JP2004508899A - 静電式投与型乾燥粉末吸入器の最適化 - Google Patents

静電式投与型乾燥粉末吸入器の最適化 Download PDF

Info

Publication number
JP2004508899A
JP2004508899A JP2002528333A JP2002528333A JP2004508899A JP 2004508899 A JP2004508899 A JP 2004508899A JP 2002528333 A JP2002528333 A JP 2002528333A JP 2002528333 A JP2002528333 A JP 2002528333A JP 2004508899 A JP2004508899 A JP 2004508899A
Authority
JP
Japan
Prior art keywords
dpi
delivery
redispersion
drug
optimizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002528333A
Other languages
English (en)
Inventor
ニルソン、 トマス
Original Assignee
ミクロドラッグ アーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミクロドラッグ アーゲー filed Critical ミクロドラッグ アーゲー
Publication of JP2004508899A publication Critical patent/JP2004508899A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/02Inhalators with activated or ionised fluids, e.g. electrohydrodynamic [EHD] or electrostatic devices; Ozone-inhalators with radioactive tagged particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0028Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0065Inhalators with dosage or measuring devices
    • A61M15/0068Indicating or counting the number of dispensed doses or of remaining doses
    • A61M15/0083Timers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0039Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the inspiratory circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/06Solids
    • A61M2202/064Powder

Abstract

電気的粉末からなる予め計量された調製済みの電気的投与薬を利用するための静電式投与型乾燥粉末吸入器(EDPI)を最適化するための方法及びプロセスが開示される。DPIから行われる予め計量された電気的投与薬の全身性送給または局所的な肺への送給に影響を及ぼすパラメーターを測定するための編成が設定され、そのパラメーターの測定は、圧力、時間、及び流量と共に、投与薬の再分散、粒径分布、並びに、投与量−投与量間変動の分析を含む。乾燥粉末吸入器(DPI)は、DPIが、全身性送給設定では1分当たり20リットルから60リットルの吸入空気流量を得られるように、そして、局所的な肺への送給設定では1分当たり20リットルから80リットルの吸入空気流量が得られるように、作動圧力及び閉成圧力に関して、全身性送給設定または局所的な肺への送給設定用に調節される。更に、その再分散力は、マウスピース及び/又は装置メンバー並びにそれらの相互の関係を変えることによって圧力降下及び吸入流量を最適化することにより、このDPIで使用されるべく、0.1ワットから6ワットの範囲に調節される。更に、上述のDPI作動圧力は、吸入開始時における低パワーを排除すべく、0.5kPaから4kPaまでの間の値に調節される。その後、本方法及びプロセスは、このDPIが、DPI作動時間内におけるタイミングと共に、粉末の再分散及び開放圧力並びに閉成圧力に関して設定された仕様を満たしているかどうかを確認する。更に、式、100[1−再分散(Q1kPa)/再分散(Q)]を用いて百分率で表される再分散差分が50%より多くないかどうかが確認される。最後に、もし、このDPIがEDPIとして不合格の場合には、この試験されたDPI及び/又は電気的投与薬が更に調節され、そして、そのDPIがEDPIに関する仕様を満たすことができるかどうかがチェックされる。

Description

【0001】
(技術分野)
本発明は、吸入されるべく静電的に投与される粉末を放出することによる、気道内への薬剤粉末の投与に関するものであり、より詳細には、予め計量された用量の電気的粉末との関係において、静電式投与型乾燥粉末吸入器(EDPI)の機能を最適化させるための方法に関するものである。
【0002】
(背景)
薬剤の投与は、今日、医療サービスにおいて、数多くの異なる方法で実施されている。また、保健医療の分野においては、医療用薬剤の効果的で、迅速、且つ、ユーザーに優しい投与手段を得るため、吸入器によりユーザーの気道及び肺へ直接的に医療用薬剤を粉末として投与する技術の可能性に対する関心がますます高まっている。しかし、現在のところ、そのような投与方法の質は、広範囲の薬剤に対して充分に使用できるほどには良好でない。これは、特に、多くのタイプの薬剤、即ち、インスリン、痛み管理薬等を注射針で投与する方法と競合可能に為す重要な医療区分を代表する乾燥粉末吸入器(DPI)を通じての吸入による全身性送給の場合に当てはまる。
【0003】
今日の乾燥粉末吸入器は、経口的な吸入により、深部または上部の肺気道内へ粉末を投与すべく意図された装置を代表するものである。深部の肺という用語は、そこで活性物質の血液への直接的な輸送が起こり得る末梢の肺及び肺胞を指すものと理解すべきである。そのような粉末の粒径は、深部の肺へ到達するためには0.5−3μmの範囲になければならず、そして、局所的な肺への送給に対しては3−5μmの範囲になければならない。それより大きな粒径は、口腔や咽喉に付着しやすく、そして、それより小さな粒径は、呼気と共に再度体外に排出されるであろう。
【0004】
薬剤粉末を吸入により深部の肺へ到達させて全身性送給を成功させるためには、満たさなければならない幾つかの判定基準が存在する。最も重要な判定基準は、その薬剤粉末の再分散の程度が非常に高くなければならないことであるが、投与量が正確であることも非常に重要である。これは、例えばいわゆるスペーサー等の特殊な装置を伴わない場合には、今日の乾燥粉末吸入器では難しい。スペーサーを用いる場合、このスペーサーにより小さな粒子が容器内に均等に分配され、その容器から吸入を行うことができる。このスペーサーを通じて吸入すると、微細な粉末は、そのエアー中で自由に浮遊し、肺胞に効果的に到達するであろう。この方法は、原理上、2つの欠点を有している。第一の欠点は、制御不能な量の粉末がこのスペーサーの壁部に付着してしまうため、肺へ放出される薬剤の量を制御するのが難しいことである。第二の欠点は、この種の装置は比較的大きなスペースを必要とするため、取り扱いが困難なことである。
【0005】
また、微細な粉末がその上に分配される比較的大きな粒径を有する担体、即ちラクトースを使用する方法もよく用いられる。吸息の際、その大きな粒径の粒子は、口腔内に付着し、一方、5μmより小さな粉末である微細な粒子フラクションは、自由になり、肺へ進行する。例えば米国特許第5,642,727号は、予め定められた用量の薬剤粉末を静電的に保持するための容器部分を有する摩擦−吸入器を開示している。この容器部分は、約50ミクロンから200ミクロンの直径を有する多数の高分子ビーズを含んでいる。これらの各高分子ビーズは、その表面に静電的に付着された固有量の乾燥粉末薬剤を有している。
【0006】
米国特許第5,871,010号は、乾燥粉末の放出を高めるべく、修飾された表面を有する吸入装置に関するものである。そこで開示されている吸入装置は、乾燥粉末の沈着を最小化させるべく薬剤とその吸入器の表面との間の接触を最小化するため、低い表面エネルギーを有する内部表面を含んでいる。
【0007】
吸入器用の粉末は、凝集する傾向、別な言葉で言えば、塊になる傾向、または、小さな塊や大きな塊を形成する傾向を有しており、この集塊は、その後、凝集体の分割が行われなければならない。再分散は、電気的、機械的、または空気力学的なエネルギーを導入することにより、その集塊形成粉末を分割することとして定義される。通常、再分散は、ステージ1として投与中に実施され、そして、最終ステージ2としてDPIを通じるユーザーの吸息中に実施される。
【0008】
通常、吸入装置は、肺内へ活性物質をできるだけ多く運ぶべく努力して吸入したときに投与される薬剤物質の凝集体を分解するのに、ユーザーの通常の吸息努力によりもたらされる力を多かれ少なかれ利用する。これは、ユーザーの肺の能力を試験することにより得られる高い圧力降下を利用する吸入器設計を導くことが多い。
【0009】
凝集体を分割するテクノロジーは、今日、先進の機械的及び空気力学的なシステムや、例えば米国特許第5,826,633号に見られるような電気的及び機械的な充填システム間の組み合わせを含む。更に、例えば米国特許第5,775,320号、米国特許第5,785,049号、及び米国特許第5,740,794号等、薬剤のエアロゾル化された用量を分散させるためのシステムも開示されている。その他、我々の国際公開公報WO 00/0636号、及びWO 00/6235号には、再分散及び分類用の原理が開示されている。
【0010】
これらのうちの幾つかの要件を満たすため、例えばカセット等の技術的な手段にそのような粉末の静電的な投与を為すことができる。装置メンバーまたはカセットへの静電的な投与は、我々のスウェーデン特許第9802648−7号(SE512 433)に記載されており、そして、その質は、我々のスウェーデン特許第9802649−5号(SE512 386)に記載されているように、5μmより大きな粒径の粗い粒子を除外すべく分類し、微細な粒子(5μm未満)のみをその装置メンバーまたはカセットに投与する能力を利用することにより改善することができる。
【0011】
「静電的な投与」という用語は、この明細書全体を通じ、粉末粒子を電気的に帯電させることにより微細に分割された乾燥粉末の投与薬を形成し、そして、その帯電した粒子を、全質量及び空間的な幾何学的形状等の関連する投与パラメーターを充分に制御した状態で、基体の選定された標的領域に輸送、分配、及び沈着させるべく、静電的な技法または管理された電場技法あるいはこれらの技法の組み合わせを適用する方法を表す一般用語として使用される。この投与薬の形成後、その投与薬の電荷は、どのようなタイプの投与システムを用いることが想定されているかに従って、そのまま残ったり、時間の経過と共に自然に減衰したり、あるいは、何らかの手段により積極的に中和され得る。
【0012】
電気的粉末という用語は、吸入装置における静電的な投与に適した被制御静電特性を呈する微粉化薬剤粉末を指している。そのような電気的粉末は、優れた吸入投与性能を呈する、我々の米国特許第6,089,227号並びに我々のスウェーデン特許第9802648−7号及び第9802649−5号に開示されているもの等の静電的に作動する機器からより良好な投与を行える可能性を提供する。
【0013】
このタイプの技術を用いることに関わる一つの大きな問題は、製造においてインライン対照を用いることができないため、投与量間で低い相対標準偏差(RSD)が得られ難く、そのため、規制要件を満たすのが難しいことである。計量された用量の薬剤物質に対しては、投与量間の相対標準偏差(RSD)は、好適には、<5%を越えるべきではない。先行技術のDPIsの場合、ユーザー依存性と共に、微細粒子フラクションと投与量の一様性が大きな欠点であり、この件については、以下の文献から理解することができる:「サルブタモルを送給する以下の4種類の代替的吸入装置の投与薬送給特性の臨界的比較:加圧式計量済み投与薬吸入器、Diskus吸入器、Diskhaler吸入器、及びTurbuhaler吸入器(A Critical Comparison of the Dose Delivery Characteristics of Four Alternative Inhalation Devices Delivering Salbutamol:Pressurized Metered Dose Inhaler,Diskus Inhaler,Diskhaler Inhaler,and Turbuhaler Inhaler)」(Journal of Aerosol Medicine、第12巻、第2号、1999年、Mary Ann Liebert,Inc.、pp75−84)。
【0014】
多くの場合、先行技術のテクノロジーを用いる装置は、充分に程度の高い再分散を達することができず、正確な用量がうまく展開されず、そして、多くのことを積み残しており、そのような装置が、用量要件を満たし、且つ、薬剤物質の肺への沈着に関する有効性を満足させるようになることが望まれている。
【0015】
これは、重要な機能が最適化されていて、非常に高い再分散(これは、局所的な肺への送給に対しては5μm以下の粒径を有する粒子フラクションの割合が高く、深部の肺への送給に対しては3μm以下の粒径を有する粒子フラクションの割合が高いことを意味する)を与え、且つ、ユーザーの吸入における小さな変動に依存せずに一様な投与量をもたらす乾燥粉末吸入器に対する要求が尚も存在することを意味している。
【0016】
(発明の要約)
電気的粉末からなる予め計量された調製済みの電気的投与薬を利用するための静電式投与型乾燥粉末吸入器(EDPI)を最適化するための方法及びプロセスが開示される。DPIから行われる予め計量された電気的投与薬の全身性送給または局所的な肺への送給に影響を及ぼすパラメーターを測定するための編成が設定され、そのパラメーターの測定は、圧力、時間及び流量と共に、投与薬の再分散、粒径分布、並びに、投与量−投与量間変動の分析を含む。乾燥粉末吸入器(DPI)は、DPIが、全身性送給設定では1分当たり20リットルから60リットルの吸入空気流量を得られるように、そして、局所的な肺への送給設定では1分当たり40リットルから80リットルの吸入空気流量が得られるように、作動圧力及び閉成圧力に関して、全身性送給設定または局所的な肺への送給設定用に調節される。更に、その再分散力は、例えばマウスピース及び/又は装置メンバー並びにそれらの相互の関係を変えることによって圧力降下及び吸入流量を最適化することにより、このDPIで使用されるべく、0.1ワットから6ワットの範囲に調節される。更に、吸入開始時及び吸入終了時における低パワーを排除すべく、上述のDPI作動圧力は0.5kPaから4kPaまでの間の値に調節され、そして、場合によっては、上述の閉成圧力が0.5kPaから4kPaまでの間の値に調節される。その後、本方法及びプロセスは、このDPIが、DPIの作動時間内におけるタイミングと共に、再分散力及び開放圧力並びに閉成圧力に関して設定された仕様を満たしているかどうかを確認し、且つ、その再分散が、USPに従って測定したときに重量で少なくとも50%の(粒径5μm以下のフラクションとして定義される)微細粒子フラクションを発生させているかどうかを確認する。更に、式、100[1−再分散(Q1kPa)/再分散(Q)]を用いて百分率で表される再分散差分が50%を越えていないかどうかが確認される。最後に、もし、このDPIがEDPIとして不合格の場合には、この試験されたDPI及び/又は電気的投与薬が更に調節され、そして、そのDPIがEDPIに関する仕様を満たすことができるかどうかがチェックされる。
【0017】
本発明による方法は、独立請求項1及び15と、従属請求項2から14、及び、従属請求項16から19で説明されている。更に、EDPIを得るためのプロセスは、独立請求項20及び24で説明されており、そして、そのプロセスの更なる実施態様が、従属請求項21から23、及び、従属請求項25から37で説明されている。
【0018】
添付図面を引き合いに出して行われる以下の説明を参照することにより、本発明を、それの更なる目的及び利点と共に、最も良く理解することができよう。
【0019】
(発明の詳細な説明)
EDPIは、(それぞれ、空気力学的直径が5μm未満(DD5μm)及び3μm未満(DD3μm)の再分散された電気的投与薬粉末粒子の質量による百分率として定義された)投与薬の再分散DD5μm及びDD3μmが25%より多く、且つ、その吸入装置にわたる圧力降下が1kPaへの低減を表すある流量での再分散との比較におけるUSPに従って測定した再分散差分、(1−(再分散(Q1kPa)/再分散(Q))×100)が<50%、より好適には25%未満、最も好適には10%未満であって、更に、このUSPにおける条件として要求される用量の一様性を満たす、1μgから10mgまでの電気的粉末からなる計量済みの電気的投与薬の局所的送給または全身性送給に対して最適化されたDPIである。投与薬の質量の一様性は、90%から110%までの間、好適には95%から105%までの間に収まっていることが期待される。USPにより、USP 24−NF 19 補足(Supplement) 601 エアロゾル/物理的試験(Aerosols/Physical Tests)(2674−2688頁)が参照される。本明細書全体を通じ、関連するパラメーターを測定する広く知られた方法を同定するための参照としてUSPが使用されるが、当技術分野における通常の熟練者であれば、添付の特許請求項で定義されている通りの本発明の精神及び範囲から逸脱することなく、他の方法及び管理基準を用いることもできよう。
【0020】
このEDPIは、その操作に電気的な補助を伴う、もしくは、そのような補助を伴わない、単回用または多回用のEDPIであってよい。ある設定された吸入圧力におけるDPIの作動は、機械的な弁や、あるいは、例えば音響または圧力に対する電気的なセンサーにより確立することができ、そして、操作の閉成は、コンピューター制御式のタイマーや、機械的な終点検出により果たすことができる。
【0021】
特に重要なことは、粒径分布及び投与量の一様性がユーザーに依存しないことである。これらの2つの特性についての測定が、図1における再分散及び質量に関する測定機構の一つの実施例で示されている。図1では、最適化すべきDPI1が、マウスピース7を通じて装置メンバー2から吸引される予め計量済みの投与薬から得られる粒径分布と質量を決定するのに使用され、Andersen Impactor(Andersen衝突式採集器)3を用いて空気力学的な粒径分布が決定される。この再分散機構にわたる全圧力降下は、圧力ゲージ4で測定され、そして、その空気の流量は、流量計5によりリットル/分単位で測定される。上述の吸引は、流量及び圧力を調節するためのコンポーネントを含むポンピング装置6により果たすことができる。
【0022】
粒径分布のすべての測定は、少なくともその吸入装置にわたる2つの異なる圧力降下において測定される。すべての測定は、USPに従って実施され、次いで、その圧力は、ポイント8におけるこの吸入装置1にわたる圧力がそれより低い1kPaで測定するために変更される。
【0023】
また、大気に対する差圧として圧力ゲージ8により指示されるDPI1にわたる1kPaにおいても相補的な粒径分布が測定され、そして、その時に得られた流量が書き留められ、Q1kPaと名付けられる。流量Q1kPaで得られた粒径分布は、次いで、USPによる他のすべての設定を用いることにより得られた流量を意味する流量Qで得られた粒径分布と比較される。
【0024】
この吸入装置にわたる2つの異なる圧力における上述の再分散試験の結果は、それらの結果がEDPIに対する仕様を満たしているかどうかを決定すべく、また、その3μm及び5μmに対する再分散(DD3μm及びDD5μm)が、そのEDPI及び医薬の意図的用途に対する仕様の範囲内であるかどうかを決定すべく、図17及び図18に従って比較される。
【0025】
これが、電気的粉末の局所的な肺への送給及び深部の肺への送給にとって重要な粒径範囲における再分散の質を反映しているときには、全身性送給に対してはこのDD3μmを用いてそのEDPIが最適化され、そして、局所的な肺への送給に対しては、最適化でこのDD5μmが用いられる。
【0026】
ここで、計量された電気的投与薬という用語は、投与薬の担体を形成する装置メンバー上へ計量される少なくとも1種類の活性粉末物質または乾燥粉末薬剤調合物を構成する電気的粉末から形成される投与薬として定義され、計量された投与薬は、粒径が0.5−5μmの範囲の微細粒子フラクション(FPF)を、それの質量のうちの50%かそれ以上のオーダーで有しており、更に、その投与薬は、75%から99.9%までの最適化された多孔度を示す。この多孔度は、Dp電気的投与薬=100−100(密度電気投与薬/密度電気的粉末)として定義される。また、この密度電気的粉末は、その固形物質の密度として定義される。
【0027】
電気的粉末という用語は、質量で50%かそれ以上の0.5−5μmの範囲の粒子からなる微細粒子フラクション(FPF)を有する活性粉末物質または乾燥粉末薬剤調合物から形成される、静電的な投与を意図した薬剤粉末であって、室温で測定したときの電気的な仕様に0.1μC/gから25μC/g(0.1×10−6−25×10−6クーロン/グラムの負電荷または正電荷)のオーダーの絶対比電荷を与え、そして、>0.1秒の電荷減衰定数Q50を呈することが期待され[ここで、Q50は、(例えば、DEKATI LTDから入手可能なElectrical Low Pressure Impactor(ELPI)モデル3935におけるコロナ帯電後に)その静電的な電荷の50%が放電されるまでの時間として定義される]、更に、0.8g/ml未満のタップ密度と0.5未満の水分活性aを有する薬剤粉末として定義される。前述の水分活性aは、無次元量であり、例えば、AquaLabモデルシリーズ3 TEを用いて測定することができる。また、前述のタップ密度は、例えば、Quantachrome(版権)Corporationから入手可能なDual Autotapを用いることにより、見掛け体積法に対するイギリス薬局方(British Pharmacopoeia for Apparent Volume method)に従って測定される。水分活性とタップ密度は、共に、化学分析の分野における熟練者にとってはよく知られた量である。
【0028】
活性物質の血液への直接的な輸送が起こり得る場所である末梢の肺及び肺胞として本明細書で定義される深部の肺へ送給されるべく意図された粒子は、0.5−3μmの範囲の粒径を有していなければならない。一方、例えば喘息の治療において治療が通常行われる場所である肺の上部として定義される局所的な肺の治療に対しては、その粒径は3−5μmの範囲でなければならない。すべての粒径は、例えば物理的な粒径を分類するためのMalvern Mastersizerや空気力学的な粒径を分類するためのAndersen Impactorを例とするレーザー回折装置を用いて測定される粒子のサイズとして定義され、別な具合に述べられていない場合には、いつも、空気力学的な粒径であって、USPに従って測定されることを指している。
【0029】
それが、概して、深部の肺へ輸送されることにより医療上の活性を発揮する0.5μmから3μmの範囲の粒子のみであるように、非常に微細な粒子フラクション(FPF)を有する粉末を調製しなければならない。一方、吸入による局所的な肺の治療では、その粒径は3−5μmの範囲でなければならない。
【0030】
また、吸入器からは、投与量−投与量間の相対標準偏差(RSD)が低い状態で正確な用量が放出されなければならない。設定された仕様範囲内の静電特性を有する静電的に投与される乾燥粉末の場合、その投与量間の相対標準偏差(RSD)は5%より大きくならないであろう。
【0031】
多くの活性物質が局所的な肺への送給または全身性送給で使用することの興味対象となろう。活性物質は、一般的に、DPIからの経口的な吸入により深部または上部の肺気道内へ投与されるべく意図された薬剤学的に活性な化学的または生物学的な物質である。
【0032】
意図されたDPIの最適化は、電気的粉末からなる再分散された電気的投与薬を、全身性送給のために深部の肺内へ、あるいは、局所的な肺の治療のために上部肺気道へ送給すべく意図された装置を定めることにより、図2のステップ100から始まる。このプロセスは、そのDPIを調製するためのステップ110へと進む。次に、DPIを調製するためのこのステップ110は、更に図3で示されているように、ステップ210における適切な作動圧力の調節から始まる。この作動圧力ステップ210は、ワット単位で測定された異なるパワーレベルにおける%表示の再分散10の量を示す図6を斟酌した後、図17及び図18に従って決定され、ここで、DPI内へ負荷される電気的投与薬は、以下の仕様を備えた、静電的に投与される電気的粉末として定義される:Dp電気的投与薬=100−100(密度電気的投与薬/密度電気的粉末)として定義される多孔度が>75%であり、そして、最適化された再分散が>25%であって、好適には50%より高く、最も好適には75%を越え、そして、USP 24−NF 19 補足(Supplement) 601 エアロゾル/物理的試験(Aerosols/Physical Tests)(2674−2688頁)による投与量の一様性、及び、産業用計量済み投与薬吸入器(MDI)及び乾燥粉末吸入器(DPI)医薬品化学、製造、及び管理文書作成に関する指針(Guidance for Industry Metered Dose Inhaler(MDI) and Dry Powder Inhaler(DPI) Drug Products Chemistry,Manufacturing,and Cotrols Documentation)、及び、ヒト用薬剤及び生物学的製剤を包装するための産業用容器密閉システムに関する指針(Guidance for Industry Container Closure System for Packaging Human Drugs and Biologics)、及び、校正されたクロノグラフを用いて測定された時刻(これらを、以降、USPと呼ぶ)を満たし、そして、更に、その吸入装置にわたる圧力降下が1kPaへの低減を表すある流量での再分散との比較におけるUSPに従って測定した再分散差分、100×(1−(再分散(Q1kPa)/再分散(Q))が<50%、より好適には25%未満、最も好適には10%未満という条件も備えていること。
【0033】
図6において、領域Iは、電気的投与薬の制御された再分散をもたらすのに充分なエネルギーレベルを示しており、このときには、広範囲にわたるエネルギーの相違が高度の再分散を与えている。DPIを作動させるためのエネルギーレベルが領域II内にあるように選択される場合には、制御外の再分散がより多く生じることとなり、これがそのDPIの正しい設計であるかどうかを慎重に考慮しなければならない。領域IIIは、この再分散試験のエネルギーレベルが充分でない場合を示しており、その結果は、非常に予測し難く、吸入パワーの小さな相違から非常に大きな相違がもたらされることを示している。
【0034】
ステップ210における作動圧力は、電気的投与薬とDPIのセッティングの組み合わせに対する安全な設計仕様を得るべく、通常は、図6の領域IまたはII内になるように設定されるべきである。ステップ210における作動圧力は、通常1kPaから4kPaまでの間である吸入圧力のうちどの圧力でDPIの作動を開始させるかを決定するため、即ち、ステップ100における意図的DPIを、何時、待機状態から、電気的投与薬がマウスピース内への再分散を開始して吸入されるステージへ移行させるかを決定するため、圧力ゲージを用いて測定される。
【0035】
ステップ210における作動圧力が設定されると、DPIを通じて行われる吸入中に、図6に従って、再分散のための正しいパワーを得るべく、ステップ220の吸入圧力と流量とが調節される。ステップ220における吸入圧力と流量を設定するときには、吸入中のパワーは、吸入空気流量と圧力降下との関数として達成されることを認識しておかなければならない。
【0036】
DPIの圧力降下は、このDPIにわたる合計の圧力降下であり、そして、DPI内の主な圧力降下は、ΔP再分散/ΔPtotal×100>50%の関係にある電気投与薬の再分散によりもたらされる。これは、マウスピースと装置メンバーの空気力学的な構成を最適化し、DPI内部の全体的な圧力降下を低減することにより為すことができる。また、マウスピースは、粉末の停留を低減するため、空気力学的に最適化すべきであり、そして、マウスピース内の停留を高めることとなる電場を排除するため、散逸性の材料でユーザーに電気的に接続されるべきである。
【0037】
DPIが40リットル/分から60リットル/分の間の空気流量になるように設定された場合、圧力降下は、深部の肺へ送給するために吸入空気流量を20リットル/分から40リットル/分までの範囲に設定した場合よりも低くなり、そして、それぞれ深部の肺への送給及び局所的な肺への送給での投与薬−送給時間、時間(s)、または時間(a)中の電気的投与薬の再分散に関しても同じ効果が得られよう。
【0038】
ステップ220における吸入圧力及び流量の設定後、続いて、ステップ230における投与薬送給時間の調節及び設定が行われる。このステップは、局所的な肺へ送給するのか、あるいは深部の肺へ送給するのかを決定する上で非常に重要である。ステップ230の投与薬送給時間は、吸入におけるパワー曲線の利点を活用して、最も高いパワーレベルを使用し、そして、それよりずっと低い電気的投与薬の再分散が起こる始めの部分と終わりの部分を切り捨てるように調節されるべきである。図6の領域I及びIIにおける電気的投与薬の再分散は、EDPIに対して設定された仕様を満たす最良の可能性を有しているであろう。
【0039】
深部の肺への送給を達成するためには、吸入空気流量が1分間当たり20リットルから40リットルまでの範囲であることが推奨される。上部気道内における嵌入の量が粒子の速度及び粒径の二乗に比例するため、高い流量は避けるべきである。DPIを深部の肺への送給用に設定する場合の理想的な設計仕様では、流量は1分間当たり20リットルから40リットルであって、そして、気道を狭め、これにより、気道内の空気の速度を高めることとなる気道狭窄を回避するため、圧力降下は1kPaから2kPaまでの間である。
【0040】
図8を見ると、ある作動圧力に対応する吸入流量20を有するDPIの作動の様子と共に正常な吸入15が描かれており、そこでは、局所的な肺への送給設定26との比較における、DPIの深部の肺への送給設定24が示されている。深部の肺への送給設定と局所的な肺への送給設定は、共に、同じ閉成圧力22を有している。このとき、ステップ230における投与薬送給時間は、tにおける作動圧力設定とTにおける閉成圧力設定を伴うDPIの深部の肺への送給設定では、tからTまでとして設定され、そして、局所的な肺への送給設定では、tからTまでとして設定されており、ここで、深部の肺への送給設定に対する全投与時間は、DPI時間=T−tで表される全作動時間内の時間(s)=T−tであり、そして、局所的な肺への送給設定に対する全投与時間は、時間(a)=T−tである。
【0041】
ステップ230において投与薬送給時間を設定するときには、吸入されることとなる電気的粉末の合計量に関して、粉末の濃度が高くなりすぎないように、そして、作動時間にわたり粉末の分配が確実に行われるように考慮しなければならない。吸入の全期間にわたる電気的投与薬の再分散の分配は、これが、吸入における可能な限り多くのエネルギーが電気的投与薬の再分散に利用される結果をもたらすため、非常に有益である。また、ステップ230における投与薬送給時間に対する別の一つの観点は、電気的投与薬を肺内へ送給する深さ、及び、深部の肺または局所的な肺へ下るこの輸送のために必要な空気の量についての考察である。局所的な肺への送給の場合には、通常、0.5リットルから2リットルの空気が必要であるが、深部の肺へ送給する場合には、肺の大きさや気道内の空気の体積に応じて、2リットルから3リットルの空気が必要である。投与薬送給時間ステップ230に対する理想的な設計仕様は、深部の肺への送給の場合にはtからt+1.5秒であり、そして、局所的な肺への送給設定ではt+1からt+1.75秒であるが、最適化された結果を保証する必要がある場合には、そのDPIに対する全作動時間tからT内で調節することが可能である。空気の合計吸入体積15を示す図9を見ると、そこには、合計吸入時間がユーザーの合計吸入体積15の75%に相当する量を超えるべきでないことが示されている。図9の領域33は、粉末を吸入器から局所的な肺へ輸送するのに必要な空気の体積の量を示しており、そして、領域32内の空気の体積は、粉末をDPIから深部の肺へ輸送するのに要する必要な空気の体積を示している。深部の肺へ送給すべく設定されている場合、DPIの作動は35で起こり、そして、全投与薬送給時間、時間(s)=T−tを与える37で終わる。DPIが局所的な肺へ送給すべく設定されている場合には、DPIは、36で投与薬を送給すべく作動され、そして、全投与薬送給時間、時間(a)=T−tを与える38で終結する。領域30は、母集団内の変動を表しており、そして、DPI合計時間の設定が常にユーザーの吸入時間、DPI時間=T−tよりも短くなるようにするための安全余裕域として機能し、ここで、DPI時間もユーザーの吸入に対する時間よりも短い。
【0042】
ステップ230における投与薬送給時間の設定が完了すると、このDPIに対する次の調節は、ステップ240において閉成圧力を設定することである。ステップ240における閉成圧力は、DPIの作動を停止及び閉成するものであり、通常は、ステップ210における作動圧力と同じ値かそれ以下の値に設定される。
【0043】
これでDPIの物理的な調節が設定されて、このDPIはステップ120における分析1の準備が整い、ステップ130で、その調製されたDPIが合格判定DPIに対する仕様を満たしているかどうかが決定される。
【0044】
その調製されたDPIが、設定されている仕様を満たしている場合には、このプロセスは、調製済みDPIに対するステップ140へと移る。もし設定された仕様が満たされていない場合には、このプロセスは、ステップ135を介して、更なる調節によりそのDPIを調製するためのステップ110へと戻る。
【0045】
ステップ140における調製済みのDPIは、ステップ150における電気的投与薬と共に更なる試験用に設定され、ステップ160において更なる試験を行った後、ステップ170において第二の分析2を受け、ステップ190で、ステップ140におけるその調製済みのDPIが、ステップ150における電気的投与薬と共に、EDPIとしての合格判定用に設定された仕様を満たしているかどうかが決定される。
【0046】
ステップ140における調製済みのDPIは、ステップ150で計量済みの電気的投与薬が負荷され、ステップ160でUSPに従って試験される。その調製済みのDPIは、更に、ステップ170で第二の分析2にかけられ、そこで、ステップ230における投与薬送給時間やステップ430における投与薬の再分散と共に、ステップ220における吸入圧力及び流量が測定される。
【0047】
DPIの特性を最適化するには、電気的粉末及び電気的投与薬の再分散が非常に重要である。電気的投与薬を調製するための電気的粉末の再分散は、再分散#1として定義され、そして、吸入による電気的投与薬の再分散は、再分散#2として定義される。
【0048】
再分散#2は、2つの異なる空気流量値で測定され、ここで、第一の空気流量QはUSPによる空気流量であり、そして、第二の空気流量Q1kPaは、その吸入装置にわたる圧力降下が1kPaのときの空気流量である。これらの2つの異なる空気流量値は、吸入エネルギーの増大が再分散#2に大きな影響を及ぼすかどうかを決定する。EDPIの仕様を満たすためには、再分散#2、投与特性、及び再分散#1を調節することにより、この吸入エネルギーの影響を最小化することが重要である。
【0049】
再分散#2は、ステップ140の調製済みのDPIを用いて測定される。
【0050】
このとき、その再分散は、入力材料としての電気的粉末の粒径仕様と、出力結果としての、装置メンバーから粉末を標準的に吸い取った後の粒径分布に関する高性能液体クロマトグラフィーHPLC分析とを用いて計算される。また、このとき、その電気的投与薬の再分散は、元の電気的粉末中に存在する3μm及び5μm未満の粉末の量との比較における、再分散された3μmでの電気的投与薬(DD3μm)及び5μmでの電気的投与薬(DD5μm)の百分率として算出される。
【0051】
図17及び図18は、それぞれ、最初の分布及び結果的な分布に対する粒径分布曲線下面積を描くグラフ的な表現における、それぞれ、3μm及び5μmでの再分散の計算の様子を表している。最初の電気的粉末の粒径分布を表す曲線は、丸い点でプロットされており、そして、マウスピースからの結果的な粒径分布を表す曲線は、矩形の点でプロットされている。
【0052】
図17は、ベースとしてのハッチングされた領域で表される3μm以下の最初に入力された電気的粉末を用いて、3μmでの再分散を如何にして計算するかを描いている。次いで、電気的投与薬からの再分散された粉末の量が、結果的な粉末を示す曲線下の暗色の領域で表される。この第二の領域の算出表面積値を第一の領域の算出表面積値で割り算し、係数100を掛け算することにより、DD3μmと呼ぶ、3μm以下の再分散された量が百分率で得られる。
【0053】
図18は、ベースとしてのハッチングされた領域で表される5μm以下の最初に入力された電気的粉末を用いて、5μmでの再分散を如何にして計算するかを描いている。結果的な粉末を示す曲線下の暗色の領域は、電気的投与薬からの再分散された電気的粉末の量を表している。この第二の領域の算出表面積値を図18における第一の領域の算出表面積値で割り算し、係数100を掛け算することにより、DD5μmと呼ぶ、5μm以下の再分散された量が百分率で得られる。
【0054】
ステップ140における調製済みのDPIは、ステップ430における電気的投与薬の再分散分析で、その吸入装置にわたる圧力降下が1kPaへの低減を表すある流量での再分散との比較におけるUSPに従って測定した再分散差分、(1−(再分散(Q1kPa)/再分散(Q))×100)(それぞれ、深部の肺及び局所的な肺用に設定されたDPIの再分散差分の分析に対して、ΔDD3μm及びΔDD5μmと呼ぶ)が<50%、より好適には25%未満、最も好適には10%未満を示す場合には、EDPIに対する仕様を満たすであろう。
【0055】
また、この相関は、DPI A85及びDPI B86に対する5μmでの再分散(%表示)を示す図19を見ることにより、最もよく理解することができる。吸入器DPI Aは、DPI Bよりも高い流量を有しており、それ故、電気的投与薬の再分散に対してもDPI Bよりも大きなパワーを有しているため、図19のDPI Aは、適切に、DPIにわたる高い圧力降下域でDPI Bよりも高い再分散を示している。DPI Aにおける速度はDPI Bよりも急速に降下しており、中等度から低度の圧力降下域では、DPI A85は、DPI B86よりも少ない再分散を示している。
【0056】
投与薬の質量ステップ440は、化学分析、例えば、UV6000検出器または他の何らかの適当な検出器を伴うHPLC SpectraSYSTEMにより、USPに従って投与量の一様性を決定すべく測定される。最も好適な選択肢でもある第二の選択肢は、USPに従って、Andersen Impactorを用いて粉末の質量を決定し、例えばHPLC SpectraSYSTEMを用いて空気力学的な粒径分布と全質量との両者を分析することである。
【0057】
ステップ450における投与薬の停留は、吸入が完了した後またはステップ160における試験が完了した後に、ステップ140の調製済みDPI内に残存する無用な量の電気的粉末として定義される。図21は、DPIにわたる圧力降下が変わるときに、停留量88(%表示)がどのように変わるかを示している。ステップ140において最適に調製されたDPIを得るべくDPIを設定することは、この停留を最小化し、投与量の一様性を改善する上で重要である。低度の圧力降下域Iは、吸入時におけるパワーが少ないため、高めの停留量を有することとなり、そして、過度に高度の圧力降下域IIIは、多めの乱流を示し、これにより、多めの電気的粉末がマウスピースに付着することになろう。
【0058】
ステップ460におけるデータ分析が実施され、図6から9、図11から12、及び図16から20によるグラフをもたらす。すべてのグラフは、その調製されたDPIがEDPIに対して設定された仕様を満たしているのか、あるいは、ステップ182を介してDPIの調製に戻すことにより最適化プロセスにかけるべきなのか、もしくは、その電気的投与薬が、ステップ184を介して電気的投与薬ステップ150へ戻すことによる最適化を必要としているのかを決定すべく分析される。
【0059】
図10は、ユーザーが異なることによって、吸入圧力対吸入流量の関係がどのように異なるのかを示しており、快適領域40は、ユーザーがDPIを通じて快適な吸入を行える領域を表している。通常、その圧力降下は4kPa以下でなければならず、そして、その流量は、20リットル/分から80リットル/分の間でなければならない。
【0060】
図11は、3種類の異なるDPI設定I、II、III、及び、AからHまでのパワーレベルでの試験を示すグラフ内にこの快適領域40を示したものである。それらのパワーレベルは0.1ワットから6ワットまでの間であり、吸入流量は20リットル/分から80リットル/分の範囲であり、そして、そのDPIにわたる圧力降下は0.5kPaから4kPaまでの間である。このグラフから、ユーザーが快適に吸入できるようにするには、DPIをどのように調製すれば最適であるかが示されよう。
【0061】
図12は、電気的投与薬の2つの異なる装置メンバーのレイアウトを示している。電気的投与薬50は、再分散方向54を有するtとTとの間の深部の肺への送給設定を表している。電気的投与薬55は、同じく再分散方向54を有するtとTとの間の局所的な肺への送給設定を表しており、ここで、Tは、このDPIの全作動時間を表している。装置メンバー52は、絶縁性ポリマー、散逸性ポリマー、または導電性ポリマーから作製することができ、そして、その装置メンバーで使用される導電性材料が、銀粉末、白金粉末、金粉末、ステンレス鋼粉末、アンチモン−ドープト酸化スズ、アンチモン−ドープトシリカオキシド等の材料から得られるか、あるいは、X−ドープトシリカ(ここで、Xは、アダマンティン(adamantine)半導体、例えばGe、ZnO、GaSb、または、八面体半導体、例えばSnSe、AgSbSe2、InSb、あるいは炭素である)、もしくは、FDAにより認められていてプラスチックに組み込むことが可能な何らかの他の導電性材料であることを特徴とするものである。また、その装置メンバーとEDPIにおける他の散逸性部分との散逸性または導電性の組み合わせに対するその導電性材料及びプラスチック材料が、10−1012Ωの表面抵抗及び10−1012オーム・mの体積抵抗を呈する仕様を有していることを特徴とするものである。
【0062】
図13は、ディフューザー62及びノズル64からなる空気力学的に最適化されたマウスピース60の機構の例証的な実施例を示している。例えばメッシュ等の何らかの特別な再分散用の補助手段を伴うことなく、このマウスピースを通じてユーザーに最適化された輸送を果たすべく、電気的粉末65と共に、装置メンバー52が配置される。この構造は、マウスピース内における停留を最小化するであろう。また、マウスピース内における望ましくない粉末の停留を増加させ得る制御不能な電場の可能性を排除すべくユーザーとDPIとの間に電気的な接触を創出するため、マウスピース60を電気的に散逸性の材料で作製することもできる。
【0063】
図14は、マウスピース60及びディフューザー62の例証的な実施例を示しており、ここでは、電気的投与薬65は、チューブ66からもたらされる高速度の空気流により、装置メンバー52から吹き飛ばされる。電気的投与薬65から吹き飛ばされた粉末は、作動壁67を通じてもたらされる吸入空気のうちの10%から75%を有することにより、作動壁67から取り払われる。
【0064】
図15は、一つの例証的な実施例における、導電性または散逸性のマウスピースを有するEDPI72とユーザー70との間の接続の様子を示しており、ここでは、ユーザー70とEDPI72との間の接続は、接触抵抗78を用いて、唇を通じてもたらされる。ユーザーの電荷はコンデンサー76で表されており、そして、このユーザー70の電荷は、抵抗器74を通じて排除される。ユーザーの唇と接触状態にある散逸性材料を有することにより、EDPIとユーザー70は同じ電位を持つこととなり、電気的粉末を乱すような電場が存在することはなくなるであろう。
【0065】
これまでに行われた説明は、以下の2つの理論的な実施例を見ることにより一層理解されよう。ここで、実施例1は、粉末を局所的な肺へ沈着させるためのものであり、実施例2は、粉末の全身性送給用である。
【0066】
(実施例1)
局所的な肺へ送給するための硫酸テルブタリン(TBS)100μgを用いるステップ150の電気的投与薬に適したステップ100における2つの異なる設定の意図的DPIが、以下の仕様により調製される。
【0067】
このDPIに対する仕様は、調製し、続いて、その電気的投与薬を分析することから得られた図6を見て決定されたものである。図6は、TBSの電気的投与薬の再分散をワット単位におけるパワーの関数として示している。
【0068】
局所的な肺へ送給するための一般的な設定は、60リットル/分の吸入流量を持つことであり、これにより、図6から、TBSのEDPIに対して設定された仕様範囲内の再分散を与えるDPIにわたる圧力降下を算出することができる。
【0069】
上述の設定は、DPI内部の異なる寸法を調節することにより果たすことができる。図13は、その開口の真下に置かれた電気的投与薬と共に、マウスピースの一つの例証的な実施例を示している。この設計の場合、例えば、より高い抵抗を導入すべく装置メンバー52とノズル64との距離を変えることができ、また、異なる流体力学的特性を得るべく、マウスピース60のサイズを変更したり、あるいは中間セクション62を変えることができる。
【0070】
図14は、第二の例証的な実施態様を示しており、ここでは、中間セクション62と共に、ノズル66や距離またはマウスピース60を変えることにより、DPIの異なる設定が可能である。
【0071】
このDPIに対する設定の目的は、ユーザーの吸入路に対する依存性ができるだけ少なく、図10及び11による快適領域40内のDD5μmとして測定されるTBSの電気的投与薬の最良の再分散を与える吸入器を得ることである。
【0072】
【表1】
Figure 2004508899
これらのパラメーターは、図6を分析した後にTBS電気的投与薬に対する最も適したものとして確認され、図6では、ワット単位における最も適切な吸入パワーがステップ150におけるこのTBS電気的投与薬に対して決定される。作動圧力ステップ210は図7に関して設定され、そこでは、吸入における最適な効果が領域Iにあり、また、吸入パワーも最大の状態にあり、そして、その電気的投与薬の再分散は最適な状態にあるであろう。この作動圧力に到達する時点は、図8によるt=tで作動流量20の時である。
【0073】
ステップ110におけるDPIの調製後、それぞれの吸入器はステップ120の分析1へ送られ、それらの設定が、意図された仕様に従っているかどうかが決定される。すべての測定はUSPに従って行われ、そして、図1による機構を用いて投与量の一様性及び投与薬の再分散DD5μmが測定される。
【0074】
すべての圧力は、ステップ250におけるDPI作動時間中にタイム・スパンを測定すべくクロノグラフを用いると共に、USPに記載されている通りに、DPI8にわたる圧力降下の場合と同様にして測定される。
【0075】
【表2】
Figure 2004508899
ステップ120における分析1は、結果が合格であることを示しており、DPI AとDPI Bの両者は、更なる試験へ進むことが認められ、ステップ140における調製済みDPIに対する要件を満たす。
【0076】
次に、TBSを用いるステップ150の電気的投与薬が導入され、ステップ160における更なる試験のため、DPI内へ挿入される。
【0077】
図19による異なる圧力での一組の試験が定義され、実行される。そこでは、再分散が測定され、その再分散が、過渡期領域II及び領域IIIにおけるが如く圧力と共に大幅に変化しているポイントが同定される。分析は、図1による機構において、USPに従って実施され、HPLCを用いて測定される。
【0078】
図19から分かるように、領域IIでは、DPI Bに比べ、DPI Aは劣った振る舞いを示す。図10によるユーザーの快適領域40及び図11によるその快適領域内の振る舞いに関して可能な場合には、DPI Bの方が安全な設定をもたらすが、領域I内では、DPI Aの方が高い性能を有している。
【0079】
【表3】
Figure 2004508899
投与薬の停留88に関して、図21は、このDPIを最適化するためには、領域II内において使用する必要があることを示している。
【0080】
分析2の結果を表すべく、ステップ180の合否(合格(Y)/不合格(N))を決定するためのレポートが作成される。
【0081】
【表4】
Figure 2004508899
このDPIがEDPIの仕様を満たしているかどうかを確認するため、以下の計算を行わなければならない。
【0082】
【表5】
Figure 2004508899
DPI Bは、最適化に対するステップ180における結果が合格であることを示しており、TBSの電気的投与薬が負荷されるEDPIとして、TBSを局所的な肺へ沈着させるのに適している。DPI Aは62%という高いΔDD5μmを示しており、これは、DPI Aがユーザーの吸入パターンと無関係でないことを指示しているため、このDPI AはTBSに対するEDPIとして不合格である。DPI Aは、DPIステップ182における更なる最適化、及び/又は、ステップ184におけるTBSの電気的投与薬の最適化が検討される。
【0083】
(実施例2)
深部の肺へ送給するためのインスリン(INS)800μgを用いるステップ150の電気的投与薬に適したステップ100における2つの異なる設定の意図的DPIが、以下の仕様により調製される。
【0084】
このDPIに対する仕様は、調製し、続いて、その電気的投与薬を分析することから得られた図6を見て決定されたものである。図6は、INSの電気的投与薬の再分散をワット単位におけるパワーの関数として示している。
【0085】
深部の肺へ送給するための一般的な設定は、40リットル/分の吸入流量を持つことであり、これにより、図6から、INSのEDPIに対して設定された仕様範囲内の再分散を与えるDPIにわたる圧力降下を算出することができる。
【0086】
【表6】
Figure 2004508899
このDPIに対する設定の目的は、ユーザーの吸入パターンに対する依存性ができるだけ少なく、図10及び11による快適領域40内のDD3μmとして測定されるINSの電気的投与薬の最良の再分散を与える吸入器を得ることである。
【0087】
これらのパラメーターは、図6を分析した後にINS電気的投与薬に対する最も適したものとして確認され、図6では、ワット単位における最も適切な吸入パワーがステップ150におけるこのINS電気的投与薬に対して決定される。作動圧力ステップ210は図7に関して設定され、そこでは、吸入における最適な効果が領域Iにあり、また、領域Iにおいて吸入パワーも最大の状態にあり、そして、その電気的投与薬の再分散は最適な状態にあるであろう。この作動圧力に到達する時間は、図8によるt=tで作動流量20の時である。
【0088】
ステップ110におけるDPIの調製後、それぞれの吸入器はステップ120の分析1へ送られ、それらの設定が、意図された仕様に従っているかどうかが決定される。
【0089】
すべての測定はUSPに従って行われ、そして、図1による機構を用いて投与量の一様性及び投与薬の再分散DD3μmが測定される。
【0090】
【表7】
Figure 2004508899
すべての圧力は、ステップ250におけるDPIの作動時間中にタイム・インターバルを測定するためのクロノグラフと共に、USPに記載されているDPI8にわたる圧力降下の場合と同様にして測定される。
【0091】
ステップ120における分析1は、結果が合格であることを示しており、DPI AとDPI Bの両者は、更なる試験へ進むことが認められ、ステップ140における調製済みDPIに対する要件を満たす。
【0092】
次に、INSのステップ150における電気的投与薬が導入され、ステップ160における更なる試験のため、その電気的投与薬がそれぞれのDPI内へ挿入される。
【0093】
図20による異なる圧力での一組の試験が定義され、実行される。そこでは、再分散が測定され、その再分散が、過渡期領域II及び領域IIIにおけるが如く圧力と共に大幅に変化しているポイントが同定される。分析は、図1による機構において、USPに従って実施され、HPLCを用いて測定される。
【0094】
図20から分かるように、領域IIでは、DPI Bに比べ、DPI Aは劣った振る舞いを示している。図10によるユーザーの快適領域40及び図11によるその快適領域内の振る舞いに関して可能な場合には、DPI Bの方が安全な設定であるが、領域I内では、DPI Aの方が高い性能を有している。
【0095】
投与薬の停留88に関して、図21は、このDPIを最適化するためには、領域II内において使用する必要があることを示している。
【0096】
分析2の結果を与えるべく、ステップ180の合否(合格(Y)/不合格(N))を決定するためのレポートが作成される。
【0097】
【表8】
Figure 2004508899
【表9】
Figure 2004508899
このDPIがEDPIの仕様を満たしているかどうかを確認するため、以下の計算を行わなければならない。
【0098】
【表10】
Figure 2004508899
DPI A及びDPI Bは、共に、合格判定結果を示しており、INS800μg用のEDPI吸入器として、INS800μgを全身性送給するのに適している。DPI AまたはDPI Bのいずれかに有利な判定が下されるかどうかを決定するためには、快適領域ステップ40内にあるどのような吸入圧力及び流量を患者が好むかを決定すると共に、ステップ120における分析1とステップ170における分析2の両者を利用することにより、更なる試験を実施しなければならない。また、その粉末の再分散が乏しすぎ、ステップ150におけるINSの電気的投与薬の最適化と共に、DPI A及びDPI Bにおける深部の肺への送給性能の更なる最適化を実施しなければならないケースについても検討され得る。
【図面の簡単な説明】
【図1】
図1は、粒径分布及び質量の測定と、更には再分散及び流量の計算で使用される測定機構を示しており;
【図2】
図2は、静電式投与型乾燥粉末吸入器(EDPI)を得るためのDPIの調製方法を例証する概略的フローチャートであり;
【図3】
図3は、DPIの調製方法を例証する概略的なフローチャートであり;
【図4】
図4は、第一の分析1を例証する概略的なフローチャートであり;
【図5】
図5は、第二の分析2を例証する概略的なフローチャートであり;
【図6】
図6は、ある電気的投与薬での、再分散の程度とワット単位におけるパワーとの関係を示しており;
【図7】
図7は、ワット単位における吸入パワーと秒単位における時間との関係を示しており;
【図8】
図8は、作動時間と、リットル/分単位における吸入流量及び秒単位における時間に関する、深部の肺への送給設定及び局所的な肺への送給設定に対するこのDPIの作動及び閉成を示しており;
【図9】
図9は、このDPIの安全余裕域と共に、深部の肺への送給設定または局所的な肺への送給設定に対する作動及び閉成に関しての全吸入量における吸入体積の割合(%)を示しており;
【図10】
図10は、1分当たりのリットル数で表した吸入流量対kPa単位における圧力降下として測定されたある母集団における平均で表した場合の、DPIを通じる吸入での快適領域を示しており;
【図11】
図11は、図10による吸入の快適領域と比べたパワーレベルを示しており;
【図12】
図12は、秒単位の時間に関する電気的投与薬の全身性送給または局所的送給に対するレイアウトを伴う2つの装置メンバーを示しており;
【図13】
図13は、ある装置メンバー上の電気的投与薬と共に、空気力学的に最適化されたマウスピースの第一の実施例を示しており;
【図14】
図14は、ある装置メンバー上の電気的投与薬と共に、空気力学的に最適化されたマウスピースの第二の実施例を示しており;
【図15】
図15は、散逸性または導電性のマウスピースを通じるユーザーとDPIとの間の接続の様子を示しており;
【図16】
図16は、リットル/分単位における吸入空気流量と秒単位における時間とに関するDPIの作動及び閉成と共に、2種類の異なる吸入を表すグラフであり;
【図17】
図17は、最初の電気的粉末の粒径から3マイクロメートルまでの粒子に対する再分散の計算を表すグラフであり;
【図18】
図18は、最初の電気的粉末の粒径から5マイクロメートルまでの粒子に対する再分散の計算を表すグラフであり;
【図19】
図19は、このDPIにわたるkPaとして測定した異なる圧力降下での5μmにおける再分散(DD5μm)の量を示すグラフであり;
【図20】
図20は、このDPIにわたるkPaとして測定した異なる圧力降下での3μmにおける再分散(DD3μm)の量を示すグラフであり;そして
【図21】
図21は、予め計量された用量のうちの割合(%)として測定したDPIにわたる異なる圧力降下でのDPIにおける停留量を示すグラフである。

Claims (37)

  1. 電気的粉末からなる調製済みの予め計量された電気的投与薬を利用するための静電式投与型乾燥粉末吸入器(EDPI)を最適化するための方法であって、当該方法が:
    圧力、時間、及び流量と共に、投与薬の再分散、粒径分布、並びに投与量の一様性について分析することを含む、乾燥粉末吸入器(DPI)から行われる予め計量された電気的投与薬の全身性送給または局所的な肺への送給に影響を及ぼすパラメーターを測定するための測定機構を編成するステップ;
    全身性送給設定では1分当たり20リットルから60リットルの吸入空気流量を有するDPIが得られるように、そして、局所的な肺への送給設定では1分当たり20リットルから80リットルの空気流量を有するDPIが得られるように、全身性送給設定または局所的な肺への送給設定用に該DPIを調節するステップ;
    圧力降下及び吸入流量を最適化することにより、該DPI内で使用される望ましい再分散力を0.1ワットから6ワットまでの間に調節するステップ;
    吸入の開始時における低パワーを排除するため、該DPIの作動圧力を0.5kPaから4kPaまでの間に調節するステップ;
    該DPIが、DPIの作動時間内におけるタイミングと共に、再分散力及び開放圧力に関して設定された仕様を満たしていることを確認するステップ;
    投与量の一様性が規制要件を満たしていることを確認するステップ;
    EDPIの仕様を満たすべく該DPI及び/又は電気的投与薬を調節することにより、不合格となったDPIを確認及び最適化するステップ;
    を含むことを特徴とする、静電式投与型乾燥粉末吸入器の最適化方法。
  2. 上記測定機構において物理的な粒径を測定するための装置を用いる更なるステップを含むことを特徴とする、請求項1に記載の方法。
  3. 式、100[1−再分散(Q1kPa)/再分散(Q)](式中、Q1kPaは、1kPaまで低減されるこの吸入装置にわたる圧力降下を表しており、そして、Qは、USPによる圧力降下を表している)を用いて百分率で表される再分散差分が50%を越えていないことを確認する更なるステップを含むことを特徴とする、請求項1に記載の方法。
  4. 投与薬の全身性肺送給の場合、電気的粉末の粒径のうち該投与薬の微細粒子フラクションが3μmかそれ未満になるように予め定める更なるステップを含むことを特徴とする、請求項1に記載の方法。
  5. 投与薬の局所的な肺への送給の場合、電気的粉末の粒径の空気力学的質量メジアン直径が5μmかそれ未満になるように予め定める更なるステップを含むことを特徴とする、請求項1に記載の方法。
  6. 上記再分散差分が25%未満になるように最適化する更なるステップを含むことを特徴とする、請求項1に記載の方法。
  7. 上記再分散差分が10%未満になるように最適化する更なるステップを含むことを特徴とする、請求項1に記載の方法。
  8. 前記投与量の一様性が90%から110%までの範囲に収まるように最適化する更なるステップを含むことを特徴とする、請求項1に記載の方法。
  9. 前記投与量の一様性が95%から105%までの範囲に収まるように最適化する更なるステップを含むことを特徴とする、請求項1に記載の方法。
  10. 深部の肺へ送給する場合、投与薬の再分散DD3μmが25%を越えるように最適化する更なるステップを含むことを特徴とする、請求項1に記載の方法。
  11. 局所的な肺へ送給する場合、投与薬の再分散DD5μmが25%を越えるように最適化する更なるステップを含むことを特徴とする、請求項1に記載の方法。
  12. 該吸入器にわたる全圧力降下との比較におけるマウスピース及び装置メンバーにわたる圧力降下が50%より大きくなるように最適化する更なるステップを含むことを特徴とする、請求項1に記載の方法。
  13. 電位差による電場を排除すべく、ユーザーと該DPIとの間の散逸性接続を最適化する更なるステップを含むことを特徴とする、請求項1に記載の方法。
  14. 吸入の終了時における低パワーを排除すべく、DPIの閉成圧力を0.5kPaから4kPaまでの間にアレンジする更なるステップを含むことを特徴とする、請求項1に記載の方法。
  15. ユーザーの完全な吸入に対するタイム・スパンとの関係において、電気的粉末からなる調製済みの予め計量された電気的投与薬の乾燥粉末吸入器(DPI)による投与薬送給を制御するための方法であって、当該方法が:
    投与薬送給サイクルを開始させるために必要ではあるが必ずしも排他的ではない条件をアレンジするステップであって、該条件が、設定されてはいるが調節可能な、該DPIを通じるユーザーの吸入によりもたらされる該DPIにわたる最小圧力降下であるアレンジステップ;
    該サイクルの開始から、ユーザーの吸入に由来して該DPIの内部で創出される空気の流れにより該投与薬が吸入空気中に分散され始めるまでの時間遅れを調節することにより、投与薬を送給するための該送給サイクル内の適切な開始時点を選択するステップ;
    ユーザーの吸入に由来して該DPIの内部で創出される空気の流れにより該投与薬がその間に吸入空気中に分散される時間を調節することにより、該送給サイクル内における投与薬送給のためのタイム・スパンを調節するステップ;
    を含むことを特徴とする、投与薬送給の制御方法。
  16. すべての投与薬を分散させるために濃密な空気の流れが覆わなければならない投与薬領域を調節することにより、該投与薬送給のタイム・スパンを調節する更なるステップを含むことを特徴とする、請求項15に記載の方法。
  17. 濃密な空気の流れが投与薬領域に対して相対的に動く速度を変えることにより、該投与薬送給のタイム・スパンを調節する更なるステップを含むことを特徴とする、請求項15に記載の方法。
  18. 該投与薬で覆われている単位面積当たりの粉末の量を制御することにより、該投与薬送給サイクル中のあらゆる時点で吸入される粉末の量を制御する更なるステップを含むことを特徴とする、請求項15に記載の方法。
  19. 濃密な空気の流れが該投与薬領域に対して相対的に動く速度を変えることにより、該投与薬送給サイクル中のあらゆる時点で吸入される粉末の濃度を制御する更なるステップを含むことを特徴とする、請求項15に記載の方法。
  20. 乾燥粉末吸入器(DPI)により、電気的粉末からなる調製済みの予め計量された電気的投与薬を送給するためのプロセスであって、当該プロセスが:
    全質量及び三次元における物理的な分布に関する予め定められた適切な特性を呈する電気的投与薬を、装置メンバーの予め定められた標的領域上に投与薬領域として形成するステップ;
    該投与薬送給サイクルを起動させるための、必要ではあるが必ずしも排他的ではない条件として、該DPIにわたる最小圧力降下を0.5kPaから4kPaまでの間に定めるステップ;
    吸入の全作動時間(tからTまで)内において、該電気的投与薬を送給するための予め定められたタイミングを設定するステップ;
    を含むことを特徴とする、調製済みの予め計量された電気的投与薬の送給プロセス。
  21. すべての投与薬を分散させるために濃密な空気の流れが覆わなければならない投与薬領域を調節することにより、該投与薬送給のタイム・スパンが調節されることを特徴とする、請求項20に記載のプロセス。
  22. 該投与薬送給サイクル中のあらゆる時点で吸入される粉末の量が、該投与薬で覆われる単位面積当たりの粉末の量で定められることを特徴とする、請求項20に記載のプロセス。
  23. 濃密な空気の流れが該投与薬領域に対して相対的に動く速度を設定することにより、該投与薬送給サイクル中のあらゆる時点で吸入される粉末の濃度が定められることを特徴とする、請求項20に記載のプロセス。
  24. 電気的粉末からなる調製済みの予め計量された電気的投与薬を利用するための静電式投与型乾燥粉末吸入器(EDPI)を最適化するためのプロセスであって、当該プロセスが:
    圧力、時間、及び流量と共に、投与薬の再分散、粒径分布、並びに投与量−投与量間変動について分析することを含む、DPIから行われる予め計量された電気的投与薬の全身性送給または局所的な肺への送給に影響を及ぼすパラメーターを測定するための測定機構を編成する工程;
    全身性送給設定では1分当たり20リットルから60リットルの吸入空気流量を有するDPIが得られるように、そして、局所的な肺への送給設定では1分当たり20リットルから80リットルの空気流量を有するDPIが得られるように、全身性送給設定または局所的な肺への送給設定用に該DPIを調節する工程;
    圧力降下及び吸入流量を最適化することにより、該DPI内で使用される望ましい再分散力を0.1ワットから6ワットまでの間に調節する工程;
    吸入の開始時における低パワーを排除するため、該DPIの作動圧力を0.5kPaから4kPaまでの間に調節する工程;
    該DPIが、DPIの作動時間内におけるタイミングと共に、再分散力及び開放圧力に関して設定された仕様を満たしていることを確認する工程;
    投与量の一様性が規制要件を満たしていることを確認する工程;
    EDPIの仕様を満たすべく該DPI及び/又は電気的投与薬を調節することにより、不合格となったDPIを確認及び最適化する工程;
    を含むことを特徴とする、静電式投与型乾燥粉末吸入器の最適化プロセス。
  25. 上記測定機構において物理的な粒径を測定するための装置を利用する工程を含むことを特徴とする、請求項24に記載のプロセス。
  26. 式、100[1−再分散(Q1kPa)/再分散(Q)](式中、Q1kPaは、1kPaまで低減されるこの吸入装置にわたる圧力降下を表しており、そして、Qは、USPによる圧力降下を表している)を用いて百分率で表される再分散差分が50%を越えていないことを確認する工程を含むことを特徴とする、請求項24に記載のプロセス。
  27. 投与薬の全身性送給の場合、電気的粉末の粒径の空気力学的質量メジアン直径が3μmかそれ未満になるように予め定める工程を含むことを特徴とする、請求項24に記載のプロセス。
  28. 投与薬の局所的な送給の場合、電気的粉末の粒径の空気力学的質量メジアン直径が5μmかそれ未満になるように予め定める工程を含むことを特徴とする、請求項24に記載のプロセス。
  29. 上記再分散差分が25%未満になるように最適化する工程を含むことを特徴とする、請求項24に記載のプロセス。
  30. 上記再分散差分が10%未満になるように最適化する工程を含むことを特徴とする、請求項24に記載のプロセス。
  31. 前記投与量の一様性が90%から110%までの範囲に収まるように最適化する工程を含むことを特徴とする、請求項24に記載のプロセス。
  32. 前記投与量の一様性が95%から105%までの範囲に収まるように最適化する工程を含むことを特徴とする、請求項24に記載のプロセス。
  33. 深部の肺へ送給する場合、投与薬の再分散DD3μmが25%を越えるように最適化する工程を含むことを特徴とする、請求項24に記載のプロセス。
  34. 局所的な肺へ送給する場合、投与薬の再分散DD5μmが25%を越えるように最適化する工程を含むことを特徴とする、請求項24に記載のプロセス。
  35. 該DPIにわたる全圧力降下との比較におけるマウスピース及び装置メンバーにわたる圧力降下が50%より大きくなるように最適化する工程を含むことを特徴とする、請求項24に記載のプロセス。
  36. 電位差による電場を排除すべく、ユーザーと該DPIとの間の散逸性接続を最適化する工程を含むことを特徴とする、請求項24に記載のプロセス。
  37. 使用される投与メンバー上の粉末ストリップの長さを調節することにより、ユーザーの完全な吸入に対する時間との関係における拡張された投与薬送給時間を調節する工程を含むことを特徴とする、請求項24に記載のプロセス。
JP2002528333A 2000-09-21 2001-09-12 静電式投与型乾燥粉末吸入器の最適化 Pending JP2004508899A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0003364A SE517225C2 (sv) 2000-09-21 2000-09-21 Optimering av en elektrostatiskt doserad inhalator för torrt pulver
PCT/SE2001/001942 WO2002024264A1 (en) 2000-09-21 2001-09-12 Optimization of an electrostatically dosed dry powder inhaler

Publications (1)

Publication Number Publication Date
JP2004508899A true JP2004508899A (ja) 2004-03-25

Family

ID=20281098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002528333A Pending JP2004508899A (ja) 2000-09-21 2001-09-12 静電式投与型乾燥粉末吸入器の最適化

Country Status (12)

Country Link
US (1) US6571793B1 (ja)
EP (1) EP1322361A1 (ja)
JP (1) JP2004508899A (ja)
KR (1) KR20030033072A (ja)
CN (1) CN1462196A (ja)
AU (1) AU2001290410A1 (ja)
BR (1) BR0113994A (ja)
CA (1) CA2418189A1 (ja)
PL (1) PL360125A1 (ja)
RU (1) RU2003105888A (ja)
SE (1) SE517225C2 (ja)
WO (1) WO2002024264A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529151A (ja) * 2014-08-28 2017-10-05 マイクロドース セラピューテクス,インコーポレイテッド 小型圧力センサ起動を備えるタイダルドライパウダー吸入器

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9006175B2 (en) 1999-06-29 2015-04-14 Mannkind Corporation Potentiation of glucose elimination
US20030072717A1 (en) * 2001-02-23 2003-04-17 Vapotronics, Inc. Inhalation device having an optimized air flow path
ES2300568T3 (es) 2002-03-20 2008-06-16 Mannkind Corporation Aparato de inhalacion.
SE525027C2 (sv) 2002-04-12 2004-11-16 Microdrug Ag Anordning utgörande en pulverlufthyvel
SE524957C2 (sv) * 2002-04-12 2004-11-02 Microdrug Ag Förfarande för uppdelning och fördelning i luft av torrt pulvermedikament
GB0308771D0 (en) * 2003-04-16 2003-05-21 Univ Loughborough Pulmonary drug delivery
SE527200C2 (sv) * 2003-06-19 2006-01-17 Microdrug Ag Inhalatoranordning samt kombinerade doser av formaterol och fluticason
SE527069C2 (sv) 2003-06-19 2005-12-13 Mederio Ag Förfarande och anordning för administrering av läkemedelspulver
SE0303270L (sv) * 2003-12-03 2005-06-04 Microdrug Ag Metod för administration av tiotropium
SE0303570L (sv) * 2003-12-03 2005-06-04 Microdrug Ag Fukt-känslig medicinsk produkt
EP1691782A1 (en) * 2003-12-03 2006-08-23 Microdrug AG Medical product containing tiotropium
GB0328959D0 (en) * 2003-12-12 2004-01-14 Okpala Joseph Crystalline and aerodynamic particles for patients with low inspiratory flow rates
EP1696875A2 (en) * 2003-12-12 2006-09-06 Joseph Okpala A method of engineering particles for use in the delivery of drugs via inhalation
MX2007001903A (es) 2004-08-20 2007-08-02 Mannkind Corp Catalisis de sintesis de dicetopiperazina.
KR101306384B1 (ko) 2004-08-23 2013-09-09 맨카인드 코포레이션 약물 전달용 디케토피페라진염, 디케토모르포린염 또는디케토디옥산염
TWI274641B (en) * 2005-08-30 2007-03-01 Rexon Ind Corp Ltd Cutting machine
JP5465878B2 (ja) 2005-09-14 2014-04-09 マンカインド コーポレイション 活性薬剤に対する結晶性微粒子表面の親和性を増大させることに基づく薬物処方の方法
CN104383546B (zh) 2006-02-22 2021-03-02 曼金德公司 用于改善包含二酮哌嗪和活性剂的微粒的药物性质的方法
WO2007112271A2 (en) * 2006-03-24 2007-10-04 3M Innovative Properties Company Method for assessing the suitability of metered dose inhaler actuators
US8261738B2 (en) * 2007-07-24 2012-09-11 Respironics Respiratory Drug Delivery (Uk) Ltd. Apparatus and method for maintaining consistency for aerosol drug delivery treatments
EP2230934B8 (en) 2007-12-14 2012-10-24 AeroDesigns, Inc Delivering aerosolizable food products
US8485180B2 (en) 2008-06-13 2013-07-16 Mannkind Corporation Dry powder drug delivery system
CN104689432B (zh) 2008-06-13 2018-07-06 曼金德公司 干粉吸入器和用于药物输送的系统
JP5479465B2 (ja) 2008-06-20 2014-04-23 マンカインド コーポレイション 吸入努力をリアルタイムにプロファイルする対話式機器および方法
TWI494123B (zh) 2008-08-11 2015-08-01 Mannkind Corp 超快起作用胰島素之用途
US8314106B2 (en) 2008-12-29 2012-11-20 Mannkind Corporation Substituted diketopiperazine analogs for use as drug delivery agents
PL2405963T3 (pl) 2009-03-11 2014-04-30 Mannkind Corp Urządzenie, układ i sposób pomiaru oporu inhalatora
EP2440184B1 (en) 2009-06-12 2023-04-05 MannKind Corporation Diketopiperazine microparticles with defined specific surface areas
WO2011056889A1 (en) 2009-11-03 2011-05-12 Mannkind Corporation An apparatus and method for simulating inhalation efforts
RU2571331C1 (ru) 2010-06-21 2015-12-20 Маннкайнд Корпорейшн Системы и способы доставки сухих порошковых лекарств
DK2694402T3 (en) 2011-04-01 2017-07-03 Mannkind Corp BLISTER PACKAGE FOR PHARMACEUTICAL CYLINDER AMPULS
WO2012174472A1 (en) 2011-06-17 2012-12-20 Mannkind Corporation High capacity diketopiperazine microparticles
AU2012328885B2 (en) 2011-10-24 2017-08-31 Mannkind Corporation Methods and compositions for treating pain
AU2013289957B2 (en) 2012-07-12 2017-02-23 Mannkind Corporation Dry powder drug delivery systems and methods
WO2014066856A1 (en) 2012-10-26 2014-05-01 Mannkind Corporation Inhalable influenza vaccine compositions and methods
EP3587404B1 (en) 2013-03-15 2022-07-13 MannKind Corporation Microcrystalline diketopiperazine compositions, methods for preparation and use thereof
BR112016000937A8 (pt) 2013-07-18 2021-06-22 Mannkind Corp formulações farmacêuticas de pó seco, método para a fabricação de uma formulação de pó seco e uso de uma formulação farmacêutica de pó seco
JP2016530930A (ja) 2013-08-05 2016-10-06 マンカインド コーポレイション 通気装置及び方法
GB2521148B (en) * 2013-12-10 2016-06-08 Kind Consumer Ltd Airflow testing apparatus
WO2015148905A1 (en) 2014-03-28 2015-10-01 Mannkind Corporation Use of ultrarapid acting insulin
US10765817B2 (en) 2014-08-13 2020-09-08 Elwha, Llc Methods, systems, and devices related to delivery of alcohol with an inhaler
US10987048B2 (en) 2014-08-13 2021-04-27 Elwha Llc Systems, methods, and devices to incentivize inhaler use
US10561806B2 (en) 2014-10-02 2020-02-18 Mannkind Corporation Mouthpiece cover for an inhaler
JP6480598B2 (ja) 2015-04-02 2019-03-13 ヒル−ロム サービシーズ プライヴェート リミテッド 呼吸装置用マニホールド
CA3225148A1 (en) 2016-05-19 2017-11-23 Mannkind Corporation Apparatus, system and method for detecting and monitoring inhalations

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3023648A1 (de) * 1980-06-24 1982-01-21 Jaeger, Erich, 8700 Würzburg Einrichtung zur untersuchung der atemwege auf reizstoff-ueberempfindlichkeit
FI76929C (fi) * 1984-09-25 1989-01-10 Etelae Haemeen Keuhkovammayhdi Inhalationsdoseringsanordning, som aer avsedd foer nogrann dosering av disponerande laekemedel som ges aot andningssjuka i undersoekningsskedet och/eller laekemedel som ges som spray under behandlingen.
ES2087911T3 (es) * 1989-04-28 1996-08-01 Riker Laboratories Inc Dispositivo de inhalacion de polvo seco.
US6024090A (en) * 1993-01-29 2000-02-15 Aradigm Corporation Method of treating a diabetic patient by aerosolized administration of insulin lispro
US5819726A (en) * 1993-01-29 1998-10-13 Aradigm Corporation Method for the delivery of aerosolized drugs to the lung for the treatment of respiratory disease
US6012450A (en) * 1993-01-29 2000-01-11 Aradigm Corporation Intrapulmonary delivery of hematopoietic drug
US5522385A (en) * 1994-09-27 1996-06-04 Aradigm Corporation Dynamic particle size control for aerosolized drug delivery
US6309671B1 (en) * 1995-04-14 2001-10-30 Inhale Therapeutic Systems Stable glassy state powder formulations
SE504458C2 (sv) * 1995-06-21 1997-02-17 Lars Gunnar Nilsson Inhalator för elektrisk dosering av substanser
US5848587A (en) * 1995-09-21 1998-12-15 Medi-Nuclear Corporation, Inc. Aerosol medication delivery system
US6041777A (en) * 1995-12-01 2000-03-28 Alliance Pharmaceutical Corp. Methods and apparatus for closed-circuit ventilation therapy
US5694920A (en) * 1996-01-25 1997-12-09 Abrams; Andrew L. Inhalation device
US6026809A (en) * 1996-01-25 2000-02-22 Microdose Technologies, Inc. Inhalation device
DE19613185A1 (de) * 1996-04-02 1997-10-09 Pfeiffer Erich Gmbh & Co Kg Dosiereinrichtung für strömungsfähige Medien wie Pulver/Luft-Dispersionen
US5839430A (en) * 1996-04-26 1998-11-24 Cama; Joseph Combination inhaler and peak flow rate meter
GB9610821D0 (en) * 1996-05-23 1996-07-31 Glaxo Wellcome Inc Metering apparatus
US6131570A (en) * 1998-06-30 2000-10-17 Aradigm Corporation Temperature controlling device for aerosol drug delivery
US6003512A (en) * 1997-11-13 1999-12-21 Lovelace Respiratory Research Institute Dust gun-aerosol generator and generation
US6142146A (en) * 1998-06-12 2000-11-07 Microdose Technologies, Inc. Inhalation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529151A (ja) * 2014-08-28 2017-10-05 マイクロドース セラピューテクス,インコーポレイテッド 小型圧力センサ起動を備えるタイダルドライパウダー吸入器
US10744283B2 (en) 2014-08-28 2020-08-18 Microdose Therapeutx, Inc. Tidal dry powder inhaler with miniature pressure sensor activation

Also Published As

Publication number Publication date
KR20030033072A (ko) 2003-04-26
SE0003364D0 (sv) 2000-09-21
PL360125A1 (en) 2004-09-06
US6571793B1 (en) 2003-06-03
AU2001290410A1 (en) 2002-04-02
CA2418189A1 (en) 2002-03-28
SE0003364L (sv) 2002-03-22
CN1462196A (zh) 2003-12-17
RU2003105888A (ru) 2004-09-20
SE517225C2 (sv) 2002-05-14
BR0113994A (pt) 2003-08-12
WO2002024264A1 (en) 2002-03-28
EP1322361A1 (en) 2003-07-02

Similar Documents

Publication Publication Date Title
JP2004508899A (ja) 静電式投与型乾燥粉末吸入器の最適化
Lavorini et al. Recent advances in capsule-based dry powder inhaler technology
Timsina et al. Drug delivery to the respiratory tract using dry powder inhalers
US6435176B1 (en) Spacer for use with a metered dose inhaler
EP1744800B1 (en) Inhaler
JP5651233B2 (ja) 簡易なカプセル・ベースの吸入器
CA2194774C (en) Intrapulmonary drug delivery within therapeutically relevant inspiratory flow/volume values
AU6113694A (en) Inhalation device
Yang et al. Drug delivery performance of the mometasone furoate dry powder inhaler
Weers et al. Dose emission characteristics of placebo PulmoSphere® particles are unaffected by a subject's inhalation maneuver
CN111214738A (zh) 用于具有呼吸道疾病的病人的治疗的药物供给装置
JP2003516201A (ja) 能動壁
US6868853B1 (en) Metered electro-dose
CN111315432A (zh) 吸入器和用于吸入器的网格
Smutney et al. Device factors affecting pulmonary delivery of dry powders
Wang et al. A dry powder inhaler with reduced mouth–throat deposition
Wauthoz et al. Proposed algorithm for healthcare professionals based on product characteristics and in vitro performances in different use conditions using formoterol-based marketed products for inhalation
Terzano et al. State of the art and new perspectives' on dry powder inhalers
Dolovich Aerosol delivery devices and airways/lung deposition
RU2258539C1 (ru) Порошковый ингалятор
Raval et al. In Vitro Aerosol Measurements of the Novel Single Dose Reusable Dry Power Inhaler with Combination of Long-Acting Bronchodilator and Inhalated Corticosteroid
Ma et al. A New Technology for Pulmonary Drug Delivery
Sule et al. DEVELOPMENT APPROACH FOR A HIGH-PERFORMANCE CAPSULE-BASED DPI
Schleimer Aerosol Delivery Devices and Airways/Lung Deposition