に短時間である。そして、その計算値に基づいて、制御部107で、ガス化炉101に供給する燃料および空気を制御する。このようにして、本発明により、ガス化炉101において生成される生成ガス102の発熱量が正確に制御される。
【0064】
本発明であるガス化装置の構成について、詳細に説明する。
ガス化炉101は、燃料及び空気の供給を受け、燃料及び空気を理論空燃比を小さくして不完全燃焼させ、一酸化炭素(CO)、水素(H)、メタン(CH)等を生成させ、燃料ガスとして取り出すものである。本実施例では、燃料として石炭を用いている。
【0065】
生成ガス102は、ガス化炉101により生成したガスである。石炭ガス化の場合、生成ガス102は、およそ一酸化炭素(CO)10〜30%、水素(H)4〜10%、メタン(CH)0.1〜1%、二酸化炭素(CO)5〜10%、窒素(N)55〜70%の範囲の体積分率を有する。
【0066】
配管110は、ガス化炉101とガスタービン111を結ぶ配管であり、ガス化炉101で生成した生成ガス102のガスタービン111への流路である。
【0067】
ガスタービン111は、火力発電において、発電用に用いられるタービンである。生成ガス102の供給により運転している。
【0068】
制御部107は、データ処理手段29において計算された発熱量と、その時点で必要とされる発熱量(外部から入力)とを比較し、その差を計算する。そして、その結果に基づいて、生成ガス102の発熱量が必要とされる発熱量になるように、燃料供給弁108及び空気供給弁109の制御で燃料及び空気の増減を行う。燃料及び空気の増減量は、例えば、燃料及び空気の組成から生成ガスの組成を求め、発熱量を計算する方法において、燃料及び空気の組成を逐次代入する方法や、逆計算を行なう方法で計算できる。なお、制御部107の機能をデータ処理手段29に行わせることも可能である。
【0069】
燃料供給弁108及び空気供給弁109は、それぞれ燃料及び空気をガス化炉101へ供給するための弁であり、制御部107により制御される。
【0070】
次に、本発明であるガス化装置の実施例の動作について、図面を参照して説明する。
図10を参照して、ガス化炉101では、燃料である石炭及び空気の供給を受けて、ガスタービン111用の燃料である生成ガス102を生成している。生成ガス102の組成は、ガス化炉101の燃焼条件により決まる。また、ガスタービン111に必要な生成ガス102の発熱量は、ガスタービン111の運転条件で決まる。従って、ガスタービン111の運転条件に応じて、ガス化炉101の燃焼条件を対応させ、所望の生成ガスを生成する必要がある。燃焼条件の制御は、レーザ計測装置100による発熱量分析の結果に基づき、燃料である石炭及び空気の供給を制御することで行う。
以下に、本発明であるガス化装置の動作について、詳細に説明する。
【0071】
ガス化炉101は、燃料及び空気(必要に応じて水蒸気)の供給を受け、それらを高温高圧下で空気と燃料の比を理論空気燃料費より小さくし、不完全燃焼させ、一酸化炭素(CO)、水素(H)、メタン(CH)を主な燃料ガス成分とする生成ガス102を生成する。ガス化炉101の運転温度、運転圧力、燃料及び空気の供給量により、生成ガス2における各成分の体積分率が決まる。
【0072】
ガス化炉1で生成された生成ガス102は、配管110を通りガスタービン111へ供給される。その際、配管110の途中に組み込まれたレーザ計測装置100により、生成ガス102の発熱量の測定を行う。ここでは、配管110からサンプリング管等により生成ガス102の一部を測定装置に導く、という間接的な測定ではなく、配管110中の生成ガス102を直接測定する。直接測定により、ガスタービン111へ供給される生成ガス102の発熱量をより速く、より正確に測定することが可能となる。
【0073】
上記レーザ計測装置100における動作は、第1の実施の形態と同様であるので、ここでは説明を省略する。
【0074】
上記レーザ計測装置100により算出された生成ガス102の発熱量は、制御部107へ送られる。そして、そこで、算出された発熱量と必要とされる発熱量とを比較する。そして、その結果に基づいて、所望の発熱量になるように、運転条件を変化させる。運転条件として、ここでは、燃料及び空気を増減させる。増減方法は、制御部107が前述の算出結果に基づいて計算した所望の供給量になるように、燃料供給弁108及び空気供給弁109の制御を行う。
なお、他の運転条件(ガス化炉101の運転温度、運転圧力等)の制御により、生成ガス102の成分を制御することも可能である。
【0075】
カラムを用いたガスクロマトグラフとは異なり、レーザ光を利用しているので、前処理の必要が無く、測定が迅速で応答性が非常に良い。また、配管110の生成ガス102を直接分析しているので、分析結果が非常に正確である。従って、正確な制御が必要なガスタービン111の生成ガス102の発熱量を、常に最適に制御することが可能となる。
【0076】
また、水蒸気の量を計測することで、ガス火炉101内の熱交換器からのヒビ割れ等による水蒸気の漏れを確認することができる。
【0077】
図11はポーラスフィルタ120の概略構成図である。
図11(a)は通常運転状態を示す。 図11(b)はリーク時の運転状態を示す。
図11中、符号125はフィルタブロック、126は各フィルタブロックの各配管を開閉する遮断手段(バルブ)である。本実施の形態では、4本のフィルタブロック125a〜dとそれに対応するバルブ126a〜126dである。ポーラスフィルタ120の後流側には、煤塵計127が設けられている。
【0078】
生成ガス102はダストを含むので複数のフィルタブロック125a〜125nにより除塵される。そして、各運転ブロックは出口側に遮断バルブ126a〜126nが設けられている。
【0079】
そして、ダストの量が規定値以上となったときに、各ブロック125a〜125nを順次遮断し、煤塵濃度計127により煤塵の漏洩がどのブロックからかを特定し、例えばフィルタブロック125cに漏れがあった場合には、バルブ126cでそのブロック125cを遮断する。
これにより、漏洩のあったフィルタブロックを迅速に特定でき、当該漏れがあるブロックの交換を迅速に行うことができる。
【0080】
また、ガス化ガスの圧力及びN、CO、CH、HO等のラマン散乱光の光量から窓汚れ効果を推定し、ダスト量を校正するようにしてもよい。
【0081】
また、ダスト量の変動より、ガス化システムのメンテナンス時期を推定するようにしてもよい。
【0082】
よって、本レーザ計測装置をガス化システムに適用することで、連続して安定したガス化システムを構築することができる。
【0083】
【発明の効果】
本発明により、計測場内の被測定ガスにレーザ光を照射するレーザ手段と、上記レーザ光の照射により上記ガスから生じるラマン散乱光により波長毎の強度の計測を行う分光器と、上記レーザ光の照射により上記ガス中のダストから生じるミー散乱光の計測を行う光検出器と、上記計測の結果から上記ガスの発熱量及びダスト量を算出する計算部とを具備するので、例えばガス火炉からの生成ガスの発熱量及びダスト量を高速、低ノイズで正確に分析することが可能となる。
【0084】
また、本発明により、複合型発電設備を備えた石炭ガス化システムにおいて、生成ガスの発熱量を配管途中で直接測定し、生成ガスの発熱量をより正確に制御することが可能である。
【図面の簡単な説明】
【図1】本実施の形態にかかるレーザ計測装置の概略構成図である。
【図2】他の本実施の形態にかかるレーザ計測装置の概略構成図である。
【図3】ラマン散乱光及びミー散乱光の測定例を示す図である。
【図4】ラマン散乱光による水蒸気の漏洩の測定例を示す図である。
【図5】本実施の形態にかかるレーザ計測装置の要部概略図である。
【図6】レーザ光照射による散乱ノイズ光の散乱状態図である。
【図7】レーザ光照射による散乱ノイズ光の測定例を示す図である。
【図8】レーザ光照射による散乱防止手段の構成図である。
【図9】本実施の形態にかかるレーザ計測装置の要部概略図である。
【図10】ガス化システムの構成図である。
【図11】ガス化装置のフィルタの概略構成図である。
【図12】従来のガス化装置の形態を示す構成図である。
【図13】レーザによるダスト計測の概略図である。
【符号の説明】
20 計測場
21 被測定ガス
22 レーザ光
23 レーザ手段
24 ラマン散乱光
25 分光器
27 ミー散乱光
28 光検出器
29 データ処理手段
31 ミラー
32a,32b 計測窓
33 集光手段
34 ICCDカメラ

Claims (12)

  1. 計測場内の被測定ガスにレーザ光を照射するレーザ手段と、上記レーザ光の照射により上記ガスから生じるラマン散乱光により波長毎の強度の計測を行う分光器と、
    上記レーザ光の照射により上記ガス中のダストから生じるミー散乱光の計測を行う光検出器と、
    上記計測の結果から上記ガスの発熱量及びダスト量を算出する計算部と、
    を具備することを特徴とするレーザ計測装置。
  2. 請求項1において、
    上記計側部が、上記ラマン散乱光の計測結果から水蒸気量を計測することを特徴とするレーザ計測装置。
  3. 請求項1又は2において、
    上記散乱光以外のノイズ散乱光の散乱を防止する散乱防止手段を計測場内に具備することを特徴とするレーザ計測装置。
  4. 請求項1乃至3のいずれか一において、
    上記散乱光の測定に際し、レーザ光発振の時間だけ信号を測定することを特徴とするレーザ計測装置。
  5. 請求項1乃至4のいずれか一において、
    上記ガスは、有機芳香族物質と計測対象ガスとを含み、
    上記レーザ光の波長が、上記有機芳香族物質からの散乱光の強度が上記計測対象ガスからの散乱光の強度より小さいように選択されていることを特徴とするレーザ計測装置。
  6. 請求項1乃至5のいずれか一において、
    上記レーザ光が、波長が400nm以上であることを特徴とするレーザ計測装置。
  7. 請求項1乃至6のいずれか一において、
    上記レーザ光が、偏向した光であることを特徴とするレーザ計測装置。
  8. 燃料と空気の供給により、燃焼用の生成ガスを生成するガス化炉と、
    請求項1乃至7のいずれか一のレーザ計測装置と、
    上記算出の結果に基づいて、上記燃料及び上記空気の供給の制御又はガス精製手段の制御を行う制御手段とを具備することを特徴とするガス化装置。
  9. 計測場内の被測定ガスにレーザ光を照射するステップと、 上記レーザ光の照射により上記ガスから生じる散乱光の波長毎の強度の計測を行うステップと、
    上記レーザ光の照射により上記ガス中のダストから生じるミー散乱光の計測を行うステップと、
    上記計測の結果から上記ガスの発熱量及びダスト量を算出するステップとを具備することを特徴とするレーザ計測方法。
  10. 請求項9において、
    上記散乱光以外のノイズ散乱光の散乱を防止しつつ測定することを特徴とするレーザ計測方法。
  11. 燃料と空気の供給により、燃焼用の生成ガスを生成するステップと、
    上記ガスにレーザ光を照射するステップと、
    上記レーザ光の照射により上記ガスから生じる散乱光の波長毎の強度の計測を行うステップと、
    上記レーザ光の照射により上記ガス中のダストから生じるミー散乱光の計測を行うステップと、
    上記計測の結果から上記ガスの発熱量及びダスト量を算出するステップと、
    上記算出の結果に基づいて、上記燃料及び上記空気の供給の制御を行うステップと、
    上記算出の結果に基づいて、ガス精製の制御を行うステップとを具備することを特徴とするガス化方法。
  12. 請求項11において、
    上記レーザ光の照射により上記ガスから生じるラマン散乱光より水蒸気量を算出するステップと、
    上記算出の結果に基づいて、上記熱交換手段の制御を行うステップを具備することを特徴とするガス化方法。
JP2003186544A 2003-06-30 2003-06-30 レーザ計測装置 Pending JP2005024249A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186544A JP2005024249A (ja) 2003-06-30 2003-06-30 レーザ計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186544A JP2005024249A (ja) 2003-06-30 2003-06-30 レーザ計測装置

Publications (1)

Publication Number Publication Date
JP2005024249A true JP2005024249A (ja) 2005-01-27

Family

ID=34185642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186544A Pending JP2005024249A (ja) 2003-06-30 2003-06-30 レーザ計測装置

Country Status (1)

Country Link
JP (1) JP2005024249A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085374A (ja) * 2008-10-02 2010-04-15 Mitsubishi Heavy Ind Ltd ガス成分計測装置及びその光軸調整方法
JP2010112805A (ja) * 2008-11-05 2010-05-20 Mitsubishi Heavy Ind Ltd ガス中の煤塵濃度計測装置及び煤塵濃度計測装置の煤塵濃度校正方法
JP2011112546A (ja) * 2009-11-27 2011-06-09 Mitsubishi Heavy Ind Ltd ガス中のガス成分計測装置及び方法
JP2011123031A (ja) * 2009-12-14 2011-06-23 Mitsubishi Heavy Ind Ltd ガス成分計測装置及び方法
JP2011128078A (ja) * 2009-12-18 2011-06-30 Mitsubishi Heavy Ind Ltd ガス中の煤塵濃度計測方法及び燃焼設備の運転方法
JP2011137758A (ja) * 2009-12-28 2011-07-14 Mitsubishi Heavy Ind Ltd ガス成分計測装置及びガス成分分析方法
JP2011137761A (ja) * 2009-12-28 2011-07-14 Mitsubishi Heavy Ind Ltd ガス中の煤塵濃度及びガス組成の計測装置及び方法
JP2012527615A (ja) * 2009-05-22 2012-11-08 ダウ コーニング コーポレーション ラマン分光法を用いる気相工程中間体の定量的測定
JP2013224969A (ja) * 2013-08-05 2013-10-31 Mitsubishi Heavy Ind Ltd ガス分析装置
JP2020034476A (ja) * 2018-08-31 2020-03-05 株式会社四国総合研究所 濃度測定装置および濃度測定方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085374A (ja) * 2008-10-02 2010-04-15 Mitsubishi Heavy Ind Ltd ガス成分計測装置及びその光軸調整方法
JP2010112805A (ja) * 2008-11-05 2010-05-20 Mitsubishi Heavy Ind Ltd ガス中の煤塵濃度計測装置及び煤塵濃度計測装置の煤塵濃度校正方法
JP2012527615A (ja) * 2009-05-22 2012-11-08 ダウ コーニング コーポレーション ラマン分光法を用いる気相工程中間体の定量的測定
JP2011112546A (ja) * 2009-11-27 2011-06-09 Mitsubishi Heavy Ind Ltd ガス中のガス成分計測装置及び方法
JP2011123031A (ja) * 2009-12-14 2011-06-23 Mitsubishi Heavy Ind Ltd ガス成分計測装置及び方法
JP2011128078A (ja) * 2009-12-18 2011-06-30 Mitsubishi Heavy Ind Ltd ガス中の煤塵濃度計測方法及び燃焼設備の運転方法
JP2011137758A (ja) * 2009-12-28 2011-07-14 Mitsubishi Heavy Ind Ltd ガス成分計測装置及びガス成分分析方法
JP2011137761A (ja) * 2009-12-28 2011-07-14 Mitsubishi Heavy Ind Ltd ガス中の煤塵濃度及びガス組成の計測装置及び方法
JP2013224969A (ja) * 2013-08-05 2013-10-31 Mitsubishi Heavy Ind Ltd ガス分析装置
JP2020034476A (ja) * 2018-08-31 2020-03-05 株式会社四国総合研究所 濃度測定装置および濃度測定方法
JP7141057B2 (ja) 2018-08-31 2022-09-22 株式会社四国総合研究所 濃度測定装置および濃度測定方法

Similar Documents

Publication Publication Date Title
Oschwald et al. Supercritical nitrogen free jet investigated by spontaneous Raman scattering
JP4131682B2 (ja) ガス化装置の監視システム
Schoemaecker Moreau et al. Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames
EP2752656B1 (en) Fluid composition analysis mechanism, calorific value measurement device, power plant, and liquid composition analysis method
JP2009510480A (ja) 2線のガス分光法の較正
JP3842982B2 (ja) ガス発熱量測定装置、ガス化装置、ガス発熱量測定方法及びガス化方法
JP4160866B2 (ja) 光計測装置
JP2009098148A (ja) 燃料給湿を感知するためのシステム及び方法
JP2005024249A (ja) レーザ計測装置
US9335308B2 (en) Chromatography system, signal processing apparatus, chromatography data processing apparatus, and program
Li et al. Study on the origin of linear deviation with the Beer-Lambert law in absorption spectroscopy by measuring sulfur dioxide
Choi et al. Hydrogen isotopic analysis using molecular emission from laser-induced plasma on liquid and frozen water
JP5022334B2 (ja) ガス成分計測装置及びその光軸調整方法
JP5721684B2 (ja) データ取得方法
Lewis et al. A novel multiplex absorption spectrometer for time-resolved studies
JP5325091B2 (ja) ガス成分計測装置及びガス成分分析方法
JP5086971B2 (ja) ガス中の煤塵濃度計測装置及び煤塵濃度計測装置の煤塵濃度校正方法、ガス中の煤塵濃度計測方法
Buric et al. Raman sensing of fuel gases using a reflective coating capillary optical fiber
JP2001289783A (ja) 排ガス中のso3濃度測定方法及び装置
Tripathi et al. An optical sensor for multi-species impurity monitoring in hydrogen fuel
JP5330978B2 (ja) ガス成分計測装置及び方法
Gounder et al. Development of a laser-induced plasma probe to measure gas phase plasma signals at high pressures and temperatures
JP2011122886A (ja) 温度測定装置および温度測定方法
JP5306052B2 (ja) ガス分析計
JP2002005832A (ja) 濃度分析方法及び濃度分析装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071225