JP2004536217A - 金属蒸着のためのエントリーにあたって半導体基板を傾けるための方法と関連する装置 - Google Patents
金属蒸着のためのエントリーにあたって半導体基板を傾けるための方法と関連する装置 Download PDFInfo
- Publication number
- JP2004536217A JP2004536217A JP2002532699A JP2002532699A JP2004536217A JP 2004536217 A JP2004536217 A JP 2004536217A JP 2002532699 A JP2002532699 A JP 2002532699A JP 2002532699 A JP2002532699 A JP 2002532699A JP 2004536217 A JP2004536217 A JP 2004536217A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- electrolyte
- electrolytic solution
- horizontal
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 683
- 238000000034 method Methods 0.000 title claims abstract description 151
- 238000001465 metallisation Methods 0.000 title description 6
- 239000004065 semiconductor Substances 0.000 title description 3
- 239000003792 electrolyte Substances 0.000 claims abstract description 195
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 106
- 238000007747 plating Methods 0.000 claims abstract description 54
- 230000005499 meniscus Effects 0.000 claims abstract description 28
- 230000001965 increasing effect Effects 0.000 claims abstract description 8
- 230000003993 interaction Effects 0.000 claims abstract description 4
- 238000007654 immersion Methods 0.000 claims description 19
- 230000033001 locomotion Effects 0.000 claims description 19
- 238000006073 displacement reaction Methods 0.000 claims description 9
- 230000002708 enhancing effect Effects 0.000 claims description 2
- 238000009713 electroplating Methods 0.000 abstract description 86
- 238000010586 diagram Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 description 118
- 239000012530 fluid Substances 0.000 description 103
- 238000012546 transfer Methods 0.000 description 60
- 238000012545 processing Methods 0.000 description 48
- 239000012528 membrane Substances 0.000 description 46
- 239000000463 material Substances 0.000 description 37
- 238000011068 loading method Methods 0.000 description 33
- 238000004090 dissolution Methods 0.000 description 27
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 25
- 229910052751 metal Inorganic materials 0.000 description 24
- 239000002184 metal Substances 0.000 description 24
- 239000000126 substance Substances 0.000 description 24
- 239000007789 gas Substances 0.000 description 23
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 16
- 239000010949 copper Substances 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 14
- 238000000576 coating method Methods 0.000 description 14
- 238000000151 deposition Methods 0.000 description 14
- 229910052802 copper Inorganic materials 0.000 description 13
- 238000002955 isolation Methods 0.000 description 12
- 239000002699 waste material Substances 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 11
- 239000004020 conductor Substances 0.000 description 11
- 239000008367 deionised water Substances 0.000 description 11
- 229910021641 deionized water Inorganic materials 0.000 description 11
- 230000008021 deposition Effects 0.000 description 11
- 238000013461 design Methods 0.000 description 10
- 229920001971 elastomer Polymers 0.000 description 8
- 239000010931 gold Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 229910052697 platinum Inorganic materials 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 238000000137 annealing Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 230000005611 electricity Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000005660 hydrophilic surface Effects 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 230000036961 partial effect Effects 0.000 description 7
- 239000010802 sludge Substances 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 230000007717 exclusion Effects 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 230000002934 lysing effect Effects 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000000806 elastomer Substances 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 238000004448 titration Methods 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000012636 effector Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229920002449 FKM Polymers 0.000 description 2
- 241001070947 Fagus Species 0.000 description 2
- 235000010099 Fagus sylvatica Nutrition 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000003134 recirculating effect Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 239000004801 Chlorinated PVC Substances 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 229920004142 LEXAN™ Polymers 0.000 description 1
- 239000004418 Lexan Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229920001774 Perfluoroether Polymers 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006355 Tefzel Polymers 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- -1 acryl Chemical group 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229920000457 chlorinated polyvinyl chloride Polymers 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical compound C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000013056 hazardous product Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical compound FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/12—Semiconductors
- C25D7/123—Semiconductors first coated with a seed layer or a conductive layer
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/04—Removal of gases or vapours ; Gas or pressure control
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/288—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
- H01L21/2885—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/24—Reinforcing the conductive pattern
- H05K3/241—Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating Methods And Accessories (AREA)
- Chemically Coating (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
電気化学メッキシステムが記載される。基板上に形成されたシード層が電解溶液に浸されている電気化学メッキシステムによって方法が行われる。ある1つの態様においては、基板と基板ホルダとの間に電解溶液中の空気泡を捕捉又は生成することを制限するために電解溶液に入るにつれて基板を傾けることにより電気化学メッキシステムにおいて基板が浸される。他の態様においては、セルと、基板ホルダと、アクチュエータとを含む電気メッキのための装置が提供される。アクチュエータが基板ホルダアセンブリをx方向とz方向に移すことができ、基板を傾斜させることもできる。他の態様においては、基板の表面を横切って電解溶液によって形成されるメニスカスを動かす方法が提供される。基板が電解溶液に浸されるにつれて電解溶液メニスカスと表面との間の相互作用を高める方法を含んでいる。
【選択図】図1
【選択図】図1
Description
【0001】
発明の背景
1.関連出願の説明
本開示は、同一人に譲渡された2000年7月7日に出願された米国仮出願番号60/216,896、発明の名称:「エントリーにあたって基板を傾けるための方法と装置」に基づくプライオリティーを主張しており、同出願は本出願に参考として援用されている。
【0002】
本出願は、1999年4月8日に出願された特許出願番号09/289,074、発明の名称:「電気化学蒸着システム」に基づくプライオリティーを主張した一部継続出願であり、同出願の全文は本出願に参考として援用されている。
【0003】
2.発明の分野
本発明は、一般に基板の上への金属層の堆積に関する。より詳しくは、本発明は、基板の上に金属被膜を蒸着するための電気化学メッキ(ECP)システムに用いる、基板ホルダシステムに関する。
【0004】
3.関連する技術の背景
電気メッキは、例えば、半導体装置において、回路基板上に回線を作成すると共に、バイアス、トレンチ及び電気的接触要素等のフィーチャを充填するのに用いられている。電気メッキを含む代表的なフィーチャ充填プロセスは、物理気相堆積(PVD)又は化学気相堆積(CVD)のようなプロセスによってフィーチャ面の上にバリヤー層を堆積し、次いでPVD又はCVD等のプロセスによってバリヤー層の上に銅のような導電性の金属シード層を堆積し、次いで上記シード層上に導電性金属被膜を電気メッキしてフィーチャを充填し上記加工面上にブランケット層を形成することで所望の導電構造を形成する。蒸着された金属被膜は、化学機械研磨(CMP)のようなプロセスによって平坦化され、導電相互接続フィーチャを画成する。電気コンタクトリングは、電気メッキの過程において基板上のシード層に接触して一般に配置され、シード層に電気を供給する。
【0005】
ミクロンのサイズの、高いアスペクト比特性を有する基板に確実に電気メッキを行うにあたっては、多くの障害がそれを妨げる。これらの障害のうちの1つは、基板ホルダーアセンブリによって保持され、電解溶液に水平状態で浸された、基板に関することである。基板ホルダ組立は、典型的には、基板の周囲のまわりで延びる電気のコンタクトリング又はサポートリングを含む。電気のコンタクトリング又はサポートリングは、典型的には電気メッキの間、基板を物理的に支える。基板ホルダの部分、例えば、電気コンタクトリング又はサポートリングは基板と共に下方へ向いた凹面を画成している。基板ホルダーアセンブリが基板と共に浸された時に、基板と基板ホルダーアセンブリによって画成された凹面は、電解溶液内でエアポケットを形成する空気を閉じ込めることができる。
【0006】
基板ホルダーアセンブリによって画成した凹面によって電解溶液中に閉じ込められた空気泡又はエアブリッジは、メッキの過程において基板の表面と接触することができる。電解液は空気泡又はエアブリッジが接触する基板上のシード層の上記該当部分に物理的に接触しない。従って、金属被膜は、空気泡又はエアポケットがおおうシード層の該当部分の上に堆積されることはない。このように、金属被膜堆積の過程においてシード層に隣接して存在する空気泡又はエアブリッジは、シード層を横切って堆積される金属被膜の深さの均一性に対して影響を及ぼす可能性がある。処理中、シード層と接触する空気泡又はエアブリッジの量を制限し、メッキの間、シード層を横切って一様な電気の電流密度を提供すること。
【0007】
金属被膜の堆積の過程においてフィーチャ内に空気泡が存在することは、また、基板上におけるフィーチャの充填を制限することで、堆積された金属被膜内で形成されるフィーチャの中に空隙又は隙間を作成することができる。フィーチャ内での空隙の存在は、フィーチャを含んだ電子回路において、信頼性に欠け、予測可能性が乏しくて使用が困難な電子装置をもたらす。
【0008】
従って、電解溶液に基板を液浸する過程において、基板と基板ホルダの間で空気泡の形成を制限する電気化学メッキ(ECP)システムの必要性は残る。
【0009】
発明の概要
本発明は、一般に、ECPシステムを提供する。より具体的には、本方法は、基板の上に形成されるシード層が電解溶液に浸されるところの電気化学メッキシステムによって実施される。ある1つの態様において、電解溶液の中に基板を入れるにあたって基板を傾けることによって、基板を電気化学メッキシステムの中に浸し、基板と基板ホルダアセンブリの間において電解溶液中にトラッピング又は空気泡が発生することを抑える。別の態様において、セルと基板ホルダシステムを備える装置が電気メッキのために用意されている。基板ホルダシステムは、基板ホルダをx方向とz方向に変位することができ、更に基板を傾けることができる。別の態様において、基板の表面を横切って電解溶液によって形づくられるメニスカスを駆動する方法が提供される。上記方法は、基板が電解溶液に浸される時における電解溶液メニスカスとその表面の間での相互作用を高めることを含む。
【0010】
上記された本発明の特徴、効果と目的が達成される方法を詳細に理解することができるように、上記に簡単に要約した本発明のより具体的な説明を、添付する図面に図示された実施態様を参照することで、することができる。
【0011】
ここで使われる用語中、「下」、「上」、「底」、「頂部」、「下方」、「上方」、「下側」等の用語、及び他の位置を示す用語は、各図に示す実施態様との関係でもちいられており、それらは加工処理装置の相対的な方向性次第で変わることもあり得る。
【0012】
好ましい実施態様の詳細な説明
本発明の開示は、電気化学メッキ(ECP)システムの構造と動作について記述する。ECPシステムの基板ホルダシステムについても詳細に説明される。基板ホルダシステムの動作は、電解溶液中に基板を液浸するにあたって基板を傾けることである。
【0013】
1.ECP装置
図1は、電気メッキにかかわる噴流プレーター10の1つの実施態様の断面図である。通常、噴水プレーター10は、電解液セル12、電気のコンタクトリング20、制御装置23、基本ホルダ装置14、及び陽極16を含む。電解液セル12は開口した頂部を有し、その開口を通じて基板ホルダーシステム14は基板を電解液セルに含まれる電解溶液の中に浸されるか、又はそこから取り除かれる。陽極16は、電解液セル12に含まれる電解溶液中に液浸される。複数の溝24が基板ホルダシステム14の下側の面に形成されている。真空用ポンプ33は、基板ホルダシステム14と結合されており、溝24と連絡して、基板22の裏面を処理中基板ホルダーシステム14に固定することができる真空状態をつくる。電気コンタクトリング20は、複数の金属又はセミ−メタルの接続ピン26を含み、それらは基板22の外周付近の部分に分散されて、基板プレートの中心表面を画成している。複数の接続ピン26の各々の先端は、基板22の上のシード層に接触する。制御装置23は、ピン26と陽極16に供給される電気を制御して基板22上のシード層と陽極の間に電気のバイアスを提供する。基板22は円筒状の電解液セル12の頂部近辺であってその内部に配置され、セル10の動作中、電解溶液の流れは基板のメッキの表面上に垂直に衝突する。
【0014】
図2は、ECPシステム200の1つの実施態様の斜視図である。図3は、図2のECPシステム200の平面図である。図2、3の図面を共に参照すると、ECPシステム200は、ローディングステーション210、高速熱アニール(RTA)チャンバ211、スピン−リンス−ドライ(SRD)ステーション212、メインフレーム214、と電解液溶解システム220を一般に備える。好ましくは、ECPシステム200はPLEXIGRASR(西フィラデルフィア、PA所在のローム&ハース社の登録商標)のようなパネルを用いたクリーン環境下に封入されている。メインフレーム214は、メインフレーム搬送ステーション216と複数の加工ステーション218を一般に備える。各加工ステーション218は、一つ以上のプロセスセル240を含む。電解液溶解システム220はECPシステム200に隣接して配置され、プロセスセル240に個々に接続されて、電気メッキプロセスに用いられる電解溶液を循環させる。ECPシステム200は、更にプログラム可能なマイクロプロセッサーを通常備える制御装置222を含む。ローディングステーション210は、好ましくは、一つ以上の基板カセット受け入れエリア224、一つ以上のローディングステーション搬送ロボット228、及び少なくとも1つの基板オリエンタ230を含む。基板カセット受け入れエリア、ローディングステーション搬送ロボット228、及びローディングステーション210に含まれる基板オリエンタの数は、システムの所望される処理量によって構成することができる。図2及び3に示す1つの実施態様に示されるように、ローディングステーション210は、二つの基板カセット受け入れエリア224、二つのローディングステーション搬送ロボット228、及び一つの基板オリエンタ230を含む。基板234を含む基板カセット232は、基板234をECPシステムの中に導入するために、基板カセット受け入れエリア224の上に載置される。
【0015】
ローディングステーション搬送ロボット228は基板232を基板カセット232と基板オリエンタ230の間で搬送させる。ローディングステーション搬送ロボット228は、この技術分野において一般に知られている代表的な搬送ロボットを備える。基板オリエンタ230は、基板が適切に加工処理されることを確保するために、各基板234を所望の方向に配置する。ローディングステーション搬送ロボット228は、基板234を、ローディングステーション210とSRDステーション212との間、及びローディングステーション210とRTAチャンバ211との間で搬送させる。
【0016】
図4はスピン−リンス−ドライ(SRD)モジュール236の1つの実施態様の概略斜視図であり、すすぎ用流入口と溶解用流入口とを結合している。図5は、図4のSRDモジュールの側面の断面図であって、流入口の間に垂直に配置された処理位置における基板を示す。好ましくは、SRDステーション212は、一つ以上のSRDモジュール236と一つ以上の基板通過用カセット238を含む。好ましくは、SRDステーション212はローディングステーション搬送ロボット228の数に対応して二つのSRDモジュール236を含み、そして、基板通過用カセット238は各SRDモジュール236の上に配置される。基板通過用カセット238は、ローディングステーション210とメインフレーム214の間で基板の搬送を容易にする。基板通過用カセット238は、ローディングステーション搬送ロボット228及びメインフレーム搬送ステーション216内のロボットへの又はそれからのアクセス手段を提供する。
【0017】
図4、5を参照しながら、SRDモジュール236は、底330a、側壁330b、及び上部シールド330cを有する。底330a、側壁330b、と上部シールド330cはSRDモジュールボウル330dを集合的に画成しており、そこでは、シールドは側壁に取り付けられ、SRDモジュール236内に流体を保持するのを助ける。あるいはこれに替えて、取り外し可能なカバーを用いることもできる。ペデスタル336は、SRDモジュール236内に配置されており、ペデスタル支持体332とペデスタルアクチュエータ334を含む。ペデスタル336は、処理の間、基板338(図5に示す)をペデスタルの上面で支える。ペデスタルアクチュエータ334は、ペデスタルを回転させて基板を回転させ、更に次に説明するようにペデスタルを上下させる。基板は複数のクランプ337によってペデスタルの上で保持され得る。クランプは、遠心力によって旋回し、好ましくは基板の縁部排除領域において、基板と係合する。ある1つの実施態様においては、基板は、処理の間、ペデスタルを持ち上げる時だけ基板と係合する。真空流路又は他の保持部材を用いることもできる。ペデスタルは複数のペデスタルアーム336aと336bを有するので、第二のノズルを通して流れる流体は、基板の下面において、実用的である限りできるだけ表面エリアに対して衝撃を与えることができる。出口339は、流体がSRDモジュール236から除かれるのを可能にする。
【0018】
最初の流体が流れる最初のコンジット346は、バルブ347aに接続している。コンジットは、ホース、パイプ、チューブ、又は他の流体を含んでいるコンジットであることもあり得る。バルブ347aは、最初の流体のフローを制御する。バルブ247aは、針、球、バタフライ又は他のタイプのバルブを含むいろいろなバルブから選ぶことができ、ソレノイド等のバルブアクチュエータを含むこともあり得る。バルブ347aは、制御装置222で制御される。コンジット346は、基板の上方に位置する最初の流入口340に連結し、SRDモジュール236に取り付けるための取り付け部342と、コンジット346に取付けるための連結部344を含む。最初の流入口は、一つの最初のノズル348と共に示され、基板上面への圧力の下に最初の流体を運ぶ。しかし、複数のノズルを使用することが可能であり、また、SRDモジュールの内部の周囲の付近には、複数の流入口を配置することができる。好ましくは、基板の上方に置かれたノズルは、基板の上にノズルから液だれを生じる危険性を少なくするために基板の直径の外側にあるべきである。最初の流入口は、基板の上方に配置されたカバーを貫通するものを含めて、いろいろな位置に取り付けることができる。更に、ノズルは、ボールとソケットジョイントのような、つなぎ部材343を用いて、いろいろな位置につながることもある。
【0019】
上述された最初のコンジット及び関連する要素と同様に、第二のコンジット352は、第二のノズル351で調節弁349aと第二の流入口350に接続されている。第二の流入口350は、基板の下に示されており、第二の流体を第二のノズル351を通して基板の下に向けるために上方に曲げられている。最初の流入口と同様、第二の流入口は、複数のノズル、複数の流入口と取り付け位置と構成要素353を明瞭に表現することを使うことを含む複数の位置決め基準点を含んでも良い。各流入口は、いろいろな位置でSRDモジュール236に伸ばされることができる。例えば、フローが基板の縁に沿ってSRDモジュールの外周方向に向けられた一定の角度に流れるようにしたい場合には、ノズルを内方向に放射線上に延ばし、そして、ノズルからの吐出しは、SRDモジュールの外周に向けることができる。
【0020】
制御装置222は、2つの流体とそれぞれの各流量、圧力、タイミング、これに伴うバブル調節を、そのスピンサイクルと共に個々に制御することができる。制御装置は、例えば、制御パネル又は制御室内及び遠隔式アクチュエータで制御される配管内の、離れた位置に配置することができる。一点鎖線で示された他の実施態様は、コントロールバルブ346cを持った、コンジット346bと共に最初のコンジット346に連結されている補助の流入口346aを提供する。上記他の実施態様では、溶解用流体が適用された後、基板の方向を変えたり、2番目の流入口を通る流れをすすぎ用流体に切り替える必要なしに、すすぎ用流体を基板の裏側に流すのに用いることができる。
【0021】
制御装置222は、基板22の陽極16とシード層に供給される電気の電圧又は電流を制御する。図3でそのコンポーネントが示されている制御装置222は、中央処理装置(CPU)260、メモリ262、回路部分265、入力出力インタフェース(I/O)264、そして、バス(図示されない)を含む。制御装置222は、汎用目的のコンピュータ、マイクロプロセッサ、マイクロコントローラ、又は他の公知の適当なタイプのコンピュータ又はコントローラであってもよい。CPU260は、制御装置222のために加工処理と計算動作を実行し、陽極16、基板22上のシード層15に印加される電気のオペレーションを制御し、更に基板ホルダ装置14のオペレーションを制御する。
【0022】
メモリ262は、ランダムアクセスメモリ(RAM)とコンピュータプログラムと、オペランドと、オペレータと、寸法値と、システム処理温度及びコンフィグレーション、更に他のメッキ動作を制御するパラメータを一緒に記憶する。バスは、CPU260、循環路部分265、メモリ262とI/O264の間でデジタル情報の伝達をさせる。バスはまた、デジタル情報をコントローラ222から受け取り又は送信するECPシステム200の一部にI/O264を連結する。
【0023】
I/O264は、制御装置222の中の各コンポーネントの間におけるデジタル情報の伝達を制御するためのインタフェースを提供する。I/O264はまた、制御装置222のコンポーネントとECPシステム200の異なる部分の間のインタフェースを提供する。回路部分265は、ディスプレーやキーボードのような他のすべてのユーザインタフェース機器、システム装置、及び制御装置222と関連する他の付属品を備えている。ここではデジタル制御装置222の1つの実施態様が説明されるが、アナログ制御装置と並んで他のデジタル制御装置はこの用途においてよく機能することができる。
【0024】
1つの実施態様において、基板はSRDモジュールボウルにおいて配置された面の堆積表面を上にして取付けられる。最初の流入口は、一般にすすぎ流体、代表的には消イオンされた水又はアルコールを流す。その結果、基板の裏面は、面を下にして取付けられる。第二の流入口の中を流れている流体は、溶解される材料によるが、通常、塩酸、硫酸、リン酸、フッ化水素酸、又は他の溶解液又は流体を含む、エッチング流体である。あるいは、最初の流体と第二の流体は、加工処理された基板をリンスすることが望まれている場合には、両方とも消イオンされた水又はアルコール等のすすぎ流体であることもある。
【0025】
動作上、ペデスタルは図4で示されるように上がった位置にあり、そして、図示されていないロボットは、前面を上にしてペデスタル336の上に基板を設置する。ペデスタルは、基板が第一と第二の流入口の間において垂直に配置される加工位置まで、基板を下げる。一般に、ペデスタルアクチュエータは、200 mmの基板のためにおよそ0〜およそ2500 rpmでペデスタルを回転させる。遠心力によって、クランプの下端337aがSRDモジュール側壁の外周の方向へ、ピボット337bの周りに外方向に回転する。上記クランプ回転は、クランプの上端337cを内方向かつ下方向におしやり、基板338を、ペデスタル336の上の所定位置に、好ましくは基板の縁に沿って、中心に持ってきて保持する。クランプは、基板がペデスタルを加工処理の間かなりの程度持ち上げた場合にのみ、基板に触ることなく回転して基板をペデスタルの上の位置において保持することができる。ペデスタルが基板を回転させている時に、すすぎ流体は、最初の流入口340を通して、基板の前面側部へ運ばれる。第二の流体(例えば、酸)は、第二の流入口を通して裏面に運ばれて望ましくない堆積物を除去する。溶解用流体は、堆積した材料と化学的に反応し、溶解し、更に当該材料を基板の裏側及び望ましくない堆積物が位置している他のエリアから飛ばす。1つの実施態様では、すすぎ用流体は、溶解用流体よりも大きい速度で流れて、基板の前側面を溶解用流体から保護するのを助けるように調節されている。第一と第二の流入口は、他のファクタの中でも特に、基板22、各流量、スプレーパターン、除去されるべき堆積物のタイプと量に応じて、最適の性能を発揮するように位置している。ある場合には、すすぎ用流体は、溶解用流体が望ましくない堆積物を溶解し、基板の裏側をすすいだ後に、第二の流入口に向けられる。他の場合には、すすぎ用流体を基板の裏側上に流すために接続された補助の流入口が、溶解用流体の残留物を裏側からすすぐために用いられることができる。基板の前側部及び/又は裏側部をすすいだ後に、流体のフローは止められて、ペデスタルは回転を継続して、基板を回転させ、その表面を効果的に乾かす。
【0026】
流体は一般にスプレー状で運ばれるが、それは所望される特定のノズルスプレーパターンによって変わり、ファン、噴射、円錐等の他のパターンを含むこともある。第一流体がすすぎ用流体である時、それぞれの流入口を通る第一流体と第二流体のための1つのスプレーパターンが、200mmの基板の場合、圧力が約10〜約15ポンド/平方インチ(psi)、流量が約3ガロン/分(gpm)のファンパターンである。
【0027】
ECPシステム200は、また、基板の端に沿って望ましくない堆積物を除いて縁部排除領域をつくるために用いられる。ノズルの向きと配置、流体の流量、基板の回転速度、流体の化学組成の調整によって、望ましくない堆積物は基板の端及び/又は縁部排除領域から除去することができる。このように、前側面上に堆積した物質の溶解を実質的に防ぐことには、基板の端又は縁部排除領域が必ずしも含まれなくてもよい。前側面上に堆積した物質の溶解を制限することには、物質が堆積した前側面が商業的値を超えて損なわれないように少なくとも溶解を防ぐことが含まれるものである。
【0028】
縁部排除領域溶解プロセスを達成する1つの方法は、基板の裏面上の溶解している流体をエッチングしつつ低速、例えば、約100〜約1000rpmでディスクを回転させる方法である。遠心力は、溶解している流体を移動させ、流体の表面張力のために端の周りに流体の層を形成し、そのため、溶解している流体は基板の端領域において裏面から前側面まで重なる。基板の回転速度と溶解している流体の流量は、前側面への重なりの適度を求めるのに用いることができる。例えば、回転速度の減少又はフローの増加は対向する側面、例えば、前側面への重なりが少なくなることになる。更に、前側面に送られるすすぎ用流体の流量とフロー角によって、基板の端及び/又は前面の溶解している流体層を相殺するように調整し得る。ある場合には、端及び/又は縁部排除領域を得るために最初にすすぎ用流体を含まずに溶解している流体を用いることができ、続いてSRDモジュール236ですすぎ/溶解プロセスが行われる。
【0029】
SRDモジュール236は、ローディングステーション210とメインフレーム214との間に連結している。メインフレーム214は、一般に、メインフレーム搬送ステーション216と複数の処理ステーション218を含む。図2及び図3に言及すると、図示されるようにメインフレーム214は少なくとも2つの処理ステーション218を含み、各処理ステーション218は2つのプロセスセル240を有する。メインフレーム搬送ステーション216は、メインフレーム搬送ロボット242を含んでいる。好ましくは、メインフレーム搬送ロボット242は、処理ステーション218とSRDステーション212において基板の独立した接近を与える複数の個々のロボットアーム244を含んでいる。図3に示されるように、メインフレーム搬送ロボット242は、処理ステーション218当たりのプロセスセル240の数に対応して2つのロボットアーム244を含んでいる。各ロボットアーム244は、基板搬送中に基板を保持するためのロボットブレード246を含んでいる。好ましくは、各ロボットアーム244はシステム内での基板の独立した搬送を容易にするためにその他のアームと独立して作用可能である。また、ロボットアーム244は、一方のロボットがもう一方のロボットアームが引っ込むにつれて伸びるような協調方式で作動する。
【0030】
好ましくは、メインフレーム搬送ステーション216は、メインフレーム搬送ロボット242のロボットブレード246上の表が上の位置から基板の表が下に必要なプロセスセル240の表が下の位置まで基板の搬送を容易にするフリッパロボット248を含んでいる。フリッパロボット248は、メインボディ250とフリッパロボットアーム252を含んでいる。フリッパロボットアーム252は、フリッパロボットアーム252に沿った水平面に沿って回転移動する。好ましくは、フリッパロボットアーム252の遠位端に配置された真空吸引グリッパ254は、基板をフリッパロボット248によってフリップし搬送するように基板を保持する。フリッパロボット248によって、基板234は表が下の処理のためにプロセスセル240の中に配置される。電気メッキプロセスセルは後述される。
【0031】
図24は、フリッパロボットが組込まれたメインフレーム搬送ロボットの概略平面図である。図24に示されるようにメインフレーム搬送ロボット242は、処理ステーションとSRDステーションを含む、メインフレームステーションを装着した異なるステーション間に基板を搬送する働きをする。メインフレーム搬送ロボット242は複数のロボットアーム2402(2つ図示されている)を含み、フリッパ型ロボットブレード2404は各々のロボットアーム2402の端エフェクタとして装着されている。フリッパロボットは当該技術において一般に既知であり、カリフォルニア州ミルピータスにあるRorze Automation, Inc.から市販されているモデルRR701のような基板ハンドリングロボットの端エフェクタとして装着され得る。端エフェクタとしてフリッパロボットを有するメイン搬送ロボット242は、メインフレームに装着された異なるステーション間に基板を搬送することができ、所望の面の向きに搬送される基板をフリップすることができる。即ち、電気メッキ処理の場合、基板処理面は表が下である。好ましくは、メインフレーム搬送ロボット242は、ロボットアーム2402によってX−Y−Z軸に沿ってロボット運動が独立し、フリッパ型ロボットブレード2404によって基板フリッピング回転が独立している。メインフレーム搬送ロボットの端エフェクタとしてフリッパ型ロボットブレード2404を組込むことにより、基板搬送プロセスは単純化される。メインフレーム搬送ロボット242からフィリッパロボットまで基板を移すステップが省かれるからである。
【0032】
図6は、電気メッキプロセスセル400の断面図である。図6に示されている伝記メッキプロセスセル400は、図2と図3に示されている電気メッキプロセスセル240の実施態様である。プロセスセル400は、一般にヘッドアセンブリ410と、プロセスセル420と、電解溶液コレクタ440を含む。好ましくは電解溶液コレクタ440は、プロセスセル420の配置の場所を画成する開口443の上のメインフレーム214の本体442に固定される。電解溶液コレクタ440は、内壁446と、外壁448と、壁と連結している底447とを含んでいる。電解溶液出口449は、電解溶液コレクタ440の底447を通って配置され、チューブ、ホース、パイプ又は他の流体搬送コネクタを介して図2に示されている電解液溶解システム220に連結されている。
【0033】
ヘッドアセンブリ410はヘッドアセンブリフレーム452に取り付けられている。ヘッドアセンブリフレーム452は、取り付けポスト454とカンチレバーアーム456を含んでいる。取り付けポスト454はメインフレーム214の本体442に取り付けられ、カンチレバアーム456は取り付けポスト454の上部から横に伸びている。好ましくは、取り付けポスト454はヘッドアセンブリ410を取り付けポスト454の周りに回転させるように取り付けポストに沿って縦軸について回転移動する。ヘッドアセンブリ410はカンチレバアーム456の遠位端に配置された取り付けプレート460に装着されている。カンチレバアーム456の下端は、取り付けポスト454に取付けられた空気シリンダのようなカンチレバアームアクチュエータ457に連結されている。カンチレバアームアクチュエータ457は、カンチレバアーム456と取り付けポスト454間のジョイントについてカンチレバアーム456をピボット運動する。カンチレバアームアクチュエータ457が引っ込む時、カンチレバアーム456はプロセスセル420からヘッドアセンブリ410を移動してプロセスセル420を電気メッキプロセスセル400から取り出す及び/又は置き換えるのに必要とされる間隔をあける。カンチレバアームアクチュエータ457が伸びるとき、カンチレバアーム456はヘッドアセンブリ410をプロセスセル420に向かって移動させてヘッドアセンブリ内の基板を処理中の位置に配置させる。
【0034】
ヘッドアセンブリ410は、一般に基板ホルダアセンブリ450と基板アセンブリアクチュエータ458を含んでいる。基板アセンブリアクチュエータ458は、取り付け板460に取り付けられ、取り付け板460を下向きに伸びているヘッドアセンブリシャフト462を含んでいる。ヘッドアセンブリシャフト462の下端は基板ホルダアセンブリ450に連結されて基板ホルダアセンブリ450が処理中の位置と基板装着位置に配置される。
【0035】
基板ホルダアセンブリ450は、一般に基板ホルダエレメント464と電気コンタクトエレメント466を含んでいる。図7は、電気コンタクトエレメント466の実施態様の断面図である。一般に、コンタクトリング466は複数の導電性部材が配置された環状体を含んでいる。環状体は複数の導電性部材を電気的に絶縁する絶縁材料から作られている。本体と導電性部材は、処理の間、基板を支持するとともに電流を供給する直径での内部基板取り付け面を形成する。
【0036】
ここで図7を詳しく参照すると、コンタクトリング466は、一般に環状絶縁本体770の中に少なくとも部分的に配置された複数の導電性部材765を含んでいる。絶縁本体770は、基板取り付け面768になるフランジ762と下向きに傾斜しているショルダ部分764を持つことが示されている。基板取り付け面768は、フランジ762と基板取り付け面768がオフセット平面とほとんど平行な面にあるようにフランジ762の下に位置している。従って、フランジ762は第1平面を画成すると理解することができるが、基板取り付け面768は第1平面に平行な第2平面を画成し、ショルダ764は2つの平面の間に配置されている。しかしながら、図7に示されたコンタクトリング設計は単に例示するためのものである。他の実施態様では、フランジ762と基板取り付け面768双方にほぼ直交するようにショルダ部分764はほぼ垂直な角度を含む鋭角であってもよい。また、コンタクトリング466はほぼ平面であり、よってショルダ部分764が除かれている。しかしながら、下記の理由から、実施態様は図6に示されるショルダ部分764又はその変形を含んでいる。
【0037】
導電性部材765は、フランジ上に環状に配置された複数の外部電気コンタクトパッド、基板取り付け面768の一部に配置された複数の内部電気コンタクトパッド772によって画成される。複数の埋め込み導電性コネクタ776はパッド772、780を相互に関連させる。導電性部材765は、ポリフッ化ビニリデン(PVDF)、ペルフルオロアルコキシ樹脂(PFA)、TEFLON (登録商標)(ドイツ、ウィルミントンのE.I. duPont de Nemoirs & Companyの登録商標)、又はTEFZEL (登録商標)(ドイツ、ウィルミントンのE.I. duPont de Nemoirs & Companyの登録商標)のようなプラスチック、又はアルミナ(Al2O3)又は他のセラミックスのような他の絶縁材料からできていてもよい絶縁本体770によって相互に分離されている。外部コンタクトパッド780は、処理の間、図示されていない電源に結合されて電流電圧を導電性コネクタ776を介して内部電気コンタクトパッド772に送る。また、内部電気コンタクトパッド772は、基板の周辺部の周りのコンタクトを維持することにより電流電圧を基板へ供給する。従って、動作中導電性部材765は基板に電気的に連結された不連続の電流路として働く。
【0038】
低抵抗と反対に高導電性は、良好なメッキに直接関連している。低抵抗を確実にするために、導電性部材765は、好ましくは銅(Cu)、白金(Pt)、タンタル(Ta)、チタン(Ti)、金(Au)、銀(Ag)、ステンレス鋼又は他の導電材料から製造される。低抵抗と低接触抵抗は、導電性部材765を導電材料で被覆することにより得ることができる。従って、導電性部材765は、例えば、抵抗が約2×10−8Ω・mの銅からできていてもよく、抵抗が約10.6×10−8Ω・mの白金で被覆されていてもよい。ステンレス鋼、モリブデン(Mo)、Cu、又はTiのような導電性ベース材料上に窒化タンタル(TaN)、窒化チタン(TiN)、ロジウム(Rh)、Au、Cu、又はAgのような固形物が可能である。更に、コンタクトパッド772、780が典型的には導電性コネクタ776に結合した別個のユニットであるので、コンタクトパッド772、780はCuのような一方の材料と、ステンレス鋼のような一方の導電性部材765を含むことができる。パッド772、780のいずれか又は双方と導電性コネクタ776は導電材料で被覆することができる。更に、メッキ反復性が絶縁体として作用する酸化によって逆効果になることがあることから、内部電気コンタクトパッド772はPt、Ag、又はAuのような酸化に抵抗する材料を含むことが好ましい。
【0039】
コンタクト材料の機能であるほかに、各回路の全抵抗は内部コンタクト内部電気コンタクトパッド772の形、或いはフィーチャ、コンタクトリング466によって供給される力に左右される。これらの要因によって、2つの面の間のアスペラティに基づき内部電気コンタクトパッド772と基板取り付け面768の界面での収縮抵抗、RCRが決められる。一般に、加えた力が大きくなるにつれて、見掛け面積も大きくなる。見掛け面積はRCRと逆に関係するので見掛け面積が大きくなるとRCRが小さくなる。従って、抵抗全体を小さくするために力を最大にすることが好ましい。動作中に加えられる最大の力は過剰の力と得られた圧力のもとで損傷することができる基板の耐久強度によって制限される。しかしながら、圧力が力と面積双方に関係があることから、最大の維持可能な力は内部電気コンタクトパッド772の形に依存する。従って、コンタクトパッド772は図7のように平坦な上面を有してもよく、他の形を有利に用いることもできる。例えば、図8と図9に2つの好ましい形が示されている。図8はナイフエッジコンタクトパッドを示し、図9は半球状コンタクトパッドを示している。当業者は、有利に用いることができる他の形を容易に認識するであろう。コンタクト形と力と抵抗との間の関係の詳しい考察は、Ney Contact Manual, Kenneth E. Pitney, The J.M. Ney Company, 1973に示され、この開示内容は本明細書に援用されている。
【0040】
導電性コネクタ776の数は、図7に示される所望のコンタクトパッド772の具体的な数によって異なってもよい。200mm基板の場合、好ましくは少なくとも24の導電性コネクタ776が360°で等しい間隔がとられている。しかしながら、コネクタの数が重要なレベルに達するにつれて、コンタクトリング466に相対する基板のコンプライアンスが悪影響を及ぼす。それ故、24を超える導電性コネクタ776を用いることができるが、コンタクト均一性はコンタクトパッド772のトポグラフィや基板剛性によって最後には消えることになる。同様に、24未満の導電性コネクタ776を用いることができるが、電流はますます限定され局部的になり、メッキ結果が不十分になる。具体的な適用に適するように寸法を容易に変えられるので、例えば、コンバータの数、隣接コネクタ間の間隔、コネクタが取付けられる円の周囲は200mm基板に用いられるプロセスセルと300mmに用いられるプロセスセルとの間で変化してもよい。
【0041】
図10に示されるように、基板取り付け面768は、絶縁本体770上に配置されたアイソレーションガスケット782を含んでいる。基板取り付け面は、直径内側の内部電気コンタクトパッド772まで伸びてコンタクトリング466の内径を画成している。アイソレーションガスケット782は、好ましくは内部コンタクトパッドより上にわずかに、例えば、数ミル伸び、好ましくはVITON(登録商標)(ドイツ、ウィルミントンのE.I. duPont de Nemoirs & Companyの登録商標)、TEFLON(登録商標)、ブナゴム等のようなエラストマーを含んでいる。絶縁本体770もエラストマーを含んでいる場合、アイソレーションガスケット782は同じ材料であってもよい。後者の実施態様においては、アイソレーションガスケット782と絶縁本体770は、モノリシックであってもよい。即ち、単一片として形成されてもよい。しかしながら、アイソレーションガスケット782は取替え又は洗浄に取り外しやすくすることができるように絶縁本体770と分かれていることが好ましい。
【0042】
図10は絶縁本体770全体に取付けられているアイソレーションガスケット782を示す実施態様であり、図8及び図9は他の実施態様である。後者の実施態様においては、絶縁本体770は一部用いられずに導電性コネクタ776の上面を暴露し、アイソレーションガスケット782が配置されている。従って、アイソレーションガスケット782は導電性コネクタ776の一部と接触している。この設計には、内部電気コンタクトパッド772が金を含む時のような材料コストがかなりかかる場合に有利である内部電気コンタクトパッド772に用いるべき材料が少なくなる。当業者は他の実施態様も認識するであろう。
【0043】
処理中、アイソレーションガスケット782は基板メッキ面の周辺部とのコンタクトを維持し、残りの電気コンタクト要素466と基板との間をシールするように圧縮される。シールは電解溶液が基板の端と裏面を接触することを防止する。上記のように、メッキ反復性を高くするためには清浄なコンタクト面を維持することが必要である。従来のコンタクトリングの設計は、コンタクト面のトポグラフィが経時変化することからメッキ結果が一貫していなかった。内部電気コンタクトパッド772上に蓄積しそれらの特徴を変化させる堆積物をコンタクトリングが制限、又はほとんど最少にし、よって基板メッキ面に高度に反復可能で、一貫し、かつ一様なメッキを与える。
【0044】
図11は、コンタクトリング466の電気回路の可能な配置を示す単純化した概略図である。導電性部材765間に一様な電流分布を得るために、外部抵抗700が導電性部材の各々と連続して結合される。好ましくは、REXTとして示されている外部レジスタ700の抵抗値は回路の他のコンポーネントの抵抗より非常に大きい。図11に示されるように、各導電性部材765を介する電気回路は電源702と連続して接続したコンポーネントの各々の抵抗によって示されている。REは電解溶液の抵抗であり、典型的には陽極と電気コンタクトエレメント間の距離や電解溶液化学の組成に左右される。従って、RAは基板メッキ面754に隣接した電解溶液の抵抗である。RSは基板メッキ面754の抵抗であり、RCは導電性部材765と、内部電気コンタクトパッド772と基板メッキ面754との間の界面に生じる圧縮抵抗である。一般に、外部レジスタ(REXT)の抵抗値は少なくともΣR程度であり、ΣRはREとRAとRsとRcの合計である。好ましくは、外部レジスタ(REXT)の抵抗値はΣRよりかなり大きく、各連続回路の抵抗はREXTに近似する。
【0045】
典型的には、電源は電気コンタクトエレメント466の外部コンタクトパッド780のすべてに連結され、結果として内部電気コンタクトパッド772を通る平行な回路になる。しかしながら、内部電気コンタクトパッドと基板との界面抵抗は各内部電気コンタクトパッド772によって変動するので、より多くの電流が流れ、最低抵抗の位置でより多くのメッキが生じる。しかしながら、外部レジスタを各導電性部材765と連続して配置することにより、各導電性部材765を通過する電流の値又は量は主に外部レジスタの値によって制御される。それぞれの内部電気コンタクトパッド772間の電気的性質の変化は、基板上の電流分布を影響しない。一様な電流密度が一様なメッキの厚みに寄与するメッキ面を横切って生じる。外部レジスタは、また、プロセス順序の異なる基板間に一様な電流分布を与える。
【0046】
コンタクトリング466は内部電気コンタクトパッド772上の堆積物の蓄積に抵抗するように設計されているが、多数の基板メッキサイクルにつれて基板−パッド界面抵抗が増大してしまい、最終的に許容しえない値になる。外部レジスタを横切る電圧/電流をモニタしてこの問題を説明するために電子センサ/アラーム704が外部レジスタ700を横切って連結し得る。外部レジスタ700を横切る電圧/電流が高基板パッド抵抗を示すプレセット作動範囲外にある場合には、センサ/アラーム704が正しい測定の引き金になる。例えば、問題がオペレータによって修正されるまでメッキプロセスが閉鎖される。また、分離電源を各導電性部材765に接続することができ、基板に一様な電流分布を与えるように別個に制御しモニタすることができる。非常にスマートなシステム(VSS)は電流をモジュレートするために用いることができる。VSSは、典型的には、可変レジスタ、分離電源等の電流を供給及び/又は制御するために用いられる工業において既知の処理ユニットとデバイスの組合わせとを含んでいる。内部電気コンタクトパッド772の物理化学的、従って、電気的性質が経時変化するにつれてVSSがデータフィードバックを処理し分析する。データを予め確立された設定点と比較し、次にVSSが一様な堆積を確実にするために電流と電圧を変化を適切にする。
【0047】
図18は、電気コンタクトエレメントの他の実施態様の透視図である。図18に示されるように電気コンタクトエレメント1800は、導電性金属又は金属合金、例えば、ステンレス鋼、銅、銀、金、白金、チタン、タンタル、又は他の導電材料、又は導電材料の組合わせ、例えば、白金で被覆したステンレス鋼を含んでいる。電気コンタクトエレメント1800には、電気コンタクトエレメントを基板ホルダアセンブリに取付けるために適合させた上部取り付け部分1810と基板を受け取るために適合させた下部基板受け取り部分1820が含まれている。基板受け取り部分1820には、複数のコンタクトパッド又はバンプ1824が配置された、好ましくは一様に隔置された環状基板取り付け面1822が含まれている。基板が基板取り付け面1822上に配置された時、コンタクトパッド1824は基板の周囲の領域と物理的に接触して基板堆積表面上の電気メッキシード層に電気的に接触する。好ましくは、コンタクトパッド1824は、酸化に抵抗する白金又は金のような貴金属で被覆される。
【0048】
電気コンタクトエレメントの暴露面は、基板と接触するコンタクトパッドの表面を除いて親水性表面を得るために処理されるか又は親水性の性質を示す材料で被覆されることが好ましい。親水性材料や親水性表面処理は当該技術において既知である。親水性表面処理を提供する会社は、マサチューセッツ州ベッドフォードにあるMillipore Corp.である。親水性表面は、電気コンタクトエレメントの表面上での電解溶液のビーディングを著しく減少させ、電気コンタクトエレメントが電気メッキ浴又は電解溶液から取り出された後に電気コンタクトエレメントから電解溶液の滑らかなドリッピングを促進させる。電解溶液の放出を容易にする電気コンタクトエレメント上に親水性表面を与えることにより、電気コンタクトエレメント上の残留電解溶液によるメッキ欠損が著しく減少する。本発明者らは、電気コンタクトエレメント上の残留電解溶液ビーディングや続いて処理される基板上にもたらされるメッキ欠損を減少させるために電気コンタクトエレメントの他の実施態様においてこの親水性処理又はコーティングの適用を企図している。
【0049】
図12と図12Aを参照すると、電気コンタクトエレメント466の上に配置されることが好ましく、基板の裏面に圧力をかけるとともに基板メッキ面と電気コンタクトエレメント466との間の電気コンタクトを確実にするブラッダーアセンブリ470を含む基板ホルダエレメント464の実施態様が提供される。膨張式ブラッダーアセンブリ470は基板ホルダ板832上に配置される。従って、基板ホルダ板832の下面に配置されたブラッダー836は、基板821がはさまれたコンタクトエレメント466と反対に隣接している。流体源838は、流体、即ち、ガス又は液体をブラッダーに供給し、ブラッダー836を種々の程度まで膨らませることができる。一方、基板が基板ホルダ板838に装着されているこの基板ホルダの実施態様が示される。典型的には、トラストプレートは基板ホルダシステムに用いることができるのでトラストプレートが基板の裏面に対してバイアス力をかけ、前面のシード層にバイアスがかけられて電気コンタクトエレメントと接触する。
【0050】
ここで図12、図12A、図13を参照すると、ブラッダーアセンブリ470の実施態様の詳細が述べられる。基板ホルダ板832は、下面に形成された環状溝840と中央に配置された真空口841をもつほぼディスク状として示されている。1以上の入口842は、基板ホルダ板832内に形成され、相対して拡大された環状取り付けチャネル843と環状溝840に至る。急速ホース844は流体源838を入口842に結合して流体を供給する。真空口841は、好ましくは、圧力を選択的に供給するか又は基板821の裏面に真空を作るように適合させた真空/圧力ポンプシステム859に装着される。図12に示されるポンプシステム859はポンプ845と、交差バルブ847と、一般にはベンチュリとして知られる真空エゼクタ849とを含んでいる。有利に用いることができる真空エゼクタは、インディアナ州インディアナポリスのSMC Pneumatics, Inc.から市販されている。ポンプ845は市販の圧縮ガス源であってもよく、ホース851の一方の端に結合され、ホース851のもう一方の端は真空口841に結合している。ホース851は、圧力ライン853と、真空エゼクタ849が配置された真空ライン855に分かれている。流体フローは、圧力ライン853と真空ライン855の間のポンプ845との連絡を選択的にスイッチする交差バルブ847によって制御される。好ましくは、交差バルブの設定はOFFであり、よって流体がホース851を介していずれかの向きに流れることを制限する。ホース851に配置された閉鎖バルブ861は、流体が真空エゼクタ849を介して上流の圧力ライン855から流れることを防止する。
【0051】
流体減838がガス供給である場合、ホース851に結合することができ、よって分離圧縮ガス供給、即ち、ポンプ845の要求が省かれる。更に、分離ガス供給と真空ポンプによって裏面圧力と真空状態が供給されることができる。裏面圧力と裏面真空双方を可能にすることが好ましいが、単純化した実施態様は裏面真空のみを供給することができるポンプを含むことができる。しかしながら、下で説明されるように、裏面圧力が処理中に供給される場合に堆積の一様性を改善することができる。それ故、真空エゼクタと交差バルブを含む上記のもののような配置が好ましい。
【0052】
ここで図12Aと図14を参照すると、ほぼ円形リング状のマニホルド846が環状溝840に配置されている。マニホルド846は、内部ショルダ848と外部ショルダ850との間に配置された取り付けレール852を含んでいる。取り付けレール852は、環状取り付けチャネル843に少なくとも部分的に挿入されるように適合している。マニホルド846内に形成された複数の流体出口854は入口842とブラッダー836との間を連絡する。Oリングのようなシール837は、入口842と出口854と一直線に環状マニホルドチャネル843内に配置され、基板ホルダ板832で固定されて確実に気密シールにする。ネジのような図示されていない慣用のファスナは、マニホルド846と基板ホルダ板832内に形成された図示されていない協働するネジ穴を介してマニホルド846を基板ホルダ板832に固定するために用いることができる。
【0053】
ここで図15を参照すると、ブラッダー836はそれぞれの端に環状リップシール856、又はノジュラをもつ伸長したほぼ半チューブ片として断面で示されている。図12Aには、内部ショルダ848と外部ショルダ850上に配置されたリップシール856が示されている。ブラッダー836の一部は、環状溝840より幅がわずかに小さい、例えば、数ミリメートルのマニホルド846で環状溝840の壁に対して圧縮されている。従って、マニホルド846、ブラッダー836、環状溝840は協働して流体の漏れないシールを形成する。流体の減量を防ぐために、ブラッダー836は、好ましくはシリコーンゴム又は電解溶液に化学的に不活性でありかつ信頼できる弾性を示す匹敵するエラストマーのような流体を通さない材料から構成されている。必要とされる場合には対応するカバリング857を図15に示されるようにブラッダー836上に配置することができ、接着剤結合又は熱結合によって固定することができる。カバリング857は、好ましくはVITON(登録商標)(ドイツ、ウィルミントンのE.I. duPont de Nemoirs & Companyの登録商標)、ブナゴム等のエラストマーを含んでいる。被覆は、例えば、KEVLAR(登録商標)(ドイツ、ウィルミントンのE.I. duPont de Nemoirs & Companyの登録商標)で強化されてもよい。実施態様においては、カバリング857とブラッダー836は同じ材料を含んでいる。カバリング857は、ブラッダー836が破壊しやすい場合に特に適用される。また、ブラッダー836の厚さは、穴が開く可能性を減少させるために製造中に簡単に大きくすることができる。好ましくは、被覆されない場合、ブラッダー836の暴露面とカバリング857の暴露面は、電気コンタクトエレメントの表面を上記のように親水性表面にするために被覆又は処理される。ヘッドアセンブリがプロセスセルの上に持ち上げられた後、親水性表面によって残留電解溶液のドリッピングと除去が促進する。
【0054】
入口842と出口854の正確な数は、具体的な適用に従って変動してもよい。例えば、図12は2つの入口と対応する出口とを示しているが、他の実施態様には流体をブラッダー836に供給する単一の流入口が用いられている。
【0055】
動作中、基板821は基板ホルダ板832の下面に固定することにより容器本体802に導入される。これは、基板821と基板ホルダ板832間の空間をポート841を介して真空にするためにポンプシステム159と係合し、よって真空状態にすることにより達成される。次に、流体源838から入口842へ空気又は水のような流体を供給することによりブラッダー836を膨らませる。流体は、マニホルド出口854を介してブラッダー836に送られ、よって電気コンタクトエレメント466のコンタクト部に対して一様に基板821を加圧する。次に電気メッキプロセスが実行される。次に電解溶液を基板821にプロセスセルの中へポンプで送り暴露した基板メッキ面820と接触させる。電源により電気コンタクトエレメント466を介して基板メッキ面820に対して負のバイアスがかけられる。電解溶液は基板メッキ面820を横切って流れるので、電解溶液中のイオンは表面820と表面820上の堆積物に引き付けられて所望の被膜を形成する。
【0056】
可撓性であることから、ブラッダー836は変形して基板裏面と電気コンタクトエレメント466のアスペラティに適合する。対応するブラッダー836は基板821の裏面の周辺部で流体の漏れないシールを与えることにより電解溶液が基板821の裏面に混入することを防止する。一旦膨張すると、一様な圧力が電気コンタクトエレメント466に下向きに送られて基板821と電気コンタクトエレメント466がインタフェースするすべての点でほぼ等しい力を得る。力は、流体源838によって供給される圧力の関数として変動し得る。更に、ブラッダーアセンブリ470の有効性は電気コンタクトエレメント466の構造に左右されない。例えば、図12は複数の不連続のコンタクトピンを有するピン構造を示すが、電気コンタクトエレメント466は連続面であってもよい。
【0057】
ブラッダー836によって基板821に送られる力が可変であることから、コンタクトリング466によって供給される電流を調整し得る。上記ののように、酸化物層は電気コンタクトエレメント466上に形成され、電流を制限するために作用する。しかしながら、ブラッダー836の圧力を上げると酸化に基づく電流制限を相殺することができる。圧力が高くなるにつれて、マリアブル酸化物層が打ち消され、電気コンタクトエレメント466と基板821との間の優れたコンタクトが生じる。この能力におけるブラッダーの有効性は、電気コンタクトエレメント466の形を変えることにより更に改善することができる。例えば、ナイフエッジ形はまん丸でないエッジ又はフラットエッジより容易に酸化物層を浸透すると思われる。
【0058】
更に、膨らんだブラッダー836により得られた流体の漏れないシールは、ポンプ845が処理前、処理中、処理後に選択的に或いは連続して裏面の真空又は圧力を維持することを可能にする。しかしながら、一般に、ブラッダー836が処理中に連続ポンピングせずに裏面真空状態を維持することがわかったことから、電気メッキプロセスセル400へと電気メッキプロセスセル400から基板の搬送中にのみ真空を維持するようにポンプ845が行われる。従って、上記ブラッダー836を膨らませつつ、例えば、交差バルブ847上のOFF位置を選択することによりポンプシステム859を解放することにより裏面真空状態が同時に取り除かれる。
【0059】
ポンプシステム859の解放は突然であっても漸進的プロセスを含んでもよく、よって真空状態がランプダウンする。ランピングは膨らんでいるブラッダー836と同時に下がっている裏面の真空状態との間で交換制御を可能にする。この交換は、マニュアルで制御してもコンピュータによってもよい。
【0060】
上記のように、ブラッダー836が膨らみながら連続裏面真空ポンピングは必要なく、実際は基板を曲がらせ又はそらせることがあり望ましくない堆積結果となる。しかしながら、処理すべき基板の“そり”作用を引き起こすために基板820に裏面圧をかけることは望ましいことである。基板のそり(即ち、表面を曲げる)により基板の半径を横切って望ましい堆積プロファイルをもたらすことができる。従って、ポンプシステム859は基板裏面に真空又は圧力状態を選択的に与えることができる。200mm基板の場合、基板をそらせるために5 psiまでの裏面圧が好ましい。基板が典型的には成形のしやすさの尺度を示すことから、裏面圧によって基板が電解溶液の上向きの流れに相対してそり或いは凸形をとる。そりの程度はポンプシステム859によって供給される圧力に従って可変である。
【0061】
図12が電気コンタクトエレメント466にほぼ等しい直径で基板裏面の相対的に小さい周辺部を被覆するのに十分な表面積をもつブラッダー836の実施態様を示しているが、ブラッダーアセンブリ470は形が変動してもよい。従って、ブラッダーアセンブリは基板821の表面積の増大を被覆するために流体を通さない材料を用いて作ることができる。
【0062】
図19は、基板ホルダアセンブリの他の実施態様の部分的な断面図である。他の基板ホルダアセンブリ1900は、膨らませられるブラッダー836が中間基板ホルダ板1910の背面に装着された上記のブラッダーアセンブリ470を含んでいる。好ましくは、膨らませられるブラッダー836の一部は接着剤又は他の結合材料を用いて中間基板ホルダ板1910の背面1912に密封して装着されている。中間基板ホルダ板1910の前面1914は処理すべき基板821を受け取るように適合し、エラストマーOリング1916が中間基板ホルダ板1910の前面1914上の環状グルーブ1918内に配置されて基板背面の周辺部と接触している。エラストマーOリング1916は、基板背面と中間基板ホルダ板の前面との間をシールする。好ましくは、中間基板ホルダ板には、基板の裏面に加えた真空力を用いて基板ホルダ上に基板を固定することを容易にする真空ポート841と流体が連絡しているプレート通って伸びている複数の穴又は孔1920が含まれる。基板ホルダアセンブリのこの他の実施態様によれば、膨らませられるブラッダーは処理される基板と直接接触しないので、基板搬送中に膨らませられるブラッダーを切断又は損傷の危険が著しく減少する。エラストマーOリング1916は、好ましくは、基板と接触させるために、電気コンタクトエレメントの表面についての上記のように親水性面を与えるように被覆又は処理され、エラストマーOリング1916は適切なコンタクトを確実にし基板にシールするために必要に応じて置き換えられる。
【0063】
実施態様においては、堆積した被膜の一様性、従って、堆積した被膜の厚さの最大偏差は平均被膜厚さの約2%であり、標準電気メッキプロセスは、典型的には最もよくて約5.5%以内の均一性に達する。しかしながら、ヘッドアセンブリの回転は、ある場合には、特に、電解溶液化学、電解溶液フロー又は他のパラメータのような処理パラメータを調整することにより電気メッキ堆積の一様性が得られる場合には、一様な電気メッキ堆積を得るのにヘッドアセンブリの回転は必要ない。
【0064】
図6、電気メッキプロセスセル400の断面図に戻ると、基板ホルダアセンブリ450はプロセスセル420の上に配置されている。プロセスセル420は、一般に、ボウル430と、容器本体472と、陽極アセンブリ474と、フィルタ476とを含んでいる。好ましくは、陽極アセンブリ474は容器本体472の下に配置されかつ容器本体472の下部に装着され、フィルタ476は陽極アセンブリ474と容器本体472との間に配置されている。容器本体472は、好ましくは、セラミックス、プラスチックス、PLEXIGLAS(登録商標)(アクリル)、レキサン、PVC、CPVC、又はPVDFのような電気的絶縁材料から構成される円筒体である。また、容器本体472は、ステンレス鋼、ニッケル又はチタンのような金属から製造することができ、TEFLON(登録商標)、PVDF、プラスチック、ゴム又は電解溶液に溶解しない材料の他の組合わせのような絶縁層で被覆され、電極、即ち、ECPシステムの陽極と陰極から電気的に絶縁され得る。容器本体472は、好ましくは、基板メッキ面とシステムによって処理される基板の形にあうような大きさで適合し、基板は、典型的には形が円形か又は矩形である。容器本体472の好ましい実施態様は、内径が基板直径とほぼ同じ寸法又はわずかに大きい円筒状セラミックチューブを含んでいる。本発明者らは、代表的なECPシステムに典型的に必要とされる回転運動が容器本体が基板メッキ面の大きさにほぼあっている時には一様なメッキ結果を得るために必要とされないことを発見した。
【0065】
容器本体472の上部は、半径方向に外向きに伸びて環状せき478を形成している。せき478は電解溶液コレクタ440の内壁446上に伸び、電解溶液を電解溶液コレクタ440へ流れさせる。せき478の上面は、好ましくは電気コンタクトエレメント466の下面と適合している。好ましくは、せき478の上面は、内部環状平坦部分480と、中間傾斜部分482と、外部傾斜部分484とを含んでいる。基板が処理中の位置に配置された時、基板メッキ面は容器本体472の円筒状開口の上に配置され、電気コンタクトエレメント466の下面とせき478の上面との間に電解溶液の隙間ができる。電気コンタクトエレメント466の下面は、内部平坦部分480とせき478の中間傾斜部分の上に配置されている。外部下り傾斜部分484は下向きに傾斜して電解溶液コレクタ440への電解溶液の流れを容易にする。
【0066】
容器本体472の下部は半径方向に外向きに伸びて容器本体472をボウル430に固定するための下部環状フランジ486を形成している。環状フランジ486の外寸、即ち、外周は開口444の寸法や電解溶液コレクタ440の内周より小さい。これらの相対寸法はプロセスセル420を電気メッキプロセスセル400から取り出し置き換えることを可能にする。好ましくは、複数のボルト488が環状フランジ486上に固定して配置され、ボウル430上のボルト孔と適合することによって下向きに伸びている。複数の取外し可能なファスナナット490がプロセスセル420をボウル430に固定する。エラストマーOリングのようなシールは容器本体472とボウ430との間にボルト488から半径方向に内向きに配置されてプロセスセル420からの漏れを防止する。ナット/ボルトの組合わせは、メンテナンス中のプロセスセル420のコンポーネントの取り出しや置き換えを速く簡単にするのに役立つ。
【0067】
好ましくは、フィルタ476は容器本体472の下部開口に装着され完全に覆われ、陽極アセンブリ474はフィルタ476の下に配置される。スペーサ492は、フィルタ476と陽極アセンブリ474の間に配置される。好ましくは、フィルタ476とスペーサ492と陽極アセンブリ474は、ネジ及び/又はボルトのような取外し可能なファスナを用いて容器本体472の下面に留められる。また、フィルタ476とスペーサ492と陽極アセンブリ474は、ボウル430に取外し可能に固定される。
【0068】
陽極アセンブリ474は、好ましくは、電解溶液中の金属源として働く消費可能陽極を含んでいる。また、陽極アセンブリ474は、非溶極を含み、電気メッキすべき金属は電解液溶解システム220から電解溶液の中に供給される。図6に示されるように、陽極アセンブリ474は多孔質陽極エンクロージャ494が銅のような電気メッキされるべき金属と同じ金属からできていることが好ましい自動閉鎖モジュールである。また、陽極エンクロージャ494はセラミックス又は高分子膜のような多孔質材料からできている。銅の電気化学メッキ用高純度銅のような可溶性金属496は、陽極エンクロージャ494内に配置される。可溶性金属496は、好ましくは金属粒子、ワイヤ又は穴あきシートを含む。多孔質陽極エンクロージャ494は、また、陽極エンクロージャ494内で溶解金属によって生成した微粒子を保持するフィルタとして働く。非溶極と比べて、消費可能、即ち、可溶性陽極はガス発生のない電解溶液を与え、電解溶液中の金属を連続的に補充する必要が最少になる。
【0069】
陽極電極コンタクト498は陽極エンクロージャ494を通って挿入されて電源から可溶性金属496に電気的に接続される。好ましくは、陽極電極コンタクト498は、チタン、白金又は白金被覆ステンレス鋼のような電解溶液に不溶な導電材料から製造される。陽極電極コンタクト498はボウル430を通って伸び、電源に接続される。好ましくは、陽極電気コンタクト498には、陽極電気コンタクト498をボウル430に固定するファスナナット499のネジ込み部497が含まれ、エラストマーワッシャのようなシール495はファスナナット499とボウル430との間に配置されてプロセスセル420からの漏れを防止する。
【0070】
ボウル430は、一般に、円筒部分502と底部分504を含んでいる。上部環状フランジ506は、円筒部分502の上方から半径方向に外向きに伸びている。上部環状フランジ506には、容器本体472の下部環状フランジ486からのボルト488の数と適合する複数の孔508が含まれている。ボウル430の上部環状フランジ506と容器本体472の下部環状フランジ486を固定するために、ボルト488は孔508を通って挿入され、ボルト488に留められる。好ましくは、上部環状フランジ506の外寸、即ち、外周は下部環状フランジ486の外寸、即ち、外周とほぼ同じである。好ましくは、ボウル430の上部環状フランジ506の下面は、プロセスセル420がメインフレーム214上に配置される時にメインフレーム214の支持フランジ上に載せられる。
【0071】
円筒部分502の内周によって、陽極アセンブリ474とフィルタ476が適合する。好ましくは、フィルタ476と陽極アセンブリ474の外寸は円筒部分502の内寸よりわずかに小さくてフィルタ476に流れ込む前に陽極アセンブリ474に流れ込む電解溶液のかなりの部分をまず進める。ボウル430の底部分504には、電解液溶解システム220から電解溶液供給ラインに接続する電解溶液入口510が含まれている。好ましくは、陽極アセンブリ474は、ボウル430の円筒部分502のほぼ中間部に配置されて底部分504上に陽極アセンブリ474と電解溶液入口510との間に電解溶液フローの隙間を与える。
【0072】
電解溶液入口510と電解溶液供給ラインは、好ましくは、プロセスセル420の簡単な取り外しと置き換えを容易にする解放可能コネクタによって接続される。プロセスセル420がメンテナンスを必要とする時、電解溶液はプロセスセル420から取り出され、電解溶液供給ラインにおける電解溶液フローが止められ、取り出される。電解溶液供給ラインのコネクタは電解溶液入口510から解放され、陽極アセンブリ474への電気的接続も離される。ヘッドアセンブリ410は上げられるか又は回転してプロセスセル420を取り外すためのクリアランスを生じる。次にプロセスセル420は、メインフレーム214から取り外され、新しい又は再調整したプロセスセルがメインフレーム214の中に置き換えられる。
【0073】
また、ボウル430はメインフレーム214の支持フランジに固定することができ、容器本体472が陽極とフィルタと共にメンテナンスのために取り外される。この場合、陽極アセンブリ474と容器本体472をボウル430に固定しているナットはアノードアセンブリ474と容器本体472の取外しを容易にするために取り外される。新しい又は再調整した陽極アセンブリ474と容器本体472は、次にメインフレーム214内に置き換えられ、ボウル430に固定される。
【0074】
図20はカプセルに入れられた陽極の実施態様の断面図である。カプセルに入れられた陽極2000には、金属が陽極板2004から溶解されるにつれて生成した“陽極スラッジ”又は微粒子をろ過又は捕捉する透過できる陽極エンクロージャが含まれる。図20に示されるように、消費可能な陽極板2004はカプセルに入れられた親水性陽極膜2002内に閉鎖された銅の固体片を含んでいる。好ましくは、銅は高純度の酸素を含まない銅である。陽極板2004は、ボウルの底を通って伸びる複数の電気コンタクト又はフィードスルー2006で固定し支持される。電気コンタクト又はフィードスルー2006は、カプセルに入れられた陽極膜2002を通って陽極板2004の底面へ伸びている。電解溶液のフローは、陽極とボウル側壁間の隙間を通ってボウル430の底部に配置された電解溶液入口510から矢印Aで示されている。電解溶液は、カプセルに入れられた陽極膜と陽極板間の隙間へ、また、隙間から浸透することによりカプセルに入れられた陽極膜2002にも流れ込み、矢印Bで示されている。好ましくは、カプセルに入れられた陽極膜2002は、空隙率が約60%〜80%、更に好ましくは約70%、孔サイズが約0.025μm〜約1μm、更に好ましくは約0.1μm〜約0.2μmの変性ポリフッ化ビニリデン膜のような親水性多孔質膜を含んでいる。親水性多孔質膜の一例は、マサチューセッツ州ベドフォードにあるミリポアコーポレーションから入手できるDurapore Hydrophilic Membraneである。電解溶液がカプセルに入れられた膜に流れ込むにつれて、溶解している陽極で生じる陽極スラッジや微粒子がカプセルに入れられた膜によってろ過又は捕捉される。従って、カプセルに入れられた膜は電気メッキプロセス中の電解溶液の純度を改善し、陽極スラッジや混入微粒子による電気メッキプロセス中の基板に対する欠陥の形成が著しく減少する。
【0075】
図21は、カプセルに入れられた陽極の他の実施態様の断面図である。陽極板2004は電気フィードスルー2006上に固定し支持されている。陽極板2004の上と下にそれぞれ配置されたカプセルに入れられた上膜2008とカプセルに入れられた下膜2010は、陽極板2004の周りに配置された膜支持リング2012に装着される。上と下のカプセルに入れられた膜2008、2010は、カプセルに入れられた陽極のカプセルに入れられた膜についての上記リストからの材料を含んでいる。膜支持リング2012は、好ましくは、プラスチック又は他のポリマーのようなカプセルに入れられた膜と比べて比較的剛性の材料を含んでいる。バイパス流入口2014は、ボウル430の底部を通って、また、カプセルに入れられた下膜2010を通って配置され、カプセルに入れられた膜と陽極板間の隙間へ電解溶液を導入する。バイパス出口2016は膜支持リング2012に連結され、ボウル430を通って伸びて過剰の電解溶液のフローを陽極スラッジ又は生成微粒子と共にカプセルに入れられた陽極から図示されていない廃棄物ドレインへ進める。
【0076】
好ましくは、バイパス流入口2014と主電解溶液入口510の中の電解溶液のフローは、フローコントロールバルブ2020、2022によって個々に制御され、それぞれ入口に連結された流体ラインに沿って配置され、バイパス流入口2014内の流体圧は、好ましくは主電解溶液入口510内の圧力より高い圧力で維持されている。主電解溶液入口510からボウル430内部の電解溶液のフローは矢印Aで示され、カプセルに入れられた陽極2000内部の電解溶液のフローは矢印Bで示されている。カプセルに入れられた陽極へ導入される電解溶液の一部は、バイパス出口2016を通ってカプセルに入れられた陽極から流れる。カプセルに入れられた陽極への専用バイパス電解溶液供給部を設けることにより、溶解している消費可能陽極から生じた陽極スラッジ又は微粒子は陽極から連続して除去され、よって電気メッキプロセスの間、電解溶液の純度を向上させる。
【0077】
図22は、カプセルに入れられた陽極の他の実施態様の断面図である。カプセルに入れられた陽極2000のこの実施態様には、陽極板2004と、複数の電気フィードスルー2006と、カプセルに入れられた上膜2008と、カプセルに入れられた下膜2010と、膜支持リング2012とが含まれる。陽極板2004は、複数の複数の電気フィードスルー2006上に固定し支持されている。上部と底部のカプセルに入れられた膜2008、2010は膜支持リング2012に装着されている。バイパス出口2016は、膜支持リング2012に連結し、ボウル430を通って伸びる。カプセルに入れられた陽極のこの実施態様は、好ましくはカプセルに入れられた第1陽極について記載された材料を含むことが好ましい。カプセルに入れられた下膜2010には、主電解溶液入口510のかなり上に配置された1以上の開口2024が含まれている。開口2024は、主電解溶液入口510から電解溶液フローを受け取るように適合され、好ましくは主電解溶液入口510の内周とほぼ同じサイズである。主電解溶液入口510から電解溶液のフローは矢印Aで示され、カプセルに入れられた陽極内の電解溶液のフローは矢印Bで示されている。陽極溶解から生じる陽極スラッジと微粒子の一部を保有する電解溶液の一部はカプセルに入れられた陽極からバイパス出口2016へ流れる。
【0078】
図23は、カプセルに入れられた陽極の他の実施態様の断面図である。カプセルに入れられた陽極2000のこの実施態様には、陽極板2002と、複数の電気フィードスルー2006と、カプセルに入れられた上膜2008と、カプセルに入れられた下膜2010と、膜支持リング2012とが含まれている。陽極板2004は、複数の電気フィードスルー2006上に固定され支持されている。上と下のカプセルに入れられた膜2008、2010は、膜支持リング2012に装着されている。バイパス流入口2014は、ボウル430の底部と、カプセルに入れられた下膜2010を通って配置され、カプセルに入れられた膜と陽極板間の隙間へ電解溶液を導入する。カプセルに入れられた陽極のこの実施態様は、好ましくはカプセルに入れられた陽極について記載された材料を含んでいる。好ましくは、バイパス流入口2014と主電解溶液入口510を通る電解溶液のフローは、それぞれコントロールバルブ2020、2022によって個々に制御される。主電解溶液入口510からの電解溶液のフローは矢印Aで示され、カプセルに入れられた陽極を通る電解溶液のフローは矢印Bで示されている。この実施態様の場合、溶解している陽極板によって生じた陽極スラッジと微粒子は、電解溶液が膜を通過するにつれてカプセルに入れられた膜によってろ過し捕捉される。
【0079】
図16は、電解液溶解システム220の概略図である。電解液溶解システム220は、電気メッキプロセス用電気メッキプロセスセルに電解溶液を供給する。電解液溶解システム220は、一般に、主電解溶液タンク602と、計量モジュール603と、ろ過モジュール605と、化学アナライザモジュール616と、電解溶液廃棄ドレイン620によって分析モジュール616に連結した電解溶液廃棄処理システム622とを含んでいる。1以上のコントローラは、主タンク602内の電解溶液の組成と電解液溶解システム220の動作を制御する。好ましくは、コントローラは独立して作用可能であるが、ECPシステム200のコントローラ222で統合されている。
【0080】
主電解溶液タンク602には、電解溶液のレザバーが設けられ、1以上の流体ポンプ608とバルブ607を介して電気メッキプロセスセルの各々に連結する電解溶液供給ライン612が含まれる。主タンク602と熱的に接続して配置された熱交換体624又はヒータ/チラーは、主タンク602に貯蔵された電解溶液の温度を制御する。熱交換体624はコントローラ610に接続され作動する。
【0081】
計量モジュール603は、供給ラインによって主タンク602に連結され、複数の原料タンク606、又は供給ビンと、複数のバルブ609と、コントローラ611とを含んでいる。原料タンク606は、電解溶液を構成するのに必要とされる化学薬品を含み、典型的には、電解溶液を構成する消イオン水原料タンクと硫酸銅(CuSO4)原料タンクを含んでいる。他の原料タンク606は、硫酸(H2SO4)、塩化水素(HCl)とグリコールのような種々の添加剤を含むことができる。各原料タンクは、好ましくはカラーコード化され、計量モジュール内のマッチングインレットコネクタに連結するように適合したユニークなメイティングアウトレットコネクタと適合する。原料タンクのカラーコーディングと原料タンクのユニークなコネクタとの適合により、原料タンクを交換又は置換する時に人のオペレータによる誤差が著しく減少する。
【0082】
消イオン水原料タンクは、好ましくは、メンテナンス中にシステムを洗浄するシステムに消イオン水を供給する。各原料タンク606に付随したバルブ609は、主タンク602への化学薬品のフローを調節し、バタフライバルブ、スロットルバルブ等の多くの市販のバルブのいずれであってもよい。バルブ609の活性化は、信号を受け取るコントローラに接続されることが好ましいコントローラ611によって達成される。
【0083】
電解溶液ろ過モジュール605には、複数のフィルタタンク604が含まれている。電解溶液リターンライン614は、プロセスセルの各々と1以上のフィルタタンク604の間に接続されている。フィルタタンク604は、再使用のために主タンク602に電解溶液を戻す前に使用した電解溶液中の望ましくない内容物を除去する。主タンク602はフィルタタンク604に連結して主タンク602中の電解溶液の再循環とろ過を容易にする。フィルタタンク604を通って主タンク602からの電解溶液を再循環することにより、電解溶液中の望ましくない内容物がフィルタタンク604で連続して除去されて一貫したレベルの純度を維持する。更に、主タンク602とろ過モジュール605との間に電解溶液を再循環することにより、電解溶液中の種々の化学薬品を十分に混合させることができる。
【0084】
電解液溶解システム220には、電解溶液の化学組成のリアルタイム化学分析を与える化学アナライザモジュール616が含まれる。アナライザモジュール616は、サンプルライン613によって主タンクに、また、出口ライン621によって廃棄処理システム622に流体で結合している。アナライザモジュール616は、一般に、少なくとも1つのアナライザとアナライザを作動させるコントローラを含んでいる。具体的な処理手段に要するアナライザの数は、電解溶液の組成に左右される。例えば、第1アナライザは有機物質の濃度をモニタするために用いることができ、第2アナライザは有機化学薬品に必要である。図16に示された個々の実施態様においては、化学アナライザモジュール616は自動滴定アナライザ615とサイクリックボルタメトリストリッパ(CVS)617を含んでいる。両アナライザは種々の供給業者から市販されている。有利に用いることができる自動滴定アナライザはParker Systemsから入手でき、サイクリックボルタメトリストリッパはECIから入手できる。自動滴定アナライザ615によって塩化銅は酸のような無機物質の濃度が求められる。CVS617によって電解溶液に用いることができる種々の添加剤のような有機物質とプロセスセルから主タンク602に戻る処理から生じる副生成物の濃度が求められる。
【0085】
図16に示されるアナライザモジュールは単なる例示である。他の実施態様においては、各アナライザは別個の供給ラインによって主電解溶液タンクに結合してもよく、別個のコントローラによって作動されてもよい。当業者は他の実施態様を認識するであろう。
【0086】
動作中、電解溶液の試料は試料ライン613を介してアナライザモジュール616に流れる。試料は周期的に用いることができるが、好ましくは、電解溶液の連続流はアナライザモジュール616に維持される。試料の一部は自動滴定アナライザ615に送られ、一部は適切な分析のCVS617に送られる。コントローラ619は、データを作成するためにアナライザ615、617を作動させる命令信号を開始する。次に化学アナライザ615、617からの情報をコントローラ222に連絡する。コントローラ222は情報を処理し、使用者特定化学用量パラメータを含む信号を計量コントローラ611に伝達させる。受信した情報を用いて1以上のバルブ609を作動させることにより原料化学補充率に対してリアルタイムで調整し、よって電気メッキプロセス全体に電解溶液の所望の、好ましくは一定の化学組成が維持される。次にアナライザモジュールからの廃棄電解溶液が出口ライン621を経て廃棄処理システム622に流れる。
【0087】
実施態様は電解溶液のリアルタイムモニタリングと調整を用いるが、種々の代わりを用いることができる。例えば、計量モジュール603は、化学アナライザモジュール616によって得られた出力値を観察するオペレータが手動で制御することができる。好ましくは、システムソフトウェアは自動リアルタイム調整モードとオペレータ(マニュアル)モード双方が可能である。更に、複数のコントローラが図16に示されているが、化学アナライザモジュール616、計量モジュール603、又は熱交換体624のようなシステムの種々のコンポーネントを作動させるために単一のコントローラを用いることができる。他の実施態様は当業者に明らかになるであろう。
【0088】
電解液溶解システム220には、使用した電解溶液、化学薬品、ECPシステムで用いた他の流体の安全な処分のために電解溶液廃棄処理システム622に連結した電解溶液廃棄ドレイン620が含まれる。好ましくは、電気メッキセルには、電解溶液廃棄ドレイン620への直接ライン連結部又は電解液溶解システム220を通って電解溶液を戻さずに電気メッキセルを取り出す電解溶液廃棄処理システム622が含まれる。電解液溶解システム220には、好ましくは、過剰の電解溶液を電解溶液廃棄ドレイン620にブリードオフするブリードオフコネクションが含まれる。
【0089】
好ましくは、電解液溶解システム220には、電解溶液から望ましくないガスを除去するように適合した1以上のデガサモジュール630が含まれる。デガサモジュールは、一般には、デガサモジュールを通過する流体からガスを分離する膜と遊離したガスを除去するための真空システムを含む。デガサモジュール630は、好ましくは、プロセスセル240に隣接した電解溶液供給ライン612上にインラインで配置されている。デガサモジュール630は、好ましくは、プロセルセル240にできるだけ近くに位置しているので電解液溶解システムからのほとんどのガスは電解溶液がプロセスセルに入る前にデガサモジュールによって除去される。好ましくは、各デガサモジュール630には、脱ガス電解溶液を各処理ステーション218の2つのプロセスセル240に供給する2つの出口が含まれる。また、デガサモジュール630は、各々プロセスセルのために設けられている。デガサモジュールは、多くの他の別の位置にも配置し得る。例えば、デガサモジュールは、フィルタ部分と共に又は主タンク又はプロセスセルを有する閉鎖ループシステム内にのように電解液溶解システム内の他の位置に配置し得る。他の実施態様として、デガサモジュールは電解溶液供給ライン612と共にインラインで配置されて電気化学メッキシステムのプロセスセル240のすべてに脱ガス電解溶液を供給する。更に、分離デガサモジュールは消イオン水供給ラインと共にインラインで又は閉鎖ループで配置され、消イオン水源から酸素を除去するために用いられる。消イオン水を用いて処理基板をすすぐことから、SRDモジュールに達する前に遊離酸素ガスは消イオン水から好ましく除去されるので電気メッキした銅は水洗プロセスによって酸化されないと思われる。デガサモジュールは当該技術において周知であり、市販の実施態様は種々の適用に用いるのにたいてい利用でき適合できる。市販のデガサモジュールは、マサチューセッツ州、ベッドフォードにあるMillipore Corp.から入手できる。
【0090】
図26aに示されるように、デガサモジュール630の実施態様には、流体、即ち、電解溶液を有する疎水性膜632と、膜の片面上の通路634と、膜の対向面上に配置された真空システム636とが含まれる。デガサモジュールのエンクロージャ638には入口640と1以上の出口642が含まれている。電解溶液がデガサモジュール630を通過するにつれて、ガスと電解溶液中の他のマイクロバブルが疎水性膜を通って電解溶液から分離され、真空システムによって除去される。図26bに示されるように、デガサモジュール630’ の他の実施態様には、疎水性膜632’ のチューブと疎水性膜632’ のチューブの周りに配置された真空システム636が含まれている。電解溶液は疎水性膜のチューブの内側に導入され、電解溶液がチューブ内の流体通路634を通過するにつれて、ガスと電解溶液中の他のマイクロバブルが疎水性膜632’ のチューブを通って電解溶液から分離し、チューブ周囲の真空システム636によって除去される。デガサモジュールの膜や他の多断面設計を横切る電解溶液のセルペンタイン通路を持つ設計を含むデガサモジュールの更に複雑な設計が企図される。
【0091】
図16に示されていないが、電解液溶解システム220は多数の他のコンポーネントを含むことができる。例えば、電解液溶解システム220には、好ましくは、SRDステーションのような基板洗浄システムのための化学薬品の貯蔵用タンクが1以上追加される。危険性材料連結部用の二重配管は、システム全体に化学薬品を安全に運搬されるように用いることができる。場合によっては、電解液溶解システム220には、ECPシステムに電解溶液供給部を追加するために追加又は外部電解溶液処理システムへの連結部が含まれる。
【0092】
図17は、RTAチャンバの断面図である。RTAチャンバ211は、好ましくはローディングステーション210に連結され、基板はローディングステーション搬送ロボット228によってRTAチャンバ211へ、また、RTAチャンバ211から搬送される。図2と図3に示されるように、ECPシステムは、好ましくはローディングステーション210の対称設計に対応するローディングステーション210の対向側に配置された2つのRTAチャンバ211を含んでいる。RTAプロセスチャンバは、一般に、当該技術において周知であり、RTAチャンバは、典型的には、基板処理システムに用いられて堆積した材料の性質が高められる。電気メッキ結果を高めるためにホットプレート設計や加熱ランプ設計を含む種々のRTAチャンバ設計を用いるECPシステム200が企図される。特に適切なRTAチャンバは、カリフォルニア州サンタクララにあるApplied materials, Inc.から入手できるWxZである。ホットプレートRTAチャンバが記載されるが、他のRTAチャンバも用いられる。
【0093】
RTAチャンバ211は、一般に、エンクロージャ902と、ヒータプレート904と、ヒータ907と、複数の基板ホルダピン906とを含んでいる。エンクロージャ902には、ベース908と、側壁910と、トップ912とが含まれている。好ましくは、コールドプレート913はエンクロージャの上部912の下に配置されている。また、コールドプレートはエンクロージャの上部912の一部として統合して形成される。好ましくは、反射絶縁皿状部914は、典型的には、石英、アルミナ、又は高温、即ち、約500℃より高い温度に耐えることができ、かつヒータ907とエンクロージャ902との間の熱絶縁体として働く他の材料のような材料から製造される。皿状部914は、ヒータプレート906に熱を送るために金のような反射材料で被覆することもできる。
【0094】
ヒータプレート904の物質は、システム内で処理される基板に比べて大きく、好ましくは炭化ケイ素、石英、又はRTAチャンバ211内の周囲ガスと反応せず、基板材料とも反応しない他の材料のような材料から製造される。ヒータ907は、典型的には、抵抗加熱要素又は導電性/輻射熱源を含み、加熱プレート906と反射絶縁皿状部914との間に配置される。ヒータ907は、ヒータ907を加熱するのに必要とされるエネルギーを供給する電源916に接続される。好ましくは、熱電対920はコンジット922に配置され、ベース908と皿状部914を通って配置され、ヒータ板904に伸びている。熱電対920はコントローラ222に連結され、コントローラへ温度測定を与える。次にコントローラは、温度測定と所望のアニール温度に従ってヒータ907によって供給された熱を上げたり下げたりする。
【0095】
エンクロージャ902は、好ましくはエンクロージャ902を冷却するために側壁910と熱接触しているエンクロージャ902の外側に配置された冷却部材918を含んでいる。また、図示されていない1以上の冷却チャネルはエンクロージャ902の温度を制御するために側壁910内に形成されている。トップ912の内部表面上に配置されたコールドプレート913はコールドプレート913に接近した位置にある基板を冷却する。
【0096】
RTAチャンバ211には、RTAチャンバへ、また、RTAチャンバから基板の搬送を容易にするためにエンクロージャ902の側壁910に配置されたスリットバルブ922が含まれている。スリットバルブ922によって、ローディングステーション210と連絡しているエンクロージャの側壁910上の開口924が選択的にシールされる。ローディングステーション搬送ロボット228は、図2を参照のこと、開口924を通ってRTAチャンバへ、また、RTAチャンバから基板を搬送する。
【0097】
基板ホルダピン906は、好ましくは石英、酸化アルミニウム、炭化ケイ素、又は他の高温抵抗材料から作られた遠位テーパ部材を含んでいる。各基板ホルダピン906は、ヒータプレート904を通って伸びている、好ましくは熱及び酸化抵抗材料からできたチューブコンジット926の中に配置されている。基板ホルダピン906は、均一な方法で基板ホルダピン906を移動するリフトプレート928に連結している。リフトプレート928は、RTAチャンバ内で基板をいろいろな縦の位置に置くことを容易にするためにリフトプレート928を移動させるリフトシャフト932を介してステッパモータのようなアクチュエータ930に装着されている。リフトシャフト932は、エンクロージャ902のベース908を通って伸び、シャフトの周りに配置されたシーリングフランジ934によってシールされる。
【0098】
基板をRTAチャンバ211に搬送するために、スリットバルブ922が開口され、基板が配置されたロボットブレードがローディングステーション搬送ロボット228によって開口を通ってRTAチャンバへ伸びる。ローディングステーション搬送ロボット228のロボットブレードによって基板がヒータプレート904の上のRTAチャンバ内に配置され、基板ホルダピン906がロボットブレードの上に基板を持ち上げるために上向きに伸びている。次にロボットブレードはRTAチャンバから引っ込み、スリットバルブ922が開口を閉じる。次に基板ホルダピン906は、ヒータプレート904から所望の距離に基板を下げるように引っ込める。場合によっては、基板ホルダピン906はヒータプレートと直接接触して基板を配置するように十分に引っ込めることができる。
【0099】
好ましくは、ガス入口936はエンクロージャ902の側壁910を通って配置されてアニール処理プロセスの間、RTAチャンバ211へ選択ガスを流すことができる。ガス入口936は、RTAチャンバ211へのガスのフローを制御するためにバルブ940を介してガス源938に接続されている。ガス出口942は、好ましくは、RTAチャンバ内のガスを排気するためにエンクロージャ902の側壁910の下の部分に配置され、好ましくは、チャンバの外側から大気の逆流を防止するためにリリーフ/チェックバルブ944に連結されている。場合によっては、ガス出口942は図示された真空ポンプに接続されてアニール処理の間、所望の真空レベルまでRTAチャンバを排気する。
【0100】
基板は、電気メッキセル内で電気メッキされた後にRTAチャンバ211内でアニールされ、SRDステーションで洗浄される。好ましくは、RTAチャンバ211はほぼ大気圧で維持され、RTAチャンバ211内部の酸素含量がアニール処理プロセスの間、約100 ppm未満に制御される。好ましくは、RTAチャンバ211内部の周囲環境は、窒素(N2)又は窒素(N2)と約4%未満の水素(H2)の組合わせを含み、RTAチャンバ211への周囲ガスフローは20リットル/分より大きく維持されて酸素含量が100 ppm未満に制御される。電気メッキ基板は、好ましくは約200℃〜約450℃の温度で約30秒〜30分、更に好ましくは約250℃〜約400℃の温度で約1分〜5分アニールされる。RTA処理は、典型的には、少なくとも50℃/秒の温度増加が必要である。アニール処理中に基板に必要とされる温度増加レートを与えるために、ヒータプレートは約350℃〜約450℃に維持され、基板は約0 mm、即ち、ヒータプレートと接触とアニール処理プロセス時間のヒータプレートから約20 mmとの間に配置される。好ましくは、コントローラ222は、RTAチャンバ内の所望の周囲環境とヒータプレートの温度を含むRTAチャンバ211の動作を制御する。
【0101】
アニール処理プロセスが完了した後、基板ホルダピン906はRTAチャンバ211から搬送する位置まで基板を持ち上げる。スリットバルブ922が開き、ローディングステーション搬送ロボット228のロボットブレードがRTAチャンバの中に伸び、基板の下に配置される。基板ホルダピン906が引っ込み基板がロボットブレードまで下がり、次にロボットブレードがRTAチャンバから引っ込む。次にローディングステーション搬送ロボット228は、図2及び図3の実施態様に示されるように、電気メッキ処理システムから除去するために処理した基板をカセット232の中に搬送する。
【0102】
図2に戻ると、ECPシステム200は、プラットホームの各コンポーネントの機能を制御するコントローラ222を含んでいる。好ましくは、コントローラ222はメインフレーム214の上に取り付けられ、プログラム可能なマイクロプロセッサを含んでいる。プログラム可能なマイクロプロセッサは、典型的には、ECPシステム200のすべてのコンポーネントを制御するために特に設計されたソフトウェアを用いてプログラムされる。コントローラ222は、システムのコンポーネントに電力を与え、オペレータがECPシステム200をモニタし作動させることができるコントロールパネル223を含んでいる。図2に示されるコントロールパネル223は、ケーブルによってコントローラ222に接続されるスタンドアローンモジュールであり、オペレータに簡単にアクセスされる。一般に、コントローラ222は、ローディングステーション210、RTAチャンバ211、SRDステーション212、メインフレーム214、処理ステーション218の動作を協働させる。更に、コントローラ222は、電気メッキプロセスに電解溶液を供給するために電解液溶解システム220のコントローラとも協働している。
【0103】
次に図2に示されるECPシステム200による典型的な基板電気メッキプロセス順序を説明する。複数の基板を含む基板カセットは、ECPシステム200のローディングステーション210における基板カセット受け入れエリア224に装入される。ローディングステーション搬送ロボット228は、基板カセット内の基板スロットから基板をつまみ上げ、基板を基板オリエンタ230に置く。基板オリエンタ230は、システムによって処理するために所望の向きに基板を向ける。次にローディングステーション搬送ロボット228は、基板オリエンタ230から配向基板を搬送し、SRDステーション212における基板パススルーカセット238内の基板スロットの1つに基板を配置する。メインフレーム搬送ロボット242は基板パススルーカセット238から基板をつまみ上げ、フリッパロボット248によって搬送するために基板を置く。フリッパロボット248は、基板の下にロボットブレードを回転させ、メインフレーム搬送ロボットブレードから基板をつまみ上げる。フリッパロボットブレード上の真空吸引グリッパがフリッパロボットブレード上に基板を固定し、フリッパロボットが基板を表を上にした位置から表を下にした位置にひっくり返す。フリッパロボット248によって、基板ホルダアセンブリ450において基板の表が下に回転し配置される。基板は、基板ホルダアセンブリ450の下に位置するが電気コンタクトエレメント466の上にある。次にフリッパロボット248は基板を解放して基板を電気コンタクトエレメント466の中に配置する。基板ホルダエレメント464が基板に向かって移動し、真空チャックが基板を基板ホルダエレメント464上に固定する。基板ホルダアセンブリ450上のブラッダーアセンブリ470によって基板裏面に対して圧力がかけられ、基板メッキ面と電気コンタクトエレメント466の間の電気コンタクトが確実になる。
【0104】
ヘッドアセンブリフレーム452は、プロセスセル420より上の処理中の位置に下げられる。この位置で基板はせき478の上平面より下にあり、プロセスセル420中に有する電解溶液と接触する。電源を活性化して電力、即ち、電圧と電流を陰極と陽極に供給して電気メッキプロセスを可能にする。電解溶液は、典型的には、電解溶液の間、電解液セルへ連続してポンプで送られる。陰極と陽極に供給される電力と電解溶液のフローはコントローラ222によって制御されて所望の電気メッキ結果を得る。好ましくは、ヘッドアセンブリが下がるにつれて、また、電気メッキプロセスの間、ヘッドアセンブリは回転する。
【0105】
電気メッキプロセスが完了した後、ヘッドアセンブリ410は基板ホルダアセンブリ450を上げ、基板を電解溶液から取り出す。好ましくは、基板ホルダアセンブリから残留電解溶液の除去を促進させる時間ヘッドアセンブリを回転させる。次に真空チャックと基板ホルダアセンブリのブラッダーアセンブリは、基板ホルダエレメント464から基板を解放し、基板ホルダエレメント464を上げてフリッパロボットブレードが電気コンタクトエレメントから処理した基板をつまみ上げることができる。フリッパロボットは、電気コンタクトエレメントにおいて処理基板の裏面の上でフリッパロボットブレードを回転させ、フリッパロボットブレード上の真空吸引グリッパを用いて基板をつまみ上げる。フリッパロボットは、基板ホルダアセンブリからの基板と共にフリッパロボットブレードを回転させ、基板を表が下向きの位置から表が上向きの位置へひっくり返し、基板をメインフレーム搬送ロボットブレード上に配置する。次にメインフレーム搬送ロボットは、SRDモジュール236の上に処理基板を搬送し配置する。SRD基板支持体が基板を持ち上げ、メインフレーム搬送ロボットブレードがSRDモジュール236から引っ込める。基板は、消イオン水又は消イオン水と上で詳述した洗浄液との組合わせを用いてSRDモジュール内で洗浄される。次に基板はSRDモジュールから搬送するために配置される。ローディングステーション搬送ロボット228はSRDモジュール236から基板をつまみ上げ、処理基板を堆積した物質の性質を高めるアニール処理プロセス用のRTAチャンバ211に搬送する。次にアニールした基板をローディングステーションロボット228によってRTAチャンバ211から搬送し、ECPシステムから除去するために基板カセットに戻す。上記順序は、ECPシステム200はECPシステム200においてほぼ同時に複数の基板に実行し得る。ECPシステムは、マルチスタック基板処理を与えるように適合され得る。
2.基板ホルダシステム
電解液セルにおいて基板を電解溶液に浸すことができる基板ホルダシステム14が記載される。基板ホルダシステム14は、電解溶液のレベルラインに相対して基板を含む基板ホルダアセンブリを傾けることができ、レベルラインはほぼ水平である。基板ホルダシステムのある実施態様は、基板を電解溶液に浸す間、基板を回転させることができる。浸漬中の基板の傾斜によって、空気泡又はエアブリッジが基板ホルダ及び/又は基板の下の電解溶液中に形成されることが制限される。この項は基板ホルダシステムの実施態様の構造と動作を記載する。
【0106】
図6は、上記のように、ヘッドアセンブリ410がx方向とy方向に基板ホルダアセンブリ450を動かすことができる実施態様を示す図である。図25は、基板ホルダアセンブリ2450を水平方向と垂直方向に動かすことができる基板ホルダシステム14の他の実施態様の部分断面図である。図25に示される基板ホルダシステム14の実施態様は、X方向とZ方向の基板ホルダアセンブリの運動のほかに水平からα角に基板ホルダアセンブリを傾けることを示している。この実施態様は、電解溶液に基板を浸している間、基板を回転させ、基板が基板ホルダアセンブリによって保持されていることを示している。基板ホルダシステム14には、回転可能ヘッドアセンブリ2410とヘッドアセンブリフレーム2452が含まれている。ヘッドアセンブリフレーム2452には、取り付けポスト2454と、シャフト2453と、ポストカバー2455と、カンチレバーアーム2456と、カンチレバーアームアクチュエータ2457と、ピボットジョイント2459が含まれている。取り付けポスト2454はメインフレーム214の本体に取り付けられ、ポストカバー2455は取り付けポスト2454の上部を被覆している。
【0107】
好ましくは、取り付けポスト2454は、取り付けポストを通って伸びているほぼ縦軸の周りにヘッドアセンブリフレーム2452の回転を可能にする取り付けポストの回転運動を矢印A1で示した向きに与える。その運動によって、一般に、ヘッドアセンブリ2410が電解液セルと並ぶようになる。
【0108】
カンチレバー2456の一端は、カンチレバーアームアクチュエータ2457のシャフト2453にピボット連結されている。カンチレバーアームアクチュエータ2457は、例えば、空気シリンダ、鉛ネジアクチュエータ、サーボモータ、又は他のタイプのアクチュエータである。カンチレバーアーム2456は、ピボットジョイント2459に取り付けスライド2460にピボット連結されている。カンチレバーアームアクチュエータ2457は、取り付けポスト2454に取り付けられている。ピボットジョイント2459は、ポストカバー2455に回転可能に取り付けられているのでカンチレバーアーム2456はピボットジョイントのポストカバーの周りに旋回させることができる。カンチレバーアームアクチュエータ2457を作動させると、ピボットジョイント2459の周りにカンチレバーアーム2456のピボット運動が矢印A2で示される方向に生じる。また、回転モータがカンチレバーアームアクチュエータ2457として設けられてもよく、回転モータの出力がポストカバー2455とピボットジョイント2459との間に直接連結している。回転モータの出力によって、ピボットジョイントの周りにカンチレバーアーム2456とヘッドアセンブリ2410が回転する。
【0109】
回転可能ヘッドアセンブリ2410は、ヘッドアセンブリフレーム2452の取り付けスライド2460に装着され、取り付けスライド2460はカンチレバーアーム2456の遠位端に配置されている。ピボットジョイント2459の周りに回転可能なヘッドアセンブリ2410を回転させると、水平に相対してピボットジョイント2459の周りに回転可能なヘッドアセンブリ2410の基板ホルダアセンブリ2450内に保持された基板の傾斜が生じる。カンチレバーアームアクチュエータ2457が引っ込められる時、カンチレバーアーム2456によって図6に示されるようにプロセスセル420からヘッドアセンブリ2410が上がる。回転可能なヘッドアセンブリ2410のこの傾斜によって水平に相対して基板が傾けられる。基板のその傾斜は、電気メッキプロセスセル240から/電気メッキプロセスセル240への基板ホルダアセンブリの除去及び/又は置換で用いられる。カンチレバーアームアクチュエータ2457が伸びる時、カンチレバーアーム2456はヘッドアセンブリ2410をプロセスセル420に向かって移動させて基板を水平に近い角度にする。基板は、ECP中ほぼ水平な位置にあることが好ましい。
【0110】
回転可能なヘッドアセンブリ2410には、取り付けスライド2460に滑り可能に連結した回転するアクチュエータ2464が含まれている。取り付けスライド2460は、回転可能なヘッドアセンブリ2410の垂直運動を案内する。ヘッドアセンブリ2410の縦の置換の原動力となるヘッドリフトアクチュエータ2458が取り付けスライド2460上に配置される。ヘッドリフトアクチュエータ2458のシャフト2468は、回転アクチュエータ2464の本体に装着されたリフトガイド2466を通って挿入される。好ましくは、シャフト2468は、種々の垂直位置間でリフトガイドを矢印A3によって示される向きに移動させる鉛ネジ型シャフトである。回転可能なヘッドアセンブリ2410のこのリフティングは、電気メッキプロセスセル240から基板ホルダアセンブリを取り出し及び/又は置換するために使用し得る。プロセスセルからの基板の取り出しは、ロボットが回転可能ヘッドアセンブリ2410から基板を取り出すことができるように基板を配置することが必要である。
【0111】
回転するアクチュエータ2464は、シャフト2470を介して基板ホルダアセンブリ2450に連結され、基板ホルダアセンブリ2450を矢印A4で示した向きに回転させる。電気メッキプロセスで基板を回転させると、一般的には堆積結果が高められる。ヘッドアセンブリは電気メッキプロセスで、好ましくは約0 rpm〜約200 rpm、特に約10〜約40 rpmに基板の縦軸の周りに基板を回転させる。基板を高い角速度で回転させると、電解溶液中に渦巻きが生じてしまう。基板の位置をプロセスセル内の電解溶液と接触させるためにヘッドアセンブリを下げるにつれて、また、プロセスセル内の電解溶液から基板を取り出すためにヘッドアセンブリを上げる時に、ヘッドアセンブリも回転させることができる。ヘッドアセンブリをプロセスセルから持ち上げた後、ヘッドアセンブリを、好ましくは高速で、例えば、約2,500 rpmまで回転させる。電解溶液から基板を取り出した後に基板をそのように回転させると、基板上の液体に加えられた遠心力によって基板上の残留電解溶液の除去が高められる。
【0112】
図27は、基板を回転させるために図25に示される実施態様の基板ホルダシステム14に含むことができる回転可能なヘッドアセンブリ2410の実施態様を示す断面図である。回転可能なヘッドアセンブリ2410によって、基板を電気コンタクトエレメント67と接触した状態にするためにスラスト板が下げられる。基板を回転可能なヘッドアセンブリ2410から取り出すために、又は基板を回転可能なヘッドアセンブリ2410へ挿入するためにスラスト板66と電気コンタクトエレメント67との間の隙間を与えるために、スラスト板を上げることができる。回転可能なヘッドアセンブリ2410は、基板ホルダアセンブリ2450と、回転するアクチュエータ2464と、シャフトシールド2763と、シャフト2470と、電気フィードスルー2767と、電気コンダクタ2771と、ニューマティックフィードスルー2773とを含んでいる。回転するアクチュエータ2464は、ヘッド回転ハウジング2760とヘッド回転モータ2706とを含んでいる。ヘッド回転モータ2706は、コイルセグメント2775と磁気ロータリエレメント2776とを含んでいる。中空コイルセグメント2775は、縦軸の周りに磁気ロータリエレメント2776を回転させる磁場を生じる。基板ホルダアセンブリ2450は、流体シールド2720と、コンタクトハウジング2765と、スラスト板66と、電気コンタクトエレメント67と、スプリングアセンブリ2732とを含んでいる。
【0113】
コンタクトハウジング2765とスプリングアセンブリ2732はほぼ環状であり、これらの2つの要素は相互適合し、スラスト板66と電気コンタクトエレメント67に搬送される両方の回転を与えることができる。スプリングアセンブリ2732は、スプリング上面2728と、スプリングベローコネクタ2729と、スプリング下面2738とを含んでいる。シールエレメント2751は、スプリング上面2728とスラスト板66との間の流体通路をシールする。シールエレメント2753は、スプリング下面2738とコンタクトハウジング2765との間の流体通路をシールする。
【0114】
陽極16と基板上のシード層との間に所望の電圧をかけて電気メッキを行うために基板上のシード層と接触させる電気コンタクトエレメント67に電気が供給される。電気はコントローラ222から電気コンタクトエレメント67に電気フィードスルー2767、コンダクタ2733、コンタクトハウジング2765を介して供給される。電気コンタクトエレメント67は、基板上のシード層と物理的に、かつ電気的に接触している。スラスト板66と電気コンタクトエレメント67との間に固定されたシャフト2470と、コンタクトハウジング2765と、スプリングアセンブリ2732と、スラスト板66と、電気コンタクトエレメント67と、ロータリマウント2799と、基板22とすべてがヘッドアセンブリ2410の縦軸の周りにユニットとして回転する。ヘッド回転モータ2706は、縦軸の周りに上記エレメントを回転させる原動力を与える。
【0115】
電気コンタクトエレメント67に相対してスラスト板の位置を制御するためにニューマティックフィードスルー2773によって回転可能なヘッドアセンブリ2410の部分に真空を制御可能に与える。真空を与えるニューマティックフィードスルー2773は、制御可能な真空供給部2790と、スリーブ部材2792と、流体コンジット2794と、周グルーブ2795と、流体アパーチャ2796と、流体通路2798と含んでいる。スリーブ部材2792は、異なる部材であってもよく、図27に示されるようにシャフトの一部であってもよい。周グルーブ2795は、シャフト2470の円周にスリーブ部材2792の中に伸びている。ニューマティックフィードスルーによって、圧力レザバー2740に真空が作られる。圧力レザバーは、ヘッドアセンブリ2410の配置によって正の空気圧又は真空を維持するように構成される。流体アパーチャ2796は、周グルーブと流体で連絡している。流体アパーチャ2796は、周グルーブ2795からシャフト2470の底部までシャフト2470を介してアキシャルに伸びている。流体通路2798はコンタクトハウジング2765を通って伸びている。シャフトの底部の流体アパーチャ2796は、流体通路2798と流体で連絡している。スリーブ部材2792の内面は、シャフト2470の外面によって小さなクリアランス、例えば、約0.0002インチがあり、これらの2つの部材の間で相対回転することができる。
【0116】
スリーブ部材2792と周グルーブ2795の内面に流体コンジット2794を介して真空供給部2790から真空が作られる。流体アパーチャ2796から流体通路2798と、圧力レザバー2740に真空が作られる。スリーブ部材2792とシャフト2470との間のクリアランスが密着しているために、スリーブ部材2792の内面に加えられた真空は周グルーブ2795を介して流体アパーチャ2796に送られる。密着クリアランスはスリーブ部材2792とシャフトの外面2470との間に空気が入ることを制限する。それ故、制御可能な真空供給部2790から加えられた真空は圧力レザバーまで伸びている。シャフト2470内の真空は、流体通路2798を通ってスプリングアセンブリ2732とコンタクトハウジング2765との間に形成された圧力レザバー2740まで送られる。よって制御可能な真空供給部2790によって作られる真空は、圧力レザバー2740における真空を制御する。
【0117】
スプリングベローコネクタ2729は、スプリングとベローの態様を組合わせたものである。スプリングバイアスコネクタ2729はスラスト板66とコンタクトハウジング2765との間に装着される。スプリングベローコネクタ2729は、スラスト板66と電気コンタクトエレメント67との間の流体フローを制限する。スプリングベローコネクタ2729は、更に、弛緩した形からアキシャルに置換して圧縮或いは伸長したスプリング力を加える。スプリングベローコネクタ2729のバイアスは、スラスト板66を電気コンタクトエレメント67に相対する位置にするために用いる。スプリング定数を有するベロー又はバッフル部材の適切な種類はスプリングベローコネクタ2729として用いることができる。また、別個のスプリングとベローの部材もスプリングベローコネクタ2729として用いることができる。スプリング上面2728は環状であり、スラスト板66にシール可能に連結することができる。スプリング下面2738は、コンタクトハウジング2765にシール可能に連結される。圧力レザバー2740は、コンタクトハウジング2765とスプリングアセンブリ2732との間に環に画成されている。実施態様においては、スラスト板はスプリングベローコネクタ2729によって加えられたスプリング張力によって基板の裏面に対して垂直に押圧する。圧力チャンバ2740内に真空を作ると、スプリングベローコネクタ2729が上がり、よってスラスト板66が上がる。
【0118】
スラスト板66は、図示されていないロボットが基板を電気コンタクトエレメント67に装着している時又は装着していない時の上がった位置まで移る。ロボットによる挿入後、基板は基板のメッキ面の周囲がコンタクトエレメント上に置かれるようにコンタクトエレメント上に置かれる。次にトラスト板66が基板22の上面に対してしっかりと下げられて基板22のメッキ面と電気コンタクトエレメント67との間のぴったり合った接触を確実にする。電気はコントローラ222から基板22上のシード層に加えることができる。
【0119】
基板ホルダアセンブリ2450は、基板が交換位置と乾燥位置とプロセス位置の間で移動しうるように固定した位置で基板22を保持するように構成される。スラスト板66は、電気コンタクトエレメント67に対して基板を固定するために下向きにバイアスをかけることができる。スラスト板66は、基板をロボットデバイスによって挿入し得るスラスト板66と電気コンタクトエレメント67との間に隙間ができるように上向きにバイアスをかけることができる。図27に示される実施態様においては、スラスト板に対する上向きのバイアスは制御可能な真空供給部2790によって圧力レザバー2740内に作られた真空によって生じる。圧力レザバー2740の真空によってスプリング上面2728と、スプリングアセンブリ2732の残りと、装着されたスラスト板66とが上向きに移る。
【0120】
制御可能な真空供給部2790から真空を減じることによりスプリングベローコネクタ2729を正常な伸長位置に戻すことができ、スプリング上面2728によって装着スラスト板66にバイアスがかけられ電気コンタクトエレメント67上に位置する基板22と確実に接触する。電気コンタクトエレメント67に対する基板のこの物理的バイアスは、電気コンタクトエレメント67と基板22上のシード層との間の電気コンタクトを高めるのに十分である。電気コンタクトエレメント67は、基板ホルダアセンブリ内に挿入された基板上のシード層の周囲に伸び、図6の実施態様に示される陽極アセンブリ474に相対して電気的にバイアスがかけられ、シード層に対して金属蒸着が行われる。スラスト板66、電気コンタクトエレメント67、スプリングベローコネクタ2729、電気コンタクトエレメントに挿入された基板すべてが流体シールド2720に相対して回転する。流体シールド2720は、シャフトシールド2763に固定されたままであり、回転しない。
【0121】
ヘッド回転モータ2706は、中空ヘッド回転ハウジング2760の内周の中に取り付けられ、それを通って少なくとも部分的に伸び、シャフト2470に連結されている。中空コイルセグメント2775は、中空ヘッド回転ハウジング2760の内部に取り付けられ、それに相対してほぼ静止したままである。シャフト2470には、縦軸の周りに回転し得る磁石部分2777が含まれる。磁石部分2777は、中空コイルセグメント2775の中空部分の中に物理的に配置されている。中空コイルセグメント2775によって、磁石部分2777と連結シャフト2470の回転が誘導される。軸受2785は、シャフトシールド2763とシャフト2470との間に設けられ、縦軸の周りの回転でシャフト2470の横の動きが制限される。シャフトの下端でのシャフト2470の出力によって、下記のようにスラスト板と電気コンタクトエレメント67との間に固定されたスラスト板66と基板22を含む基板ホルダアセンブリ2450のある部分に回転運動が与えられる。ヘッド回転モータ2706は、コントローラ222の影響によって、例えば、0 rpm〜2500 rpmの範囲で出力回転を生じる種類であってもよい。
【0122】
流体シールド2720は、任意であり、使用される場合、基板ホルダアセンブリ2450の周囲に配置されてもよく、好ましくは隔置されてもよい。流体シールドは、電解溶液又は他の隣接装置上の基板ホルダアセンブリ2450の遠心分離機の回転によって基板又は基板ホルダアセンブリから除去することができる他の物質を含有する。
3.液浸時に基板を傾斜する流体効果
メッキの一様性を改善する方法には、基板上のシード層と接触することができる空気泡又はポケットの形成を制限することが必要である。本システムは、基板を電解溶液に浸す間、電解溶液と基板との間で捕捉される空気泡又はエアブリッジを制限する。電解溶液中の空気泡又はエアブリッジは、堆積層のピッチング、曇り、変形、不均一性を引き起こしてしまう。十分な時間存在する場合には、空気泡又はエアブリッジは電解溶液中の金属イオンを基板上に堆積することを制限し、よって基板上にボイドが生じる。
【0123】
基板及び/又は基板ホルダアセンブリによって捕捉される空気泡の機会をできるだけ少なくする方法は、基板が電解溶液に浸されるにつれて基板/基板ホルダアセンブリを水平から傾けることである。電解溶液の非常に薄い境界層が、基板とその上に形成されるシード層が被覆する。基板に最も近い空気泡は、基板が水平からの角度で傾き溶液中に配置されるにつれて境界層に沿って上向きに流れる。基板の一部と接触せずに境界層に沿って流れる空気泡の傾向は、傾き角が大きくなるにつれて基板の一部と接触せずに境界層に沿って流れる空気泡の傾向が大きくなる。
【0124】
図34と図35は、基板ホルダアセンブリによって保持された基板が水平からα角で電解溶液に浸されるステップの進行を示す図である。これらの図は、どのように電解溶液によってフィーチャが完全に充填されるかを示す図である。基板22は、取り付けスライド2460に沿ってリフトガイド2466の下向きの変位によって図25に示されるように電解溶液の中に下がる。基板22が電解溶液に浸されるメカニズムを説明するために、電解溶液の流体レベルは、図34に示されるレベル3402から図35に示されるレベル3402’ へ矢印3406で示される向きに基板に相対して上向きに移動すると考えられる。バイア、トレンチ、電気コンタクト等の具体的なフィーチャ3410は、基板22の表面に形成される。現代の半導体処理の形成の幅は、典型的にはミクロンで測定される。
【0125】
基板22を横切る電解溶液の“フロー”は、基板の傾き角αが0度より大きい時に基板上のシード層を横切るメニスカスの運動によって高められる。メニスカス3004は、隣接した固体材料の表面と接触する液体の凸上面である。メニスカスは表面張力によって生じる。例えば、メニスカスは、水が含まれるガラスに水面が触れるにつれて水を含むガラスに生じる。メニスカス3004は、基板が電解溶液に浸されるにつれてフィーチャ内からの空気泡の変位が高められる。傾き角αが大きくなると、表面張力によって生じるメニスカスの変位作用を利用することによりメニスカスが基板上のフィーチャ3410内から空気泡やエアポケットを移すのに効果的である。メニスカスに付随する表面張力は、場に沿って電解液を引き付ける働きがあり、それ故、矢印34で示されるように電解溶液がレベル4302から上がるにつれて基板の傾斜角度αが水平からの角度がある時に基板の場表面3410上に含まれる空気泡又はポケットを移す働きがある。
【0126】
電解溶液のレベルが図34のレベル3402から図35に示されるレベル3402’ まで上がるにつれて、メニスカス3004はフィーチャの下のレベル3412の上に上がる。表面張力は、フィーチャ3410を電解溶液で充填するために用いられる重要なメカニズムである。表面張力がないと、電解溶液のレベルがフィーチャ3410の最高開口点3416まで上がるにつれて、電解溶液のレベルは点線3418で示されるように水平に伸びる。表面張力がないと、空気泡は点線3418の上の空間に空気泡が生じる。実際は、メニスカスがフィーチャの開口を過ぎて上向きに移動するにつれて表面張力がフィーチャの中に電解溶液を引き付ける。表面張力に付随する分子流体引力が3402’’で示された上限までフィーチャの中に電解溶液を“引き付け”、完全に充填する。そのようにする際、電解液メニスカスはフィーチャ内に捕捉される空気を移す。0〜90°の範囲の傾き角αが大きくなるにつれて速やかに電解溶液をフィーチャに引き付ける。空気が電解溶液によって速やかに移る理由は、傾き角が大きくなるにつれて、特にαが45°を超えるにつれて捕捉空気、即ち、ライン3418の上の容量が減少する。
【0127】
基板が大きな傾き角より小さな傾き角、例えば、45°より大きい角度に比べて水平から45°より小さい角度で浸される場合にフィーチャに含まれる空気泡を電解溶液が移すには時間が必要である。例えば、基板ホルダアセンブリの電気コンタクトエレメントと基板は、共に逆凹面領域を生じる。この逆凹面領域での捕捉空気領域は、基板の角度が大きくなるにつれて減少する。基板ホルダアセンブリ内の基板が水平ではなくて近づくにつれて、基板ホルダアセンブリはエアブリッジや空気泡を効果的に除去するために基板ホルダシステム14でゆっくりした角レートで傾斜されなければならない。このゆっくりした角傾斜レートは電解溶液でフィーチャを十分に充填するのに必要である。基板ホルダシステムの実際の角傾斜レートは、電解溶液の化学成分、基板の表面、基板の構造と表面、基板ホルダアセンブリのような条件の関数である。
【0128】
基板ホルダアセンブリ2450は、基板の開始、処理、取り出しの間、電解溶液に相対して基板シード層を配置するために機能する。スラスト板66を伸ばすか又は引っ込めるために圧力レザバー2740に真空を作ること、モータ2706の動作と角速度、基板の傾きを制御するピボットジョイント2459の位置、そのような他の機械的変位を含む基板ホルダシステム14の動作は、コントローラ222によって制御される。金属蒸着プロセス中の基板ホルダシステム14の進行の実施態様は、図28A〜図28Hに示されている。図29に示されている方法2900の実施態様は、図28A〜図28Hに示される進行させるためにコントローラ222によって行われる。
【0129】
図28A〜図28Hに示される基板ホルダシステム14の進行は、図29に示される方法2900と共に読まれるべきである。図28A〜図28Hの進行では、一般に、基板が基板ホルダアセンブリに挿入され、基板が電解溶液に浸され、基板が処理され、基板が電解溶液から取り出され、基板が基板ホルダアセンブリから取り出される。
【0130】
図28Aと、図29のブロック2909は、基板ホルダアセンブリのスラスト板66が図27に示される圧力レザバー2740に真空を作ることにより上がった位置に引っ込められる交換位置に配置されている基板ホルダシステム14を示している。基板ホルダシステム14は、電気コンタクトエレメント67とスラスト板66との間に基板を挿入するために基板を保持している図示されていないロボットブレードを可能にする交換位置に配置されている。
【0131】
図28Bと、図29のブロック2904に示されるように、基板22がコンタクトエレメントに装着されるように、スラスト板66と電気コンタクトエレメント67との間に基板がロボットによって移される。次に基板を固定すると共にメッキ面とコンタクトエレメントとの間に十分な電気コンタクトを与えるために裏面に対してバイアスをかけるためにスラスト板66を下げる。スラスト板をそのような力で下げて基板22を損傷せずに固定する。スラスト板を下げることは、図27に示された圧力レザバー2740内に作られた真空を減じてスプリングベローコネクタ2729がプレセット位置に下向きに戻すことを可能にすることにより達成される。残りの基板22処理で、残りの基板22処理の間、基板ホルダアセンブリが図28Gに示されるように交換位置まで移動するまでスラスト板は下げたバイアス位置にあるままである。基板が回転し得る基板ホルダシステム14の実施態様においては、基板ホルダシステムによって基板を通り抜ける縦軸の周りに図28Bの基板の角回転が開始され、図28Gまで続けられる。角回転速度は、基板が電解溶液に浸されているか、基板が処理されているか、基板が電解溶液から取り出されているか、基板が遠心力によって基板を乾燥するために回転されているかによる進行によって変動してもよい。
【0132】
図28Cと、図29のブロック2906は、リフトガイド2466が取り付けスライド2460に相対して下向きに移されるヘッドリフト部2708の動作の結果として乾燥した位置に移動した基板ホルダアセンブリ2450を示す図である。乾燥位置においては、基板ホルダアセンブリによって電解溶液セル12に含まれる電解溶液の上に基板22が支持される。電解溶液に浸す前に、また、基板が電解溶液から取り出された後に、基板22が乾燥位置に配置される。基板22を乾燥位置に配置することは通常の部分であり、基板22が電解溶液に速やかに浸し得る。
【0133】
図28Dと、図29のブロック2908は、基板ホルダアセンブリ2450と、回転アクチュエータ2464と、ヘッドリフト部2708とがすべてピボットジョイント2459の周りにヘッドアセンブリフレームによるユニットとして傾いている図である。カンチレバーアームアクチュエータ2457は、ピボットジョイント2459の周りでシャフト2453と、基板を保持するヘッドアセンブリフレーム2410を傾ける連結カンチレバーアーム2456を制御可能に作動させることができる。基板上のシード層を傾けると、図28Eに示されるようにシード層の電解溶液への液浸が高められる。
【0134】
図28Eと、図29のブロック2910は、ヘッド部2450に含まれる基板22の乾燥した位置から電解溶液への液浸を示す図である。基板の液浸の間、シャフト2468が回転する。このシャフトの回転で、リフトガイド2466が取り付けスライド2460に沿って下向きに移されてヘッドアセンブリ2410の下向きの運動が生じる。同時に、ヘッドアセンブリ2410がピボットジョイント2459の周りに下向きに回転して基板の傾斜が生じる。基板が水平から傾斜するような基板22の傾斜によって、電解溶液中の基板/基板ホルダの下で捕捉される空気泡やエアブリッジの発生が最少になる。空気泡のこの制限は基板22が電解溶液の中に下げられるにつれて捕捉される空気泡の数を制限する点でのメニスカス3004の促進作用から生じ、空気泡が傾斜基板面を横切って容易に逃げる。更に、液浸中の基板の回転によって空気泡がシード層上の場所に付着するようになる機会が最少になる。
【0135】
図30は、基板が2つの位置22’ と22’’との間で基板ホルダシステム14によって電解溶液に浸されるにつれて傾き角がどのように変化するかを示す図である。図30、図31、図32の電気コンタクトエレメント67は、基板と実際に接触する電気コンタクトエレメントの一部を示す図である。図27と同様の電気コンタクトエレメントの他の部分は、表示を簡単にするために示されていない。基板22’ は水平から角度α1に傾斜し、基板22’’は角度α2で傾斜している。図28Eと図28Fに示される位置に反映されるように、図31の実施態様に22’ と22’’として示される位置の間で基板が電解溶液に完全に浸されるにつれて基板は左に移動する。この横の運動は、図25の実施態様に示される回転可能なヘッドアセンブリ2410がピボットジョイント2459の周りに旋回するにつれて基板ホルダアセンブリ2450の横の変位から生じる。角度α1は角度α2より大きく、基板が電解溶液に深く浸されるにつれて基板ホルダシステムが水平に近い角度まで基板を回転させる。基板22が電解溶液の中に下がるにつれて、電解溶液と基板との間に生じるメニスカス3004は基板シード層に沿って流れる。
【0136】
図31は、電気コンタクトエレメント22の縦の高さHを示す図である。基板と、電気コンタクトエレメントと、電解溶液とのある組合わせの高さHが大きくなるにつれて、一般に、基板が水平又は傾斜した姿勢で浸されている場合にはある基板の下で捕捉される空気量が多くなる結果となる。それ故、液浸中に基板の下で電解溶液中に捕捉される空気泡の量を減少させるために高さHを制限することが望ましい。
【0137】
電解溶液に浸す際に基板と電気コンタクトエレメント67との間に空気泡やエアブリッジが生じることが可能である。図31における泡3002は、基板22が電解溶液の中にあまりに急速に浸される時に生じる。また、基板22が電解溶液の中にあまりに遅いレートで浸される時には、基板22と電気コンタクトエレメント67との間にエアブリッジ3102が生じる。基板22が適切なレートで電解溶液に浸される時、泡3002もエアブリッジ3102も電解溶液の中で基板22と電気コンタクトエレメント67との間に生じない。
【0138】
グラフ33は、横軸3304に基板の開始液浸後の時間の関数として基板傾き角αが変化するレートを示す縦軸3302dα/dtのプロットである。基板が液浸に近づくにつれて、基板の傾き角αは典型的には45°であり、一部の実施態様では90°に近づく。基板傾き角αは、カンチレバアームアクチュエータ2457がピボットジョイント2459の周りにヘッドアセンブリ2410を旋回させる量で制御される。3306で示されるdα/dt値は、基板の周囲が電解溶液に最初に浸されるにつれて基板傾き角αが水平に向かって変化する速いレートを示している。液浸が続くにつれて、傾き角α変化のレートは3308値で示されるように低下する。基板が水平に近いので、基板はdα/dtの遅いレートで電解溶液に浸されて電解溶液がフィーチャから空気を移すことを可能にする。この時間に、メニスカス3004によって、即ち、電解溶液が基板と接触する場合、基板面上のシード層が徐々に一掃され、基板面の中のフィーチャから空気が移される。このメニスカスによる一掃作用は、基板22と電気コンタクトエレメント67との間に空気泡3002又はエアブリッジ3102の生成を最少にし、基板シード層上のフィーチャの中の空気泡の生成を制限する。好ましいdα/dtレートは、傾き角α、電解溶液の組成、基板22と電気コンタクトエレメント67の表面のようなファクタの関数である。基板面を十分液浸した後、基板は完全に浸され水平であるので傾き角α変化のレートは3310で示されるように0になり、基板は電気メッキされる位置にある。金属被膜の大部分は3310部分の間に基板シード層上に堆積する。3310部分の間に空気泡3002又はエアブリッジ3102の作用や生成を制限することは重要である。
【0139】
図28Fと、図29のブロック2912に示されるように、回転アクチュエータ2464とヘッドリフト部2708はすべてプロセス位置へピボットジョイント2459の周りのヘッドアセンブリフレームによるユニットとして傾斜している。ヘッド部がプロセス位置にある時、基板22は電解溶液の中のほぼ水平位置に保持される。ヘッド部2450がプロセス位置へ水平に基板を傾斜させる時、基板22の全メッキ面は電解溶液に浸される。
【0140】
ヘッド部2450が図29のブロック2914に示されるプロセス位置で処理される時、ヘッド部2450はメッキ面が電解液セル内に含まれる電解溶液に浸される位置に基板22を支持する。コンタクトハウジング2765と、スラスト板66と、電気コンタクトエレメント67とを含むヘッド部2450の部分は、約0〜約200 rpm、好ましくは約20〜約40 rpmで回転する。基板22の回転により、メッキ面を横切って金属イオンが一様に堆積する。基板22の回転とヘッド部2450の回転する部分は、電解溶液の中で過度の角回転によって生じる電解溶液中の渦巻きをほとんど生じない。電解溶液と陽極16との間の反応によって生じる金属イオンは、基板ホルダシステム14がプロセス位置にある時に基板22のメッキ面上に堆積する。
【0141】
図28Gと図29のブロック2916に示されるように、次に、ヘッド部2450は、処理が基板22上で行われた後に基板ホルダシステム14によって乾燥した位置に移る。図28Fに示されるプロセス位置と図28Gに示される乾燥した位置との間で代わるために、リフトガイド2466が取り付けスライド2460に相対して上向きに並進して移る。更に、ヘッドアセンブリ2410はピボットジョイント2459の周りで上向きに回転する。ヘッド部2450が乾燥位置にある時、基板は約600〜約2500 rpm、好ましくは約2000 rpmでrpmする。また、基板22は図4の実施態様に示されるように別個のスピン−リンス−ドライユニットに運搬され得る。
【0142】
図28Hと、図29のブロック2918に示されるように、ヘッド部2450は、次に取り付けスライド2460に相対して上向きに並進して移るリフトガイド2466によって交換位置に上げられる。ヘッド部が交換位置にある時、スラスト板66はロボットが基板ホルダアセンブリから基板22を取り出すのに十分な量で上げられる。スラストパッドを上げた後、図示されていない第1ロボットブレードは、典型的には基板22とスラスト板との間に挿入されて第1処理基板が取り出される。他のロボットブレードは、電気コンタクトエレメントで処理される新しい基板を挿入する。次にスラストパッドを下げて基板ホルダアセンブリの中の位置に基板を固定する。次に図28A〜図28Hに示される金属蒸着プロセスが新しい基板について行われる。
【0143】
上記は、基板を電解溶液に浸す間、基板を水平から傾斜させるために使用し得る基板ホルダシステム14の実施態様を示すが、液浸時に傾斜位置に基板を固定し得るデバイスも使用し得る。例えば、図36は、支持マウント3609と、支持体3610と、ピボットジョイント3611と、回転可能なヘッドアクチュエータ2410と、制御可能な調整部材3602とを含む基板ホルダシステム14を示す他の実施態様である。実施態様においては、回転可能なヘッドアクチュエータ2410は図27に記載されるように構成される。
【0144】
支持マウント3609は、横トラック3650と、横ホロワ3652と、縦トラック3654と、縦ホロワ3656を含んでいる。横トラック3650は、物理的に接地した表面3658に一端又は両端に強固に固定される。横ホロワ3652は、タイトフィット結合による横トラック3650、複数のホイールホロワ、エアクッション、又は他の類似のスライド結合を続けるために束縛される。図3に示されるコントローラ222によって制御されるアクチュエータ3660によって、横トラック3650に沿って横ホロワ3652が制御可能に移される。
【0145】
縦トラック3654は、縦トラック3654が横ホロワ3652の横運動を行うように溶接、ボルト、リビット、又は他の既知のコネクタによって横ホロワ3652に強固に付けられている。縦ホロワ3656は、タイトフィット結合による縦トラック3654、複数のホイールホロワ、エアクッション、又は他の類似のスライド結合を続けるために束縛される。コントローラ222によって制御されるアクチュエータ3666によって、縦トラック3650に沿って縦ホロワ3656が制御可能に移される。
【0146】
ヘッドアセンブリ2410は、ピボットジョイント3611によって縦ホロワ3656にピボット連結される。ピボットジョイント3611は、ピボットジョイントホロワホイール3672と、ピボットジョイントドライブホイール3674と、カップリングベルト3676とを含むピボットアクチュエータ3670によって作動する。カップリングベルト3676は、ピボットジョイントドライブホイール3674からピボットジョイントホロワホイール3674へ回転運動力を運んでヘッドアセンブリを図27に太字で示される傾斜位置と点線3678で示される垂直位置との間にヘッドアセンブリを回転させる。ピボットジョイントドライブホイール3674は、ロータリステッパモータ、ドライブモータ、又は回転モータの既知のタイプのようなアクチュエータによって駆動される。
【0147】
このように支持マウント3609は、3方向にヘッドアセンブリ2410を移すことができる。第1に、横トラック3650に相対して横ホロワ3652を移すと、座標軸3620に示されるX方向にヘッドアセンブリ2410が移る。第2に、縦トラック3654に相対して縦ホロワ3656を移すと、座標軸3620に示されるZ方向にヘッドアセンブリ2410が移る。第3に、ピボットジョイントホロワホイール3672を旋回させると、矢印3680によって示される方向いヘッドアセンブリが傾く。
【0148】
他の実施態様においては、ピボットアクチュエータ3670はピボットジョイント3611と支持体3610に連結された図示されていないオフセットリンク間に伸びるピストン又はリニアドライブ部材によって設けることができる。この構造においては、ピストン又はリニアドライブ部材のリニア動作はオフセットリンクのオフセットによってピボットジョイント3611の周りのヘッドアセンブリ2410の回転運動に変換される。
【0149】
支持マウント3609は、水平方向に維持しつつヘッドアクチュエータ2410を上げる、下げる、又は横に移すことができる。図示されていないロボットデバイスは、座標軸3620によって示されるX方向とZ方向に支持体3610を移動させるために使用し得る。
【0150】
プロセスセル内の電解溶液の中にヘッドアセンブリ2410を浸すために、基板をピボットアクチュエータ3670によって傾き角αに傾ける。支持体3610を動かすロボットデバイスの並進によってヘッドアセンブリをプロセスセルと並べるようX方向に横に動かすことができる。次に支持体3610は、プロセスセルに含まれる電解溶液に基板を浸すように支持マウント3609の縦ホロワ3656上のアクチュエータ3666の動作によって下向きに移る。ピボットアクチュエータ3670とアクチュエータ3666の協調運動は、プロセスセルの部分を接触させることをヘッドアセンブリ2410の部分を制限する方法でコントローラ222によって制御される。次にヘッドアセンブリ2410は、コントローラ222の制御によってピボットアクチュエータ3670の変位によって水平レベル位置(α=0)に移動する。ヘッドアセンブリのレベリングで、ヘッドアセンブリ2410をX方向に移すアクチュエータ3666によってヘッドアセンブリはプロセスセルと同時に並ばなければならない。次にヘッドアセンブリはアクチュエータ3666の変位によってプロセスセルから取り出される。
【0151】
上記は本発明の好適実施態様に対するものであるが、基本的範囲を逸脱せずに本発明の更に多くの実施態様を講じることができる。
【図面の簡単な説明】
【図1】
単純化された代表的な噴水式メッキ装置の断面図である。
【図2】
電気メッキ(ECP)システムの1つの実施態様の斜視図である。
【図3】
図2のECPシステムの平面概略図である。
【図4】
スピン−リンス−ドライ(SRD)モジュールの1つの実施態様の概略斜視図であり、リンスと溶解のための流入口が組み入れられてある。
【図5】
図4のスピン−リンス−ドライ(SRD)モジュールの側面の断面図であって、処理中の位置にある基板を示す。
【図6】
基板ホルダシステムを有する電気メッキプロセスセルの断面図である。
【図7】
電気コンタクトエレメントの1つの実施態様の部分的な断面斜視図である。
【図8】
コンタクトパッドの他の実施態様を示す電気コンタクトエレメントの断面斜視図である。
【図9】
コンタクトパッドとアイソレーションガスケットの他の実施態様を示している電気コンタクトエレメントの断面斜視図である。
【図10】
アイソレーションガスケットを示している電気コンタクトエレメントの断面斜視図である。
【図11】
ECPシステムを各コンタクトピンを通して表している電気回路の簡略化された概略回路図である。
【図12】
図12は基板ホルダの実施態様の断面図である。
図12Aは図12のブラッダーエリアの拡大断面図である。
【図13】
基板ホルダ板の部分的な断面図である。
【図14】
マニホルドの部分的な断面図である。
【図15】
ブラッダーの部分的な断面図である。
【図16】
電解液溶解システムの1つの実施態様の概略図である。
【図17】
高速熱アニール(RTA)チャンバの断面図である。
【図18】
電気コンタクトエレメントの他の実施態様の斜視図である。
【図19】
基板ホルダの他の実施態様の部分的な断面図である。
【図20】
カプセルに入れられた陽極の実施態様の断面図である。
【図21】
カプセルに入れられた陽極の別の実施態様の断面図である。
【図22】
カプセルに入れられた陽極の更に別の実施態様の断面図である。
【図23】
カプセルに入れられた陽極の更に別の実施態様の断面図である。
【図24】
フリッパーロボットが組み入れられたメインフレーム搬送ロボットの概略平面図である。
【図25】
回転可能なヘッドを有する基板ホルダシステムの他の実施態様である。
【図26】
図26aと図26bはデガサモジュールの実施態様の断面図である。
【図27】
図25に示された回転可能なヘッドの1つの実施態様の断面図である。
【図28】
図28A〜図28Hは電解液セルで含まれる電解溶液への基板のシード層の液浸の間の基板ホルダ装置の側面図の進行である。
【図29】
図28で示される進行を実行する際に図27のコントローラによって実行される方法の1つの実施態様である。
【図30】
基板が電解溶液中に挿入される進行を示す側面図である。
【図31】
基板と基板ホルダの間に閉じ込められている空気泡を有する浸された基板の側面図である。
【図32】
基板と基板ホルダの間に形成されたエアブリッジを有する浸された基板の側面図である。
【図33】
基板の液浸を示しているグラフであり、基板の角度の変化率を、横座標として時間対縦座標として示している。
【図34】
フィーチャを電解溶液に下げられるようにしている基板の1つの実施態様を示す。そこにおいて、電解溶液のレベルはフィーチャのレベルの下にある。
【図35】
図34で示すように電解溶液中に基板を下げている状態を示しており、そこにおいて、電解溶液のレベルはフィーチャのレベルの上にある。
【図36】
基板ホルダシステムの別の実施態様を示す。
【符号の説明】
10…噴水プレーター、12…電解液セル、14…基板ホルダシステム、16…陽極、20…電気コンタクトリング、22…基板、23…コントローラ、24…グルーブ、26…コンタクトピン、33…真空ポンプ、66…スラスト板、159…ポンピングシステム、200…ECPシステム、210…ローディングステーション、211…RTAチャンバ、212…SRDステーション、214…メインフレーム、216…搬送ステーション、218…処理ステーション、220…電解液溶解システム、222…コントローラ、224…カセット受け入れエリア、228…搬送ロボット、230…オリエンタ、232…カセット、234…基板、236…SRDモジュール、238…パススルーカセット、240…プロセスセル、242…搬送ロボット、244…ロボットアーム、246…ロボットブレード、248…フリッパロボット、250…主本体、252…フリッパロボットアーム、260…CPU、262…メモリ、264…I/O、265…回路部分、330a…底、330b…側壁、330c…上シールド、330d…ボウル、332…ペデスタルサポート、334…ペデスタルアクチュエータ、336…ペデスタル、336a、337b…アーム、337…クランプ、338…基板、340…流入口、342…取り付け部分、343…咬交部材、346…コンジット、346a…入口、346b…コンジット、346c…コントロールバルブ、347a…バルブ、348…ノズル、350…入口、351…ノズル、352…コンジット、353…咬交部材、400…プロセスセル、410…ヘッドアセンブリ、420…プロセスセル、430…ボウル、440…コレクタ、442…本体、443…開口、444…開口、447…底、448…外壁、449…出口、450…ホルダアセンブリ、454…取り付けポスト、456…カンチレバーアーム、457…アクチュエータ、458…アクチュエータ、460…取り付け板、464…ホルダエレメント、466…コンタクトエレメント、470…ブラッダーアセンブリ、472…容器本体、474…陽極アセンブリ、476…フィルタ、478…せき、480…環状平坦部分、482…中間傾斜部分、484…下り傾斜部分、486…環状フランジ、488…ボルト、490…ナット、492…スペーサ、494…陽極エンクロージャ、495…シール、496…可溶性金属、497…ネジ部分、498…陽極コンタクト、499…ナット、502…円筒部分、504…底部分、506…環状フランジ、510…入口、602…タンク、603…計量モジュール、604…タンク、605…ろ過モジュール、606…タンク、607…バルブ、608…ポンプ、609…バルブ、610…コントローラ、612…供給ライン、613…試料ライン、615…自動滴定アナライザ、616…化学アナライザモジュール、617…CVS、620…排出部、621…出口ライン、622…廃棄処理システム、624…熱交換機、630、630’ …デガサモジュール、632、632’ …疎水性膜、633…デガサモジュール、634…通路、636…真空システム、638…エンクロージャ、642…出口、700…レジスタ、702…電源、704…センサ/アラーム、754…メッキ面、762…フランジ、764…ショルダ部分、765…導電性部材、768…基板取り付け面、765…導電性部材、770…絶縁本体、772…パッド、776…導電性コネクタ、780…パッド、782…アイソレーションガスケット、802…容器本体、820…メッキ面、821…基板、832…ホルダプレート、836…ブラッダー、838…流体源、840…環状溝、841…真空ポート、842…入口、843…取り付けチャネル、844…ホース、845…ポンプ、846…マニホルド、847…バルブ、848…ショルダー、849…エゼクタ、851…ホース、852…取り付けレール、853…圧力ライン、854…出口、855…真空ライン、857…カバリング、859…ポンピングシステム、902…エンクロージャ、904…ヒータプレート、906…ホルダピン、907…ヒータ、908…ベース、910…側壁、912…上部、913…冷却板、914…皿状部、916…電源、918…冷却膜、920…熱電対、922…スリットバルブ、924…開口、928…リフトプレート、930…アクチュエータ、934…シーリングフランジ、936…ガス入口、942…ガス出口、944…バルブ、1800…電気コンタクトエレメント、1810…取り付け部分、1820…受け入れ部分、1822…取り付け面、1824…コンタクトパッド、1900…ホルダアセンブリ、1910…ホルダプレート、1914…前面、1916…Oリング、1918…環状グルーブ、1920…穴又は孔、2000…陽極、2002…陽極封入膜、2004…陽極板、2006…電気コンタクト又はフィードスルー、2008…封入上膜、2010…封入下膜、2012…支持リング、2014…入口、2016…出口、2020、2022…コントロールバルブ、2024…開口、2402…ロボットアーム、2404…ロボットブレード、2410…ヘッドアセンブリ、2450…ホルダアセンブリ、2452…ヘッドアセンブリフレーム、2453…シャフト、2454…取り付けポスト、2455…ポストカバー、2456…カンチレバーアーム、2457…カンチレバーアクチュエータ、2459…ピボットジョイント、2460…取り付けスライド、2464…回転アクチュエータ、2466…リフトガイド、2468…シャフト、2470…シャフト、3602…調整膜、3609…支持マウント、3610…支持体、3611…ピボットジョイント、3620…座標軸、3650…横トラック、3652…横ホロワ、3654…縦トラック、3656…縦ホロワ、3658…接地面、3660…アクチュエータ、3666…アクチュエータ、3670…ピボットアクチュエータ、3672…ホロワホイール、3674…ドライブホイール、3676…カップリングベルト、3678…点線、2706…ヘッド回転モータ、2720…流体シールド、2728…スプリング上面、2729…スプリングベローコネクタ、2732…スプリングアセンブリ、2733…コンダクタ、2738…スプリング下面、2740…圧力レザバー、2753…シールエレメント、2760…ヘッド回転ハウジング、2763…ニューマティックフィードスルー、2765…コンタクトハウジング、2767…電気フィードスルー、2771…電気コンダクタ、2773…ニューマティックフィードスルー、2775…コイルセグメント、2776…磁気ロータリエレメント、2777…磁石部分、2790…真空供給部、2792…スリーブ部材、2794…コンジット、2795…グルーブ、2796…アパーチャ、2798…通路、2799…ロータリマウント、2900…方法、2902、2904、2906、2908、2910…ブロック、3002…空気泡、3004…メニスカス、3102…エアブリッジ、3302…座標、3304…横軸、3306、3308、3310…値、3402、3402’ 、3402’’…レベル、3410…フィーチャ、3416…開口点、3418…点線、3450…ホルダアセンブリ。
発明の背景
1.関連出願の説明
本開示は、同一人に譲渡された2000年7月7日に出願された米国仮出願番号60/216,896、発明の名称:「エントリーにあたって基板を傾けるための方法と装置」に基づくプライオリティーを主張しており、同出願は本出願に参考として援用されている。
【0002】
本出願は、1999年4月8日に出願された特許出願番号09/289,074、発明の名称:「電気化学蒸着システム」に基づくプライオリティーを主張した一部継続出願であり、同出願の全文は本出願に参考として援用されている。
【0003】
2.発明の分野
本発明は、一般に基板の上への金属層の堆積に関する。より詳しくは、本発明は、基板の上に金属被膜を蒸着するための電気化学メッキ(ECP)システムに用いる、基板ホルダシステムに関する。
【0004】
3.関連する技術の背景
電気メッキは、例えば、半導体装置において、回路基板上に回線を作成すると共に、バイアス、トレンチ及び電気的接触要素等のフィーチャを充填するのに用いられている。電気メッキを含む代表的なフィーチャ充填プロセスは、物理気相堆積(PVD)又は化学気相堆積(CVD)のようなプロセスによってフィーチャ面の上にバリヤー層を堆積し、次いでPVD又はCVD等のプロセスによってバリヤー層の上に銅のような導電性の金属シード層を堆積し、次いで上記シード層上に導電性金属被膜を電気メッキしてフィーチャを充填し上記加工面上にブランケット層を形成することで所望の導電構造を形成する。蒸着された金属被膜は、化学機械研磨(CMP)のようなプロセスによって平坦化され、導電相互接続フィーチャを画成する。電気コンタクトリングは、電気メッキの過程において基板上のシード層に接触して一般に配置され、シード層に電気を供給する。
【0005】
ミクロンのサイズの、高いアスペクト比特性を有する基板に確実に電気メッキを行うにあたっては、多くの障害がそれを妨げる。これらの障害のうちの1つは、基板ホルダーアセンブリによって保持され、電解溶液に水平状態で浸された、基板に関することである。基板ホルダ組立は、典型的には、基板の周囲のまわりで延びる電気のコンタクトリング又はサポートリングを含む。電気のコンタクトリング又はサポートリングは、典型的には電気メッキの間、基板を物理的に支える。基板ホルダの部分、例えば、電気コンタクトリング又はサポートリングは基板と共に下方へ向いた凹面を画成している。基板ホルダーアセンブリが基板と共に浸された時に、基板と基板ホルダーアセンブリによって画成された凹面は、電解溶液内でエアポケットを形成する空気を閉じ込めることができる。
【0006】
基板ホルダーアセンブリによって画成した凹面によって電解溶液中に閉じ込められた空気泡又はエアブリッジは、メッキの過程において基板の表面と接触することができる。電解液は空気泡又はエアブリッジが接触する基板上のシード層の上記該当部分に物理的に接触しない。従って、金属被膜は、空気泡又はエアポケットがおおうシード層の該当部分の上に堆積されることはない。このように、金属被膜堆積の過程においてシード層に隣接して存在する空気泡又はエアブリッジは、シード層を横切って堆積される金属被膜の深さの均一性に対して影響を及ぼす可能性がある。処理中、シード層と接触する空気泡又はエアブリッジの量を制限し、メッキの間、シード層を横切って一様な電気の電流密度を提供すること。
【0007】
金属被膜の堆積の過程においてフィーチャ内に空気泡が存在することは、また、基板上におけるフィーチャの充填を制限することで、堆積された金属被膜内で形成されるフィーチャの中に空隙又は隙間を作成することができる。フィーチャ内での空隙の存在は、フィーチャを含んだ電子回路において、信頼性に欠け、予測可能性が乏しくて使用が困難な電子装置をもたらす。
【0008】
従って、電解溶液に基板を液浸する過程において、基板と基板ホルダの間で空気泡の形成を制限する電気化学メッキ(ECP)システムの必要性は残る。
【0009】
発明の概要
本発明は、一般に、ECPシステムを提供する。より具体的には、本方法は、基板の上に形成されるシード層が電解溶液に浸されるところの電気化学メッキシステムによって実施される。ある1つの態様において、電解溶液の中に基板を入れるにあたって基板を傾けることによって、基板を電気化学メッキシステムの中に浸し、基板と基板ホルダアセンブリの間において電解溶液中にトラッピング又は空気泡が発生することを抑える。別の態様において、セルと基板ホルダシステムを備える装置が電気メッキのために用意されている。基板ホルダシステムは、基板ホルダをx方向とz方向に変位することができ、更に基板を傾けることができる。別の態様において、基板の表面を横切って電解溶液によって形づくられるメニスカスを駆動する方法が提供される。上記方法は、基板が電解溶液に浸される時における電解溶液メニスカスとその表面の間での相互作用を高めることを含む。
【0010】
上記された本発明の特徴、効果と目的が達成される方法を詳細に理解することができるように、上記に簡単に要約した本発明のより具体的な説明を、添付する図面に図示された実施態様を参照することで、することができる。
【0011】
ここで使われる用語中、「下」、「上」、「底」、「頂部」、「下方」、「上方」、「下側」等の用語、及び他の位置を示す用語は、各図に示す実施態様との関係でもちいられており、それらは加工処理装置の相対的な方向性次第で変わることもあり得る。
【0012】
好ましい実施態様の詳細な説明
本発明の開示は、電気化学メッキ(ECP)システムの構造と動作について記述する。ECPシステムの基板ホルダシステムについても詳細に説明される。基板ホルダシステムの動作は、電解溶液中に基板を液浸するにあたって基板を傾けることである。
【0013】
1.ECP装置
図1は、電気メッキにかかわる噴流プレーター10の1つの実施態様の断面図である。通常、噴水プレーター10は、電解液セル12、電気のコンタクトリング20、制御装置23、基本ホルダ装置14、及び陽極16を含む。電解液セル12は開口した頂部を有し、その開口を通じて基板ホルダーシステム14は基板を電解液セルに含まれる電解溶液の中に浸されるか、又はそこから取り除かれる。陽極16は、電解液セル12に含まれる電解溶液中に液浸される。複数の溝24が基板ホルダシステム14の下側の面に形成されている。真空用ポンプ33は、基板ホルダシステム14と結合されており、溝24と連絡して、基板22の裏面を処理中基板ホルダーシステム14に固定することができる真空状態をつくる。電気コンタクトリング20は、複数の金属又はセミ−メタルの接続ピン26を含み、それらは基板22の外周付近の部分に分散されて、基板プレートの中心表面を画成している。複数の接続ピン26の各々の先端は、基板22の上のシード層に接触する。制御装置23は、ピン26と陽極16に供給される電気を制御して基板22上のシード層と陽極の間に電気のバイアスを提供する。基板22は円筒状の電解液セル12の頂部近辺であってその内部に配置され、セル10の動作中、電解溶液の流れは基板のメッキの表面上に垂直に衝突する。
【0014】
図2は、ECPシステム200の1つの実施態様の斜視図である。図3は、図2のECPシステム200の平面図である。図2、3の図面を共に参照すると、ECPシステム200は、ローディングステーション210、高速熱アニール(RTA)チャンバ211、スピン−リンス−ドライ(SRD)ステーション212、メインフレーム214、と電解液溶解システム220を一般に備える。好ましくは、ECPシステム200はPLEXIGRASR(西フィラデルフィア、PA所在のローム&ハース社の登録商標)のようなパネルを用いたクリーン環境下に封入されている。メインフレーム214は、メインフレーム搬送ステーション216と複数の加工ステーション218を一般に備える。各加工ステーション218は、一つ以上のプロセスセル240を含む。電解液溶解システム220はECPシステム200に隣接して配置され、プロセスセル240に個々に接続されて、電気メッキプロセスに用いられる電解溶液を循環させる。ECPシステム200は、更にプログラム可能なマイクロプロセッサーを通常備える制御装置222を含む。ローディングステーション210は、好ましくは、一つ以上の基板カセット受け入れエリア224、一つ以上のローディングステーション搬送ロボット228、及び少なくとも1つの基板オリエンタ230を含む。基板カセット受け入れエリア、ローディングステーション搬送ロボット228、及びローディングステーション210に含まれる基板オリエンタの数は、システムの所望される処理量によって構成することができる。図2及び3に示す1つの実施態様に示されるように、ローディングステーション210は、二つの基板カセット受け入れエリア224、二つのローディングステーション搬送ロボット228、及び一つの基板オリエンタ230を含む。基板234を含む基板カセット232は、基板234をECPシステムの中に導入するために、基板カセット受け入れエリア224の上に載置される。
【0015】
ローディングステーション搬送ロボット228は基板232を基板カセット232と基板オリエンタ230の間で搬送させる。ローディングステーション搬送ロボット228は、この技術分野において一般に知られている代表的な搬送ロボットを備える。基板オリエンタ230は、基板が適切に加工処理されることを確保するために、各基板234を所望の方向に配置する。ローディングステーション搬送ロボット228は、基板234を、ローディングステーション210とSRDステーション212との間、及びローディングステーション210とRTAチャンバ211との間で搬送させる。
【0016】
図4はスピン−リンス−ドライ(SRD)モジュール236の1つの実施態様の概略斜視図であり、すすぎ用流入口と溶解用流入口とを結合している。図5は、図4のSRDモジュールの側面の断面図であって、流入口の間に垂直に配置された処理位置における基板を示す。好ましくは、SRDステーション212は、一つ以上のSRDモジュール236と一つ以上の基板通過用カセット238を含む。好ましくは、SRDステーション212はローディングステーション搬送ロボット228の数に対応して二つのSRDモジュール236を含み、そして、基板通過用カセット238は各SRDモジュール236の上に配置される。基板通過用カセット238は、ローディングステーション210とメインフレーム214の間で基板の搬送を容易にする。基板通過用カセット238は、ローディングステーション搬送ロボット228及びメインフレーム搬送ステーション216内のロボットへの又はそれからのアクセス手段を提供する。
【0017】
図4、5を参照しながら、SRDモジュール236は、底330a、側壁330b、及び上部シールド330cを有する。底330a、側壁330b、と上部シールド330cはSRDモジュールボウル330dを集合的に画成しており、そこでは、シールドは側壁に取り付けられ、SRDモジュール236内に流体を保持するのを助ける。あるいはこれに替えて、取り外し可能なカバーを用いることもできる。ペデスタル336は、SRDモジュール236内に配置されており、ペデスタル支持体332とペデスタルアクチュエータ334を含む。ペデスタル336は、処理の間、基板338(図5に示す)をペデスタルの上面で支える。ペデスタルアクチュエータ334は、ペデスタルを回転させて基板を回転させ、更に次に説明するようにペデスタルを上下させる。基板は複数のクランプ337によってペデスタルの上で保持され得る。クランプは、遠心力によって旋回し、好ましくは基板の縁部排除領域において、基板と係合する。ある1つの実施態様においては、基板は、処理の間、ペデスタルを持ち上げる時だけ基板と係合する。真空流路又は他の保持部材を用いることもできる。ペデスタルは複数のペデスタルアーム336aと336bを有するので、第二のノズルを通して流れる流体は、基板の下面において、実用的である限りできるだけ表面エリアに対して衝撃を与えることができる。出口339は、流体がSRDモジュール236から除かれるのを可能にする。
【0018】
最初の流体が流れる最初のコンジット346は、バルブ347aに接続している。コンジットは、ホース、パイプ、チューブ、又は他の流体を含んでいるコンジットであることもあり得る。バルブ347aは、最初の流体のフローを制御する。バルブ247aは、針、球、バタフライ又は他のタイプのバルブを含むいろいろなバルブから選ぶことができ、ソレノイド等のバルブアクチュエータを含むこともあり得る。バルブ347aは、制御装置222で制御される。コンジット346は、基板の上方に位置する最初の流入口340に連結し、SRDモジュール236に取り付けるための取り付け部342と、コンジット346に取付けるための連結部344を含む。最初の流入口は、一つの最初のノズル348と共に示され、基板上面への圧力の下に最初の流体を運ぶ。しかし、複数のノズルを使用することが可能であり、また、SRDモジュールの内部の周囲の付近には、複数の流入口を配置することができる。好ましくは、基板の上方に置かれたノズルは、基板の上にノズルから液だれを生じる危険性を少なくするために基板の直径の外側にあるべきである。最初の流入口は、基板の上方に配置されたカバーを貫通するものを含めて、いろいろな位置に取り付けることができる。更に、ノズルは、ボールとソケットジョイントのような、つなぎ部材343を用いて、いろいろな位置につながることもある。
【0019】
上述された最初のコンジット及び関連する要素と同様に、第二のコンジット352は、第二のノズル351で調節弁349aと第二の流入口350に接続されている。第二の流入口350は、基板の下に示されており、第二の流体を第二のノズル351を通して基板の下に向けるために上方に曲げられている。最初の流入口と同様、第二の流入口は、複数のノズル、複数の流入口と取り付け位置と構成要素353を明瞭に表現することを使うことを含む複数の位置決め基準点を含んでも良い。各流入口は、いろいろな位置でSRDモジュール236に伸ばされることができる。例えば、フローが基板の縁に沿ってSRDモジュールの外周方向に向けられた一定の角度に流れるようにしたい場合には、ノズルを内方向に放射線上に延ばし、そして、ノズルからの吐出しは、SRDモジュールの外周に向けることができる。
【0020】
制御装置222は、2つの流体とそれぞれの各流量、圧力、タイミング、これに伴うバブル調節を、そのスピンサイクルと共に個々に制御することができる。制御装置は、例えば、制御パネル又は制御室内及び遠隔式アクチュエータで制御される配管内の、離れた位置に配置することができる。一点鎖線で示された他の実施態様は、コントロールバルブ346cを持った、コンジット346bと共に最初のコンジット346に連結されている補助の流入口346aを提供する。上記他の実施態様では、溶解用流体が適用された後、基板の方向を変えたり、2番目の流入口を通る流れをすすぎ用流体に切り替える必要なしに、すすぎ用流体を基板の裏側に流すのに用いることができる。
【0021】
制御装置222は、基板22の陽極16とシード層に供給される電気の電圧又は電流を制御する。図3でそのコンポーネントが示されている制御装置222は、中央処理装置(CPU)260、メモリ262、回路部分265、入力出力インタフェース(I/O)264、そして、バス(図示されない)を含む。制御装置222は、汎用目的のコンピュータ、マイクロプロセッサ、マイクロコントローラ、又は他の公知の適当なタイプのコンピュータ又はコントローラであってもよい。CPU260は、制御装置222のために加工処理と計算動作を実行し、陽極16、基板22上のシード層15に印加される電気のオペレーションを制御し、更に基板ホルダ装置14のオペレーションを制御する。
【0022】
メモリ262は、ランダムアクセスメモリ(RAM)とコンピュータプログラムと、オペランドと、オペレータと、寸法値と、システム処理温度及びコンフィグレーション、更に他のメッキ動作を制御するパラメータを一緒に記憶する。バスは、CPU260、循環路部分265、メモリ262とI/O264の間でデジタル情報の伝達をさせる。バスはまた、デジタル情報をコントローラ222から受け取り又は送信するECPシステム200の一部にI/O264を連結する。
【0023】
I/O264は、制御装置222の中の各コンポーネントの間におけるデジタル情報の伝達を制御するためのインタフェースを提供する。I/O264はまた、制御装置222のコンポーネントとECPシステム200の異なる部分の間のインタフェースを提供する。回路部分265は、ディスプレーやキーボードのような他のすべてのユーザインタフェース機器、システム装置、及び制御装置222と関連する他の付属品を備えている。ここではデジタル制御装置222の1つの実施態様が説明されるが、アナログ制御装置と並んで他のデジタル制御装置はこの用途においてよく機能することができる。
【0024】
1つの実施態様において、基板はSRDモジュールボウルにおいて配置された面の堆積表面を上にして取付けられる。最初の流入口は、一般にすすぎ流体、代表的には消イオンされた水又はアルコールを流す。その結果、基板の裏面は、面を下にして取付けられる。第二の流入口の中を流れている流体は、溶解される材料によるが、通常、塩酸、硫酸、リン酸、フッ化水素酸、又は他の溶解液又は流体を含む、エッチング流体である。あるいは、最初の流体と第二の流体は、加工処理された基板をリンスすることが望まれている場合には、両方とも消イオンされた水又はアルコール等のすすぎ流体であることもある。
【0025】
動作上、ペデスタルは図4で示されるように上がった位置にあり、そして、図示されていないロボットは、前面を上にしてペデスタル336の上に基板を設置する。ペデスタルは、基板が第一と第二の流入口の間において垂直に配置される加工位置まで、基板を下げる。一般に、ペデスタルアクチュエータは、200 mmの基板のためにおよそ0〜およそ2500 rpmでペデスタルを回転させる。遠心力によって、クランプの下端337aがSRDモジュール側壁の外周の方向へ、ピボット337bの周りに外方向に回転する。上記クランプ回転は、クランプの上端337cを内方向かつ下方向におしやり、基板338を、ペデスタル336の上の所定位置に、好ましくは基板の縁に沿って、中心に持ってきて保持する。クランプは、基板がペデスタルを加工処理の間かなりの程度持ち上げた場合にのみ、基板に触ることなく回転して基板をペデスタルの上の位置において保持することができる。ペデスタルが基板を回転させている時に、すすぎ流体は、最初の流入口340を通して、基板の前面側部へ運ばれる。第二の流体(例えば、酸)は、第二の流入口を通して裏面に運ばれて望ましくない堆積物を除去する。溶解用流体は、堆積した材料と化学的に反応し、溶解し、更に当該材料を基板の裏側及び望ましくない堆積物が位置している他のエリアから飛ばす。1つの実施態様では、すすぎ用流体は、溶解用流体よりも大きい速度で流れて、基板の前側面を溶解用流体から保護するのを助けるように調節されている。第一と第二の流入口は、他のファクタの中でも特に、基板22、各流量、スプレーパターン、除去されるべき堆積物のタイプと量に応じて、最適の性能を発揮するように位置している。ある場合には、すすぎ用流体は、溶解用流体が望ましくない堆積物を溶解し、基板の裏側をすすいだ後に、第二の流入口に向けられる。他の場合には、すすぎ用流体を基板の裏側上に流すために接続された補助の流入口が、溶解用流体の残留物を裏側からすすぐために用いられることができる。基板の前側部及び/又は裏側部をすすいだ後に、流体のフローは止められて、ペデスタルは回転を継続して、基板を回転させ、その表面を効果的に乾かす。
【0026】
流体は一般にスプレー状で運ばれるが、それは所望される特定のノズルスプレーパターンによって変わり、ファン、噴射、円錐等の他のパターンを含むこともある。第一流体がすすぎ用流体である時、それぞれの流入口を通る第一流体と第二流体のための1つのスプレーパターンが、200mmの基板の場合、圧力が約10〜約15ポンド/平方インチ(psi)、流量が約3ガロン/分(gpm)のファンパターンである。
【0027】
ECPシステム200は、また、基板の端に沿って望ましくない堆積物を除いて縁部排除領域をつくるために用いられる。ノズルの向きと配置、流体の流量、基板の回転速度、流体の化学組成の調整によって、望ましくない堆積物は基板の端及び/又は縁部排除領域から除去することができる。このように、前側面上に堆積した物質の溶解を実質的に防ぐことには、基板の端又は縁部排除領域が必ずしも含まれなくてもよい。前側面上に堆積した物質の溶解を制限することには、物質が堆積した前側面が商業的値を超えて損なわれないように少なくとも溶解を防ぐことが含まれるものである。
【0028】
縁部排除領域溶解プロセスを達成する1つの方法は、基板の裏面上の溶解している流体をエッチングしつつ低速、例えば、約100〜約1000rpmでディスクを回転させる方法である。遠心力は、溶解している流体を移動させ、流体の表面張力のために端の周りに流体の層を形成し、そのため、溶解している流体は基板の端領域において裏面から前側面まで重なる。基板の回転速度と溶解している流体の流量は、前側面への重なりの適度を求めるのに用いることができる。例えば、回転速度の減少又はフローの増加は対向する側面、例えば、前側面への重なりが少なくなることになる。更に、前側面に送られるすすぎ用流体の流量とフロー角によって、基板の端及び/又は前面の溶解している流体層を相殺するように調整し得る。ある場合には、端及び/又は縁部排除領域を得るために最初にすすぎ用流体を含まずに溶解している流体を用いることができ、続いてSRDモジュール236ですすぎ/溶解プロセスが行われる。
【0029】
SRDモジュール236は、ローディングステーション210とメインフレーム214との間に連結している。メインフレーム214は、一般に、メインフレーム搬送ステーション216と複数の処理ステーション218を含む。図2及び図3に言及すると、図示されるようにメインフレーム214は少なくとも2つの処理ステーション218を含み、各処理ステーション218は2つのプロセスセル240を有する。メインフレーム搬送ステーション216は、メインフレーム搬送ロボット242を含んでいる。好ましくは、メインフレーム搬送ロボット242は、処理ステーション218とSRDステーション212において基板の独立した接近を与える複数の個々のロボットアーム244を含んでいる。図3に示されるように、メインフレーム搬送ロボット242は、処理ステーション218当たりのプロセスセル240の数に対応して2つのロボットアーム244を含んでいる。各ロボットアーム244は、基板搬送中に基板を保持するためのロボットブレード246を含んでいる。好ましくは、各ロボットアーム244はシステム内での基板の独立した搬送を容易にするためにその他のアームと独立して作用可能である。また、ロボットアーム244は、一方のロボットがもう一方のロボットアームが引っ込むにつれて伸びるような協調方式で作動する。
【0030】
好ましくは、メインフレーム搬送ステーション216は、メインフレーム搬送ロボット242のロボットブレード246上の表が上の位置から基板の表が下に必要なプロセスセル240の表が下の位置まで基板の搬送を容易にするフリッパロボット248を含んでいる。フリッパロボット248は、メインボディ250とフリッパロボットアーム252を含んでいる。フリッパロボットアーム252は、フリッパロボットアーム252に沿った水平面に沿って回転移動する。好ましくは、フリッパロボットアーム252の遠位端に配置された真空吸引グリッパ254は、基板をフリッパロボット248によってフリップし搬送するように基板を保持する。フリッパロボット248によって、基板234は表が下の処理のためにプロセスセル240の中に配置される。電気メッキプロセスセルは後述される。
【0031】
図24は、フリッパロボットが組込まれたメインフレーム搬送ロボットの概略平面図である。図24に示されるようにメインフレーム搬送ロボット242は、処理ステーションとSRDステーションを含む、メインフレームステーションを装着した異なるステーション間に基板を搬送する働きをする。メインフレーム搬送ロボット242は複数のロボットアーム2402(2つ図示されている)を含み、フリッパ型ロボットブレード2404は各々のロボットアーム2402の端エフェクタとして装着されている。フリッパロボットは当該技術において一般に既知であり、カリフォルニア州ミルピータスにあるRorze Automation, Inc.から市販されているモデルRR701のような基板ハンドリングロボットの端エフェクタとして装着され得る。端エフェクタとしてフリッパロボットを有するメイン搬送ロボット242は、メインフレームに装着された異なるステーション間に基板を搬送することができ、所望の面の向きに搬送される基板をフリップすることができる。即ち、電気メッキ処理の場合、基板処理面は表が下である。好ましくは、メインフレーム搬送ロボット242は、ロボットアーム2402によってX−Y−Z軸に沿ってロボット運動が独立し、フリッパ型ロボットブレード2404によって基板フリッピング回転が独立している。メインフレーム搬送ロボットの端エフェクタとしてフリッパ型ロボットブレード2404を組込むことにより、基板搬送プロセスは単純化される。メインフレーム搬送ロボット242からフィリッパロボットまで基板を移すステップが省かれるからである。
【0032】
図6は、電気メッキプロセスセル400の断面図である。図6に示されている伝記メッキプロセスセル400は、図2と図3に示されている電気メッキプロセスセル240の実施態様である。プロセスセル400は、一般にヘッドアセンブリ410と、プロセスセル420と、電解溶液コレクタ440を含む。好ましくは電解溶液コレクタ440は、プロセスセル420の配置の場所を画成する開口443の上のメインフレーム214の本体442に固定される。電解溶液コレクタ440は、内壁446と、外壁448と、壁と連結している底447とを含んでいる。電解溶液出口449は、電解溶液コレクタ440の底447を通って配置され、チューブ、ホース、パイプ又は他の流体搬送コネクタを介して図2に示されている電解液溶解システム220に連結されている。
【0033】
ヘッドアセンブリ410はヘッドアセンブリフレーム452に取り付けられている。ヘッドアセンブリフレーム452は、取り付けポスト454とカンチレバーアーム456を含んでいる。取り付けポスト454はメインフレーム214の本体442に取り付けられ、カンチレバアーム456は取り付けポスト454の上部から横に伸びている。好ましくは、取り付けポスト454はヘッドアセンブリ410を取り付けポスト454の周りに回転させるように取り付けポストに沿って縦軸について回転移動する。ヘッドアセンブリ410はカンチレバアーム456の遠位端に配置された取り付けプレート460に装着されている。カンチレバアーム456の下端は、取り付けポスト454に取付けられた空気シリンダのようなカンチレバアームアクチュエータ457に連結されている。カンチレバアームアクチュエータ457は、カンチレバアーム456と取り付けポスト454間のジョイントについてカンチレバアーム456をピボット運動する。カンチレバアームアクチュエータ457が引っ込む時、カンチレバアーム456はプロセスセル420からヘッドアセンブリ410を移動してプロセスセル420を電気メッキプロセスセル400から取り出す及び/又は置き換えるのに必要とされる間隔をあける。カンチレバアームアクチュエータ457が伸びるとき、カンチレバアーム456はヘッドアセンブリ410をプロセスセル420に向かって移動させてヘッドアセンブリ内の基板を処理中の位置に配置させる。
【0034】
ヘッドアセンブリ410は、一般に基板ホルダアセンブリ450と基板アセンブリアクチュエータ458を含んでいる。基板アセンブリアクチュエータ458は、取り付け板460に取り付けられ、取り付け板460を下向きに伸びているヘッドアセンブリシャフト462を含んでいる。ヘッドアセンブリシャフト462の下端は基板ホルダアセンブリ450に連結されて基板ホルダアセンブリ450が処理中の位置と基板装着位置に配置される。
【0035】
基板ホルダアセンブリ450は、一般に基板ホルダエレメント464と電気コンタクトエレメント466を含んでいる。図7は、電気コンタクトエレメント466の実施態様の断面図である。一般に、コンタクトリング466は複数の導電性部材が配置された環状体を含んでいる。環状体は複数の導電性部材を電気的に絶縁する絶縁材料から作られている。本体と導電性部材は、処理の間、基板を支持するとともに電流を供給する直径での内部基板取り付け面を形成する。
【0036】
ここで図7を詳しく参照すると、コンタクトリング466は、一般に環状絶縁本体770の中に少なくとも部分的に配置された複数の導電性部材765を含んでいる。絶縁本体770は、基板取り付け面768になるフランジ762と下向きに傾斜しているショルダ部分764を持つことが示されている。基板取り付け面768は、フランジ762と基板取り付け面768がオフセット平面とほとんど平行な面にあるようにフランジ762の下に位置している。従って、フランジ762は第1平面を画成すると理解することができるが、基板取り付け面768は第1平面に平行な第2平面を画成し、ショルダ764は2つの平面の間に配置されている。しかしながら、図7に示されたコンタクトリング設計は単に例示するためのものである。他の実施態様では、フランジ762と基板取り付け面768双方にほぼ直交するようにショルダ部分764はほぼ垂直な角度を含む鋭角であってもよい。また、コンタクトリング466はほぼ平面であり、よってショルダ部分764が除かれている。しかしながら、下記の理由から、実施態様は図6に示されるショルダ部分764又はその変形を含んでいる。
【0037】
導電性部材765は、フランジ上に環状に配置された複数の外部電気コンタクトパッド、基板取り付け面768の一部に配置された複数の内部電気コンタクトパッド772によって画成される。複数の埋め込み導電性コネクタ776はパッド772、780を相互に関連させる。導電性部材765は、ポリフッ化ビニリデン(PVDF)、ペルフルオロアルコキシ樹脂(PFA)、TEFLON (登録商標)(ドイツ、ウィルミントンのE.I. duPont de Nemoirs & Companyの登録商標)、又はTEFZEL (登録商標)(ドイツ、ウィルミントンのE.I. duPont de Nemoirs & Companyの登録商標)のようなプラスチック、又はアルミナ(Al2O3)又は他のセラミックスのような他の絶縁材料からできていてもよい絶縁本体770によって相互に分離されている。外部コンタクトパッド780は、処理の間、図示されていない電源に結合されて電流電圧を導電性コネクタ776を介して内部電気コンタクトパッド772に送る。また、内部電気コンタクトパッド772は、基板の周辺部の周りのコンタクトを維持することにより電流電圧を基板へ供給する。従って、動作中導電性部材765は基板に電気的に連結された不連続の電流路として働く。
【0038】
低抵抗と反対に高導電性は、良好なメッキに直接関連している。低抵抗を確実にするために、導電性部材765は、好ましくは銅(Cu)、白金(Pt)、タンタル(Ta)、チタン(Ti)、金(Au)、銀(Ag)、ステンレス鋼又は他の導電材料から製造される。低抵抗と低接触抵抗は、導電性部材765を導電材料で被覆することにより得ることができる。従って、導電性部材765は、例えば、抵抗が約2×10−8Ω・mの銅からできていてもよく、抵抗が約10.6×10−8Ω・mの白金で被覆されていてもよい。ステンレス鋼、モリブデン(Mo)、Cu、又はTiのような導電性ベース材料上に窒化タンタル(TaN)、窒化チタン(TiN)、ロジウム(Rh)、Au、Cu、又はAgのような固形物が可能である。更に、コンタクトパッド772、780が典型的には導電性コネクタ776に結合した別個のユニットであるので、コンタクトパッド772、780はCuのような一方の材料と、ステンレス鋼のような一方の導電性部材765を含むことができる。パッド772、780のいずれか又は双方と導電性コネクタ776は導電材料で被覆することができる。更に、メッキ反復性が絶縁体として作用する酸化によって逆効果になることがあることから、内部電気コンタクトパッド772はPt、Ag、又はAuのような酸化に抵抗する材料を含むことが好ましい。
【0039】
コンタクト材料の機能であるほかに、各回路の全抵抗は内部コンタクト内部電気コンタクトパッド772の形、或いはフィーチャ、コンタクトリング466によって供給される力に左右される。これらの要因によって、2つの面の間のアスペラティに基づき内部電気コンタクトパッド772と基板取り付け面768の界面での収縮抵抗、RCRが決められる。一般に、加えた力が大きくなるにつれて、見掛け面積も大きくなる。見掛け面積はRCRと逆に関係するので見掛け面積が大きくなるとRCRが小さくなる。従って、抵抗全体を小さくするために力を最大にすることが好ましい。動作中に加えられる最大の力は過剰の力と得られた圧力のもとで損傷することができる基板の耐久強度によって制限される。しかしながら、圧力が力と面積双方に関係があることから、最大の維持可能な力は内部電気コンタクトパッド772の形に依存する。従って、コンタクトパッド772は図7のように平坦な上面を有してもよく、他の形を有利に用いることもできる。例えば、図8と図9に2つの好ましい形が示されている。図8はナイフエッジコンタクトパッドを示し、図9は半球状コンタクトパッドを示している。当業者は、有利に用いることができる他の形を容易に認識するであろう。コンタクト形と力と抵抗との間の関係の詳しい考察は、Ney Contact Manual, Kenneth E. Pitney, The J.M. Ney Company, 1973に示され、この開示内容は本明細書に援用されている。
【0040】
導電性コネクタ776の数は、図7に示される所望のコンタクトパッド772の具体的な数によって異なってもよい。200mm基板の場合、好ましくは少なくとも24の導電性コネクタ776が360°で等しい間隔がとられている。しかしながら、コネクタの数が重要なレベルに達するにつれて、コンタクトリング466に相対する基板のコンプライアンスが悪影響を及ぼす。それ故、24を超える導電性コネクタ776を用いることができるが、コンタクト均一性はコンタクトパッド772のトポグラフィや基板剛性によって最後には消えることになる。同様に、24未満の導電性コネクタ776を用いることができるが、電流はますます限定され局部的になり、メッキ結果が不十分になる。具体的な適用に適するように寸法を容易に変えられるので、例えば、コンバータの数、隣接コネクタ間の間隔、コネクタが取付けられる円の周囲は200mm基板に用いられるプロセスセルと300mmに用いられるプロセスセルとの間で変化してもよい。
【0041】
図10に示されるように、基板取り付け面768は、絶縁本体770上に配置されたアイソレーションガスケット782を含んでいる。基板取り付け面は、直径内側の内部電気コンタクトパッド772まで伸びてコンタクトリング466の内径を画成している。アイソレーションガスケット782は、好ましくは内部コンタクトパッドより上にわずかに、例えば、数ミル伸び、好ましくはVITON(登録商標)(ドイツ、ウィルミントンのE.I. duPont de Nemoirs & Companyの登録商標)、TEFLON(登録商標)、ブナゴム等のようなエラストマーを含んでいる。絶縁本体770もエラストマーを含んでいる場合、アイソレーションガスケット782は同じ材料であってもよい。後者の実施態様においては、アイソレーションガスケット782と絶縁本体770は、モノリシックであってもよい。即ち、単一片として形成されてもよい。しかしながら、アイソレーションガスケット782は取替え又は洗浄に取り外しやすくすることができるように絶縁本体770と分かれていることが好ましい。
【0042】
図10は絶縁本体770全体に取付けられているアイソレーションガスケット782を示す実施態様であり、図8及び図9は他の実施態様である。後者の実施態様においては、絶縁本体770は一部用いられずに導電性コネクタ776の上面を暴露し、アイソレーションガスケット782が配置されている。従って、アイソレーションガスケット782は導電性コネクタ776の一部と接触している。この設計には、内部電気コンタクトパッド772が金を含む時のような材料コストがかなりかかる場合に有利である内部電気コンタクトパッド772に用いるべき材料が少なくなる。当業者は他の実施態様も認識するであろう。
【0043】
処理中、アイソレーションガスケット782は基板メッキ面の周辺部とのコンタクトを維持し、残りの電気コンタクト要素466と基板との間をシールするように圧縮される。シールは電解溶液が基板の端と裏面を接触することを防止する。上記のように、メッキ反復性を高くするためには清浄なコンタクト面を維持することが必要である。従来のコンタクトリングの設計は、コンタクト面のトポグラフィが経時変化することからメッキ結果が一貫していなかった。内部電気コンタクトパッド772上に蓄積しそれらの特徴を変化させる堆積物をコンタクトリングが制限、又はほとんど最少にし、よって基板メッキ面に高度に反復可能で、一貫し、かつ一様なメッキを与える。
【0044】
図11は、コンタクトリング466の電気回路の可能な配置を示す単純化した概略図である。導電性部材765間に一様な電流分布を得るために、外部抵抗700が導電性部材の各々と連続して結合される。好ましくは、REXTとして示されている外部レジスタ700の抵抗値は回路の他のコンポーネントの抵抗より非常に大きい。図11に示されるように、各導電性部材765を介する電気回路は電源702と連続して接続したコンポーネントの各々の抵抗によって示されている。REは電解溶液の抵抗であり、典型的には陽極と電気コンタクトエレメント間の距離や電解溶液化学の組成に左右される。従って、RAは基板メッキ面754に隣接した電解溶液の抵抗である。RSは基板メッキ面754の抵抗であり、RCは導電性部材765と、内部電気コンタクトパッド772と基板メッキ面754との間の界面に生じる圧縮抵抗である。一般に、外部レジスタ(REXT)の抵抗値は少なくともΣR程度であり、ΣRはREとRAとRsとRcの合計である。好ましくは、外部レジスタ(REXT)の抵抗値はΣRよりかなり大きく、各連続回路の抵抗はREXTに近似する。
【0045】
典型的には、電源は電気コンタクトエレメント466の外部コンタクトパッド780のすべてに連結され、結果として内部電気コンタクトパッド772を通る平行な回路になる。しかしながら、内部電気コンタクトパッドと基板との界面抵抗は各内部電気コンタクトパッド772によって変動するので、より多くの電流が流れ、最低抵抗の位置でより多くのメッキが生じる。しかしながら、外部レジスタを各導電性部材765と連続して配置することにより、各導電性部材765を通過する電流の値又は量は主に外部レジスタの値によって制御される。それぞれの内部電気コンタクトパッド772間の電気的性質の変化は、基板上の電流分布を影響しない。一様な電流密度が一様なメッキの厚みに寄与するメッキ面を横切って生じる。外部レジスタは、また、プロセス順序の異なる基板間に一様な電流分布を与える。
【0046】
コンタクトリング466は内部電気コンタクトパッド772上の堆積物の蓄積に抵抗するように設計されているが、多数の基板メッキサイクルにつれて基板−パッド界面抵抗が増大してしまい、最終的に許容しえない値になる。外部レジスタを横切る電圧/電流をモニタしてこの問題を説明するために電子センサ/アラーム704が外部レジスタ700を横切って連結し得る。外部レジスタ700を横切る電圧/電流が高基板パッド抵抗を示すプレセット作動範囲外にある場合には、センサ/アラーム704が正しい測定の引き金になる。例えば、問題がオペレータによって修正されるまでメッキプロセスが閉鎖される。また、分離電源を各導電性部材765に接続することができ、基板に一様な電流分布を与えるように別個に制御しモニタすることができる。非常にスマートなシステム(VSS)は電流をモジュレートするために用いることができる。VSSは、典型的には、可変レジスタ、分離電源等の電流を供給及び/又は制御するために用いられる工業において既知の処理ユニットとデバイスの組合わせとを含んでいる。内部電気コンタクトパッド772の物理化学的、従って、電気的性質が経時変化するにつれてVSSがデータフィードバックを処理し分析する。データを予め確立された設定点と比較し、次にVSSが一様な堆積を確実にするために電流と電圧を変化を適切にする。
【0047】
図18は、電気コンタクトエレメントの他の実施態様の透視図である。図18に示されるように電気コンタクトエレメント1800は、導電性金属又は金属合金、例えば、ステンレス鋼、銅、銀、金、白金、チタン、タンタル、又は他の導電材料、又は導電材料の組合わせ、例えば、白金で被覆したステンレス鋼を含んでいる。電気コンタクトエレメント1800には、電気コンタクトエレメントを基板ホルダアセンブリに取付けるために適合させた上部取り付け部分1810と基板を受け取るために適合させた下部基板受け取り部分1820が含まれている。基板受け取り部分1820には、複数のコンタクトパッド又はバンプ1824が配置された、好ましくは一様に隔置された環状基板取り付け面1822が含まれている。基板が基板取り付け面1822上に配置された時、コンタクトパッド1824は基板の周囲の領域と物理的に接触して基板堆積表面上の電気メッキシード層に電気的に接触する。好ましくは、コンタクトパッド1824は、酸化に抵抗する白金又は金のような貴金属で被覆される。
【0048】
電気コンタクトエレメントの暴露面は、基板と接触するコンタクトパッドの表面を除いて親水性表面を得るために処理されるか又は親水性の性質を示す材料で被覆されることが好ましい。親水性材料や親水性表面処理は当該技術において既知である。親水性表面処理を提供する会社は、マサチューセッツ州ベッドフォードにあるMillipore Corp.である。親水性表面は、電気コンタクトエレメントの表面上での電解溶液のビーディングを著しく減少させ、電気コンタクトエレメントが電気メッキ浴又は電解溶液から取り出された後に電気コンタクトエレメントから電解溶液の滑らかなドリッピングを促進させる。電解溶液の放出を容易にする電気コンタクトエレメント上に親水性表面を与えることにより、電気コンタクトエレメント上の残留電解溶液によるメッキ欠損が著しく減少する。本発明者らは、電気コンタクトエレメント上の残留電解溶液ビーディングや続いて処理される基板上にもたらされるメッキ欠損を減少させるために電気コンタクトエレメントの他の実施態様においてこの親水性処理又はコーティングの適用を企図している。
【0049】
図12と図12Aを参照すると、電気コンタクトエレメント466の上に配置されることが好ましく、基板の裏面に圧力をかけるとともに基板メッキ面と電気コンタクトエレメント466との間の電気コンタクトを確実にするブラッダーアセンブリ470を含む基板ホルダエレメント464の実施態様が提供される。膨張式ブラッダーアセンブリ470は基板ホルダ板832上に配置される。従って、基板ホルダ板832の下面に配置されたブラッダー836は、基板821がはさまれたコンタクトエレメント466と反対に隣接している。流体源838は、流体、即ち、ガス又は液体をブラッダーに供給し、ブラッダー836を種々の程度まで膨らませることができる。一方、基板が基板ホルダ板838に装着されているこの基板ホルダの実施態様が示される。典型的には、トラストプレートは基板ホルダシステムに用いることができるのでトラストプレートが基板の裏面に対してバイアス力をかけ、前面のシード層にバイアスがかけられて電気コンタクトエレメントと接触する。
【0050】
ここで図12、図12A、図13を参照すると、ブラッダーアセンブリ470の実施態様の詳細が述べられる。基板ホルダ板832は、下面に形成された環状溝840と中央に配置された真空口841をもつほぼディスク状として示されている。1以上の入口842は、基板ホルダ板832内に形成され、相対して拡大された環状取り付けチャネル843と環状溝840に至る。急速ホース844は流体源838を入口842に結合して流体を供給する。真空口841は、好ましくは、圧力を選択的に供給するか又は基板821の裏面に真空を作るように適合させた真空/圧力ポンプシステム859に装着される。図12に示されるポンプシステム859はポンプ845と、交差バルブ847と、一般にはベンチュリとして知られる真空エゼクタ849とを含んでいる。有利に用いることができる真空エゼクタは、インディアナ州インディアナポリスのSMC Pneumatics, Inc.から市販されている。ポンプ845は市販の圧縮ガス源であってもよく、ホース851の一方の端に結合され、ホース851のもう一方の端は真空口841に結合している。ホース851は、圧力ライン853と、真空エゼクタ849が配置された真空ライン855に分かれている。流体フローは、圧力ライン853と真空ライン855の間のポンプ845との連絡を選択的にスイッチする交差バルブ847によって制御される。好ましくは、交差バルブの設定はOFFであり、よって流体がホース851を介していずれかの向きに流れることを制限する。ホース851に配置された閉鎖バルブ861は、流体が真空エゼクタ849を介して上流の圧力ライン855から流れることを防止する。
【0051】
流体減838がガス供給である場合、ホース851に結合することができ、よって分離圧縮ガス供給、即ち、ポンプ845の要求が省かれる。更に、分離ガス供給と真空ポンプによって裏面圧力と真空状態が供給されることができる。裏面圧力と裏面真空双方を可能にすることが好ましいが、単純化した実施態様は裏面真空のみを供給することができるポンプを含むことができる。しかしながら、下で説明されるように、裏面圧力が処理中に供給される場合に堆積の一様性を改善することができる。それ故、真空エゼクタと交差バルブを含む上記のもののような配置が好ましい。
【0052】
ここで図12Aと図14を参照すると、ほぼ円形リング状のマニホルド846が環状溝840に配置されている。マニホルド846は、内部ショルダ848と外部ショルダ850との間に配置された取り付けレール852を含んでいる。取り付けレール852は、環状取り付けチャネル843に少なくとも部分的に挿入されるように適合している。マニホルド846内に形成された複数の流体出口854は入口842とブラッダー836との間を連絡する。Oリングのようなシール837は、入口842と出口854と一直線に環状マニホルドチャネル843内に配置され、基板ホルダ板832で固定されて確実に気密シールにする。ネジのような図示されていない慣用のファスナは、マニホルド846と基板ホルダ板832内に形成された図示されていない協働するネジ穴を介してマニホルド846を基板ホルダ板832に固定するために用いることができる。
【0053】
ここで図15を参照すると、ブラッダー836はそれぞれの端に環状リップシール856、又はノジュラをもつ伸長したほぼ半チューブ片として断面で示されている。図12Aには、内部ショルダ848と外部ショルダ850上に配置されたリップシール856が示されている。ブラッダー836の一部は、環状溝840より幅がわずかに小さい、例えば、数ミリメートルのマニホルド846で環状溝840の壁に対して圧縮されている。従って、マニホルド846、ブラッダー836、環状溝840は協働して流体の漏れないシールを形成する。流体の減量を防ぐために、ブラッダー836は、好ましくはシリコーンゴム又は電解溶液に化学的に不活性でありかつ信頼できる弾性を示す匹敵するエラストマーのような流体を通さない材料から構成されている。必要とされる場合には対応するカバリング857を図15に示されるようにブラッダー836上に配置することができ、接着剤結合又は熱結合によって固定することができる。カバリング857は、好ましくはVITON(登録商標)(ドイツ、ウィルミントンのE.I. duPont de Nemoirs & Companyの登録商標)、ブナゴム等のエラストマーを含んでいる。被覆は、例えば、KEVLAR(登録商標)(ドイツ、ウィルミントンのE.I. duPont de Nemoirs & Companyの登録商標)で強化されてもよい。実施態様においては、カバリング857とブラッダー836は同じ材料を含んでいる。カバリング857は、ブラッダー836が破壊しやすい場合に特に適用される。また、ブラッダー836の厚さは、穴が開く可能性を減少させるために製造中に簡単に大きくすることができる。好ましくは、被覆されない場合、ブラッダー836の暴露面とカバリング857の暴露面は、電気コンタクトエレメントの表面を上記のように親水性表面にするために被覆又は処理される。ヘッドアセンブリがプロセスセルの上に持ち上げられた後、親水性表面によって残留電解溶液のドリッピングと除去が促進する。
【0054】
入口842と出口854の正確な数は、具体的な適用に従って変動してもよい。例えば、図12は2つの入口と対応する出口とを示しているが、他の実施態様には流体をブラッダー836に供給する単一の流入口が用いられている。
【0055】
動作中、基板821は基板ホルダ板832の下面に固定することにより容器本体802に導入される。これは、基板821と基板ホルダ板832間の空間をポート841を介して真空にするためにポンプシステム159と係合し、よって真空状態にすることにより達成される。次に、流体源838から入口842へ空気又は水のような流体を供給することによりブラッダー836を膨らませる。流体は、マニホルド出口854を介してブラッダー836に送られ、よって電気コンタクトエレメント466のコンタクト部に対して一様に基板821を加圧する。次に電気メッキプロセスが実行される。次に電解溶液を基板821にプロセスセルの中へポンプで送り暴露した基板メッキ面820と接触させる。電源により電気コンタクトエレメント466を介して基板メッキ面820に対して負のバイアスがかけられる。電解溶液は基板メッキ面820を横切って流れるので、電解溶液中のイオンは表面820と表面820上の堆積物に引き付けられて所望の被膜を形成する。
【0056】
可撓性であることから、ブラッダー836は変形して基板裏面と電気コンタクトエレメント466のアスペラティに適合する。対応するブラッダー836は基板821の裏面の周辺部で流体の漏れないシールを与えることにより電解溶液が基板821の裏面に混入することを防止する。一旦膨張すると、一様な圧力が電気コンタクトエレメント466に下向きに送られて基板821と電気コンタクトエレメント466がインタフェースするすべての点でほぼ等しい力を得る。力は、流体源838によって供給される圧力の関数として変動し得る。更に、ブラッダーアセンブリ470の有効性は電気コンタクトエレメント466の構造に左右されない。例えば、図12は複数の不連続のコンタクトピンを有するピン構造を示すが、電気コンタクトエレメント466は連続面であってもよい。
【0057】
ブラッダー836によって基板821に送られる力が可変であることから、コンタクトリング466によって供給される電流を調整し得る。上記ののように、酸化物層は電気コンタクトエレメント466上に形成され、電流を制限するために作用する。しかしながら、ブラッダー836の圧力を上げると酸化に基づく電流制限を相殺することができる。圧力が高くなるにつれて、マリアブル酸化物層が打ち消され、電気コンタクトエレメント466と基板821との間の優れたコンタクトが生じる。この能力におけるブラッダーの有効性は、電気コンタクトエレメント466の形を変えることにより更に改善することができる。例えば、ナイフエッジ形はまん丸でないエッジ又はフラットエッジより容易に酸化物層を浸透すると思われる。
【0058】
更に、膨らんだブラッダー836により得られた流体の漏れないシールは、ポンプ845が処理前、処理中、処理後に選択的に或いは連続して裏面の真空又は圧力を維持することを可能にする。しかしながら、一般に、ブラッダー836が処理中に連続ポンピングせずに裏面真空状態を維持することがわかったことから、電気メッキプロセスセル400へと電気メッキプロセスセル400から基板の搬送中にのみ真空を維持するようにポンプ845が行われる。従って、上記ブラッダー836を膨らませつつ、例えば、交差バルブ847上のOFF位置を選択することによりポンプシステム859を解放することにより裏面真空状態が同時に取り除かれる。
【0059】
ポンプシステム859の解放は突然であっても漸進的プロセスを含んでもよく、よって真空状態がランプダウンする。ランピングは膨らんでいるブラッダー836と同時に下がっている裏面の真空状態との間で交換制御を可能にする。この交換は、マニュアルで制御してもコンピュータによってもよい。
【0060】
上記のように、ブラッダー836が膨らみながら連続裏面真空ポンピングは必要なく、実際は基板を曲がらせ又はそらせることがあり望ましくない堆積結果となる。しかしながら、処理すべき基板の“そり”作用を引き起こすために基板820に裏面圧をかけることは望ましいことである。基板のそり(即ち、表面を曲げる)により基板の半径を横切って望ましい堆積プロファイルをもたらすことができる。従って、ポンプシステム859は基板裏面に真空又は圧力状態を選択的に与えることができる。200mm基板の場合、基板をそらせるために5 psiまでの裏面圧が好ましい。基板が典型的には成形のしやすさの尺度を示すことから、裏面圧によって基板が電解溶液の上向きの流れに相対してそり或いは凸形をとる。そりの程度はポンプシステム859によって供給される圧力に従って可変である。
【0061】
図12が電気コンタクトエレメント466にほぼ等しい直径で基板裏面の相対的に小さい周辺部を被覆するのに十分な表面積をもつブラッダー836の実施態様を示しているが、ブラッダーアセンブリ470は形が変動してもよい。従って、ブラッダーアセンブリは基板821の表面積の増大を被覆するために流体を通さない材料を用いて作ることができる。
【0062】
図19は、基板ホルダアセンブリの他の実施態様の部分的な断面図である。他の基板ホルダアセンブリ1900は、膨らませられるブラッダー836が中間基板ホルダ板1910の背面に装着された上記のブラッダーアセンブリ470を含んでいる。好ましくは、膨らませられるブラッダー836の一部は接着剤又は他の結合材料を用いて中間基板ホルダ板1910の背面1912に密封して装着されている。中間基板ホルダ板1910の前面1914は処理すべき基板821を受け取るように適合し、エラストマーOリング1916が中間基板ホルダ板1910の前面1914上の環状グルーブ1918内に配置されて基板背面の周辺部と接触している。エラストマーOリング1916は、基板背面と中間基板ホルダ板の前面との間をシールする。好ましくは、中間基板ホルダ板には、基板の裏面に加えた真空力を用いて基板ホルダ上に基板を固定することを容易にする真空ポート841と流体が連絡しているプレート通って伸びている複数の穴又は孔1920が含まれる。基板ホルダアセンブリのこの他の実施態様によれば、膨らませられるブラッダーは処理される基板と直接接触しないので、基板搬送中に膨らませられるブラッダーを切断又は損傷の危険が著しく減少する。エラストマーOリング1916は、好ましくは、基板と接触させるために、電気コンタクトエレメントの表面についての上記のように親水性面を与えるように被覆又は処理され、エラストマーOリング1916は適切なコンタクトを確実にし基板にシールするために必要に応じて置き換えられる。
【0063】
実施態様においては、堆積した被膜の一様性、従って、堆積した被膜の厚さの最大偏差は平均被膜厚さの約2%であり、標準電気メッキプロセスは、典型的には最もよくて約5.5%以内の均一性に達する。しかしながら、ヘッドアセンブリの回転は、ある場合には、特に、電解溶液化学、電解溶液フロー又は他のパラメータのような処理パラメータを調整することにより電気メッキ堆積の一様性が得られる場合には、一様な電気メッキ堆積を得るのにヘッドアセンブリの回転は必要ない。
【0064】
図6、電気メッキプロセスセル400の断面図に戻ると、基板ホルダアセンブリ450はプロセスセル420の上に配置されている。プロセスセル420は、一般に、ボウル430と、容器本体472と、陽極アセンブリ474と、フィルタ476とを含んでいる。好ましくは、陽極アセンブリ474は容器本体472の下に配置されかつ容器本体472の下部に装着され、フィルタ476は陽極アセンブリ474と容器本体472との間に配置されている。容器本体472は、好ましくは、セラミックス、プラスチックス、PLEXIGLAS(登録商標)(アクリル)、レキサン、PVC、CPVC、又はPVDFのような電気的絶縁材料から構成される円筒体である。また、容器本体472は、ステンレス鋼、ニッケル又はチタンのような金属から製造することができ、TEFLON(登録商標)、PVDF、プラスチック、ゴム又は電解溶液に溶解しない材料の他の組合わせのような絶縁層で被覆され、電極、即ち、ECPシステムの陽極と陰極から電気的に絶縁され得る。容器本体472は、好ましくは、基板メッキ面とシステムによって処理される基板の形にあうような大きさで適合し、基板は、典型的には形が円形か又は矩形である。容器本体472の好ましい実施態様は、内径が基板直径とほぼ同じ寸法又はわずかに大きい円筒状セラミックチューブを含んでいる。本発明者らは、代表的なECPシステムに典型的に必要とされる回転運動が容器本体が基板メッキ面の大きさにほぼあっている時には一様なメッキ結果を得るために必要とされないことを発見した。
【0065】
容器本体472の上部は、半径方向に外向きに伸びて環状せき478を形成している。せき478は電解溶液コレクタ440の内壁446上に伸び、電解溶液を電解溶液コレクタ440へ流れさせる。せき478の上面は、好ましくは電気コンタクトエレメント466の下面と適合している。好ましくは、せき478の上面は、内部環状平坦部分480と、中間傾斜部分482と、外部傾斜部分484とを含んでいる。基板が処理中の位置に配置された時、基板メッキ面は容器本体472の円筒状開口の上に配置され、電気コンタクトエレメント466の下面とせき478の上面との間に電解溶液の隙間ができる。電気コンタクトエレメント466の下面は、内部平坦部分480とせき478の中間傾斜部分の上に配置されている。外部下り傾斜部分484は下向きに傾斜して電解溶液コレクタ440への電解溶液の流れを容易にする。
【0066】
容器本体472の下部は半径方向に外向きに伸びて容器本体472をボウル430に固定するための下部環状フランジ486を形成している。環状フランジ486の外寸、即ち、外周は開口444の寸法や電解溶液コレクタ440の内周より小さい。これらの相対寸法はプロセスセル420を電気メッキプロセスセル400から取り出し置き換えることを可能にする。好ましくは、複数のボルト488が環状フランジ486上に固定して配置され、ボウル430上のボルト孔と適合することによって下向きに伸びている。複数の取外し可能なファスナナット490がプロセスセル420をボウル430に固定する。エラストマーOリングのようなシールは容器本体472とボウ430との間にボルト488から半径方向に内向きに配置されてプロセスセル420からの漏れを防止する。ナット/ボルトの組合わせは、メンテナンス中のプロセスセル420のコンポーネントの取り出しや置き換えを速く簡単にするのに役立つ。
【0067】
好ましくは、フィルタ476は容器本体472の下部開口に装着され完全に覆われ、陽極アセンブリ474はフィルタ476の下に配置される。スペーサ492は、フィルタ476と陽極アセンブリ474の間に配置される。好ましくは、フィルタ476とスペーサ492と陽極アセンブリ474は、ネジ及び/又はボルトのような取外し可能なファスナを用いて容器本体472の下面に留められる。また、フィルタ476とスペーサ492と陽極アセンブリ474は、ボウル430に取外し可能に固定される。
【0068】
陽極アセンブリ474は、好ましくは、電解溶液中の金属源として働く消費可能陽極を含んでいる。また、陽極アセンブリ474は、非溶極を含み、電気メッキすべき金属は電解液溶解システム220から電解溶液の中に供給される。図6に示されるように、陽極アセンブリ474は多孔質陽極エンクロージャ494が銅のような電気メッキされるべき金属と同じ金属からできていることが好ましい自動閉鎖モジュールである。また、陽極エンクロージャ494はセラミックス又は高分子膜のような多孔質材料からできている。銅の電気化学メッキ用高純度銅のような可溶性金属496は、陽極エンクロージャ494内に配置される。可溶性金属496は、好ましくは金属粒子、ワイヤ又は穴あきシートを含む。多孔質陽極エンクロージャ494は、また、陽極エンクロージャ494内で溶解金属によって生成した微粒子を保持するフィルタとして働く。非溶極と比べて、消費可能、即ち、可溶性陽極はガス発生のない電解溶液を与え、電解溶液中の金属を連続的に補充する必要が最少になる。
【0069】
陽極電極コンタクト498は陽極エンクロージャ494を通って挿入されて電源から可溶性金属496に電気的に接続される。好ましくは、陽極電極コンタクト498は、チタン、白金又は白金被覆ステンレス鋼のような電解溶液に不溶な導電材料から製造される。陽極電極コンタクト498はボウル430を通って伸び、電源に接続される。好ましくは、陽極電気コンタクト498には、陽極電気コンタクト498をボウル430に固定するファスナナット499のネジ込み部497が含まれ、エラストマーワッシャのようなシール495はファスナナット499とボウル430との間に配置されてプロセスセル420からの漏れを防止する。
【0070】
ボウル430は、一般に、円筒部分502と底部分504を含んでいる。上部環状フランジ506は、円筒部分502の上方から半径方向に外向きに伸びている。上部環状フランジ506には、容器本体472の下部環状フランジ486からのボルト488の数と適合する複数の孔508が含まれている。ボウル430の上部環状フランジ506と容器本体472の下部環状フランジ486を固定するために、ボルト488は孔508を通って挿入され、ボルト488に留められる。好ましくは、上部環状フランジ506の外寸、即ち、外周は下部環状フランジ486の外寸、即ち、外周とほぼ同じである。好ましくは、ボウル430の上部環状フランジ506の下面は、プロセスセル420がメインフレーム214上に配置される時にメインフレーム214の支持フランジ上に載せられる。
【0071】
円筒部分502の内周によって、陽極アセンブリ474とフィルタ476が適合する。好ましくは、フィルタ476と陽極アセンブリ474の外寸は円筒部分502の内寸よりわずかに小さくてフィルタ476に流れ込む前に陽極アセンブリ474に流れ込む電解溶液のかなりの部分をまず進める。ボウル430の底部分504には、電解液溶解システム220から電解溶液供給ラインに接続する電解溶液入口510が含まれている。好ましくは、陽極アセンブリ474は、ボウル430の円筒部分502のほぼ中間部に配置されて底部分504上に陽極アセンブリ474と電解溶液入口510との間に電解溶液フローの隙間を与える。
【0072】
電解溶液入口510と電解溶液供給ラインは、好ましくは、プロセスセル420の簡単な取り外しと置き換えを容易にする解放可能コネクタによって接続される。プロセスセル420がメンテナンスを必要とする時、電解溶液はプロセスセル420から取り出され、電解溶液供給ラインにおける電解溶液フローが止められ、取り出される。電解溶液供給ラインのコネクタは電解溶液入口510から解放され、陽極アセンブリ474への電気的接続も離される。ヘッドアセンブリ410は上げられるか又は回転してプロセスセル420を取り外すためのクリアランスを生じる。次にプロセスセル420は、メインフレーム214から取り外され、新しい又は再調整したプロセスセルがメインフレーム214の中に置き換えられる。
【0073】
また、ボウル430はメインフレーム214の支持フランジに固定することができ、容器本体472が陽極とフィルタと共にメンテナンスのために取り外される。この場合、陽極アセンブリ474と容器本体472をボウル430に固定しているナットはアノードアセンブリ474と容器本体472の取外しを容易にするために取り外される。新しい又は再調整した陽極アセンブリ474と容器本体472は、次にメインフレーム214内に置き換えられ、ボウル430に固定される。
【0074】
図20はカプセルに入れられた陽極の実施態様の断面図である。カプセルに入れられた陽極2000には、金属が陽極板2004から溶解されるにつれて生成した“陽極スラッジ”又は微粒子をろ過又は捕捉する透過できる陽極エンクロージャが含まれる。図20に示されるように、消費可能な陽極板2004はカプセルに入れられた親水性陽極膜2002内に閉鎖された銅の固体片を含んでいる。好ましくは、銅は高純度の酸素を含まない銅である。陽極板2004は、ボウルの底を通って伸びる複数の電気コンタクト又はフィードスルー2006で固定し支持される。電気コンタクト又はフィードスルー2006は、カプセルに入れられた陽極膜2002を通って陽極板2004の底面へ伸びている。電解溶液のフローは、陽極とボウル側壁間の隙間を通ってボウル430の底部に配置された電解溶液入口510から矢印Aで示されている。電解溶液は、カプセルに入れられた陽極膜と陽極板間の隙間へ、また、隙間から浸透することによりカプセルに入れられた陽極膜2002にも流れ込み、矢印Bで示されている。好ましくは、カプセルに入れられた陽極膜2002は、空隙率が約60%〜80%、更に好ましくは約70%、孔サイズが約0.025μm〜約1μm、更に好ましくは約0.1μm〜約0.2μmの変性ポリフッ化ビニリデン膜のような親水性多孔質膜を含んでいる。親水性多孔質膜の一例は、マサチューセッツ州ベドフォードにあるミリポアコーポレーションから入手できるDurapore Hydrophilic Membraneである。電解溶液がカプセルに入れられた膜に流れ込むにつれて、溶解している陽極で生じる陽極スラッジや微粒子がカプセルに入れられた膜によってろ過又は捕捉される。従って、カプセルに入れられた膜は電気メッキプロセス中の電解溶液の純度を改善し、陽極スラッジや混入微粒子による電気メッキプロセス中の基板に対する欠陥の形成が著しく減少する。
【0075】
図21は、カプセルに入れられた陽極の他の実施態様の断面図である。陽極板2004は電気フィードスルー2006上に固定し支持されている。陽極板2004の上と下にそれぞれ配置されたカプセルに入れられた上膜2008とカプセルに入れられた下膜2010は、陽極板2004の周りに配置された膜支持リング2012に装着される。上と下のカプセルに入れられた膜2008、2010は、カプセルに入れられた陽極のカプセルに入れられた膜についての上記リストからの材料を含んでいる。膜支持リング2012は、好ましくは、プラスチック又は他のポリマーのようなカプセルに入れられた膜と比べて比較的剛性の材料を含んでいる。バイパス流入口2014は、ボウル430の底部を通って、また、カプセルに入れられた下膜2010を通って配置され、カプセルに入れられた膜と陽極板間の隙間へ電解溶液を導入する。バイパス出口2016は膜支持リング2012に連結され、ボウル430を通って伸びて過剰の電解溶液のフローを陽極スラッジ又は生成微粒子と共にカプセルに入れられた陽極から図示されていない廃棄物ドレインへ進める。
【0076】
好ましくは、バイパス流入口2014と主電解溶液入口510の中の電解溶液のフローは、フローコントロールバルブ2020、2022によって個々に制御され、それぞれ入口に連結された流体ラインに沿って配置され、バイパス流入口2014内の流体圧は、好ましくは主電解溶液入口510内の圧力より高い圧力で維持されている。主電解溶液入口510からボウル430内部の電解溶液のフローは矢印Aで示され、カプセルに入れられた陽極2000内部の電解溶液のフローは矢印Bで示されている。カプセルに入れられた陽極へ導入される電解溶液の一部は、バイパス出口2016を通ってカプセルに入れられた陽極から流れる。カプセルに入れられた陽極への専用バイパス電解溶液供給部を設けることにより、溶解している消費可能陽極から生じた陽極スラッジ又は微粒子は陽極から連続して除去され、よって電気メッキプロセスの間、電解溶液の純度を向上させる。
【0077】
図22は、カプセルに入れられた陽極の他の実施態様の断面図である。カプセルに入れられた陽極2000のこの実施態様には、陽極板2004と、複数の電気フィードスルー2006と、カプセルに入れられた上膜2008と、カプセルに入れられた下膜2010と、膜支持リング2012とが含まれる。陽極板2004は、複数の複数の電気フィードスルー2006上に固定し支持されている。上部と底部のカプセルに入れられた膜2008、2010は膜支持リング2012に装着されている。バイパス出口2016は、膜支持リング2012に連結し、ボウル430を通って伸びる。カプセルに入れられた陽極のこの実施態様は、好ましくはカプセルに入れられた第1陽極について記載された材料を含むことが好ましい。カプセルに入れられた下膜2010には、主電解溶液入口510のかなり上に配置された1以上の開口2024が含まれている。開口2024は、主電解溶液入口510から電解溶液フローを受け取るように適合され、好ましくは主電解溶液入口510の内周とほぼ同じサイズである。主電解溶液入口510から電解溶液のフローは矢印Aで示され、カプセルに入れられた陽極内の電解溶液のフローは矢印Bで示されている。陽極溶解から生じる陽極スラッジと微粒子の一部を保有する電解溶液の一部はカプセルに入れられた陽極からバイパス出口2016へ流れる。
【0078】
図23は、カプセルに入れられた陽極の他の実施態様の断面図である。カプセルに入れられた陽極2000のこの実施態様には、陽極板2002と、複数の電気フィードスルー2006と、カプセルに入れられた上膜2008と、カプセルに入れられた下膜2010と、膜支持リング2012とが含まれている。陽極板2004は、複数の電気フィードスルー2006上に固定され支持されている。上と下のカプセルに入れられた膜2008、2010は、膜支持リング2012に装着されている。バイパス流入口2014は、ボウル430の底部と、カプセルに入れられた下膜2010を通って配置され、カプセルに入れられた膜と陽極板間の隙間へ電解溶液を導入する。カプセルに入れられた陽極のこの実施態様は、好ましくはカプセルに入れられた陽極について記載された材料を含んでいる。好ましくは、バイパス流入口2014と主電解溶液入口510を通る電解溶液のフローは、それぞれコントロールバルブ2020、2022によって個々に制御される。主電解溶液入口510からの電解溶液のフローは矢印Aで示され、カプセルに入れられた陽極を通る電解溶液のフローは矢印Bで示されている。この実施態様の場合、溶解している陽極板によって生じた陽極スラッジと微粒子は、電解溶液が膜を通過するにつれてカプセルに入れられた膜によってろ過し捕捉される。
【0079】
図16は、電解液溶解システム220の概略図である。電解液溶解システム220は、電気メッキプロセス用電気メッキプロセスセルに電解溶液を供給する。電解液溶解システム220は、一般に、主電解溶液タンク602と、計量モジュール603と、ろ過モジュール605と、化学アナライザモジュール616と、電解溶液廃棄ドレイン620によって分析モジュール616に連結した電解溶液廃棄処理システム622とを含んでいる。1以上のコントローラは、主タンク602内の電解溶液の組成と電解液溶解システム220の動作を制御する。好ましくは、コントローラは独立して作用可能であるが、ECPシステム200のコントローラ222で統合されている。
【0080】
主電解溶液タンク602には、電解溶液のレザバーが設けられ、1以上の流体ポンプ608とバルブ607を介して電気メッキプロセスセルの各々に連結する電解溶液供給ライン612が含まれる。主タンク602と熱的に接続して配置された熱交換体624又はヒータ/チラーは、主タンク602に貯蔵された電解溶液の温度を制御する。熱交換体624はコントローラ610に接続され作動する。
【0081】
計量モジュール603は、供給ラインによって主タンク602に連結され、複数の原料タンク606、又は供給ビンと、複数のバルブ609と、コントローラ611とを含んでいる。原料タンク606は、電解溶液を構成するのに必要とされる化学薬品を含み、典型的には、電解溶液を構成する消イオン水原料タンクと硫酸銅(CuSO4)原料タンクを含んでいる。他の原料タンク606は、硫酸(H2SO4)、塩化水素(HCl)とグリコールのような種々の添加剤を含むことができる。各原料タンクは、好ましくはカラーコード化され、計量モジュール内のマッチングインレットコネクタに連結するように適合したユニークなメイティングアウトレットコネクタと適合する。原料タンクのカラーコーディングと原料タンクのユニークなコネクタとの適合により、原料タンクを交換又は置換する時に人のオペレータによる誤差が著しく減少する。
【0082】
消イオン水原料タンクは、好ましくは、メンテナンス中にシステムを洗浄するシステムに消イオン水を供給する。各原料タンク606に付随したバルブ609は、主タンク602への化学薬品のフローを調節し、バタフライバルブ、スロットルバルブ等の多くの市販のバルブのいずれであってもよい。バルブ609の活性化は、信号を受け取るコントローラに接続されることが好ましいコントローラ611によって達成される。
【0083】
電解溶液ろ過モジュール605には、複数のフィルタタンク604が含まれている。電解溶液リターンライン614は、プロセスセルの各々と1以上のフィルタタンク604の間に接続されている。フィルタタンク604は、再使用のために主タンク602に電解溶液を戻す前に使用した電解溶液中の望ましくない内容物を除去する。主タンク602はフィルタタンク604に連結して主タンク602中の電解溶液の再循環とろ過を容易にする。フィルタタンク604を通って主タンク602からの電解溶液を再循環することにより、電解溶液中の望ましくない内容物がフィルタタンク604で連続して除去されて一貫したレベルの純度を維持する。更に、主タンク602とろ過モジュール605との間に電解溶液を再循環することにより、電解溶液中の種々の化学薬品を十分に混合させることができる。
【0084】
電解液溶解システム220には、電解溶液の化学組成のリアルタイム化学分析を与える化学アナライザモジュール616が含まれる。アナライザモジュール616は、サンプルライン613によって主タンクに、また、出口ライン621によって廃棄処理システム622に流体で結合している。アナライザモジュール616は、一般に、少なくとも1つのアナライザとアナライザを作動させるコントローラを含んでいる。具体的な処理手段に要するアナライザの数は、電解溶液の組成に左右される。例えば、第1アナライザは有機物質の濃度をモニタするために用いることができ、第2アナライザは有機化学薬品に必要である。図16に示された個々の実施態様においては、化学アナライザモジュール616は自動滴定アナライザ615とサイクリックボルタメトリストリッパ(CVS)617を含んでいる。両アナライザは種々の供給業者から市販されている。有利に用いることができる自動滴定アナライザはParker Systemsから入手でき、サイクリックボルタメトリストリッパはECIから入手できる。自動滴定アナライザ615によって塩化銅は酸のような無機物質の濃度が求められる。CVS617によって電解溶液に用いることができる種々の添加剤のような有機物質とプロセスセルから主タンク602に戻る処理から生じる副生成物の濃度が求められる。
【0085】
図16に示されるアナライザモジュールは単なる例示である。他の実施態様においては、各アナライザは別個の供給ラインによって主電解溶液タンクに結合してもよく、別個のコントローラによって作動されてもよい。当業者は他の実施態様を認識するであろう。
【0086】
動作中、電解溶液の試料は試料ライン613を介してアナライザモジュール616に流れる。試料は周期的に用いることができるが、好ましくは、電解溶液の連続流はアナライザモジュール616に維持される。試料の一部は自動滴定アナライザ615に送られ、一部は適切な分析のCVS617に送られる。コントローラ619は、データを作成するためにアナライザ615、617を作動させる命令信号を開始する。次に化学アナライザ615、617からの情報をコントローラ222に連絡する。コントローラ222は情報を処理し、使用者特定化学用量パラメータを含む信号を計量コントローラ611に伝達させる。受信した情報を用いて1以上のバルブ609を作動させることにより原料化学補充率に対してリアルタイムで調整し、よって電気メッキプロセス全体に電解溶液の所望の、好ましくは一定の化学組成が維持される。次にアナライザモジュールからの廃棄電解溶液が出口ライン621を経て廃棄処理システム622に流れる。
【0087】
実施態様は電解溶液のリアルタイムモニタリングと調整を用いるが、種々の代わりを用いることができる。例えば、計量モジュール603は、化学アナライザモジュール616によって得られた出力値を観察するオペレータが手動で制御することができる。好ましくは、システムソフトウェアは自動リアルタイム調整モードとオペレータ(マニュアル)モード双方が可能である。更に、複数のコントローラが図16に示されているが、化学アナライザモジュール616、計量モジュール603、又は熱交換体624のようなシステムの種々のコンポーネントを作動させるために単一のコントローラを用いることができる。他の実施態様は当業者に明らかになるであろう。
【0088】
電解液溶解システム220には、使用した電解溶液、化学薬品、ECPシステムで用いた他の流体の安全な処分のために電解溶液廃棄処理システム622に連結した電解溶液廃棄ドレイン620が含まれる。好ましくは、電気メッキセルには、電解溶液廃棄ドレイン620への直接ライン連結部又は電解液溶解システム220を通って電解溶液を戻さずに電気メッキセルを取り出す電解溶液廃棄処理システム622が含まれる。電解液溶解システム220には、好ましくは、過剰の電解溶液を電解溶液廃棄ドレイン620にブリードオフするブリードオフコネクションが含まれる。
【0089】
好ましくは、電解液溶解システム220には、電解溶液から望ましくないガスを除去するように適合した1以上のデガサモジュール630が含まれる。デガサモジュールは、一般には、デガサモジュールを通過する流体からガスを分離する膜と遊離したガスを除去するための真空システムを含む。デガサモジュール630は、好ましくは、プロセスセル240に隣接した電解溶液供給ライン612上にインラインで配置されている。デガサモジュール630は、好ましくは、プロセルセル240にできるだけ近くに位置しているので電解液溶解システムからのほとんどのガスは電解溶液がプロセスセルに入る前にデガサモジュールによって除去される。好ましくは、各デガサモジュール630には、脱ガス電解溶液を各処理ステーション218の2つのプロセスセル240に供給する2つの出口が含まれる。また、デガサモジュール630は、各々プロセスセルのために設けられている。デガサモジュールは、多くの他の別の位置にも配置し得る。例えば、デガサモジュールは、フィルタ部分と共に又は主タンク又はプロセスセルを有する閉鎖ループシステム内にのように電解液溶解システム内の他の位置に配置し得る。他の実施態様として、デガサモジュールは電解溶液供給ライン612と共にインラインで配置されて電気化学メッキシステムのプロセスセル240のすべてに脱ガス電解溶液を供給する。更に、分離デガサモジュールは消イオン水供給ラインと共にインラインで又は閉鎖ループで配置され、消イオン水源から酸素を除去するために用いられる。消イオン水を用いて処理基板をすすぐことから、SRDモジュールに達する前に遊離酸素ガスは消イオン水から好ましく除去されるので電気メッキした銅は水洗プロセスによって酸化されないと思われる。デガサモジュールは当該技術において周知であり、市販の実施態様は種々の適用に用いるのにたいてい利用でき適合できる。市販のデガサモジュールは、マサチューセッツ州、ベッドフォードにあるMillipore Corp.から入手できる。
【0090】
図26aに示されるように、デガサモジュール630の実施態様には、流体、即ち、電解溶液を有する疎水性膜632と、膜の片面上の通路634と、膜の対向面上に配置された真空システム636とが含まれる。デガサモジュールのエンクロージャ638には入口640と1以上の出口642が含まれている。電解溶液がデガサモジュール630を通過するにつれて、ガスと電解溶液中の他のマイクロバブルが疎水性膜を通って電解溶液から分離され、真空システムによって除去される。図26bに示されるように、デガサモジュール630’ の他の実施態様には、疎水性膜632’ のチューブと疎水性膜632’ のチューブの周りに配置された真空システム636が含まれている。電解溶液は疎水性膜のチューブの内側に導入され、電解溶液がチューブ内の流体通路634を通過するにつれて、ガスと電解溶液中の他のマイクロバブルが疎水性膜632’ のチューブを通って電解溶液から分離し、チューブ周囲の真空システム636によって除去される。デガサモジュールの膜や他の多断面設計を横切る電解溶液のセルペンタイン通路を持つ設計を含むデガサモジュールの更に複雑な設計が企図される。
【0091】
図16に示されていないが、電解液溶解システム220は多数の他のコンポーネントを含むことができる。例えば、電解液溶解システム220には、好ましくは、SRDステーションのような基板洗浄システムのための化学薬品の貯蔵用タンクが1以上追加される。危険性材料連結部用の二重配管は、システム全体に化学薬品を安全に運搬されるように用いることができる。場合によっては、電解液溶解システム220には、ECPシステムに電解溶液供給部を追加するために追加又は外部電解溶液処理システムへの連結部が含まれる。
【0092】
図17は、RTAチャンバの断面図である。RTAチャンバ211は、好ましくはローディングステーション210に連結され、基板はローディングステーション搬送ロボット228によってRTAチャンバ211へ、また、RTAチャンバ211から搬送される。図2と図3に示されるように、ECPシステムは、好ましくはローディングステーション210の対称設計に対応するローディングステーション210の対向側に配置された2つのRTAチャンバ211を含んでいる。RTAプロセスチャンバは、一般に、当該技術において周知であり、RTAチャンバは、典型的には、基板処理システムに用いられて堆積した材料の性質が高められる。電気メッキ結果を高めるためにホットプレート設計や加熱ランプ設計を含む種々のRTAチャンバ設計を用いるECPシステム200が企図される。特に適切なRTAチャンバは、カリフォルニア州サンタクララにあるApplied materials, Inc.から入手できるWxZである。ホットプレートRTAチャンバが記載されるが、他のRTAチャンバも用いられる。
【0093】
RTAチャンバ211は、一般に、エンクロージャ902と、ヒータプレート904と、ヒータ907と、複数の基板ホルダピン906とを含んでいる。エンクロージャ902には、ベース908と、側壁910と、トップ912とが含まれている。好ましくは、コールドプレート913はエンクロージャの上部912の下に配置されている。また、コールドプレートはエンクロージャの上部912の一部として統合して形成される。好ましくは、反射絶縁皿状部914は、典型的には、石英、アルミナ、又は高温、即ち、約500℃より高い温度に耐えることができ、かつヒータ907とエンクロージャ902との間の熱絶縁体として働く他の材料のような材料から製造される。皿状部914は、ヒータプレート906に熱を送るために金のような反射材料で被覆することもできる。
【0094】
ヒータプレート904の物質は、システム内で処理される基板に比べて大きく、好ましくは炭化ケイ素、石英、又はRTAチャンバ211内の周囲ガスと反応せず、基板材料とも反応しない他の材料のような材料から製造される。ヒータ907は、典型的には、抵抗加熱要素又は導電性/輻射熱源を含み、加熱プレート906と反射絶縁皿状部914との間に配置される。ヒータ907は、ヒータ907を加熱するのに必要とされるエネルギーを供給する電源916に接続される。好ましくは、熱電対920はコンジット922に配置され、ベース908と皿状部914を通って配置され、ヒータ板904に伸びている。熱電対920はコントローラ222に連結され、コントローラへ温度測定を与える。次にコントローラは、温度測定と所望のアニール温度に従ってヒータ907によって供給された熱を上げたり下げたりする。
【0095】
エンクロージャ902は、好ましくはエンクロージャ902を冷却するために側壁910と熱接触しているエンクロージャ902の外側に配置された冷却部材918を含んでいる。また、図示されていない1以上の冷却チャネルはエンクロージャ902の温度を制御するために側壁910内に形成されている。トップ912の内部表面上に配置されたコールドプレート913はコールドプレート913に接近した位置にある基板を冷却する。
【0096】
RTAチャンバ211には、RTAチャンバへ、また、RTAチャンバから基板の搬送を容易にするためにエンクロージャ902の側壁910に配置されたスリットバルブ922が含まれている。スリットバルブ922によって、ローディングステーション210と連絡しているエンクロージャの側壁910上の開口924が選択的にシールされる。ローディングステーション搬送ロボット228は、図2を参照のこと、開口924を通ってRTAチャンバへ、また、RTAチャンバから基板を搬送する。
【0097】
基板ホルダピン906は、好ましくは石英、酸化アルミニウム、炭化ケイ素、又は他の高温抵抗材料から作られた遠位テーパ部材を含んでいる。各基板ホルダピン906は、ヒータプレート904を通って伸びている、好ましくは熱及び酸化抵抗材料からできたチューブコンジット926の中に配置されている。基板ホルダピン906は、均一な方法で基板ホルダピン906を移動するリフトプレート928に連結している。リフトプレート928は、RTAチャンバ内で基板をいろいろな縦の位置に置くことを容易にするためにリフトプレート928を移動させるリフトシャフト932を介してステッパモータのようなアクチュエータ930に装着されている。リフトシャフト932は、エンクロージャ902のベース908を通って伸び、シャフトの周りに配置されたシーリングフランジ934によってシールされる。
【0098】
基板をRTAチャンバ211に搬送するために、スリットバルブ922が開口され、基板が配置されたロボットブレードがローディングステーション搬送ロボット228によって開口を通ってRTAチャンバへ伸びる。ローディングステーション搬送ロボット228のロボットブレードによって基板がヒータプレート904の上のRTAチャンバ内に配置され、基板ホルダピン906がロボットブレードの上に基板を持ち上げるために上向きに伸びている。次にロボットブレードはRTAチャンバから引っ込み、スリットバルブ922が開口を閉じる。次に基板ホルダピン906は、ヒータプレート904から所望の距離に基板を下げるように引っ込める。場合によっては、基板ホルダピン906はヒータプレートと直接接触して基板を配置するように十分に引っ込めることができる。
【0099】
好ましくは、ガス入口936はエンクロージャ902の側壁910を通って配置されてアニール処理プロセスの間、RTAチャンバ211へ選択ガスを流すことができる。ガス入口936は、RTAチャンバ211へのガスのフローを制御するためにバルブ940を介してガス源938に接続されている。ガス出口942は、好ましくは、RTAチャンバ内のガスを排気するためにエンクロージャ902の側壁910の下の部分に配置され、好ましくは、チャンバの外側から大気の逆流を防止するためにリリーフ/チェックバルブ944に連結されている。場合によっては、ガス出口942は図示された真空ポンプに接続されてアニール処理の間、所望の真空レベルまでRTAチャンバを排気する。
【0100】
基板は、電気メッキセル内で電気メッキされた後にRTAチャンバ211内でアニールされ、SRDステーションで洗浄される。好ましくは、RTAチャンバ211はほぼ大気圧で維持され、RTAチャンバ211内部の酸素含量がアニール処理プロセスの間、約100 ppm未満に制御される。好ましくは、RTAチャンバ211内部の周囲環境は、窒素(N2)又は窒素(N2)と約4%未満の水素(H2)の組合わせを含み、RTAチャンバ211への周囲ガスフローは20リットル/分より大きく維持されて酸素含量が100 ppm未満に制御される。電気メッキ基板は、好ましくは約200℃〜約450℃の温度で約30秒〜30分、更に好ましくは約250℃〜約400℃の温度で約1分〜5分アニールされる。RTA処理は、典型的には、少なくとも50℃/秒の温度増加が必要である。アニール処理中に基板に必要とされる温度増加レートを与えるために、ヒータプレートは約350℃〜約450℃に維持され、基板は約0 mm、即ち、ヒータプレートと接触とアニール処理プロセス時間のヒータプレートから約20 mmとの間に配置される。好ましくは、コントローラ222は、RTAチャンバ内の所望の周囲環境とヒータプレートの温度を含むRTAチャンバ211の動作を制御する。
【0101】
アニール処理プロセスが完了した後、基板ホルダピン906はRTAチャンバ211から搬送する位置まで基板を持ち上げる。スリットバルブ922が開き、ローディングステーション搬送ロボット228のロボットブレードがRTAチャンバの中に伸び、基板の下に配置される。基板ホルダピン906が引っ込み基板がロボットブレードまで下がり、次にロボットブレードがRTAチャンバから引っ込む。次にローディングステーション搬送ロボット228は、図2及び図3の実施態様に示されるように、電気メッキ処理システムから除去するために処理した基板をカセット232の中に搬送する。
【0102】
図2に戻ると、ECPシステム200は、プラットホームの各コンポーネントの機能を制御するコントローラ222を含んでいる。好ましくは、コントローラ222はメインフレーム214の上に取り付けられ、プログラム可能なマイクロプロセッサを含んでいる。プログラム可能なマイクロプロセッサは、典型的には、ECPシステム200のすべてのコンポーネントを制御するために特に設計されたソフトウェアを用いてプログラムされる。コントローラ222は、システムのコンポーネントに電力を与え、オペレータがECPシステム200をモニタし作動させることができるコントロールパネル223を含んでいる。図2に示されるコントロールパネル223は、ケーブルによってコントローラ222に接続されるスタンドアローンモジュールであり、オペレータに簡単にアクセスされる。一般に、コントローラ222は、ローディングステーション210、RTAチャンバ211、SRDステーション212、メインフレーム214、処理ステーション218の動作を協働させる。更に、コントローラ222は、電気メッキプロセスに電解溶液を供給するために電解液溶解システム220のコントローラとも協働している。
【0103】
次に図2に示されるECPシステム200による典型的な基板電気メッキプロセス順序を説明する。複数の基板を含む基板カセットは、ECPシステム200のローディングステーション210における基板カセット受け入れエリア224に装入される。ローディングステーション搬送ロボット228は、基板カセット内の基板スロットから基板をつまみ上げ、基板を基板オリエンタ230に置く。基板オリエンタ230は、システムによって処理するために所望の向きに基板を向ける。次にローディングステーション搬送ロボット228は、基板オリエンタ230から配向基板を搬送し、SRDステーション212における基板パススルーカセット238内の基板スロットの1つに基板を配置する。メインフレーム搬送ロボット242は基板パススルーカセット238から基板をつまみ上げ、フリッパロボット248によって搬送するために基板を置く。フリッパロボット248は、基板の下にロボットブレードを回転させ、メインフレーム搬送ロボットブレードから基板をつまみ上げる。フリッパロボットブレード上の真空吸引グリッパがフリッパロボットブレード上に基板を固定し、フリッパロボットが基板を表を上にした位置から表を下にした位置にひっくり返す。フリッパロボット248によって、基板ホルダアセンブリ450において基板の表が下に回転し配置される。基板は、基板ホルダアセンブリ450の下に位置するが電気コンタクトエレメント466の上にある。次にフリッパロボット248は基板を解放して基板を電気コンタクトエレメント466の中に配置する。基板ホルダエレメント464が基板に向かって移動し、真空チャックが基板を基板ホルダエレメント464上に固定する。基板ホルダアセンブリ450上のブラッダーアセンブリ470によって基板裏面に対して圧力がかけられ、基板メッキ面と電気コンタクトエレメント466の間の電気コンタクトが確実になる。
【0104】
ヘッドアセンブリフレーム452は、プロセスセル420より上の処理中の位置に下げられる。この位置で基板はせき478の上平面より下にあり、プロセスセル420中に有する電解溶液と接触する。電源を活性化して電力、即ち、電圧と電流を陰極と陽極に供給して電気メッキプロセスを可能にする。電解溶液は、典型的には、電解溶液の間、電解液セルへ連続してポンプで送られる。陰極と陽極に供給される電力と電解溶液のフローはコントローラ222によって制御されて所望の電気メッキ結果を得る。好ましくは、ヘッドアセンブリが下がるにつれて、また、電気メッキプロセスの間、ヘッドアセンブリは回転する。
【0105】
電気メッキプロセスが完了した後、ヘッドアセンブリ410は基板ホルダアセンブリ450を上げ、基板を電解溶液から取り出す。好ましくは、基板ホルダアセンブリから残留電解溶液の除去を促進させる時間ヘッドアセンブリを回転させる。次に真空チャックと基板ホルダアセンブリのブラッダーアセンブリは、基板ホルダエレメント464から基板を解放し、基板ホルダエレメント464を上げてフリッパロボットブレードが電気コンタクトエレメントから処理した基板をつまみ上げることができる。フリッパロボットは、電気コンタクトエレメントにおいて処理基板の裏面の上でフリッパロボットブレードを回転させ、フリッパロボットブレード上の真空吸引グリッパを用いて基板をつまみ上げる。フリッパロボットは、基板ホルダアセンブリからの基板と共にフリッパロボットブレードを回転させ、基板を表が下向きの位置から表が上向きの位置へひっくり返し、基板をメインフレーム搬送ロボットブレード上に配置する。次にメインフレーム搬送ロボットは、SRDモジュール236の上に処理基板を搬送し配置する。SRD基板支持体が基板を持ち上げ、メインフレーム搬送ロボットブレードがSRDモジュール236から引っ込める。基板は、消イオン水又は消イオン水と上で詳述した洗浄液との組合わせを用いてSRDモジュール内で洗浄される。次に基板はSRDモジュールから搬送するために配置される。ローディングステーション搬送ロボット228はSRDモジュール236から基板をつまみ上げ、処理基板を堆積した物質の性質を高めるアニール処理プロセス用のRTAチャンバ211に搬送する。次にアニールした基板をローディングステーションロボット228によってRTAチャンバ211から搬送し、ECPシステムから除去するために基板カセットに戻す。上記順序は、ECPシステム200はECPシステム200においてほぼ同時に複数の基板に実行し得る。ECPシステムは、マルチスタック基板処理を与えるように適合され得る。
2.基板ホルダシステム
電解液セルにおいて基板を電解溶液に浸すことができる基板ホルダシステム14が記載される。基板ホルダシステム14は、電解溶液のレベルラインに相対して基板を含む基板ホルダアセンブリを傾けることができ、レベルラインはほぼ水平である。基板ホルダシステムのある実施態様は、基板を電解溶液に浸す間、基板を回転させることができる。浸漬中の基板の傾斜によって、空気泡又はエアブリッジが基板ホルダ及び/又は基板の下の電解溶液中に形成されることが制限される。この項は基板ホルダシステムの実施態様の構造と動作を記載する。
【0106】
図6は、上記のように、ヘッドアセンブリ410がx方向とy方向に基板ホルダアセンブリ450を動かすことができる実施態様を示す図である。図25は、基板ホルダアセンブリ2450を水平方向と垂直方向に動かすことができる基板ホルダシステム14の他の実施態様の部分断面図である。図25に示される基板ホルダシステム14の実施態様は、X方向とZ方向の基板ホルダアセンブリの運動のほかに水平からα角に基板ホルダアセンブリを傾けることを示している。この実施態様は、電解溶液に基板を浸している間、基板を回転させ、基板が基板ホルダアセンブリによって保持されていることを示している。基板ホルダシステム14には、回転可能ヘッドアセンブリ2410とヘッドアセンブリフレーム2452が含まれている。ヘッドアセンブリフレーム2452には、取り付けポスト2454と、シャフト2453と、ポストカバー2455と、カンチレバーアーム2456と、カンチレバーアームアクチュエータ2457と、ピボットジョイント2459が含まれている。取り付けポスト2454はメインフレーム214の本体に取り付けられ、ポストカバー2455は取り付けポスト2454の上部を被覆している。
【0107】
好ましくは、取り付けポスト2454は、取り付けポストを通って伸びているほぼ縦軸の周りにヘッドアセンブリフレーム2452の回転を可能にする取り付けポストの回転運動を矢印A1で示した向きに与える。その運動によって、一般に、ヘッドアセンブリ2410が電解液セルと並ぶようになる。
【0108】
カンチレバー2456の一端は、カンチレバーアームアクチュエータ2457のシャフト2453にピボット連結されている。カンチレバーアームアクチュエータ2457は、例えば、空気シリンダ、鉛ネジアクチュエータ、サーボモータ、又は他のタイプのアクチュエータである。カンチレバーアーム2456は、ピボットジョイント2459に取り付けスライド2460にピボット連結されている。カンチレバーアームアクチュエータ2457は、取り付けポスト2454に取り付けられている。ピボットジョイント2459は、ポストカバー2455に回転可能に取り付けられているのでカンチレバーアーム2456はピボットジョイントのポストカバーの周りに旋回させることができる。カンチレバーアームアクチュエータ2457を作動させると、ピボットジョイント2459の周りにカンチレバーアーム2456のピボット運動が矢印A2で示される方向に生じる。また、回転モータがカンチレバーアームアクチュエータ2457として設けられてもよく、回転モータの出力がポストカバー2455とピボットジョイント2459との間に直接連結している。回転モータの出力によって、ピボットジョイントの周りにカンチレバーアーム2456とヘッドアセンブリ2410が回転する。
【0109】
回転可能ヘッドアセンブリ2410は、ヘッドアセンブリフレーム2452の取り付けスライド2460に装着され、取り付けスライド2460はカンチレバーアーム2456の遠位端に配置されている。ピボットジョイント2459の周りに回転可能なヘッドアセンブリ2410を回転させると、水平に相対してピボットジョイント2459の周りに回転可能なヘッドアセンブリ2410の基板ホルダアセンブリ2450内に保持された基板の傾斜が生じる。カンチレバーアームアクチュエータ2457が引っ込められる時、カンチレバーアーム2456によって図6に示されるようにプロセスセル420からヘッドアセンブリ2410が上がる。回転可能なヘッドアセンブリ2410のこの傾斜によって水平に相対して基板が傾けられる。基板のその傾斜は、電気メッキプロセスセル240から/電気メッキプロセスセル240への基板ホルダアセンブリの除去及び/又は置換で用いられる。カンチレバーアームアクチュエータ2457が伸びる時、カンチレバーアーム2456はヘッドアセンブリ2410をプロセスセル420に向かって移動させて基板を水平に近い角度にする。基板は、ECP中ほぼ水平な位置にあることが好ましい。
【0110】
回転可能なヘッドアセンブリ2410には、取り付けスライド2460に滑り可能に連結した回転するアクチュエータ2464が含まれている。取り付けスライド2460は、回転可能なヘッドアセンブリ2410の垂直運動を案内する。ヘッドアセンブリ2410の縦の置換の原動力となるヘッドリフトアクチュエータ2458が取り付けスライド2460上に配置される。ヘッドリフトアクチュエータ2458のシャフト2468は、回転アクチュエータ2464の本体に装着されたリフトガイド2466を通って挿入される。好ましくは、シャフト2468は、種々の垂直位置間でリフトガイドを矢印A3によって示される向きに移動させる鉛ネジ型シャフトである。回転可能なヘッドアセンブリ2410のこのリフティングは、電気メッキプロセスセル240から基板ホルダアセンブリを取り出し及び/又は置換するために使用し得る。プロセスセルからの基板の取り出しは、ロボットが回転可能ヘッドアセンブリ2410から基板を取り出すことができるように基板を配置することが必要である。
【0111】
回転するアクチュエータ2464は、シャフト2470を介して基板ホルダアセンブリ2450に連結され、基板ホルダアセンブリ2450を矢印A4で示した向きに回転させる。電気メッキプロセスで基板を回転させると、一般的には堆積結果が高められる。ヘッドアセンブリは電気メッキプロセスで、好ましくは約0 rpm〜約200 rpm、特に約10〜約40 rpmに基板の縦軸の周りに基板を回転させる。基板を高い角速度で回転させると、電解溶液中に渦巻きが生じてしまう。基板の位置をプロセスセル内の電解溶液と接触させるためにヘッドアセンブリを下げるにつれて、また、プロセスセル内の電解溶液から基板を取り出すためにヘッドアセンブリを上げる時に、ヘッドアセンブリも回転させることができる。ヘッドアセンブリをプロセスセルから持ち上げた後、ヘッドアセンブリを、好ましくは高速で、例えば、約2,500 rpmまで回転させる。電解溶液から基板を取り出した後に基板をそのように回転させると、基板上の液体に加えられた遠心力によって基板上の残留電解溶液の除去が高められる。
【0112】
図27は、基板を回転させるために図25に示される実施態様の基板ホルダシステム14に含むことができる回転可能なヘッドアセンブリ2410の実施態様を示す断面図である。回転可能なヘッドアセンブリ2410によって、基板を電気コンタクトエレメント67と接触した状態にするためにスラスト板が下げられる。基板を回転可能なヘッドアセンブリ2410から取り出すために、又は基板を回転可能なヘッドアセンブリ2410へ挿入するためにスラスト板66と電気コンタクトエレメント67との間の隙間を与えるために、スラスト板を上げることができる。回転可能なヘッドアセンブリ2410は、基板ホルダアセンブリ2450と、回転するアクチュエータ2464と、シャフトシールド2763と、シャフト2470と、電気フィードスルー2767と、電気コンダクタ2771と、ニューマティックフィードスルー2773とを含んでいる。回転するアクチュエータ2464は、ヘッド回転ハウジング2760とヘッド回転モータ2706とを含んでいる。ヘッド回転モータ2706は、コイルセグメント2775と磁気ロータリエレメント2776とを含んでいる。中空コイルセグメント2775は、縦軸の周りに磁気ロータリエレメント2776を回転させる磁場を生じる。基板ホルダアセンブリ2450は、流体シールド2720と、コンタクトハウジング2765と、スラスト板66と、電気コンタクトエレメント67と、スプリングアセンブリ2732とを含んでいる。
【0113】
コンタクトハウジング2765とスプリングアセンブリ2732はほぼ環状であり、これらの2つの要素は相互適合し、スラスト板66と電気コンタクトエレメント67に搬送される両方の回転を与えることができる。スプリングアセンブリ2732は、スプリング上面2728と、スプリングベローコネクタ2729と、スプリング下面2738とを含んでいる。シールエレメント2751は、スプリング上面2728とスラスト板66との間の流体通路をシールする。シールエレメント2753は、スプリング下面2738とコンタクトハウジング2765との間の流体通路をシールする。
【0114】
陽極16と基板上のシード層との間に所望の電圧をかけて電気メッキを行うために基板上のシード層と接触させる電気コンタクトエレメント67に電気が供給される。電気はコントローラ222から電気コンタクトエレメント67に電気フィードスルー2767、コンダクタ2733、コンタクトハウジング2765を介して供給される。電気コンタクトエレメント67は、基板上のシード層と物理的に、かつ電気的に接触している。スラスト板66と電気コンタクトエレメント67との間に固定されたシャフト2470と、コンタクトハウジング2765と、スプリングアセンブリ2732と、スラスト板66と、電気コンタクトエレメント67と、ロータリマウント2799と、基板22とすべてがヘッドアセンブリ2410の縦軸の周りにユニットとして回転する。ヘッド回転モータ2706は、縦軸の周りに上記エレメントを回転させる原動力を与える。
【0115】
電気コンタクトエレメント67に相対してスラスト板の位置を制御するためにニューマティックフィードスルー2773によって回転可能なヘッドアセンブリ2410の部分に真空を制御可能に与える。真空を与えるニューマティックフィードスルー2773は、制御可能な真空供給部2790と、スリーブ部材2792と、流体コンジット2794と、周グルーブ2795と、流体アパーチャ2796と、流体通路2798と含んでいる。スリーブ部材2792は、異なる部材であってもよく、図27に示されるようにシャフトの一部であってもよい。周グルーブ2795は、シャフト2470の円周にスリーブ部材2792の中に伸びている。ニューマティックフィードスルーによって、圧力レザバー2740に真空が作られる。圧力レザバーは、ヘッドアセンブリ2410の配置によって正の空気圧又は真空を維持するように構成される。流体アパーチャ2796は、周グルーブと流体で連絡している。流体アパーチャ2796は、周グルーブ2795からシャフト2470の底部までシャフト2470を介してアキシャルに伸びている。流体通路2798はコンタクトハウジング2765を通って伸びている。シャフトの底部の流体アパーチャ2796は、流体通路2798と流体で連絡している。スリーブ部材2792の内面は、シャフト2470の外面によって小さなクリアランス、例えば、約0.0002インチがあり、これらの2つの部材の間で相対回転することができる。
【0116】
スリーブ部材2792と周グルーブ2795の内面に流体コンジット2794を介して真空供給部2790から真空が作られる。流体アパーチャ2796から流体通路2798と、圧力レザバー2740に真空が作られる。スリーブ部材2792とシャフト2470との間のクリアランスが密着しているために、スリーブ部材2792の内面に加えられた真空は周グルーブ2795を介して流体アパーチャ2796に送られる。密着クリアランスはスリーブ部材2792とシャフトの外面2470との間に空気が入ることを制限する。それ故、制御可能な真空供給部2790から加えられた真空は圧力レザバーまで伸びている。シャフト2470内の真空は、流体通路2798を通ってスプリングアセンブリ2732とコンタクトハウジング2765との間に形成された圧力レザバー2740まで送られる。よって制御可能な真空供給部2790によって作られる真空は、圧力レザバー2740における真空を制御する。
【0117】
スプリングベローコネクタ2729は、スプリングとベローの態様を組合わせたものである。スプリングバイアスコネクタ2729はスラスト板66とコンタクトハウジング2765との間に装着される。スプリングベローコネクタ2729は、スラスト板66と電気コンタクトエレメント67との間の流体フローを制限する。スプリングベローコネクタ2729は、更に、弛緩した形からアキシャルに置換して圧縮或いは伸長したスプリング力を加える。スプリングベローコネクタ2729のバイアスは、スラスト板66を電気コンタクトエレメント67に相対する位置にするために用いる。スプリング定数を有するベロー又はバッフル部材の適切な種類はスプリングベローコネクタ2729として用いることができる。また、別個のスプリングとベローの部材もスプリングベローコネクタ2729として用いることができる。スプリング上面2728は環状であり、スラスト板66にシール可能に連結することができる。スプリング下面2738は、コンタクトハウジング2765にシール可能に連結される。圧力レザバー2740は、コンタクトハウジング2765とスプリングアセンブリ2732との間に環に画成されている。実施態様においては、スラスト板はスプリングベローコネクタ2729によって加えられたスプリング張力によって基板の裏面に対して垂直に押圧する。圧力チャンバ2740内に真空を作ると、スプリングベローコネクタ2729が上がり、よってスラスト板66が上がる。
【0118】
スラスト板66は、図示されていないロボットが基板を電気コンタクトエレメント67に装着している時又は装着していない時の上がった位置まで移る。ロボットによる挿入後、基板は基板のメッキ面の周囲がコンタクトエレメント上に置かれるようにコンタクトエレメント上に置かれる。次にトラスト板66が基板22の上面に対してしっかりと下げられて基板22のメッキ面と電気コンタクトエレメント67との間のぴったり合った接触を確実にする。電気はコントローラ222から基板22上のシード層に加えることができる。
【0119】
基板ホルダアセンブリ2450は、基板が交換位置と乾燥位置とプロセス位置の間で移動しうるように固定した位置で基板22を保持するように構成される。スラスト板66は、電気コンタクトエレメント67に対して基板を固定するために下向きにバイアスをかけることができる。スラスト板66は、基板をロボットデバイスによって挿入し得るスラスト板66と電気コンタクトエレメント67との間に隙間ができるように上向きにバイアスをかけることができる。図27に示される実施態様においては、スラスト板に対する上向きのバイアスは制御可能な真空供給部2790によって圧力レザバー2740内に作られた真空によって生じる。圧力レザバー2740の真空によってスプリング上面2728と、スプリングアセンブリ2732の残りと、装着されたスラスト板66とが上向きに移る。
【0120】
制御可能な真空供給部2790から真空を減じることによりスプリングベローコネクタ2729を正常な伸長位置に戻すことができ、スプリング上面2728によって装着スラスト板66にバイアスがかけられ電気コンタクトエレメント67上に位置する基板22と確実に接触する。電気コンタクトエレメント67に対する基板のこの物理的バイアスは、電気コンタクトエレメント67と基板22上のシード層との間の電気コンタクトを高めるのに十分である。電気コンタクトエレメント67は、基板ホルダアセンブリ内に挿入された基板上のシード層の周囲に伸び、図6の実施態様に示される陽極アセンブリ474に相対して電気的にバイアスがかけられ、シード層に対して金属蒸着が行われる。スラスト板66、電気コンタクトエレメント67、スプリングベローコネクタ2729、電気コンタクトエレメントに挿入された基板すべてが流体シールド2720に相対して回転する。流体シールド2720は、シャフトシールド2763に固定されたままであり、回転しない。
【0121】
ヘッド回転モータ2706は、中空ヘッド回転ハウジング2760の内周の中に取り付けられ、それを通って少なくとも部分的に伸び、シャフト2470に連結されている。中空コイルセグメント2775は、中空ヘッド回転ハウジング2760の内部に取り付けられ、それに相対してほぼ静止したままである。シャフト2470には、縦軸の周りに回転し得る磁石部分2777が含まれる。磁石部分2777は、中空コイルセグメント2775の中空部分の中に物理的に配置されている。中空コイルセグメント2775によって、磁石部分2777と連結シャフト2470の回転が誘導される。軸受2785は、シャフトシールド2763とシャフト2470との間に設けられ、縦軸の周りの回転でシャフト2470の横の動きが制限される。シャフトの下端でのシャフト2470の出力によって、下記のようにスラスト板と電気コンタクトエレメント67との間に固定されたスラスト板66と基板22を含む基板ホルダアセンブリ2450のある部分に回転運動が与えられる。ヘッド回転モータ2706は、コントローラ222の影響によって、例えば、0 rpm〜2500 rpmの範囲で出力回転を生じる種類であってもよい。
【0122】
流体シールド2720は、任意であり、使用される場合、基板ホルダアセンブリ2450の周囲に配置されてもよく、好ましくは隔置されてもよい。流体シールドは、電解溶液又は他の隣接装置上の基板ホルダアセンブリ2450の遠心分離機の回転によって基板又は基板ホルダアセンブリから除去することができる他の物質を含有する。
3.液浸時に基板を傾斜する流体効果
メッキの一様性を改善する方法には、基板上のシード層と接触することができる空気泡又はポケットの形成を制限することが必要である。本システムは、基板を電解溶液に浸す間、電解溶液と基板との間で捕捉される空気泡又はエアブリッジを制限する。電解溶液中の空気泡又はエアブリッジは、堆積層のピッチング、曇り、変形、不均一性を引き起こしてしまう。十分な時間存在する場合には、空気泡又はエアブリッジは電解溶液中の金属イオンを基板上に堆積することを制限し、よって基板上にボイドが生じる。
【0123】
基板及び/又は基板ホルダアセンブリによって捕捉される空気泡の機会をできるだけ少なくする方法は、基板が電解溶液に浸されるにつれて基板/基板ホルダアセンブリを水平から傾けることである。電解溶液の非常に薄い境界層が、基板とその上に形成されるシード層が被覆する。基板に最も近い空気泡は、基板が水平からの角度で傾き溶液中に配置されるにつれて境界層に沿って上向きに流れる。基板の一部と接触せずに境界層に沿って流れる空気泡の傾向は、傾き角が大きくなるにつれて基板の一部と接触せずに境界層に沿って流れる空気泡の傾向が大きくなる。
【0124】
図34と図35は、基板ホルダアセンブリによって保持された基板が水平からα角で電解溶液に浸されるステップの進行を示す図である。これらの図は、どのように電解溶液によってフィーチャが完全に充填されるかを示す図である。基板22は、取り付けスライド2460に沿ってリフトガイド2466の下向きの変位によって図25に示されるように電解溶液の中に下がる。基板22が電解溶液に浸されるメカニズムを説明するために、電解溶液の流体レベルは、図34に示されるレベル3402から図35に示されるレベル3402’ へ矢印3406で示される向きに基板に相対して上向きに移動すると考えられる。バイア、トレンチ、電気コンタクト等の具体的なフィーチャ3410は、基板22の表面に形成される。現代の半導体処理の形成の幅は、典型的にはミクロンで測定される。
【0125】
基板22を横切る電解溶液の“フロー”は、基板の傾き角αが0度より大きい時に基板上のシード層を横切るメニスカスの運動によって高められる。メニスカス3004は、隣接した固体材料の表面と接触する液体の凸上面である。メニスカスは表面張力によって生じる。例えば、メニスカスは、水が含まれるガラスに水面が触れるにつれて水を含むガラスに生じる。メニスカス3004は、基板が電解溶液に浸されるにつれてフィーチャ内からの空気泡の変位が高められる。傾き角αが大きくなると、表面張力によって生じるメニスカスの変位作用を利用することによりメニスカスが基板上のフィーチャ3410内から空気泡やエアポケットを移すのに効果的である。メニスカスに付随する表面張力は、場に沿って電解液を引き付ける働きがあり、それ故、矢印34で示されるように電解溶液がレベル4302から上がるにつれて基板の傾斜角度αが水平からの角度がある時に基板の場表面3410上に含まれる空気泡又はポケットを移す働きがある。
【0126】
電解溶液のレベルが図34のレベル3402から図35に示されるレベル3402’ まで上がるにつれて、メニスカス3004はフィーチャの下のレベル3412の上に上がる。表面張力は、フィーチャ3410を電解溶液で充填するために用いられる重要なメカニズムである。表面張力がないと、電解溶液のレベルがフィーチャ3410の最高開口点3416まで上がるにつれて、電解溶液のレベルは点線3418で示されるように水平に伸びる。表面張力がないと、空気泡は点線3418の上の空間に空気泡が生じる。実際は、メニスカスがフィーチャの開口を過ぎて上向きに移動するにつれて表面張力がフィーチャの中に電解溶液を引き付ける。表面張力に付随する分子流体引力が3402’’で示された上限までフィーチャの中に電解溶液を“引き付け”、完全に充填する。そのようにする際、電解液メニスカスはフィーチャ内に捕捉される空気を移す。0〜90°の範囲の傾き角αが大きくなるにつれて速やかに電解溶液をフィーチャに引き付ける。空気が電解溶液によって速やかに移る理由は、傾き角が大きくなるにつれて、特にαが45°を超えるにつれて捕捉空気、即ち、ライン3418の上の容量が減少する。
【0127】
基板が大きな傾き角より小さな傾き角、例えば、45°より大きい角度に比べて水平から45°より小さい角度で浸される場合にフィーチャに含まれる空気泡を電解溶液が移すには時間が必要である。例えば、基板ホルダアセンブリの電気コンタクトエレメントと基板は、共に逆凹面領域を生じる。この逆凹面領域での捕捉空気領域は、基板の角度が大きくなるにつれて減少する。基板ホルダアセンブリ内の基板が水平ではなくて近づくにつれて、基板ホルダアセンブリはエアブリッジや空気泡を効果的に除去するために基板ホルダシステム14でゆっくりした角レートで傾斜されなければならない。このゆっくりした角傾斜レートは電解溶液でフィーチャを十分に充填するのに必要である。基板ホルダシステムの実際の角傾斜レートは、電解溶液の化学成分、基板の表面、基板の構造と表面、基板ホルダアセンブリのような条件の関数である。
【0128】
基板ホルダアセンブリ2450は、基板の開始、処理、取り出しの間、電解溶液に相対して基板シード層を配置するために機能する。スラスト板66を伸ばすか又は引っ込めるために圧力レザバー2740に真空を作ること、モータ2706の動作と角速度、基板の傾きを制御するピボットジョイント2459の位置、そのような他の機械的変位を含む基板ホルダシステム14の動作は、コントローラ222によって制御される。金属蒸着プロセス中の基板ホルダシステム14の進行の実施態様は、図28A〜図28Hに示されている。図29に示されている方法2900の実施態様は、図28A〜図28Hに示される進行させるためにコントローラ222によって行われる。
【0129】
図28A〜図28Hに示される基板ホルダシステム14の進行は、図29に示される方法2900と共に読まれるべきである。図28A〜図28Hの進行では、一般に、基板が基板ホルダアセンブリに挿入され、基板が電解溶液に浸され、基板が処理され、基板が電解溶液から取り出され、基板が基板ホルダアセンブリから取り出される。
【0130】
図28Aと、図29のブロック2909は、基板ホルダアセンブリのスラスト板66が図27に示される圧力レザバー2740に真空を作ることにより上がった位置に引っ込められる交換位置に配置されている基板ホルダシステム14を示している。基板ホルダシステム14は、電気コンタクトエレメント67とスラスト板66との間に基板を挿入するために基板を保持している図示されていないロボットブレードを可能にする交換位置に配置されている。
【0131】
図28Bと、図29のブロック2904に示されるように、基板22がコンタクトエレメントに装着されるように、スラスト板66と電気コンタクトエレメント67との間に基板がロボットによって移される。次に基板を固定すると共にメッキ面とコンタクトエレメントとの間に十分な電気コンタクトを与えるために裏面に対してバイアスをかけるためにスラスト板66を下げる。スラスト板をそのような力で下げて基板22を損傷せずに固定する。スラスト板を下げることは、図27に示された圧力レザバー2740内に作られた真空を減じてスプリングベローコネクタ2729がプレセット位置に下向きに戻すことを可能にすることにより達成される。残りの基板22処理で、残りの基板22処理の間、基板ホルダアセンブリが図28Gに示されるように交換位置まで移動するまでスラスト板は下げたバイアス位置にあるままである。基板が回転し得る基板ホルダシステム14の実施態様においては、基板ホルダシステムによって基板を通り抜ける縦軸の周りに図28Bの基板の角回転が開始され、図28Gまで続けられる。角回転速度は、基板が電解溶液に浸されているか、基板が処理されているか、基板が電解溶液から取り出されているか、基板が遠心力によって基板を乾燥するために回転されているかによる進行によって変動してもよい。
【0132】
図28Cと、図29のブロック2906は、リフトガイド2466が取り付けスライド2460に相対して下向きに移されるヘッドリフト部2708の動作の結果として乾燥した位置に移動した基板ホルダアセンブリ2450を示す図である。乾燥位置においては、基板ホルダアセンブリによって電解溶液セル12に含まれる電解溶液の上に基板22が支持される。電解溶液に浸す前に、また、基板が電解溶液から取り出された後に、基板22が乾燥位置に配置される。基板22を乾燥位置に配置することは通常の部分であり、基板22が電解溶液に速やかに浸し得る。
【0133】
図28Dと、図29のブロック2908は、基板ホルダアセンブリ2450と、回転アクチュエータ2464と、ヘッドリフト部2708とがすべてピボットジョイント2459の周りにヘッドアセンブリフレームによるユニットとして傾いている図である。カンチレバーアームアクチュエータ2457は、ピボットジョイント2459の周りでシャフト2453と、基板を保持するヘッドアセンブリフレーム2410を傾ける連結カンチレバーアーム2456を制御可能に作動させることができる。基板上のシード層を傾けると、図28Eに示されるようにシード層の電解溶液への液浸が高められる。
【0134】
図28Eと、図29のブロック2910は、ヘッド部2450に含まれる基板22の乾燥した位置から電解溶液への液浸を示す図である。基板の液浸の間、シャフト2468が回転する。このシャフトの回転で、リフトガイド2466が取り付けスライド2460に沿って下向きに移されてヘッドアセンブリ2410の下向きの運動が生じる。同時に、ヘッドアセンブリ2410がピボットジョイント2459の周りに下向きに回転して基板の傾斜が生じる。基板が水平から傾斜するような基板22の傾斜によって、電解溶液中の基板/基板ホルダの下で捕捉される空気泡やエアブリッジの発生が最少になる。空気泡のこの制限は基板22が電解溶液の中に下げられるにつれて捕捉される空気泡の数を制限する点でのメニスカス3004の促進作用から生じ、空気泡が傾斜基板面を横切って容易に逃げる。更に、液浸中の基板の回転によって空気泡がシード層上の場所に付着するようになる機会が最少になる。
【0135】
図30は、基板が2つの位置22’ と22’’との間で基板ホルダシステム14によって電解溶液に浸されるにつれて傾き角がどのように変化するかを示す図である。図30、図31、図32の電気コンタクトエレメント67は、基板と実際に接触する電気コンタクトエレメントの一部を示す図である。図27と同様の電気コンタクトエレメントの他の部分は、表示を簡単にするために示されていない。基板22’ は水平から角度α1に傾斜し、基板22’’は角度α2で傾斜している。図28Eと図28Fに示される位置に反映されるように、図31の実施態様に22’ と22’’として示される位置の間で基板が電解溶液に完全に浸されるにつれて基板は左に移動する。この横の運動は、図25の実施態様に示される回転可能なヘッドアセンブリ2410がピボットジョイント2459の周りに旋回するにつれて基板ホルダアセンブリ2450の横の変位から生じる。角度α1は角度α2より大きく、基板が電解溶液に深く浸されるにつれて基板ホルダシステムが水平に近い角度まで基板を回転させる。基板22が電解溶液の中に下がるにつれて、電解溶液と基板との間に生じるメニスカス3004は基板シード層に沿って流れる。
【0136】
図31は、電気コンタクトエレメント22の縦の高さHを示す図である。基板と、電気コンタクトエレメントと、電解溶液とのある組合わせの高さHが大きくなるにつれて、一般に、基板が水平又は傾斜した姿勢で浸されている場合にはある基板の下で捕捉される空気量が多くなる結果となる。それ故、液浸中に基板の下で電解溶液中に捕捉される空気泡の量を減少させるために高さHを制限することが望ましい。
【0137】
電解溶液に浸す際に基板と電気コンタクトエレメント67との間に空気泡やエアブリッジが生じることが可能である。図31における泡3002は、基板22が電解溶液の中にあまりに急速に浸される時に生じる。また、基板22が電解溶液の中にあまりに遅いレートで浸される時には、基板22と電気コンタクトエレメント67との間にエアブリッジ3102が生じる。基板22が適切なレートで電解溶液に浸される時、泡3002もエアブリッジ3102も電解溶液の中で基板22と電気コンタクトエレメント67との間に生じない。
【0138】
グラフ33は、横軸3304に基板の開始液浸後の時間の関数として基板傾き角αが変化するレートを示す縦軸3302dα/dtのプロットである。基板が液浸に近づくにつれて、基板の傾き角αは典型的には45°であり、一部の実施態様では90°に近づく。基板傾き角αは、カンチレバアームアクチュエータ2457がピボットジョイント2459の周りにヘッドアセンブリ2410を旋回させる量で制御される。3306で示されるdα/dt値は、基板の周囲が電解溶液に最初に浸されるにつれて基板傾き角αが水平に向かって変化する速いレートを示している。液浸が続くにつれて、傾き角α変化のレートは3308値で示されるように低下する。基板が水平に近いので、基板はdα/dtの遅いレートで電解溶液に浸されて電解溶液がフィーチャから空気を移すことを可能にする。この時間に、メニスカス3004によって、即ち、電解溶液が基板と接触する場合、基板面上のシード層が徐々に一掃され、基板面の中のフィーチャから空気が移される。このメニスカスによる一掃作用は、基板22と電気コンタクトエレメント67との間に空気泡3002又はエアブリッジ3102の生成を最少にし、基板シード層上のフィーチャの中の空気泡の生成を制限する。好ましいdα/dtレートは、傾き角α、電解溶液の組成、基板22と電気コンタクトエレメント67の表面のようなファクタの関数である。基板面を十分液浸した後、基板は完全に浸され水平であるので傾き角α変化のレートは3310で示されるように0になり、基板は電気メッキされる位置にある。金属被膜の大部分は3310部分の間に基板シード層上に堆積する。3310部分の間に空気泡3002又はエアブリッジ3102の作用や生成を制限することは重要である。
【0139】
図28Fと、図29のブロック2912に示されるように、回転アクチュエータ2464とヘッドリフト部2708はすべてプロセス位置へピボットジョイント2459の周りのヘッドアセンブリフレームによるユニットとして傾斜している。ヘッド部がプロセス位置にある時、基板22は電解溶液の中のほぼ水平位置に保持される。ヘッド部2450がプロセス位置へ水平に基板を傾斜させる時、基板22の全メッキ面は電解溶液に浸される。
【0140】
ヘッド部2450が図29のブロック2914に示されるプロセス位置で処理される時、ヘッド部2450はメッキ面が電解液セル内に含まれる電解溶液に浸される位置に基板22を支持する。コンタクトハウジング2765と、スラスト板66と、電気コンタクトエレメント67とを含むヘッド部2450の部分は、約0〜約200 rpm、好ましくは約20〜約40 rpmで回転する。基板22の回転により、メッキ面を横切って金属イオンが一様に堆積する。基板22の回転とヘッド部2450の回転する部分は、電解溶液の中で過度の角回転によって生じる電解溶液中の渦巻きをほとんど生じない。電解溶液と陽極16との間の反応によって生じる金属イオンは、基板ホルダシステム14がプロセス位置にある時に基板22のメッキ面上に堆積する。
【0141】
図28Gと図29のブロック2916に示されるように、次に、ヘッド部2450は、処理が基板22上で行われた後に基板ホルダシステム14によって乾燥した位置に移る。図28Fに示されるプロセス位置と図28Gに示される乾燥した位置との間で代わるために、リフトガイド2466が取り付けスライド2460に相対して上向きに並進して移る。更に、ヘッドアセンブリ2410はピボットジョイント2459の周りで上向きに回転する。ヘッド部2450が乾燥位置にある時、基板は約600〜約2500 rpm、好ましくは約2000 rpmでrpmする。また、基板22は図4の実施態様に示されるように別個のスピン−リンス−ドライユニットに運搬され得る。
【0142】
図28Hと、図29のブロック2918に示されるように、ヘッド部2450は、次に取り付けスライド2460に相対して上向きに並進して移るリフトガイド2466によって交換位置に上げられる。ヘッド部が交換位置にある時、スラスト板66はロボットが基板ホルダアセンブリから基板22を取り出すのに十分な量で上げられる。スラストパッドを上げた後、図示されていない第1ロボットブレードは、典型的には基板22とスラスト板との間に挿入されて第1処理基板が取り出される。他のロボットブレードは、電気コンタクトエレメントで処理される新しい基板を挿入する。次にスラストパッドを下げて基板ホルダアセンブリの中の位置に基板を固定する。次に図28A〜図28Hに示される金属蒸着プロセスが新しい基板について行われる。
【0143】
上記は、基板を電解溶液に浸す間、基板を水平から傾斜させるために使用し得る基板ホルダシステム14の実施態様を示すが、液浸時に傾斜位置に基板を固定し得るデバイスも使用し得る。例えば、図36は、支持マウント3609と、支持体3610と、ピボットジョイント3611と、回転可能なヘッドアクチュエータ2410と、制御可能な調整部材3602とを含む基板ホルダシステム14を示す他の実施態様である。実施態様においては、回転可能なヘッドアクチュエータ2410は図27に記載されるように構成される。
【0144】
支持マウント3609は、横トラック3650と、横ホロワ3652と、縦トラック3654と、縦ホロワ3656を含んでいる。横トラック3650は、物理的に接地した表面3658に一端又は両端に強固に固定される。横ホロワ3652は、タイトフィット結合による横トラック3650、複数のホイールホロワ、エアクッション、又は他の類似のスライド結合を続けるために束縛される。図3に示されるコントローラ222によって制御されるアクチュエータ3660によって、横トラック3650に沿って横ホロワ3652が制御可能に移される。
【0145】
縦トラック3654は、縦トラック3654が横ホロワ3652の横運動を行うように溶接、ボルト、リビット、又は他の既知のコネクタによって横ホロワ3652に強固に付けられている。縦ホロワ3656は、タイトフィット結合による縦トラック3654、複数のホイールホロワ、エアクッション、又は他の類似のスライド結合を続けるために束縛される。コントローラ222によって制御されるアクチュエータ3666によって、縦トラック3650に沿って縦ホロワ3656が制御可能に移される。
【0146】
ヘッドアセンブリ2410は、ピボットジョイント3611によって縦ホロワ3656にピボット連結される。ピボットジョイント3611は、ピボットジョイントホロワホイール3672と、ピボットジョイントドライブホイール3674と、カップリングベルト3676とを含むピボットアクチュエータ3670によって作動する。カップリングベルト3676は、ピボットジョイントドライブホイール3674からピボットジョイントホロワホイール3674へ回転運動力を運んでヘッドアセンブリを図27に太字で示される傾斜位置と点線3678で示される垂直位置との間にヘッドアセンブリを回転させる。ピボットジョイントドライブホイール3674は、ロータリステッパモータ、ドライブモータ、又は回転モータの既知のタイプのようなアクチュエータによって駆動される。
【0147】
このように支持マウント3609は、3方向にヘッドアセンブリ2410を移すことができる。第1に、横トラック3650に相対して横ホロワ3652を移すと、座標軸3620に示されるX方向にヘッドアセンブリ2410が移る。第2に、縦トラック3654に相対して縦ホロワ3656を移すと、座標軸3620に示されるZ方向にヘッドアセンブリ2410が移る。第3に、ピボットジョイントホロワホイール3672を旋回させると、矢印3680によって示される方向いヘッドアセンブリが傾く。
【0148】
他の実施態様においては、ピボットアクチュエータ3670はピボットジョイント3611と支持体3610に連結された図示されていないオフセットリンク間に伸びるピストン又はリニアドライブ部材によって設けることができる。この構造においては、ピストン又はリニアドライブ部材のリニア動作はオフセットリンクのオフセットによってピボットジョイント3611の周りのヘッドアセンブリ2410の回転運動に変換される。
【0149】
支持マウント3609は、水平方向に維持しつつヘッドアクチュエータ2410を上げる、下げる、又は横に移すことができる。図示されていないロボットデバイスは、座標軸3620によって示されるX方向とZ方向に支持体3610を移動させるために使用し得る。
【0150】
プロセスセル内の電解溶液の中にヘッドアセンブリ2410を浸すために、基板をピボットアクチュエータ3670によって傾き角αに傾ける。支持体3610を動かすロボットデバイスの並進によってヘッドアセンブリをプロセスセルと並べるようX方向に横に動かすことができる。次に支持体3610は、プロセスセルに含まれる電解溶液に基板を浸すように支持マウント3609の縦ホロワ3656上のアクチュエータ3666の動作によって下向きに移る。ピボットアクチュエータ3670とアクチュエータ3666の協調運動は、プロセスセルの部分を接触させることをヘッドアセンブリ2410の部分を制限する方法でコントローラ222によって制御される。次にヘッドアセンブリ2410は、コントローラ222の制御によってピボットアクチュエータ3670の変位によって水平レベル位置(α=0)に移動する。ヘッドアセンブリのレベリングで、ヘッドアセンブリ2410をX方向に移すアクチュエータ3666によってヘッドアセンブリはプロセスセルと同時に並ばなければならない。次にヘッドアセンブリはアクチュエータ3666の変位によってプロセスセルから取り出される。
【0151】
上記は本発明の好適実施態様に対するものであるが、基本的範囲を逸脱せずに本発明の更に多くの実施態様を講じることができる。
【図面の簡単な説明】
【図1】
単純化された代表的な噴水式メッキ装置の断面図である。
【図2】
電気メッキ(ECP)システムの1つの実施態様の斜視図である。
【図3】
図2のECPシステムの平面概略図である。
【図4】
スピン−リンス−ドライ(SRD)モジュールの1つの実施態様の概略斜視図であり、リンスと溶解のための流入口が組み入れられてある。
【図5】
図4のスピン−リンス−ドライ(SRD)モジュールの側面の断面図であって、処理中の位置にある基板を示す。
【図6】
基板ホルダシステムを有する電気メッキプロセスセルの断面図である。
【図7】
電気コンタクトエレメントの1つの実施態様の部分的な断面斜視図である。
【図8】
コンタクトパッドの他の実施態様を示す電気コンタクトエレメントの断面斜視図である。
【図9】
コンタクトパッドとアイソレーションガスケットの他の実施態様を示している電気コンタクトエレメントの断面斜視図である。
【図10】
アイソレーションガスケットを示している電気コンタクトエレメントの断面斜視図である。
【図11】
ECPシステムを各コンタクトピンを通して表している電気回路の簡略化された概略回路図である。
【図12】
図12は基板ホルダの実施態様の断面図である。
図12Aは図12のブラッダーエリアの拡大断面図である。
【図13】
基板ホルダ板の部分的な断面図である。
【図14】
マニホルドの部分的な断面図である。
【図15】
ブラッダーの部分的な断面図である。
【図16】
電解液溶解システムの1つの実施態様の概略図である。
【図17】
高速熱アニール(RTA)チャンバの断面図である。
【図18】
電気コンタクトエレメントの他の実施態様の斜視図である。
【図19】
基板ホルダの他の実施態様の部分的な断面図である。
【図20】
カプセルに入れられた陽極の実施態様の断面図である。
【図21】
カプセルに入れられた陽極の別の実施態様の断面図である。
【図22】
カプセルに入れられた陽極の更に別の実施態様の断面図である。
【図23】
カプセルに入れられた陽極の更に別の実施態様の断面図である。
【図24】
フリッパーロボットが組み入れられたメインフレーム搬送ロボットの概略平面図である。
【図25】
回転可能なヘッドを有する基板ホルダシステムの他の実施態様である。
【図26】
図26aと図26bはデガサモジュールの実施態様の断面図である。
【図27】
図25に示された回転可能なヘッドの1つの実施態様の断面図である。
【図28】
図28A〜図28Hは電解液セルで含まれる電解溶液への基板のシード層の液浸の間の基板ホルダ装置の側面図の進行である。
【図29】
図28で示される進行を実行する際に図27のコントローラによって実行される方法の1つの実施態様である。
【図30】
基板が電解溶液中に挿入される進行を示す側面図である。
【図31】
基板と基板ホルダの間に閉じ込められている空気泡を有する浸された基板の側面図である。
【図32】
基板と基板ホルダの間に形成されたエアブリッジを有する浸された基板の側面図である。
【図33】
基板の液浸を示しているグラフであり、基板の角度の変化率を、横座標として時間対縦座標として示している。
【図34】
フィーチャを電解溶液に下げられるようにしている基板の1つの実施態様を示す。そこにおいて、電解溶液のレベルはフィーチャのレベルの下にある。
【図35】
図34で示すように電解溶液中に基板を下げている状態を示しており、そこにおいて、電解溶液のレベルはフィーチャのレベルの上にある。
【図36】
基板ホルダシステムの別の実施態様を示す。
【符号の説明】
10…噴水プレーター、12…電解液セル、14…基板ホルダシステム、16…陽極、20…電気コンタクトリング、22…基板、23…コントローラ、24…グルーブ、26…コンタクトピン、33…真空ポンプ、66…スラスト板、159…ポンピングシステム、200…ECPシステム、210…ローディングステーション、211…RTAチャンバ、212…SRDステーション、214…メインフレーム、216…搬送ステーション、218…処理ステーション、220…電解液溶解システム、222…コントローラ、224…カセット受け入れエリア、228…搬送ロボット、230…オリエンタ、232…カセット、234…基板、236…SRDモジュール、238…パススルーカセット、240…プロセスセル、242…搬送ロボット、244…ロボットアーム、246…ロボットブレード、248…フリッパロボット、250…主本体、252…フリッパロボットアーム、260…CPU、262…メモリ、264…I/O、265…回路部分、330a…底、330b…側壁、330c…上シールド、330d…ボウル、332…ペデスタルサポート、334…ペデスタルアクチュエータ、336…ペデスタル、336a、337b…アーム、337…クランプ、338…基板、340…流入口、342…取り付け部分、343…咬交部材、346…コンジット、346a…入口、346b…コンジット、346c…コントロールバルブ、347a…バルブ、348…ノズル、350…入口、351…ノズル、352…コンジット、353…咬交部材、400…プロセスセル、410…ヘッドアセンブリ、420…プロセスセル、430…ボウル、440…コレクタ、442…本体、443…開口、444…開口、447…底、448…外壁、449…出口、450…ホルダアセンブリ、454…取り付けポスト、456…カンチレバーアーム、457…アクチュエータ、458…アクチュエータ、460…取り付け板、464…ホルダエレメント、466…コンタクトエレメント、470…ブラッダーアセンブリ、472…容器本体、474…陽極アセンブリ、476…フィルタ、478…せき、480…環状平坦部分、482…中間傾斜部分、484…下り傾斜部分、486…環状フランジ、488…ボルト、490…ナット、492…スペーサ、494…陽極エンクロージャ、495…シール、496…可溶性金属、497…ネジ部分、498…陽極コンタクト、499…ナット、502…円筒部分、504…底部分、506…環状フランジ、510…入口、602…タンク、603…計量モジュール、604…タンク、605…ろ過モジュール、606…タンク、607…バルブ、608…ポンプ、609…バルブ、610…コントローラ、612…供給ライン、613…試料ライン、615…自動滴定アナライザ、616…化学アナライザモジュール、617…CVS、620…排出部、621…出口ライン、622…廃棄処理システム、624…熱交換機、630、630’ …デガサモジュール、632、632’ …疎水性膜、633…デガサモジュール、634…通路、636…真空システム、638…エンクロージャ、642…出口、700…レジスタ、702…電源、704…センサ/アラーム、754…メッキ面、762…フランジ、764…ショルダ部分、765…導電性部材、768…基板取り付け面、765…導電性部材、770…絶縁本体、772…パッド、776…導電性コネクタ、780…パッド、782…アイソレーションガスケット、802…容器本体、820…メッキ面、821…基板、832…ホルダプレート、836…ブラッダー、838…流体源、840…環状溝、841…真空ポート、842…入口、843…取り付けチャネル、844…ホース、845…ポンプ、846…マニホルド、847…バルブ、848…ショルダー、849…エゼクタ、851…ホース、852…取り付けレール、853…圧力ライン、854…出口、855…真空ライン、857…カバリング、859…ポンピングシステム、902…エンクロージャ、904…ヒータプレート、906…ホルダピン、907…ヒータ、908…ベース、910…側壁、912…上部、913…冷却板、914…皿状部、916…電源、918…冷却膜、920…熱電対、922…スリットバルブ、924…開口、928…リフトプレート、930…アクチュエータ、934…シーリングフランジ、936…ガス入口、942…ガス出口、944…バルブ、1800…電気コンタクトエレメント、1810…取り付け部分、1820…受け入れ部分、1822…取り付け面、1824…コンタクトパッド、1900…ホルダアセンブリ、1910…ホルダプレート、1914…前面、1916…Oリング、1918…環状グルーブ、1920…穴又は孔、2000…陽極、2002…陽極封入膜、2004…陽極板、2006…電気コンタクト又はフィードスルー、2008…封入上膜、2010…封入下膜、2012…支持リング、2014…入口、2016…出口、2020、2022…コントロールバルブ、2024…開口、2402…ロボットアーム、2404…ロボットブレード、2410…ヘッドアセンブリ、2450…ホルダアセンブリ、2452…ヘッドアセンブリフレーム、2453…シャフト、2454…取り付けポスト、2455…ポストカバー、2456…カンチレバーアーム、2457…カンチレバーアクチュエータ、2459…ピボットジョイント、2460…取り付けスライド、2464…回転アクチュエータ、2466…リフトガイド、2468…シャフト、2470…シャフト、3602…調整膜、3609…支持マウント、3610…支持体、3611…ピボットジョイント、3620…座標軸、3650…横トラック、3652…横ホロワ、3654…縦トラック、3656…縦ホロワ、3658…接地面、3660…アクチュエータ、3666…アクチュエータ、3670…ピボットアクチュエータ、3672…ホロワホイール、3674…ドライブホイール、3676…カップリングベルト、3678…点線、2706…ヘッド回転モータ、2720…流体シールド、2728…スプリング上面、2729…スプリングベローコネクタ、2732…スプリングアセンブリ、2733…コンダクタ、2738…スプリング下面、2740…圧力レザバー、2753…シールエレメント、2760…ヘッド回転ハウジング、2763…ニューマティックフィードスルー、2765…コンタクトハウジング、2767…電気フィードスルー、2771…電気コンダクタ、2773…ニューマティックフィードスルー、2775…コイルセグメント、2776…磁気ロータリエレメント、2777…磁石部分、2790…真空供給部、2792…スリーブ部材、2794…コンジット、2795…グルーブ、2796…アパーチャ、2798…通路、2799…ロータリマウント、2900…方法、2902、2904、2906、2908、2910…ブロック、3002…空気泡、3004…メニスカス、3102…エアブリッジ、3302…座標、3304…横軸、3306、3308、3310…値、3402、3402’ 、3402’’…レベル、3410…フィーチャ、3416…開口点、3418…点線、3450…ホルダアセンブリ。
Claims (21)
- 基板上に形成されたメッキ面を電解溶液に浸す方法であって、
該基板を該電解液の上に水平からの角度に配置するステップと、
該基板を水平からの角度に維持しながら該基板を縦に移動させて該メッキ面を該電解溶液に浸すステップと
を含む、前記方法。 - 前記基板を液浸中に回転させて空気泡と該基板上のいずれかの場所とのコンタクトを制限する、請求項1記載の方法。
- 前記縦に置き換えている間、水平からの該角度が水平の方へ変わる、請求項1記載の方法。
- 実行させた時に汎用コンピュータに基板上に形成されたメッキ面を電解溶液に浸すことを制御させる方法を行わせるソフトウエアルーチンを含むコンピュータ読取り可能媒体であって、
該基板を該電解液の上に水平からの角度に配置するステップと、
該基板を水平からの角度に維持しながら該メッキ面を該電解溶液の中に縦に移動させるステップと
を含む、前記コンピュータ読取り可能媒体。 - 前記基板を回転させて空気泡と該基板上のいずれかの場所とのコンタクトを制限する、請求項4記載の方法。
- 前記縦に移動する間に水平からの該角度が水平の方へ変わる、請求項4記載の方法。
- 基板上に形成されたメッキ面を電解溶液に浸す方法であって、
該基板を該電解液の上に水平からの角度に配置するステップと、
電解溶液を電解溶液セルの中に維持するステップと、
該基板を水平からの角度に維持しながら該基板を縦に移動させて該メッキ面を該電解溶液に浸し、該基板上のシード層の少なくとも一部が前記液浸中に該電解溶液と接触しているステップと
を含む、前記方法。 - 前記縦に移動している間に水平からの該角度が水平の方へ変わる、請求項4記載の方法。
- セルと、
基板を実質的に水平な位置か或いは傾いた位置に保持するように構成された基板ホルダアセンブリと、
該基板ホルダアセンブリをx方向、z方向に移動させ、該基板ホルダを傾けるように構成されたアクチュエータと
を含む、電気メッキ用装置。 - 該アクチュエータが該基板を該セルの中に縦に移動するように構成され、該基板が傾いた位置に傾けられている、請求項9記載の装置。
- 該基板が該セルの中に縦に移動した後に、該基板をその傾いた位置から実質的に水平位置へ傾くように構成される、請求項10記載の装置。
- 該セルが電解液セルであり、該電解液セルが電解溶液を含み、該基板が該電解溶液に浸されるにつれて該基板が傾いた位置から平らな位置へ浸される、請求項11記載の装置。
- 該セルが電解液セルであり、該電解液セルが電解溶液を含む、請求項9記載の装置。
- 前記電解溶液中に空気泡が含まれ、該基板が該電解液セルに縦に浸されるように前記空気泡が前記基板上のいずれかの場所と接触することを制限する請求項13記載の装置。
- 基板の表面を横切って電解溶液によって形成されたメニスカスを動かす方法であって、該基板が該電解溶液に浸されるように該電解溶液のメニスカスと該表面との間の相互作用を高めるステップを含む、前記方法。
- 該メニスカスが該基板の該表面を交差する角度を増大させるステップを更に含む、請求項15記載の方法。
- 該メニスカスが交差する該基板の該表面が場である、請求項16記載の方法。
- 該メニスカスが交差する該基板の該表面がフィーチャである、請求項16記載の方法。
- 該メニスカスと該表面間の相互作用を高めるステップが該基板の該表面から空気を除去する力を増大させるステップを含む、請求項15記載の方法。
- 該メニスカスが交差する該基板の該表面が場である、請求項19記載の方法。
- 該メニスカスが交差する該基板の該表面がフィーチャである、請求項19記載の方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/678,947 US6582578B1 (en) | 1999-04-08 | 2000-10-03 | Method and associated apparatus for tilting a substrate upon entry for metal deposition |
PCT/US2001/030058 WO2002029137A2 (en) | 2000-10-03 | 2001-09-26 | Method and associated apparatus for tilting a substrate upon entry for metal deposition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004536217A true JP2004536217A (ja) | 2004-12-02 |
Family
ID=24724984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002532699A Withdrawn JP2004536217A (ja) | 2000-10-03 | 2001-09-26 | 金属蒸着のためのエントリーにあたって半導体基板を傾けるための方法と関連する装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20030201184A1 (ja) |
EP (1) | EP1470268A2 (ja) |
JP (1) | JP2004536217A (ja) |
CN (1) | CN100469948C (ja) |
TW (1) | TW531770B (ja) |
WO (1) | WO2002029137A2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101347006B1 (ko) | 2010-05-07 | 2014-01-02 | 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 | 직립식 도금 장비 및 이를 위한 도금 방법 |
KR20190097324A (ko) * | 2013-04-29 | 2019-08-20 | 어플라이드 머티어리얼스, 인코포레이티드 | 마이크로전자 기판 전기 프로세싱 시스템 |
US11686208B2 (en) | 2020-02-06 | 2023-06-27 | Rolls-Royce Corporation | Abrasive coating for high-temperature mechanical systems |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040020780A1 (en) * | 2001-01-18 | 2004-02-05 | Hey H. Peter W. | Immersion bias for use in electro-chemical plating system |
JP4026750B2 (ja) * | 2002-04-24 | 2007-12-26 | 東京エレクトロン株式会社 | 基板処理装置 |
WO2004053952A1 (ja) | 2002-12-10 | 2004-06-24 | Nikon Corporation | 露光装置及びデバイス製造方法 |
EP1672682A4 (en) | 2003-10-08 | 2008-10-15 | Zao Nikon Co Ltd | SUBSTRATE TRANSPORT DEVICE AND METHOD, EXPOSURE DEVICE AND METHOD AND COMPONENT MANUFACTURING METHOD |
JP4642771B2 (ja) * | 2003-10-22 | 2011-03-02 | ネックス システムズ インコーポレイテッド | ワークピースを流体処理する方法及び装置 |
US7645364B2 (en) * | 2004-06-30 | 2010-01-12 | Lam Research Corporation | Apparatus and method for plating semiconductor wafers |
KR100634446B1 (ko) * | 2004-12-29 | 2006-10-16 | 삼성전자주식회사 | 공정 균일도를 향상시킬 수 있는 웨이퍼 도금 장치 |
TW200641189A (en) * | 2005-02-25 | 2006-12-01 | Applied Materials Inc | Counter electrode encased in cation exchange membrane tube for electroplating cell |
US9512538B2 (en) | 2008-12-10 | 2016-12-06 | Novellus Systems, Inc. | Plating cup with contoured cup bottom |
JP5237924B2 (ja) * | 2008-12-10 | 2013-07-17 | ノベルス・システムズ・インコーポレーテッド | ベースプレート、及び電気メッキ装置 |
JP5126091B2 (ja) * | 2009-02-02 | 2013-01-23 | ウシオ電機株式会社 | ワークステージ及び該ワークステージを使用した露光装置 |
US9017528B2 (en) * | 2011-04-14 | 2015-04-28 | Tel Nexx, Inc. | Electro chemical deposition and replenishment apparatus |
US9005409B2 (en) | 2011-04-14 | 2015-04-14 | Tel Nexx, Inc. | Electro chemical deposition and replenishment apparatus |
US9221081B1 (en) | 2011-08-01 | 2015-12-29 | Novellus Systems, Inc. | Automated cleaning of wafer plating assembly |
US9228270B2 (en) | 2011-08-15 | 2016-01-05 | Novellus Systems, Inc. | Lipseals and contact elements for semiconductor electroplating apparatuses |
US10066311B2 (en) | 2011-08-15 | 2018-09-04 | Lam Research Corporation | Multi-contact lipseals and associated electroplating methods |
US9988734B2 (en) | 2011-08-15 | 2018-06-05 | Lam Research Corporation | Lipseals and contact elements for semiconductor electroplating apparatuses |
CN104272438B (zh) | 2012-03-28 | 2018-01-12 | 诺发系统公司 | 用于清洁电镀衬底保持器的方法和装置 |
US9476139B2 (en) | 2012-03-30 | 2016-10-25 | Novellus Systems, Inc. | Cleaning electroplating substrate holders using reverse current deplating |
US10416092B2 (en) | 2013-02-15 | 2019-09-17 | Lam Research Corporation | Remote detection of plating on wafer holding apparatus |
US9746427B2 (en) | 2013-02-15 | 2017-08-29 | Novellus Systems, Inc. | Detection of plating on wafer holding apparatus |
US9303329B2 (en) | 2013-11-11 | 2016-04-05 | Tel Nexx, Inc. | Electrochemical deposition apparatus with remote catholyte fluid management |
US10053793B2 (en) | 2015-07-09 | 2018-08-21 | Lam Research Corporation | Integrated elastomeric lipseal and cup bottom for reducing wafer sticking |
KR101927699B1 (ko) * | 2016-10-31 | 2018-12-13 | 세메스 주식회사 | 기판 처리 장치 및 방법 |
KR102275458B1 (ko) * | 2018-11-30 | 2021-07-13 | 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 | 전기화학 도금 시스템 및 사용 방법 |
JP7058239B2 (ja) * | 2019-03-14 | 2022-04-21 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理装置およびプログラム |
KR102374337B1 (ko) * | 2020-12-09 | 2022-03-16 | 가부시키가이샤 에바라 세이사꾸쇼 | 도금 장치, 및 기판 홀더 조작 방법 |
Family Cites Families (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL170870B (nl) * | 1952-07-05 | Koninklijke Hoogovens En Staal | Werkwijze voor het vuurvast bekleden van ovenwanden en een aldus vervaardigde metallurgische schachtoven. | |
US2882209A (en) * | 1957-05-20 | 1959-04-14 | Udylite Res Corp | Electrodeposition of copper from an acid bath |
GB1581958A (en) * | 1976-09-10 | 1980-12-31 | Belge Fab Disques | Method and device for electroplating substantially flat workpieces |
CH617508A5 (ja) * | 1976-12-24 | 1980-05-30 | Eric Robert | |
US4195908A (en) * | 1978-05-15 | 1980-04-01 | Sperry Corporation | Magnetic mirror for imparting non-reciprocal phase shift |
US4240894A (en) * | 1979-10-05 | 1980-12-23 | Edward Adler | Drum for electrodeposited copper foil production |
JPS6063987A (ja) * | 1983-09-17 | 1985-04-12 | 沖電気工業株式会社 | 印刷配線基板の製造方法 |
US4466864A (en) * | 1983-12-16 | 1984-08-21 | At&T Technologies, Inc. | Methods of and apparatus for electroplating preselected surface regions of electrical articles |
US4576685A (en) * | 1985-04-23 | 1986-03-18 | Schering Ag | Process and apparatus for plating onto articles |
WO1987003915A1 (en) * | 1985-12-24 | 1987-07-02 | Gould Inc. | A process and apparatus for electroplating copper foil |
US4869971A (en) * | 1986-05-22 | 1989-09-26 | Nee Chin Cheng | Multilayer pulsed-current electrodeposition process |
DE3632378A1 (de) * | 1986-09-24 | 1988-03-31 | Schering Ag | Verfahren zum fuehren von plattenfoermigen gegenstaenden, sowie dazugehoerige vorrichtung |
US4891106A (en) * | 1987-08-18 | 1990-01-02 | Hughes Aircraft Company | Method of forming nonmagnetic silver electrodes on quartz glass |
US5230743A (en) * | 1988-05-25 | 1993-07-27 | Semitool, Inc. | Method for single wafer processing in which a semiconductor wafer is contacted with a fluid |
US5235995A (en) * | 1989-03-27 | 1993-08-17 | Semitool, Inc. | Semiconductor processor apparatus with dynamic wafer vapor treatment and particulate volatilization |
US5316974A (en) * | 1988-12-19 | 1994-05-31 | Texas Instruments Incorporated | Integrated circuit copper metallization process using a lift-off seed layer and a thick-plated conductor layer |
CA2038615C (en) * | 1990-03-23 | 1995-12-12 | Masamichi Akatsu | Poly (phenylene sulfide) fibers and production process thereof |
US5259407A (en) * | 1990-06-15 | 1993-11-09 | Matrix Inc. | Surface treatment method and apparatus for a semiconductor wafer |
US5252807A (en) * | 1990-07-02 | 1993-10-12 | George Chizinsky | Heated plate rapid thermal processor |
US5368711A (en) * | 1990-08-01 | 1994-11-29 | Poris; Jaime | Selective metal electrodeposition process and apparatus |
US5256274A (en) * | 1990-08-01 | 1993-10-26 | Jaime Poris | Selective metal electrodeposition process |
JP2524436B2 (ja) * | 1990-09-18 | 1996-08-14 | インターナショナル・ビジネス・マシーンズ・コーポレイション | 表面処理方法 |
CA2059841A1 (en) * | 1991-01-24 | 1992-07-25 | Ichiro Hayashida | Surface treating solutions and cleaning method |
JP2525521B2 (ja) * | 1991-06-25 | 1996-08-21 | 日本リーロナール株式会社 | 無電解スズ―鉛合金めっき浴 |
JPH0544075A (ja) * | 1991-08-15 | 1993-02-23 | Nippon Riironaale Kk | 無電解銅めつき代替銅ストライクめつき方法 |
JPH05211384A (ja) * | 1991-11-20 | 1993-08-20 | Nec Corp | 印刷配線板のめっき方法 |
JP3200468B2 (ja) * | 1992-05-21 | 2001-08-20 | 日本エレクトロプレイテイング・エンジニヤース株式会社 | ウエーハ用めっき装置 |
JP2654314B2 (ja) * | 1992-06-04 | 1997-09-17 | 東京応化工業株式会社 | 裏面洗浄装置 |
US5512163A (en) * | 1992-06-08 | 1996-04-30 | Motorola, Inc. | Method for forming a planarization etch stop |
US5227041A (en) * | 1992-06-12 | 1993-07-13 | Digital Equipment Corporation | Dry contact electroplating apparatus |
JPH08501827A (ja) * | 1992-09-15 | 1996-02-27 | エイティアール ワイアー アンド ケーブル カンパニー,インコーポレイテッド | 銅の電解メッキ方法及び装置 |
US5328589A (en) * | 1992-12-23 | 1994-07-12 | Enthone-Omi, Inc. | Functional fluid additives for acid copper electroplating baths |
US5384640A (en) * | 1993-01-19 | 1995-01-24 | Gaztech International Corporation | Gas sample chamber for use with a source of coherent radiation |
JPH0714811A (ja) * | 1993-06-24 | 1995-01-17 | Hitachi Ltd | 洗浄乾燥方法及び洗浄乾燥装置 |
US5415890A (en) * | 1994-01-03 | 1995-05-16 | Eaton Corporation | Modular apparatus and method for surface treatment of parts with liquid baths |
US5528118A (en) * | 1994-04-01 | 1996-06-18 | Nikon Precision, Inc. | Guideless stage with isolated reaction stage |
US5730801A (en) * | 1994-08-23 | 1998-03-24 | Applied Materials, Inc. | Compartnetalized substrate processing chamber |
IL113829A (en) * | 1995-05-23 | 2000-12-06 | Nova Measuring Instr Ltd | Apparatus for optical inspection of wafers during polishing |
US6203582B1 (en) * | 1996-07-15 | 2001-03-20 | Semitool, Inc. | Modular semiconductor workpiece processing tool |
US5838121A (en) * | 1996-11-18 | 1998-11-17 | Applied Materials, Inc. | Dual blade robot |
JPH10177988A (ja) * | 1996-12-18 | 1998-06-30 | Sony Corp | 半導体ウェーハの処理方法及び装置 |
JP3255866B2 (ja) * | 1997-01-30 | 2002-02-12 | カゴメ株式会社 | 食品材料の連続煎炒装置 |
US6174425B1 (en) * | 1997-05-14 | 2001-01-16 | Motorola, Inc. | Process for depositing a layer of material over a substrate |
US6024856A (en) * | 1997-10-10 | 2000-02-15 | Enthone-Omi, Inc. | Copper metallization of silicon wafers using insoluble anodes |
JP3731472B2 (ja) * | 1997-11-05 | 2006-01-05 | セイコーエプソン株式会社 | 印刷装置およびその制御方法、ならびにプログラムを記録した記録媒体 |
US6156167A (en) * | 1997-11-13 | 2000-12-05 | Novellus Systems, Inc. | Clamshell apparatus for electrochemically treating semiconductor wafers |
JPH11162905A (ja) * | 1997-11-25 | 1999-06-18 | Dainippon Screen Mfg Co Ltd | 基板処理装置 |
US6391166B1 (en) * | 1998-02-12 | 2002-05-21 | Acm Research, Inc. | Plating apparatus and method |
US6565729B2 (en) * | 1998-03-20 | 2003-05-20 | Semitool, Inc. | Method for electrochemically depositing metal on a semiconductor workpiece |
US6197181B1 (en) * | 1998-03-20 | 2001-03-06 | Semitool, Inc. | Apparatus and method for electrolytically depositing a metal on a microelectronic workpiece |
EP0991795B1 (en) * | 1998-04-21 | 2006-02-22 | Applied Materials, Inc. | Electro-chemical deposition system and method of electroplating on substrates |
US6113771A (en) * | 1998-04-21 | 2000-09-05 | Applied Materials, Inc. | Electro deposition chemistry |
US6080291A (en) * | 1998-07-10 | 2000-06-27 | Semitool, Inc. | Apparatus for electrochemically processing a workpiece including an electrical contact assembly having a seal member |
US6074544A (en) * | 1998-07-22 | 2000-06-13 | Novellus Systems, Inc. | Method of electroplating semiconductor wafer using variable currents and mass transfer to obtain uniform plated layer |
US6319384B1 (en) * | 1998-10-14 | 2001-11-20 | Faraday Technology Marketing Group, Llc | Pulse reverse electrodeposition for metallization and planarization of semiconductor substrates |
BR9906873A (pt) * | 1998-10-14 | 2002-01-02 | Faraday Technology Inc | Eletrodeposição de metais em pequenos recessos usando campos elétricos modulados |
US6793796B2 (en) * | 1998-10-26 | 2004-09-21 | Novellus Systems, Inc. | Electroplating process for avoiding defects in metal features of integrated circuit devices |
US6251251B1 (en) * | 1998-11-16 | 2001-06-26 | International Business Machines Corporation | Anode design for semiconductor deposition |
JP4766579B2 (ja) * | 1998-11-30 | 2011-09-07 | アプライド マテリアルズ インコーポレイテッド | 電気化学堆積装置 |
US6267853B1 (en) * | 1999-07-09 | 2001-07-31 | Applied Materials, Inc. | Electro-chemical deposition system |
US6613214B2 (en) * | 1998-11-30 | 2003-09-02 | Applied Materials, Inc. | Electric contact element for electrochemical deposition system and method |
US6258220B1 (en) * | 1998-11-30 | 2001-07-10 | Applied Materials, Inc. | Electro-chemical deposition system |
US6254760B1 (en) * | 1999-03-05 | 2001-07-03 | Applied Materials, Inc. | Electro-chemical deposition system and method |
US6113759A (en) * | 1998-12-18 | 2000-09-05 | International Business Machines Corporation | Anode design for semiconductor deposition having novel electrical contact assembly |
US6340633B1 (en) * | 1999-03-26 | 2002-01-22 | Advanced Micro Devices, Inc. | Method for ramped current density plating of semiconductor vias and trenches |
US6585876B2 (en) * | 1999-04-08 | 2003-07-01 | Applied Materials Inc. | Flow diffuser to be used in electro-chemical plating system and method |
US6662673B1 (en) * | 1999-04-08 | 2003-12-16 | Applied Materials, Inc. | Linear motion apparatus and associated method |
US6571657B1 (en) * | 1999-04-08 | 2003-06-03 | Applied Materials Inc. | Multiple blade robot adjustment apparatus and associated method |
US6557237B1 (en) * | 1999-04-08 | 2003-05-06 | Applied Materials, Inc. | Removable modular cell for electro-chemical plating and method |
US6551488B1 (en) * | 1999-04-08 | 2003-04-22 | Applied Materials, Inc. | Segmenting of processing system into wet and dry areas |
US6551484B2 (en) * | 1999-04-08 | 2003-04-22 | Applied Materials, Inc. | Reverse voltage bias for electro-chemical plating system and method |
US6582578B1 (en) * | 1999-04-08 | 2003-06-24 | Applied Materials, Inc. | Method and associated apparatus for tilting a substrate upon entry for metal deposition |
US6261733B1 (en) * | 1999-05-10 | 2001-07-17 | Agfa-Gevaert | Silver salt diffusion transfer material sensitized for blue light |
SG80035A1 (en) * | 1999-05-27 | 2001-04-17 | Inst Of Microelectronics | Viterbi decoding of punctured convolutional codes without real-time branch metric computation |
US6454864B2 (en) * | 1999-06-14 | 2002-09-24 | Cutek Research, Inc. | Two-piece chuck |
US6432832B1 (en) * | 1999-06-30 | 2002-08-13 | Lam Research Corporation | Method of improving the profile angle between narrow and wide features |
US6399479B1 (en) * | 1999-08-30 | 2002-06-04 | Applied Materials, Inc. | Processes to improve electroplating fill |
US6395101B1 (en) * | 1999-10-08 | 2002-05-28 | Semitool, Inc. | Single semiconductor wafer processor |
US20020000380A1 (en) * | 1999-10-28 | 2002-01-03 | Lyndon W. Graham | Method, chemistry, and apparatus for noble metal electroplating on a microelectronic workpiece |
US6423636B1 (en) * | 1999-11-19 | 2002-07-23 | Applied Materials, Inc. | Process sequence for improved seed layer productivity and achieving 3mm edge exclusion for a copper metalization process on semiconductor wafer |
US6344419B1 (en) * | 1999-12-03 | 2002-02-05 | Applied Materials, Inc. | Pulsed-mode RF bias for sidewall coverage improvement |
US6409903B1 (en) * | 1999-12-21 | 2002-06-25 | International Business Machines Corporation | Multi-step potentiostatic/galvanostatic plating control |
US6551483B1 (en) * | 2000-02-29 | 2003-04-22 | Novellus Systems, Inc. | Method for potential controlled electroplating of fine patterns on semiconductor wafers |
JP2001316871A (ja) * | 2000-05-08 | 2001-11-16 | Tokyo Electron Ltd | 液処理方法、及び液処理装置 |
US6808612B2 (en) * | 2000-05-23 | 2004-10-26 | Applied Materials, Inc. | Method and apparatus to overcome anomalies in copper seed layers and to tune for feature size and aspect ratio |
US6440291B1 (en) * | 2000-11-30 | 2002-08-27 | Novellus Systems, Inc. | Controlled induction by use of power supply trigger in electrochemical processing |
US6432821B1 (en) * | 2000-12-18 | 2002-08-13 | Intel Corporation | Method of copper electroplating |
JP2002212786A (ja) * | 2001-01-17 | 2002-07-31 | Ebara Corp | 基板処理装置 |
JP2002220692A (ja) * | 2001-01-24 | 2002-08-09 | Ebara Corp | めっき装置及び方法 |
US6551487B1 (en) * | 2001-05-31 | 2003-04-22 | Novellus Systems, Inc. | Methods and apparatus for controlled-angle wafer immersion |
-
2001
- 2001-09-26 CN CNB018152589A patent/CN100469948C/zh not_active Expired - Fee Related
- 2001-09-26 JP JP2002532699A patent/JP2004536217A/ja not_active Withdrawn
- 2001-09-26 EP EP20010979288 patent/EP1470268A2/en not_active Withdrawn
- 2001-09-26 WO PCT/US2001/030058 patent/WO2002029137A2/en active Search and Examination
- 2001-10-03 TW TW090124451A patent/TW531770B/zh active
-
2003
- 2003-04-28 US US10/424,479 patent/US20030201184A1/en not_active Abandoned
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101347006B1 (ko) | 2010-05-07 | 2014-01-02 | 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 | 직립식 도금 장비 및 이를 위한 도금 방법 |
KR20190097324A (ko) * | 2013-04-29 | 2019-08-20 | 어플라이드 머티어리얼스, 인코포레이티드 | 마이크로전자 기판 전기 프로세싱 시스템 |
KR102069262B1 (ko) | 2013-04-29 | 2020-01-22 | 어플라이드 머티어리얼스, 인코포레이티드 | 마이크로전자 기판 전기 프로세싱 시스템 |
US11686208B2 (en) | 2020-02-06 | 2023-06-27 | Rolls-Royce Corporation | Abrasive coating for high-temperature mechanical systems |
Also Published As
Publication number | Publication date |
---|---|
CN100469948C (zh) | 2009-03-18 |
TW531770B (en) | 2003-05-11 |
WO2002029137A2 (en) | 2002-04-11 |
WO2002029137A9 (en) | 2007-03-08 |
EP1470268A2 (en) | 2004-10-27 |
US20030201184A1 (en) | 2003-10-30 |
WO2002029137A3 (en) | 2004-08-05 |
CN1623012A (zh) | 2005-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6582578B1 (en) | Method and associated apparatus for tilting a substrate upon entry for metal deposition | |
JP2004536217A (ja) | 金属蒸着のためのエントリーにあたって半導体基板を傾けるための方法と関連する装置 | |
JP4766579B2 (ja) | 電気化学堆積装置 | |
US6585876B2 (en) | Flow diffuser to be used in electro-chemical plating system and method | |
US7497932B2 (en) | Electro-chemical deposition system | |
US6551488B1 (en) | Segmenting of processing system into wet and dry areas | |
EP1037263B1 (en) | Apparatus for electro-chemical deposition of copper with the capability of in-situ thermal annealing | |
US6551484B2 (en) | Reverse voltage bias for electro-chemical plating system and method | |
US6837978B1 (en) | Deposition uniformity control for electroplating apparatus, and associated method | |
US6662673B1 (en) | Linear motion apparatus and associated method | |
KR20020005480A (ko) | 애노드 코팅 장치 및 방법 | |
US6571657B1 (en) | Multiple blade robot adjustment apparatus and associated method | |
US6557237B1 (en) | Removable modular cell for electro-chemical plating and method | |
US7114693B1 (en) | Stable cell platform | |
US20040020780A1 (en) | Immersion bias for use in electro-chemical plating system | |
WO2002031227A2 (en) | Deposition uniformity control for electroplating apparatus, and associated method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20081202 |