JP2004506168A - 回転ベッド式磁気冷却装置 - Google Patents

回転ベッド式磁気冷却装置 Download PDF

Info

Publication number
JP2004506168A
JP2004506168A JP2002518044A JP2002518044A JP2004506168A JP 2004506168 A JP2004506168 A JP 2004506168A JP 2002518044 A JP2002518044 A JP 2002518044A JP 2002518044 A JP2002518044 A JP 2002518044A JP 2004506168 A JP2004506168 A JP 2004506168A
Authority
JP
Japan
Prior art keywords
bed
hot
cold
valve member
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002518044A
Other languages
English (en)
Other versions
JP4879449B2 (ja
Inventor
ジム カール ビー
スターンバーグ アレクサンダー
ジャストラブ アレクサンダー ジー
ベーダー アンドレ エム
ロートン ルイス エム ジュニア
チェル ジェレミー ジョナサン
Original Assignee
アストロノーティックス コーポレイション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アストロノーティックス コーポレイション オブ アメリカ filed Critical アストロノーティックス コーポレイション オブ アメリカ
Publication of JP2004506168A publication Critical patent/JP2004506168A/ja
Application granted granted Critical
Publication of JP4879449B2 publication Critical patent/JP4879449B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Multiple-Way Valves (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Hard Magnetic Materials (AREA)
  • Refrigerator Housings (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

回転磁気冷却装置は、リング(21)に配列された磁気再生ベッド(22)を有し、このリングは、中心軸の周りで回転するように取り付けられ、各ベッドは、リング(21)が回転するときにマグネット(29)により形成される磁界中へと移動しそしてそこから出る。熱伝達流体は、分配バルブ(24)により再生ベッド(22)へ及びそこから案内され、分配バルブは、コンジットによりベッドのホット端及びコールド端に接続されると共に、ベッド(22)のリング(21)と共に回転する。上記分配バルブ(24)は、コンジットによりホット熱交換器(34)及びコールド熱交換器(38)に接続された固定バルブ部材を有する。上記ベッドに含まれる磁熱材料は、多孔性であり、それを通して熱伝達流体を流すことができる。上記分配バルブ(24)は、磁界の外部にあるベッドのホット端へ熱伝達流体を向け、該流体は、それを通ってコールド端へ流れ、そこで、分配バルブ(24)へ戻され、そしてベッドが磁界内にあるときには、分配バルブ(24)は、流体をベッドのコールド端へ向け、それを通してホット端へ流し、そこで、流体は分配バルブへ戻され、能動的な磁気再生サイクルを完了する。各コンジットに流れる流体は、単一方向にしか流れないか又は静止したままであり、コンジット内のデッドボリュームを最小にする。

Description

【0001】
【技術分野】
本発明は、一般に、磁気冷却の分野に係り、能動的磁気再生冷却装置に係る。
【0002】
【背景技術】
能動的磁気再生とは、再生装置を、磁熱効果で動作する装置と組み合わせたものである。能動的磁気再生装置の動作が、バークレイ氏等の米国特許第4,332,135号に開示されている。能動的磁気再生装置の実験モデルが形成されてテストされており、アドバンシス・イン・クライオジェニック・エンジニアリング、第37B巻、19991年、に掲載されたA.J.デグレゴリア氏等の論文「能動的磁気再生冷却装置のテスト結果(Test Result of An Active Magnetic Regenerative Refrigerator)」に説明されている。能動的磁気再生装置の詳細モデルは、アドバンシス・イン・クライオジェニック・エンジニアリング、第37B巻、19991年のA.J.デグレゴリア氏の論文に示されている。能動的磁気再生装置は、磁熱効果を利用するクーラー又はヒートポンプの形式である。磁熱効果を示す材料は、磁化の際に暖かくなりそして減磁の際に冷たくなる。基本的な能動的磁気再生(AMR)装置では、熱伝達流体に対して多孔性である磁熱材料のベッドが2つの熱交換器に接続され、磁熱材料のベッドを通して一方の熱交換器から他方の熱交換器へ流体の流れを往復運動させるメカニズムが設けられている。又、ベッドを磁化したり減磁したりするメカニズムも設けられている。AMRサイクルには次の4つの部分がある。即ち、磁熱効果によりベッドの磁熱材料及び流体を暖めるベッドの磁化;ホットサイドの熱交換器を通して熱を解放するのに伴いベッドを通して流体がコールドサイドからホットサイドへ流れること;ベッドの磁熱材料及び流体を冷やすベッドの減磁;及びベッドを通してホットサイドからコールドサイドへ流体が流れて、冷えた流体がコールドサイドの熱交換器において熱を吸収すること。
【0003】
AMR装置は、ベッドを磁化して暖めた後に、コールドサイドからホットサイドへ流体を流し、次いで、ベッドを減磁して冷やした後に、ホットサイドからコールドサイドへ流体を流す。磁化されたベッドに磁界を当てると、温度及び相対的位置の一対のプロファイルがベッドに形成され、その一方は、ベッドが磁化されたとき、そしてその他方は、ベッドが減磁されたときである。任意の位置における2つのベッドプロファイル間の相違は、磁界の変化を通して進むときに生じる磁熱材料の断熱的温度変化である。断熱的温度変化が充分に大きい場合には、ベッドのコールドサイドから出てくる流体の温度が、コールド貯溜器の温度より低く、その結果、通常の再生装置の場合のようにホット貯溜器からコールド貯溜器へ熱が漏れるのではなく、コールド貯溜器の正味冷却が生じる。当然、熱力学の法則によれば、熱がコールド貯溜器からホット貯溜器へ流れるので、このようなプロセスにおいて仕事がなされねばならない。AMRの場合に、この仕事は、マグネット及び/又はベッドを互いに移動する駆動メカニズムによるか又は電気的にスイッチされるマグネットにより実行される。ホットサイド及びコールドサイドの両方に熱交換器を利用することにより、コールドサイドの熱交換器からAMRを経て熱を除去しそしてホットサイドの熱交換器を通して解放することができる。この熱伝達を達成するための構造が、上記米国特許第4,332,135号に開示されている。
【0004】
能動的磁気再生装置の更に別の拡張が、デグレゴリア氏等の米国特許第5,249,424号に開示されており、この場合、ベッドを通る熱伝達流体の流れはアンバランスで、ベッドのコールドサイドからホットサイドへの場合よりホットサイドからコールドサイドへベッドを通してより多くの流体が流れる。過剰な熱伝達流体は、ベッドのホットサイドへ転向されて戻され、そして能動的磁気再生装置の多数の段を使用することができる。上記特許に説明されたように、再生装置のベッドは、往復運動式に磁界に入れたり出したりすることもできるし、又は回転ホイールに取り付けることもできる。
【0005】
上記能動的磁気再生装置の1つの欠点は、往復運動式の能動的磁気再生装置における熱伝達流体が、再生装置のベッド(1つ又は複数)と各ホット及びコールド熱交換器との間で前後に往復されるので、効率の悪さに遭遇することである。流体の流れは、ベッドと熱交換器との間で単一方向ではないので、常にある量の熱伝達流体がベッドと熱交換器との間の接続ラインにあり、ベッド及び熱交換器の両方を通して決して循環しない。この捕獲された熱伝達流体は、「デッドボリューム」と一般に称されるが、従来の能動的磁気再生装置における効率悪化の顕著な原因である。ロートン二世氏等の米国特許第5,934,078号は、熱伝達流体のデッドボリュームを著しく減少する往復式能動的磁気再生冷却装置を開示している。
【0006】
【発明の開示】
本発明によれば、回転ベッド磁気冷却装置は、中心軸の周りで回転するように取り付けられたリングに配置された磁気再生ベッドを有し、各ベッドは、リングが回転するときにマグネットによって形成される磁界に入ったり出たりする。各ベッドは、ホット端及びコールド端を有する。熱伝達流体は、分配バルブにより再生ベッドへ及び再生ベッドから案内され、分配バルブは、コンジットによってベッドのホット端及びコールド端に接続され、そしてベッドのリングと共に回転する。分配バルブは、コンジットによりホット熱交換器及びコールド熱交換器に接続された固定のバルブ部材を有する。コンジットに接続されたポンプは、コンジットを経、ホット及びコールド熱交換器、分配バルブ及び磁気再生ベッドを通して熱伝達流体を循環駆動させる。各ベッドは、多孔性であって熱伝達流体を通流できるようにする磁熱材料を含む。分配バルブは、磁界の外部にあるベッドのホット端へ熱伝達流体を向け、熱伝達流体はベッドの周囲をそのコールド端へと流れ、そこで、分配バルブへと戻される。ベッドが磁界中にあるときには、分配バルブは、ベッドのコールド端へ流体を向け、その周囲をホット端へと流れるようにし、そこで、流体は、分配バルブへと戻され、能動的磁気再生サイクルを完成する。再生ベッドのリングが各々完全に回転する間に、各コンジットに流れる流体は、単一方向にのみ流れるか又はサイクルの一部分の間に固定に保たれ、コンジットにおけるデッドボリュームを最小にし、ひいては、効率を向上させる。
【0007】
分配バルブは、内部固定バルブ部材と、該固定バルブ部材に係合して中心軸の周りで回転するように取り付けられた外部回転バルブ部材とを備えたものが使用される。好ましい回転分配バルブでは、上記固定のバルブ部材は、2つのコールド流体チャンバーと、2つのホット流体チャンバーとを有し、そして回転バルブ部材は、その回転バルブ部材が回転するときに第1のコールド流体チャンバーと次々に連通する第1のコールド流体ポートと、その回転バルブ部材が回転するときに第2のコールド流体チャンバーと次々に連通する第2のコールド流体ポートとを有する。回転バルブ部材は、更に、その回転バルブ部材が回転するときに第1のホット流体チャンバーと次々に連通する第1のホット流体ポートと、その回転バルブ部材が回転するときに第2のホット流体チャンバーと次々に連通する第2のホット流体ポートとを備えている。固定バルブ部材には、2つのホット流体開口から第1及び第2のホット流体チャンバーへ延びそして2つのコールド流体開口から第1及び第2のコールド流体開口へ延びるチャンネルが形成される。次いで、コンジットは、ベッドのコールド端におけるコールド入力ポートから、第1のコールド流体チャンバーと次々に連通状態になる回転バルブチャンバーのポートへと延びる。又、コンジットは、ベッドのコールド出力ポートから、第2のコールド流体チャンバーと次々に連通状態になる回転バルブチャンバーのポートへと延びる。又、コンジットは、ベッドのホット端におけるベッドのホット出力ポートから、第1のホット流体チャンバーと次々に連通状態になる回転バルブチャンバーのポートへと延び、そしてコンジットは、ベッドのホット入力ポートから、第2のホット流体チャンバーと次々に連通状態になる回転バルブチャンバーのポートへと延びる。回転バルブ部材は、コンジットにより、ベッドのリングにおいてベッドに接続され、そしてリングと共に回転する。従って、流体の流れの全スイッチングは、リングに係合されたバルブではなく、中央の回転分配バルブにおいて生じる。中央の回転分配バルブに必要とされるシールは、ベッドのポートに係合する必要のあるシールよりも非常に簡単で且つ充分なものであり、これは、シール設計を簡単化し、シールにおける磨耗を減少し、そして分配バルブにおける機械的ロスを最小にできるようにする。
【0008】
又、分配バルブは、互いにぴったりと係合されるフラットな面を有する2つの円板で形成することができる。一方の円板は、固定のバルブ部材であり、そして他方の円板は、回転するように取り付けられた回転バルブ部材である。これら2つの円板は、回転する円板から各磁気冷却ベッドのホット端及びコールド端へ延びる適当なコンジットに流体の流れを案内するように次々に連通状態になったり分離したりするポートを有する。分配バルブの固定円板は、コンジットにより、ホット熱交換器及びコールド熱交換器に接続され、そして流体の流れは、固定の内部バルブ部材及び回転する外部バルブ部材を有する分配バルブについて上述したのと同様に分配バルブ円板によって分配される。
【0009】
リングは、円運動するように一定速度で駆動できるので、往復運動システムの場合より高い機械的効率を得ることができる。更に、回転部品の質量を減少することにより慣性作用を最小にすることができる。好ましくは、リングを形成する多数のベッドは、隣接ベッドのホット端が互いに隣接しそして隣接ベッドのコールド端が互いに隣接するように配置され、隣接ベッド間の温度差を最小にし、ひいては、ベッド間の熱の漏洩を最小にする。好ましくは、隣接ベッドのホット端は、流れ防止セパレータにより分離される。これらセパレータは、隣接ベッドのコールド端にも使用できるが、それは必要ではなく、そして好ましい設計では、隣接ベッドのコールド端は、オープンとなっていて互いに連通している。
【0010】
【発明を実施するための最良の形態】
本発明の更に別の目的、特徴及び効果は、添付図面を参照した以下の詳細な説明から明らかとなろう。
本発明による回転ベッド磁気冷却装置は、連続的な円形運動で装置の可動部の機械的運動を実行して、優れた機械的効率を発揮する。装置の各部分にかかる力は、良くバランスされ、正味の駆動力は、主として、冷却プロセスを推進するに必要なものである。再生動作は、磁熱材料のベッドに対する熱伝達流体の流れを往復運動することにより与えられる。熱交換器及びコンジットを通る熱伝達流体の一方向の流れが得られ、これにより、熱交換器、又は活性材料と熱交換器との間のコンジットにおけるデッドボリューム作用を最小にする。バルブは、簡単な設計のもので、最小限の磨耗に曝されるだけであり、そしてマシンに対して最小の摩擦負荷しか発生しない。更に、再生ベッドにおける回転部品の質量を減少することによって慣性作用を最小にすることができ、そして同様の温度をもつベッドを一緒にグループ編成しそして明確に異なる温度のベッド間に空間分離を与えることにより熱漏洩を減少することができる。又、本発明は、多数の再生ベッドを通して同時に熱伝達流体の流れを与えることもできる。
【0011】
本発明の原理を説明するために、本発明による回転ベッド磁気冷却装置が、図1に、簡単な概略図の形態で、参照番号20で一般的に示されている。この装置20は、複数の再生ベッド22で形成された円形リング21を備え、各ベッドは、磁熱効果を示す材料であって熱伝達流体を通流できるような多孔性の材料を含む。リング21は、中心軸23の周りで回転するように取り付けられる。中心軸23には中央分配バルブ24が配置され、これは、内部固定バルブ部材25及び外部回転バルブ部材26を含む。熱伝達流体のための1組の回転コンジット27が、外部バルブ部材26から、再生ベッド22のリング21への接続部まで延びている。1組のコンジット27は、説明上、回転分配バルブ24からリング21まで直接延びるように示されているが、他のやり方(以下にも述べる)で向けられてもよく、そして軸23の周りで回転するようにリング21が取り付けられるところのリング21の物理的支持体を形成するように使用されてもよいし、そうでなくてもよいことを理解されたい。
【0012】
マグネット29は、リング21の全周ではなくその一部分を経て磁界が延びるところの区分をエンドプレート30間に有するように形成され、従って、リング21内の幾つかの個々のベッドは、マグネット29の磁界内に入れられ、他のベッド22は、磁界の外部に置かれる。リング21が軸23の周りを回転すると、リング21内の個々のベッド22は、マグネット29により与えられる磁界へと次々に移動し、それを通り、そしてそこから出る。ベッド22がマグネット29からの磁界内にあるときには、ベッド内の磁熱材料の温度が上昇し、そして冷たい熱伝達流体をそこに通して、磁熱材料から熱を引き出すことができる。ベッド22が磁界から出ると、温度が低下し、暖かい熱伝達流体をベッドに通過させ、熱伝達流体からベッドの磁熱材料へ熱を引き出すことができる。ベッド22は、マグネット29の磁界内にベッドがあるときに各ベッドのコールド端からウオーム端へ冷えた熱電圧流体を流し、そしてベッドがマグネット29の磁界から出たときにベッドのホット端からベッドのコールド端へ暖かい熱伝達流体を流すことにより、ベッドの周囲にホット端からコールド端へ多孔性磁熱材料を経て熱勾配が維持されるように構成されるのが好ましい。コンジット27は、回転分配バルブ24から各ベッドのホット及びコールド端へ接続され、このような流れを発生することができる。
【0013】
バルブ24は、磁界内の1つ以上のベッドからセット27の1つ以上のコンジットを経て出てくるホット熱伝達流体を受け取り、そして固定のバルブ部材25からコンジット31を経てポンプ33を通ってホット熱交換器34へ流体を向けるように機能し、この熱交換器34は、流体の熱を周囲の空気又は別のヒートシンクへ伝達する。ホット熱交換器34を出る冷えた流体は、コンジット35を経て固定のバルブ部材25のポートへと戻る。この流体は、次いで、1つ以上のコンジット27を経て、磁界の外部に置かれた1つ以上のベッド22のホット端へ向けられ、冷えたベッドを通るときに流体の温度が低下する。冷えた流体は、次いで、コンジット27を経てバルブ24の回転バルブ部材26へ戻され、そして冷えた流体は、固定バルブ部材25からコンジット37を経てコールド熱交換器38へと放出され、これは、冷却されるべきボリューム(例えば、冷却器包囲体の内部)から熱伝達流体へ熱を伝達する。暖められた熱伝達流体は、次いで、コールド熱交換器38を出てコンジット39を経てバルブ24へ戻され、バルブ24は、1つ以上のコンジット27を経て、マグネット29により課せられた磁界内にある1つ以上のベッド22のコールド端にそれを向ける。暖められた流体は、ベッドのホット端から1つのコンジット27へ流出し、該コンジットは、流体を分配バルブ24へ向け、そこから流体はコンジット31を経てポンプ33へと流れ、サイクルを完了する。リング21が回転するときには、再生ベッド22がマグネット29の磁界に入って出るときに、回転分配バルブ24がコンジット27へ流れをスイッチし、再生ベッド22への適切な流れ方向を維持する。
【0014】
図1は、説明上、簡単化されているが、コンジット27のセットにおけるコンジットは、再生ベッド22に固定され、そして再生ベッドのリング21と共に回転することに注意されたい。従って、リング21の位置においてコンジット27と再生ベッドとの間にスライド式の接触は必要とされないことが明らかである。更に、コンジット27のセットは、リング21と共に回転する回転バルブ部材26にもしっかり接続される。加えて、コンジット27における流れは一方向であり、即ちセット27の各コンジットが再生ベッドを通して熱伝達流体を送給するように接続されたときに流体がそのコンジットにおいて単一方向に流れるか、或いはコンジット27に熱伝達流体が流れず、コンジットが接続されたベッドが異なる位置に到達するまでコンジット内の流体が滞留するかのいずれかである。更に、外部コンジット31及び35、ポンプ33並びにホット熱交換器34を通る熱伝達流体の流れは、単一方向であり、そして外部コンジット37及び39並びにコールド熱交換器38を通る熱伝達流体の流れも、単一方向であり、そしてこの流体は、これら要素を通して連続的に流れる。従って、熱伝達流体のデッドボリュームが最小にされる。
【0015】
図2は、熱伝達コンジット27がベッド22のホット端及びコールド端にいかに接続されるかを概略的に示す。図2のリング21は、この例では、1から6まで番号付けされた6個のベッド22を含む。他の数のベッドを、同様のコンジット共に使用することもできる。各ベッドは、文字「h」で示されたホット端と、文字「c」で示されたコールド端とを有する。図2に示すように、各ベッド22は、2つのホット端ポートを有し、即ちベッド1についてはポートh1、ベッド2についてはh2、ベッド3についてはh3、ベッド4についてはh4、ベッド5についてはh5及びベッド6についてはh6を有する。その1つのポートは、ホット端入力ポートとして働き、そして27hiと示されたセット27における1つのコンジットに接続される。ホット端における他方のポートは、出力ポートとして働き、図2に27hoと示された1つのコンジットに接続される。偶数個のベッドが存在して、各ベッド22のホット端が、隣接ベッドのホット端に隣接されるのが好ましい。ベッドリング21及びバルブのホット区分に対する構造上の支持体は、ベッドのホット端に取り付けられるのが最良である。各ベッドのホット端は、セパレータ40によって分離され、熱伝達流体が、ホット端において隣接ベッド間に流れないようにされる。従って、ベッドのコールド端も、互いに隣接され、ベッドのその側と同様のポート配列をもつことができる。しかしながら、図2に示すように、隣接ベッド22のコールド端が出会う位置において単一入力ポート及び単一出力ポートをもつことにより、コンジットの接続を簡単化することができる。27ciと示された単一コンジットが、隣接ベッドのコールド端に置いて入力ポートに接続され、そして図2に27coと示されたコンジットが、隣接ベッド22のコールド端間の位置においてコールド端出力ポートに接続される。コールド端においてベッドを通して熱伝達流体を均一に分布できるようにするために、図2に41で示す破線により画成された分配スペースが隣接ベッド間に形成される。バルブのコールド区分に対する構造上の支持体は、ベッドのコールド端に取り付けられるのが最良である。
【0016】
信頼性を改善するために、流体ループの外部区分に従来の流体取り扱い装置を追加することもできる。例えば、ポンプ33の後の流れループに流体アキュムレータ及びフィルタを追加して、バルブ及び磁熱ベッドを圧力スパイク及び汚染から保護することができる。
【0017】
バルブから出てくるコンジット27の入口及び出口対は、ベッドリング21で終わる単一通路に接合することができる。合流は、Yコネクタで行うことができる。例えば、図2を参照すれば、コンジット27ho、27hiの入口及び出口対は、Yコネクタにより接合され、そして各ベッドにおいて単一の入口及び出口ポートで終わり、そしてコンジット27co、27ciについても同様である。Yコネクタとベッドとの間の通路における流れは、両方向性であり、従って、流れのデッドボリュームが生じる欠点がある。しかしながら、ベッドにおける合成された入口/出口ポートは、あまりスペースをとらず、詰まるおそれがほとんどなく、そして熱漏洩がほとんどないという効果を有する。
【0018】
図3ないし5は、ベッドリング21が回転するときの回転及び固定コンジット、回転分配バルブ24、及び再生ベッド22を通る流れパターンを示す。説明上、マグネット29の位置は、これら図においてリング21に対して種々の位置で破線で示されているが、マグネットがリングに対して時計方向に移動するのではなく、リングがマグネットに対して反時計方向に移動することを理解されたい。これらの各図において、流体が流れるコンジットは、太線で示され、そして流体が流れないコンジットは、細線で示されている。同様に、コンジット間に流体の流れを許すバルブ24内の接続は、黒く塗りつぶした領域により示され、一方、バルブの明るい領域は、このような領域に接続されたコンジットへの又はコンジットからの流体の流れがバルブにより阻止されることを示す。バルブ24の4つの区分が、図3ないし5に24ho、24hi、24ci及び24coと示されている。
【0019】
図3に示す例では、ベッド1全体と、ベッド6のほとんどが、マグネット29の磁界内にある。熱伝達流体は、熱交換器38のウオーム端からコンジット39を経て流れ、そしてバルブ区分24ciのコールド流れチャンバーへと流れ、そしてベッド1及びベッド6のコールド端入力ポートに接続される2つのコンジット27ciへと流れる。熱伝達流体は、ベッド1の周囲をそのコールド端からそのホット端へと流れ、そしてホット端ポートhoからコンジット27hoへ放出され、該コンジットは、ポートH1においてバルブ24のホット出力バルブ区分24hoへと戻る。又、流体が流れ込むバルブ区分24hoのホット出力チャンバーは、マグネット29の磁界から出るように動くベッド6のホット出力ポートhoからコンジット27hoを経て熱伝達流体を受け取る。ホット出力バルブ区分24hoにより受け取られたライン27hoからの暖かい熱伝達流体は、次いで、(固定の)出力コンジット31へ転送され、そしてポンプ33を経てホット熱交換器34へ転送され、そこで、流体から熱が放出されて流体を冷却する。冷えた流体は、次いで、コンジット35を経てバルブ24のホット入力バルブ区分24hiへと流れ、そこで、図3に黒く塗りつぶして示されたホット流体チャンバーへと分配される。冷えた流体は、バルブ24から2つのコンジット27hiへと流れ、これらコンジットは、ベッド3のホット端入力ポートhi及びベッド4のホット端入力ポートhiへと通じている。ベッド3及び4は、全て、磁界の外にあり、従って、冷えている。熱伝達流体は、これら2つのベッドのホット端における入力ポートhiからベッドの磁熱材料を通してベッドのコールド端へと流れ、そこで、出力ポートcoを経てコンジット27coへ放出される。次いで、流体は、コールド出力バルブ区分24coを経て固定のコンジット31へ流れ、従って、コールド熱交換器38へと流れる。
【0020】
図4は、リング21に対するマグネット29の相対的な位置が変化し、マグネット29からの磁界が完全にベッド1及び2上にあり、そしてベッド6が磁界の外に出た流れパターンを示す。バルブ区分24hoは、ベッド6の出力ポートhoから通じているコンジット27hoの流れを今や阻止するように移動し、そしてバルブ区分24ciは、ベッド6のコールド端入力ポートciへ通じているコンジット27ciの流れを今や阻止するように移動している。更に、バルブ区分24hiは、ベッド3の入力ポートhiに通じているコンジット27hiの流れを今や阻止するように移動し、従って、ベッド3には現在流体が流れていない。従って、完全に磁界内になく又は完全に磁界から出ているベッド3及び6は、それらを通る流れをもたず、一方、磁界内にあるベッド1及び2は、それらを通してホット熱交換器34へ進行する流体の流れを有し、そして完全に磁界の外にある(ひいては、低い温度にある)ベッド4及び5は、それらを通してコールド熱交換器38へ進行する流体の流れを有する。
【0021】
図5は、ベッド2の全体と、ベッド3のほとんどが磁界内にあるようにマグネット29に対してリング21が更に移動した相対的な位置を示す。バルブ区分24ciは、ベッド2及び3のコールド端入力ポートに通じているコンジット27ciがそれらベッドに流体を供給する位置へ今や移動し、そしてバルブ区分24hoは、ベッド2及び3の出力ポートhoからコンジット27hoを通る流れを与えるように移動している。従って、ベッド2及び3を通して流れる流体は、バルブ区分24hoを経て、出力コンジット31、ポンプ33そしてホット熱交換器34へ流れる。バルブ区分24hiは、ベッド5及び6(これらは今や完全に磁界の外にあり、従って、冷えている)のホット端入力ポートhiへコンジット27hiを経て流体の流れを与えるように今や移動し、そしてバルブ区分24coは、コンジット27coを経て、ベッド5及び6のコールド端出力ポートcoからバルブ区分24coを通りコンジット37へ、従って、コールド熱交換器38へ流れを与える位置に移動している。
【0022】
熱伝達流体の流れの上記パターンは、マグネット29の磁界に対するベッドリング21の相対的な位置がリング21の完全な一回転を完了したときに繰り返される。各ベッドを通る流体は、ベッドがマグネット29の磁界内にあるときにはベッドのコールド端からホット端へ流れ、そしてベッドが磁界の外部にあるときにはベッドのホット端からコールド端へ流れることが明らかである。従って、ベッド内の磁熱材料の温度勾配は、ベッドが磁界に入りそして出るときに維持される。各コンジット27における流れの方向は、一方向に保持され、従って、任意の時間に熱伝達流体が逆方向に流れることはない。バルブ24のある位置では、幾つかのコンジットにおいて(図3ないし5に細線で示すように)、熱伝達流体がバルブ24のその後の位置まで固定状態に保たれる(しかし、流れの方向は逆転しない)。
【0023】
図6は、冷却装置20を実施するための機械的構造体を例示する。例示のために、マグネット29は、磁束が集中するマグネット29の中央の開口50を経てリング21が延びるように形成される。開口50に通じているマグネット29のスロット51は、コンジット27の一部分として機能するように中空に形成することもできる支持部材53を通すことができる。この支持部材53は、取り付けプラットホーム55まで延び、これは、コア57に対して回転するようにベアリング56により取り付けられる。コンジット27は、分配バルブ24の回転する外部26まで延びる。バルブ24の固定部分25は、コア57に取り付けられ、一方、回転部分26は、ベアリング59により回転するようにコア57に取り付けられる。図6に示すように、固定コンジット31A、35A、37A及び39Aは、固定バルブ部材25に接続される。モーター60は、ギア61によりポンプ33に接続されてポンプを駆動し、又、取り付けプラットホーム55及びこれに接続された回転バルブ部材26を回転駆動するようにも接続される。図6に示すように、ホット熱交換器34は、熱交換器の効率を向上するために熱交換器の要素を通して送風するように接続されたファン62を備えている。
【0024】
図7は、バルブ24の詳細な軸方向断面図であり、そして図8ないし11は、バルブの種々の区分24ho、24hi、24ci、24coのレベルにおける軸に垂直な断面図である。図7に示すように、バルブの固定部分25は、好ましくは、テーパー付けされた形状に作られ、そして回転バルブ区分26の内部ボアに受け入れられ、この回転バルブ区分も、固定部材のテーパーに一致するようにテーパーが付けられ、回転部材26を固定部材25の上にぴったりと嵌合することができる。スプリング65は、外側のバルブ部材26と固定部材25との間にカラー67を伴うベアリング66を経て圧力を付与する。バルブ部材25及び26は、NylatronGS及びTeflonのような商品を含む種々のプラスチックのような適当な材料で形成することができ、これは、内側及び外側のバルブ部材間にぴったりとした係合を与えて流体の流れを阻止するが、外側のバルブ部材26が固定のバルブ部材25に対して回転するときに、抵抗及び摩擦ロスは比較的低い。
【0025】
ホット出力バルブ区分24ho(図8)には、ホット流体チャンバー71が形成され、これは、固定バルブ部材に形成されたチャンネル31Aと連通し、該チャンネルは、ホット流体開口を経てコンジット31に接続される。ホット入力バルブ区分24hiには、ホット流体チャンバー70が形成され、これには、バルブ部材25のチャンネル35Aが固定バルブ区分のホット流体開口を経て連通し、コンジット35に接続する(図9)。コールド入力バルブ区分24ciには、コールド流体チャンバー75が形成され、これは、固定バルブ部材25に形成されたチャンネル39Aと通信し、これは、コンジット39が接続されるコールド流体開口を有し(図10)、そしてコールド出力バルブ区分24coには、コールド流体チャンバー74が形成され、これは、固定バルブ部材25のチャンネル37Aに連通し、これは、コンジット37を接続できるコールド流体開口を有する(図11)。図6に示すように、コールド流体開口は、バルブの一端(図示されたように上端)において軸方向を向いており、そしてホット流体開口は、他端(図示されたように下端)において軸方向を向いている。
【0026】
外側バルブ部材26が内側固定部材25に対して回転するときには、コンジット27hi及び27hoに各々接続されたバルブ区分24ho及び24hi各々の6個のポート(H1−H6)が、ホット流体チャンバー70及び71と連通したりしなくなったりする。同様に、バルブが回転するときには、コンジット27ci及び27coが各々接続されたバルブ区分24ci及び24co各々のコールド流体ポートC1−2、C3−4及びC5−6が、コールド流体チャンバー75及び74と各々連通状態になる。
【0027】
バルブ24は、既に述べた合成バルブと同じ機能を達成する多数の区分に分割することができる。例えば、バルブを、区分24ho及び24hiの機能を含むホット区分と、区分24co及び24ciの機能を含むコールド区分へと分割することにより、ホットからコールドへの熱漏洩を減少することができる。
【0028】
バルブ24の別の構成は、円板バルブである。円板バルブも、2つの目的を果たす。これは、装置の固定部分と回転部分との間に4つの別々の一方向性の流れを転送する。又、適切な流れを正しい時間に適切なベッドへ/から向けるスイッチング機能も遂行する。
【0029】
図12は、2枚の円滑なフラット円板80及び81を有する円板バルブの実施形態を示す。第1円板80は、異なる半径で弧状スロット82、83、84及び85として形成されたポートを有し、その中心軸が装置の回転軸23と同軸となるように装置の固定部分に固定される。各スロットは、装置の固定部分から回転部分へ及びそれとは逆に転送されるべき個別の流体に対応し、そして各スロットポートは、コンジット31、35、37及び39の1つに接続される。好ましい単一マグネット6ベッド構成では、スロット82及び83が互いに対向し、弧状に180°延び、そしてコールド熱交換器へ/から流れを搬送し、そしてスロット84及び85が互いに対向し、弧状に120°延び、そしてホット熱交換器へ/から流れを搬送する。第2円板81は、2つの円板が互いに回転するときに固定円板80のポートスロット82、83、84、85と連通したりしなくなったりする異なる半径の円形開口87、88として形成されたポートのセットを有する。ポート87、88は、回転コンジット27に接続される。好ましい単一マグネット6ベッド構成では、ポートが円の周りに均一に離間され、そしてポート87は、ポート88に対して30°シフトされている。第2円板81も、その中心軸が装置の回転軸23と同軸である状態で、装置の回転部分に取り付けられる。円板80のフラットな面90及び円板81のフラットな面91は、嵌合されそしてぴったり係合されて、動的シールを形成する。2つの円板80及び81は、正しい接触圧力を確保しそして不整列を修正するために、以下に述べるようにスプリングにより一緒に圧接されてもよい。
【0030】
図15及び16は、固定バルブ円板80の取り付け組立体105を示す。この取り付け組立体105は、円板80及び81を互いに保持するためのシール力を付与し、固定円板80が回転するのを防止し、そして固定円板80と回転円板81との間の不整列を受け入れる。伸縮チューブ108及び109に組み合わされたコイルスプリング107は、固定円板80を回転円板81に押し付け、円板を分離しようとする内部流体圧力に抵抗する。内部チューブ109に固定されそして外部チューブ108の軸方向に向けられたスロット113内をスライドするピン111は、回転円板により加えられる摩擦トルクに抵抗し、そして固定円板80が回転するのを防止する。円板80は、バッキングプレート115、弾性素子116(例えば、ゴム又はプラスチックリング)及び弁座117と共に取り付けられ、弾性素子116は、2つの円板間の若干の不整列即ち「ぐらつき」を受け入れて、2つの一致面を完全に接触状態に保つように働く。他の実施形態であるUジョイントを使用して、上記目的を達成することもできる。4つの流体の流れは、内部チューブ及びスプリングに通されるコンジット31、35、37及び39を経て搬送される。組立体105は、取り付けプレート119に固定され、そしてスプリング107は、ねじ切りされた調整具120により、ねじ切りされたチューブ121に保持される。回転バルブ円板81は、装置の回転部分(図示せず)にしっかり取り付けられる。
【0031】
図13及び14は、一対の円板93及び94と、一対の円板95及び96とで構成された2つの別々の円板バルブが使用される変形態様を示す。これらの円板は、円板80及び81について上述したものと同様に機能するポートスロット101、102及びポート103を有する。第1の円板バルブ対93及び94は、装置の軸方向の一端において回転部分と固定部分との間に配置され、一方、第2のバルブ対95及び96は、その反対端において回転部分と固定部分との間に配置される。4つの全ての個々の円板は、回転軸がその表面に直角で且つその中心を通るように配置され、従って、これらの円板は、装置の回転軸23と同軸的に回転する。バルブ対93、94及びバルブ対95、96の各々は、装置の固定部分と回転部分との間に2つの別々の流れを転送する。2つの別々の円板バルブを使用する効果は、装置のホット部分とコールド部分との間を熱的に分離できることと、小さなフラットな円板表面に対する製造コストをおそらく低減できることである。
【0032】
円板80、81、93、94、95、96は、セラミックやカーボン−グラファイト合成物を含む種々の材料で作ることができる。その嵌合対は、同じ材料で形成される必要はない。
【0033】
ベッド22を充填するために選択される特定の磁熱材料は、装置の動作温度範囲及びマグネット29の磁界に依存する。この材料は、熱伝達流体を通過できる間隙から出る一緒にパックされた小さな粒子として形成されてもよい。室温又はその付近で動作する場合に、適当な磁熱材料の一形式は、ガドリニウムであり、そして適当な熱伝達流体は、水、又は不凍液と混合された水である。ベッドの構成及び種々の要素の材料は、参考としてここに援用する上記米国特許第5,934,078号に開示されたものを使用できる。ベッドの壁には熱絶縁を追加してもよく、そして好ましい実施形態では、堅牢な発泡絶縁がベッドの内壁を形成する。マグネット29は、スロットがカットされたリングダイポール磁石のような永久磁石より成る。図17に示すように、永久磁石片125及び2つの磁束集中磁極片131、132をもつC字型断面のマグネット29を使用することができる。好ましい単一マグネット6ベッド構成では、マグネットが120°の弧にわたって延びる。更に、電磁石及び低温学的に冷却される超伝導磁石を含む他の形式のマグネットも使用できる。これらの例が、参考としてここに援用する上記米国特許第5,934,078号及び第5,249,424号に開示されている。
【0034】
本発明は、例示のために上述した特定の実施形態に限定されるものではなく、特許請求の範囲内に包含されるあらゆる形態を網羅することを理解されたい。
【図面の簡単な説明】
【図1】
本発明の磁気冷却装置を示す簡単な図である。
【図2】
本発明による磁気再生ベッドのリングの簡単な上面図で、分配バルブから再生ベッドのホット端及びコールド端におけるポートへ延びるコンジットの構成を簡単な形態で示す図である。
【図3】
再生ベッドのリングの第1位置において装置の要素を経て流れる熱伝達流体のパターンを示す概略図である。
【図4】
図3と同様の図で、ベッドのリングが第2の移動した位置にある状態で流体の流れを示す概略図である。
【図5】
図3と同様の図で、ベッドのリングが更に別の移動した位置にある状態で流体の流れを示す概略図である。
【図6】
本発明による回転ベッド磁気冷却装置の好ましい実施形態を示す部分断面図である。
【図7】
図6の分配バルブの断面図である。
【図8】
図7の8−8線に一般的に沿った分配バルブの断面図である。
【図9】
図7の9−9線に一般的に沿った分配バルブの断面図である。
【図10】
図7の10−10線に一般的に沿った分配バルブの断面図である。
【図11】
図7の11−11線に一般的に沿った分配バルブの断面図である。
【図12】
別の分配バルブ構成体に使用される円板を示す図である。
【図13】
分配バルブに使用するための別の円板を示す図である。
【図14】
分配バルブに使用するための別の円板を示す図である。
【図15】
図12の円板を使用する分配バルブのための取り付け組立体の正面図である。
【図16】
図15の取り付け組立体の断面図である。
【図17】
好ましいC字型マグネットの断面図である。

Claims (23)

  1. 熱伝達流体の再生冷却を行う方法において、
    (a)偶数の磁気再生ベッドのリングを用意し、各ベッドに含まれる材料は、磁熱効果を示し、多孔性であり且つこのような磁熱材料を通して熱伝達流体を流すことができ、各ベッドは、ホット端及びコールド端を有し、更に、当該ベッドは、各ベッドのコールド端がその隣接ベッドのコールド端に隣接しそして各ベッドのホット端がその隣接ベッドのホット端に隣接するように円形リングに配列され、
    (b)磁界を通して上記再生ベッドのリングを回転して、上記再生ベッドのリングが回転するときに上記再生ベッドの各々に交互に磁界を付与しそして磁界を除去し、そして
    (c)上記ベッドが磁界内にないときには上記ベッドのホット端からコールド端へ上記再生ベッドを経て熱伝達流体を通して、上記ベッドが回転される中心軸に対して熱伝達流体が周囲流となるようにし、そして上記ベッドのリングが回転されて上記ベッドが磁界内にあるときには上記ベッドのコールド端からホット端へ上記再生ベッドを経て熱伝達流体を周囲流として通す、
    という段階を備えた方法。
  2. 上記ベッドが磁界内にあるときに上記ベッドのコールド端からホット端へと上記再生ベッドを通過した熱伝達流体から熱を引き出す段階を含む請求項1に記載の方法。
  3. 熱伝達流体に熱を移送し、次いで、熱伝達流体を、上記再生ベッドが磁界内にあるときにそのベッドへ通しそしてそのベッドを経てそのコールド端からホット端へと通す段階を更に備えた請求項2に記載の方法。
  4. 回転磁気冷却ヒートポンプ装置において、
    (a)中心軸の周りで回転するように取り付けられた磁気再生ベッドのリング、及び中心軸の周りで回転するように上記磁気再生ベッドのリングを駆動するためのドライブを備え、各ベッドに含まれる材料は、磁熱効果を示し、多孔性であり且つこのような磁熱材料を通して熱伝達流体を周囲流として流すことができ、各ベッドは、ホット端及びコールド端を有し、
    (b)上記リングにおける再生ベッドの全部ではなくその少なくとも1つを通る磁界を与えて、少なくとも1つのベッドが磁界内にありそして少なくとも1つのベッドが磁界の外部にあるようにするマグネットと、
    (c)ホット熱交換器と、
    (d)コールド熱交換器と、
    (e)コンジットにより上記ホット熱交換器及びコールド熱交換器に接続されると共に、コンジットにより各磁熱ベッドのホット端及びコールド端に接続された分配バルブとを更に備え、この分配バルブは、上記再生ベッドのリングが回転するときにスイッチングして、磁界の外部にあるベッドからの流路にある熱伝達流体を、この分配バルブを経て上記コールド熱交換器へ向け、そしてこの分配バルブを経て磁界内にあるベッドへと戻し、次いで、この分配バルブを経てホット熱交換器へ向け、そしてこの分配バルブを経て、磁界の外部にあるベッドへと戻し、更に、この分配バルブは、これを通る流れを、コンジットを通る流れが同じ方向に維持されるように向け、そしてベッドが磁界の外部にあるときに各ベッドを通る流れの方向が、ベッドが磁界内にあるときの流れの方向と逆転されるようにし、そして
    (f)上記ホット及びコールド熱交換器、コンジット及び分配バルブを通して熱伝達流体を駆動するようにコンジットに接続されたポンプを更に備えた装置。
  5. 上記分配バルブとベッドとの間の対応する入口及び出口コンジットがYコネクタを経てベッドにおける単一の入口/出口ポートへと合流される請求項4に記載の冷却装置。
  6. 偶数の磁気再生ベッドがあり、これらベッドは、各ベッドのコールド端がその隣接ベッドのコールド端に隣接しそして各ベッドのホット端がその隣接ベッドのホット端に隣接するように円形リングに配列され、これらベッドの隣接コールド端は、流体の流れに対して互いに開いていて、1つの共通のコールド端入力ポート及び1つの共通のコールド端出力ポートを有し、そしてこれらベッドの隣接ホット端は、流れ防止セパレータにより分離されていて、各ベッドのホット端に対して入力及び出力ポートを有する請求項4に記載の冷却装置。
  7. 上記分配バルブは、固定バルブ部材と、中心軸の周りでこの固定バルブ部材に係合して回転するように取り付けられた回転バルブ部材とを備え、そして上記コンジットは、上記回転バルブ部材から各ベッドのホット端及びコールド端へと延びて分配バルブとベッドとの間に流体を分配し、上記回転バルブ部材は、上記再生ベッドのリングと共に回転する請求項4に記載の冷却装置。
  8. 上記分配バルブは、内部の固定バルブ部材と、中心軸の周りでこの固定バルブ部材に係合して回転するように取り付けられた外部の回転バルブ部材とを備え、上記固定バルブ部材は、2つのコールド流体チャンバー及び2つのホット流体チャンバーを有し、上記回転バルブ部材は、この回転バルブ部材が回転するときに、上記第1コールド流体チャンバーと次々に連通する第1コールド流体ポートと、この回転バルブ部材が回転するときに、上記第2コールド流体チャンバーと次々に連通する第2コールド流体ポートとを有し、上記回転バルブ部材は、更に、この回転バルブ部材が回転するときに、上記第1ホット流体チャンバーと次々に連通する第1ホット流体ポートと、この回転バルブ部材が回転するときに、上記第2ホット流体チャンバーと次々に連通する第2ホット流体ポートとを有し、上記固定バルブ部材におけるチャンネルは、2つのホット流体開口から第1及び第2のホット流体チャンバーへと延びそして2つのコールド流体開口から第1及び第2のコールド流体チャンバーへと延び、上記コンジットは、上記ベッドのコールド入力ポートから、第1のコールド流体チャンバーと次々に連通状態になる上記回転バルブ部材のポートへと延び、上記コンジットは、上記ベッドのコールド出力ポートから、第2のコールド流体チャンバーと次々に連通状態になる上記回転バルブ部材のポートへと延び、上記コンジットは、上記ベッドのホット出力ポートから、第1のホット流体チャンバーと次々に連通状態になる上記回転バルブ部材のポートへと延び、そして上記コンジットは、上記ベッドのホット入力ポートから、第2のホット流体チャンバーと次々に連通状態になる上記回転バルブ部材のポートへと延び、更に、上記コンジットは、上記コールド熱交換器の出口から、第1コールド流体チャンバーと連通する上記固定バルブ部材のコールド流体開口へと延び、上記コンジットは、上記コールド熱交換器の入口から、第2コールド流体チャンバーと連通する上記固定バルブ部材のコールド流体開口へと延び、上記コンジットは、第1ホット流体チャンバーと連通する上記固定バルブ部材のホット流体開口からポンプを経て上記ホット熱交換器の入口へと延び、そして上記コンジットは、上記ホット熱交換器の出口から、上記固定バルブ部材の第2ホット流体チャンバーと連通する上記固定バルブ部材のホット流体開口へと延びる請求項7に記載の冷却装置。
  9. 上記固定バルブ部材は上端及び下端を有し、そして上記固定バルブ部材におけるコールド流体開口は、上記端の一方において軸方向を向き、そして上記固定バルブ部材におけるホット流体開口は、他方の端において軸方向を向く請求項8に記載の冷却装置。
  10. 上記マグネットは、永久磁石より成る請求項7に記載の冷却装置。
  11. 上記マグネットは、C字型である請求項10に記載の冷却装置。
  12. 中心軸の周りで回転するように取り付けられた取り付けプラットホームを更に備え、上記回転バルブ部材から上記ベッドへと延びるコンジットは、この取り付けプラットホームから上記ベッドのリングへと延びる区分を有し、そして上記ベッドのリングは、中心軸の周りで回転するようにこの取り付けプラットホームにより支持される請求項7に記載の冷却装置。
  13. 上記取り付けプラットホームから上記ベッドへ延びる上記コンジットの区分は、上記ベッドのリングに対する物理的な支持体をなす請求項12に記載の冷却装置。
  14. 上記回転バルブ部材及び上記取り付けプラットホームは、中心軸の周りで一緒に回転するように一緒に接続される請求項12に記載の冷却装置。
  15. 上記固定バルブ部材及び回転バルブ部材は、互いに係合するフラットな面をもつ円板として形成され、上記回転バルブ部材は、その面が中心軸に直角となるようにして中心軸の回りで回転するように取り付けられ、上記固定バルブ部材及び回転バルブ部材は、その回転バルブ部材が回転するときに連通したりしなくなったりするポートを有する請求項7に記載の冷却装置。
  16. 上記固定バルブ部材円板を上記回転バルブ部材円板に係合するように取り付けるスプリング取り付け組立体を含む請求項15に記載の冷却装置。
  17. 回転磁気冷却ヒートポンプ装置において、
    (a)偶数の磁気再生ベッドを備え、各ベッドに含まれる材料は、磁熱効果を示し、多孔性であり且つこのような磁熱材料を通して熱伝達流体を流すことができ、各ベッドは、ホット端及びコールド端、各ベッドのホット端におけるホット端入力及び出力ポート、そして各ベッドのコールド端におけるコールド端入力及び出力ポートを有し、上記ベッドは、各ベッドのコールド端がその隣接ベッドのコールド端に隣接しそして各ベッドのホット端がその隣接ベッドのホット端に隣接するように円形リングに配列され、これらベッドの隣接コールド端は、流体の流れに対して互いに開いていて、1つの共通のコールド端入力ポート及び1つの共通のコールド端出力ポートを有し、そしてこれらベッドの隣接ホット端は、流れ防止セパレータにより分離されていて、各ベッドのホット端に対して入力ポート及び出力ポートを有し、上記磁気再生ベッドのリングが中心軸の周りで回転するように取り付けられ、そして中心軸の周りで回転するように上記ベッドのリングを駆動するためにドライブを備え、更に、ベッドの入力ポートから出力ポートへ流れる熱伝達流体は、中心軸に対して周囲に流れ、
    (b)上記リングにおける再生ベッドの全部ではなくその少なくとも1つを通る磁界を与えて、少なくとも1つのベッドが磁界内にありそして少なくとも1つのベッドが磁界の外部にあるようにする少なくとも1つのマグネットを備え、
    (c)内部の固定バルブ部材、及び中心軸の周りでこの固定バルブ部材に係合して回転するように取り付けられた外部の回転バルブ部材を含む回転分配バルブを更に備え、上記固定バルブ部材は、2つのコールド流体チャンバー及び2つのホット流体チャンバーを有し、上記回転バルブ部材は、この回転バルブ部材が回転するときに、上記第1コールド流体チャンバーと次々に連通する第1コールド流体ポートと、この回転バルブ部材が回転するときに、上記第2コールド流体チャンバーと次々に連通する第2コールド流体ポートとを有し、上記回転バルブ部材は、更に、この回転バルブ部材が回転するときに、上記第1ホット流体チャンバーと次々に連通する第1ホット流体ポートと、この回転バルブ部材が回転するときに、上記第2ホット流体チャンバーと次々に連通する第2ホット流体ポートとを有し、上記固定バルブ部材におけるチャンネルは、2つのホット流体開口から第1及び第2のホット流体チャンバーへと延びそして2つのコールド流体開口から第1及び第2のコールド流体チャンバーへと延び、
    (d)上記ベッドのコールド入力ポートから、第1のコールド流体チャンバーと次々に連通状態になる上記回転バルブ部材のポートへと延びるコンジット、上記ベッドのコールド出力ポートから、第2のコールド流体チャンバーと次々に連通状態になる上記回転バルブ部材のポートへと延びるコンジット、上記ベッドのホット出力ポートから、第1のホット流体チャンバーと次々に連通状態になる上記回転バルブ部材のポートへと延びるコンジット、及び上記ベッドのホット入力ポートから、第2のホット流体チャンバーと次々に連通状態になる上記回転バルブ部材のポートへと延びるコンジットを更に備え、
    (e)入口及び出口をもつホット熱交換器と、
    (f)入口及び出口をもつコールド熱交換器とを更に備え、
    (g)上記コールド熱交換器の出口から、第1コールド流体チャンバーと連通する上記固定バルブ部材のコールド流体開口へと延びるコンジット、上記コールド熱交換器の入口から、第2コールド流体チャンバーと連通する上記固定バルブ部材のコールド流体開口へと延びるコンジット、第1ホット流体チャンバーと連通する上記固定バルブ部材のホット流体開口からポンプを経て上記ホット熱交換器の入口へと延びるコンジット、及び上記ホット熱交換器の出口から、上記固定バルブ部材の第2ホット流体チャンバーと連通する上記固定バルブ部材のホット流体開口へと延びるコンジットを更に備え、そして
    (h)上記ホット及びコールド熱交換器、コンジット、ベッド及び分配バルブを通る流路に熱伝達流体を駆動するように上記コンジットに接続されたポンプを更に備えた装置。
  18. 上記固定バルブ部材は上端及び下端を有し、そして上記固定バルブ部材におけるコールド流体開口は、上記端の一方において軸方向を向き、そして上記固定バルブ部材におけるホット流体開口は、他方の端において軸方向を向く請求項17に記載の冷却装置。
  19. 上記マグネットは、永久磁石より成る請求項17に記載の冷却装置。
  20. 上記マグネットは、C字型である請求項19に記載の冷却装置。
  21. 中心軸の周りで回転するように取り付けられた取り付けプラットホームを更に備え、上記回転バルブ部材から上記ベッドへと延びるコンジットは、この取り付けプラットホームから上記ベッドのリングへと延びる区分を有し、そして上記ベッドのリングは、中心軸の周りで回転するようにこの取り付けプラットホームにより支持される請求項17に記載の冷却装置。
  22. 上記取り付けプラットホームから上記ベッドへ延びる上記コンジットの区分は、上記ベッドのリングに対する物理的な支持体をなす請求項21に記載の冷却装置。
  23. 上記外部の回転バルブ部材及び上記取り付けプラットホームは、中心軸の周りで一緒に回転するように一緒に接続される請求項21に記載の冷却装置。
JP2002518044A 2000-08-09 2001-08-08 回転ベッド式磁気冷却装置 Expired - Fee Related JP4879449B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US22394000P 2000-08-09 2000-08-09
US60/223,940 2000-08-09
PCT/US2001/025009 WO2002012800A1 (en) 2000-08-09 2001-08-08 Rotating bed magnetic refrigeration apparatus

Publications (2)

Publication Number Publication Date
JP2004506168A true JP2004506168A (ja) 2004-02-26
JP4879449B2 JP4879449B2 (ja) 2012-02-22

Family

ID=22838621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002518044A Expired - Fee Related JP4879449B2 (ja) 2000-08-09 2001-08-08 回転ベッド式磁気冷却装置

Country Status (12)

Country Link
US (1) US6526759B2 (ja)
EP (1) EP1307692B1 (ja)
JP (1) JP4879449B2 (ja)
KR (1) KR100797681B1 (ja)
CN (1) CN100412467C (ja)
AT (1) ATE362084T1 (ja)
AU (1) AU2001286426A1 (ja)
BR (1) BR0113171B1 (ja)
DE (1) DE60128361T2 (ja)
DK (1) DK1307692T3 (ja)
ES (1) ES2284683T3 (ja)
WO (1) WO2002012800A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522657A (ja) * 2004-02-03 2007-08-09 アストロノーティックス コーポレイション オブ アメリカ 永久磁石組立体
JP2012047385A (ja) * 2010-08-26 2012-03-08 Railway Technical Research Institute 磁気冷凍装置
JP2012179266A (ja) * 2011-03-02 2012-09-20 Hitachi Appliances Inc 洗濯乾燥機
JP2014531014A (ja) * 2011-10-28 2014-11-20 クールテックアプリケーションズ エス.エイ.エス. 磁気熱量効果型熱発生器
JP2017522532A (ja) * 2014-07-28 2017-08-10 アストロノーティックス コーポレイション オブ アメリカ 分離した入口流及び出口流を有する磁気冷却システム
JP2017526890A (ja) * 2014-09-15 2017-09-14 アストロノーティックス コーポレイション オブ アメリカ 不等ブローを有する磁気冷凍システム

Families Citing this family (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6676772B2 (en) * 2001-03-27 2004-01-13 Kabushiki Kaisha Toshiba Magnetic material
ATE373213T1 (de) 2001-12-12 2007-09-15 Astronautics Corp Magnetische kühlvorrichtung mit rotierendem magneten
CH695836A5 (fr) * 2002-12-24 2006-09-15 Ecole D Ingenieurs Du Canton D Procédé et dispositif pour générer en continu du froid et de la chaleur par effet magnetique.
US7038565B1 (en) 2003-06-09 2006-05-02 Astronautics Corporation Of America Rotating dipole permanent magnet assembly
JP2005049005A (ja) * 2003-07-28 2005-02-24 Denso Corp 磁性蓄熱材式温度調整装置および車両用空調装置
US6946941B2 (en) * 2003-08-29 2005-09-20 Astronautics Corporation Of America Permanent magnet assembly
US6935121B2 (en) * 2003-12-04 2005-08-30 Industrial Technology Research Institute Reciprocating and rotary magnetic refrigeration apparatus
FR2868519B1 (fr) * 2004-03-30 2006-06-16 Christian Muller Generateur thermique a materiau magneto-calorique et procede de generation de thermies
WO2005116537A1 (fr) * 2004-05-28 2005-12-08 Nanjing University Procede de realisation de la magnetisation et demagnetisation d'une substance de travail refroidissante magnetique utilisant un circuit magnetique dynamique
CA2594380C (en) 2005-01-12 2013-12-17 The Technical University Of Denmark A magnetic regenerator, a method of making a magnetic regenerator, a method of making an active magnetic refrigerator and an active magnetic refrigerator
JP4231022B2 (ja) * 2005-03-31 2009-02-25 株式会社東芝 磁気冷凍機
US20080245077A1 (en) * 2005-06-10 2008-10-09 Sumitomo Heavy Industries, Ltd. Multiple Rotary Valve For Pulse Tube Refrigerator
EP1736719A1 (en) * 2005-06-20 2006-12-27 Haute Ecole d'Ingénieurs et de Gestion du Canton Continuously rotary magnetic refrigerator or heat pump
FR2890158A1 (fr) * 2005-09-01 2007-03-02 Cooltech Applic Soc Par Action Generateur thermique a materiau magnetocalorique
KR100647854B1 (ko) * 2005-11-10 2006-11-23 주식회사 대우일렉트로닉스 자기냉동기
WO2007055506A1 (en) * 2005-11-10 2007-05-18 Daewoo Electronics Corperation Magnetic refrigerator
KR100684527B1 (ko) * 2005-11-10 2007-02-20 주식회사 대우일렉트로닉스 자기냉동기용 자기열교환유닛
JP4557874B2 (ja) * 2005-11-30 2010-10-06 株式会社東芝 磁気冷凍機
CH699375B1 (fr) * 2005-12-13 2010-02-26 Heig Vd Haute Ecole D Ingenier Dispositif de génération de froid et de chaleur par effet magneto-calorique.
KR100684521B1 (ko) * 2005-12-21 2007-02-20 주식회사 대우일렉트로닉스 자기냉동기
CN100464134C (zh) * 2006-01-17 2009-02-25 南京大学 采用外回路蓄冷的磁制冷方法及其磁制冷装置
EP1979690A4 (en) * 2006-01-27 2009-11-18 Daewoo Electronics Corp ACTIVE MAGNETIC COOLING DEVICE
KR100716007B1 (ko) * 2006-03-06 2007-05-08 주식회사 대우일렉트로닉스 능동자기냉동기
JP2007263392A (ja) * 2006-03-27 2007-10-11 Toshiba Corp 磁気冷凍材料及び磁気冷凍装置
JP5126992B2 (ja) * 2006-07-10 2013-01-23 ダエウ・エレクトロニクス・コーポレーション 往復式磁気冷凍機
KR100737781B1 (ko) * 2006-07-10 2007-07-10 주식회사 대우일렉트로닉스 회전식 재생기 및 이를 이용한 자기냉동기
FR2904098B1 (fr) * 2006-07-24 2008-09-19 Cooltech Applic Soc Par Action Generateur thermique magnetocalorique
DE202007003577U1 (de) * 2006-12-01 2008-04-10 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
DE202007003576U1 (de) * 2006-12-01 2008-04-10 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
EP2143151B1 (en) * 2007-03-28 2011-10-12 ABB Research Ltd. Device and method for converting energy
US8448453B2 (en) * 2007-08-17 2013-05-28 The Technical University Of Denmark Refrigeration device and a method of refrigerating
US9322578B2 (en) * 2007-09-10 2016-04-26 Whirlpool Corporation Quick thaw/quick chill refrigerated compartment
EP2195815B1 (en) * 2007-10-04 2016-12-07 Hussmann Corporation Permanent magnet device
CN100526760C (zh) * 2007-10-19 2009-08-12 中国科学院电工研究所 一种永磁旋转式磁制冷机的热交换系统
US9002514B2 (en) * 2007-11-30 2015-04-07 Novellus Systems, Inc. Wafer position correction with a dual, side-by-side wafer transfer robot
FR2924489B1 (fr) * 2007-12-04 2015-09-04 Cooltech Applications Generateur magnetocalorique
DE202008001117U1 (de) * 2007-12-21 2009-04-30 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
JP4643668B2 (ja) * 2008-03-03 2011-03-02 株式会社東芝 磁気冷凍デバイスおよび磁気冷凍システム
EP2108904A1 (en) 2008-04-07 2009-10-14 Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud (HEIG-VD) A magnetocaloric device, especially a magnetic refrigerator, a heat pump or a power generator
FR2932254B1 (fr) * 2008-06-10 2010-08-20 Commissariat Energie Atomique Dispositif de refrigeration magnetique et procede de refrigeration
KR100962136B1 (ko) * 2008-06-16 2010-06-10 현대자동차주식회사 냉난방 시스템
JP4703699B2 (ja) * 2008-09-04 2011-06-15 株式会社東芝 磁気冷凍用磁性材料、磁気冷凍デバイスおよび磁気冷凍システム
US8209988B2 (en) * 2008-09-24 2012-07-03 Husssmann Corporation Magnetic refrigeration device
FR2936363B1 (fr) * 2008-09-25 2011-08-19 Cooltech Applications Generateur thermique a materiau magnetocalorique
FR2942305B1 (fr) * 2009-02-17 2011-02-18 Cooltech Applications Generateur thermique magnetocalorique
FR2943407B1 (fr) * 2009-03-20 2013-04-12 Cooltech Applications Generateur thermique magnetocalorique et son procede d'echange thermique
DE102009036544A1 (de) 2009-08-07 2011-02-10 Behr Gmbh & Co. Kg Rotationsventil und Wärmepumpe
CA2770862A1 (en) * 2009-08-10 2011-02-17 Basf Se Heat exchanger beds composed of thermomagnetic material
US20110048031A1 (en) * 2009-08-28 2011-03-03 General Electric Company Magneto-caloric regenerator system and method
US9739510B2 (en) 2009-09-17 2017-08-22 Charles N. Hassen Flow-synchronous field motion refrigeration
FR2959602B1 (fr) * 2010-04-28 2013-11-15 Cooltech Applications Procede de generation d'un flux thermique et generateur thermique magnetocalorique
TWI537509B (zh) 2010-06-15 2016-06-11 拜歐菲樂Ip有限責任公司 從導熱金屬導管提取熱能的方法、裝置和系統
EP2409864B1 (en) * 2010-07-19 2013-03-27 C.R.F. Società Consortile per Azioni Automotive air-conditioning system
JP5060602B2 (ja) 2010-08-05 2012-10-31 株式会社東芝 磁気冷凍デバイスおよび磁気冷凍システム
US8632627B2 (en) 2010-08-10 2014-01-21 General Electric Company Gas dehydration system with desiccant transporter
CN101979937B (zh) * 2010-10-15 2012-05-23 西安交通大学 一种旋转式磁制冷装置及其应用
WO2012056560A1 (ja) * 2010-10-29 2012-05-03 株式会社 東芝 磁気冷凍システム
JP5488580B2 (ja) * 2011-01-27 2014-05-14 株式会社デンソー 磁気冷凍システムおよび自動車用空調装置
JP5267689B2 (ja) * 2011-04-26 2013-08-21 株式会社デンソー 磁気ヒートポンプ装置
US10436481B2 (en) * 2011-06-06 2019-10-08 Jan Vetrovec Magnetocaloric refrigerator
US8522562B2 (en) 2011-06-27 2013-09-03 Ut-Battelle, Llc Apparatus and method for magnetically processing a specimen
GB201111235D0 (en) * 2011-06-30 2011-08-17 Camfridge Ltd Multi-Material-Blade for active regenerative magneto-caloric or electro-caloricheat engines
US9194449B2 (en) * 2011-08-08 2015-11-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Suspension device for use with low temperature refrigerator
CN102305491B (zh) * 2011-08-30 2014-05-07 华南理工大学 摆动式室温磁制冷机
JP5760976B2 (ja) * 2011-11-24 2015-08-12 日産自動車株式会社 磁気冷暖房装置
TWI525184B (zh) 2011-12-16 2016-03-11 拜歐菲樂Ip有限責任公司 低溫注射組成物,用於低溫調節導管中流量之系統及方法
KR101887917B1 (ko) * 2012-01-16 2018-09-20 삼성전자주식회사 자기 냉각 장치 및 그 제어 방법
US20130192269A1 (en) * 2012-02-01 2013-08-01 Min-Chia Wang Magnetocaloric module for magnetic refrigeration apparatus
JP5799862B2 (ja) * 2012-03-09 2015-10-28 日産自動車株式会社 磁気冷暖房装置
KR101866840B1 (ko) * 2012-03-26 2018-06-14 삼성전자주식회사 자기냉각장치
US8966912B2 (en) * 2012-05-15 2015-03-03 Delta Electronics, Inc. Heat exchanging system
KR101639544B1 (ko) * 2012-12-17 2016-07-13 애스트로노틱스 코포레이션 오브 아메리카 자기 냉각 시스템들의 단방향 흐름 모드들의 사용
US20140165594A1 (en) * 2012-12-19 2014-06-19 General Electric Company Magneto caloric device with continuous pump
US10465951B2 (en) 2013-01-10 2019-11-05 Haier Us Appliance Solutions, Inc. Magneto caloric heat pump with variable magnetization
CN103115454B (zh) * 2013-03-06 2015-09-02 包头稀土研究院 一种磁制冷部件及磁制冷机
US9534817B2 (en) 2013-03-29 2017-01-03 General Electric Company Conduction based magneto caloric heat pump
US9625185B2 (en) 2013-04-16 2017-04-18 Haier Us Appliance Solutions, Inc. Heat pump with magneto caloric materials and variable magnetic field strength
WO2014180822A1 (en) * 2013-05-08 2014-11-13 Basf Se Use of a rotating magnetic shielding system for a magnetic cooling device
US9377221B2 (en) 2013-07-24 2016-06-28 General Electric Company Variable heat pump using magneto caloric materials
WO2015017230A1 (en) 2013-08-02 2015-02-05 General Electric Company Magneto-caloric assemblies
EP3044494A1 (en) 2013-09-13 2016-07-20 Biofilm IP, LLC Magneto-cryogenic valves, systems and methods for modulating flow in a conduit
US9995511B2 (en) * 2013-12-17 2018-06-12 Astronautics Corporation Of America Magnetic refrigeration system with improved flow efficiency
FR3016026B1 (fr) * 2013-12-27 2016-01-22 Cooltech Applications Generateur thermique magnetocalorique
KR20160119173A (ko) 2014-02-05 2016-10-12 덴마크스 텍니스케 유니버시테트 활성 자기 재생기 장치
CN103925732B (zh) * 2014-04-11 2016-05-04 佛山市川东磁电股份有限公司 一种旋转式串极磁制冷系统
US9851128B2 (en) * 2014-04-22 2017-12-26 Haier Us Appliance Solutions, Inc. Magneto caloric heat pump
US9797630B2 (en) 2014-06-17 2017-10-24 Haier Us Appliance Solutions, Inc. Heat pump with restorative operation for magneto caloric material
CN105526733B (zh) * 2014-09-29 2019-07-12 青岛海尔股份有限公司 往复式磁制冷设备
CN104406325B (zh) * 2014-11-24 2016-06-29 广东美芝制冷设备有限公司 磁制冷机及其磁制冷装置
JP2017538097A (ja) * 2014-12-15 2017-12-21 アストロノーティクス コーポレイション オブ アメリカAstronautics Corporation Of America 改良された同軸バルブを備える磁気冷却システム
US10254020B2 (en) 2015-01-22 2019-04-09 Haier Us Appliance Solutions, Inc. Regenerator including magneto caloric material with channels for the flow of heat transfer fluid
US9631843B2 (en) 2015-02-13 2017-04-25 Haier Us Appliance Solutions, Inc. Magnetic device for magneto caloric heat pump regenerator
CN106481842B (zh) * 2016-01-18 2019-06-04 包头稀土研究院 一种复合式室温磁制冷系统及其方向控制阀
US10443928B2 (en) 2016-02-22 2019-10-15 Battelle Memorial Institute Active magnetic regenerative liquefier using process gas pre-cooling from bypass flow of heat transfer fluid
US11233254B2 (en) 2016-02-22 2022-01-25 Battelle Memorial Institute Process for delivering liquid H2 from an active magnetic regenerative refrigerator H2 liquefier to a liquid H2 vehicle dispenser
US10541070B2 (en) 2016-04-25 2020-01-21 Haier Us Appliance Solutions, Inc. Method for forming a bed of stabilized magneto-caloric material
US10299655B2 (en) 2016-05-16 2019-05-28 General Electric Company Caloric heat pump dishwasher appliance
US10006673B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006675B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10295227B2 (en) 2016-07-19 2019-05-21 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10222101B2 (en) 2016-07-19 2019-03-05 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10281177B2 (en) 2016-07-19 2019-05-07 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10006674B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US9915448B2 (en) 2016-07-19 2018-03-13 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10274231B2 (en) 2016-07-19 2019-04-30 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10006672B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047979B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047980B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US9869493B1 (en) 2016-07-19 2018-01-16 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10443585B2 (en) 2016-08-26 2019-10-15 Haier Us Appliance Solutions, Inc. Pump for a heat pump system
US9857105B1 (en) 2016-10-10 2018-01-02 Haier Us Appliance Solutions, Inc. Heat pump with a compliant seal
US9857106B1 (en) 2016-10-10 2018-01-02 Haier Us Appliance Solutions, Inc. Heat pump valve assembly
US10288326B2 (en) 2016-12-06 2019-05-14 Haier Us Appliance Solutions, Inc. Conduction heat pump
US10386096B2 (en) 2016-12-06 2019-08-20 Haier Us Appliance Solutions, Inc. Magnet assembly for a magneto-caloric heat pump
DE102017200559A1 (de) 2017-01-16 2018-07-19 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeug mit wenigstens einem aus magnetokalorischem Material gebildeten Temperierungselement
US10527325B2 (en) 2017-03-28 2020-01-07 Haier Us Appliance Solutions, Inc. Refrigerator appliance
EP3601915A4 (en) 2017-03-28 2020-12-23 John Barclay ACTIVE MAGNETIC REGENERATIVE PROCEDURES AND SYSTEMS USING HYDROGEN HEAT TRANSFER LIQUID
US11009282B2 (en) 2017-03-28 2021-05-18 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
EP3601914A4 (en) 2017-03-28 2020-12-23 Barclay, John ADVANCED MULTI-LAYER ACTIVE MAGNETIC REGENERATOR SYSTEMS AND MAGNETOCALORIC LIQUEFACTION PROCESSES
US10451320B2 (en) 2017-05-25 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with water condensing features
US10422555B2 (en) 2017-07-19 2019-09-24 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10451322B2 (en) 2017-07-19 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US11125477B2 (en) 2017-08-25 2021-09-21 Astronautics Corporation Of America Drum-type magnetic refrigeration apparatus with improved magnetic-field source
WO2019038719A1 (en) * 2017-08-25 2019-02-28 Astronautics Corporation Of America MULTI-BED RING DRUM TYPE MAGNETIC REFRIGERATION APPARATUS
US10520229B2 (en) 2017-11-14 2019-12-31 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
CN107942022A (zh) * 2017-11-28 2018-04-20 江苏省计量科学研究院 一种防死体积管路及水流控制方法
US11022348B2 (en) 2017-12-12 2021-06-01 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US10782051B2 (en) 2018-04-18 2020-09-22 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10876770B2 (en) 2018-04-18 2020-12-29 Haier Us Appliance Solutions, Inc. Method for operating an elasto-caloric heat pump with variable pre-strain
US10830506B2 (en) 2018-04-18 2020-11-10 Haier Us Appliance Solutions, Inc. Variable speed magneto-caloric thermal diode assembly
US10648704B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10641539B2 (en) 2018-04-18 2020-05-05 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10551095B2 (en) 2018-04-18 2020-02-04 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10557649B2 (en) 2018-04-18 2020-02-11 Haier Us Appliance Solutions, Inc. Variable temperature magneto-caloric thermal diode assembly
US10648705B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648706B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder
US11054176B2 (en) 2018-05-10 2021-07-06 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a modular magnet system
US10989449B2 (en) 2018-05-10 2021-04-27 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial supports
US11015842B2 (en) 2018-05-10 2021-05-25 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial polarity alignment
CN108895704B (zh) * 2018-06-12 2020-08-18 西安交通大学 一种旋转式室温磁制冷机变负荷控制系统及其控制方法
CN110595105B (zh) * 2018-06-13 2023-11-28 青岛海尔智能技术研发有限公司 一种磁制冷换热装置、系统及其控制方法
US11092364B2 (en) 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
US10684044B2 (en) 2018-07-17 2020-06-16 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a rotating heat exchanger
CN109269144B (zh) * 2018-10-15 2024-04-05 珠海格力电器股份有限公司 一种磁制冷机
US11149994B2 (en) 2019-01-08 2021-10-19 Haier Us Appliance Solutions, Inc. Uneven flow valve for a caloric regenerator
US11168926B2 (en) 2019-01-08 2021-11-09 Haier Us Appliance Solutions, Inc. Leveraged mechano-caloric heat pump
US11274860B2 (en) 2019-01-08 2022-03-15 Haier Us Appliance Solutions, Inc. Mechano-caloric stage with inner and outer sleeves
US11193697B2 (en) 2019-01-08 2021-12-07 Haier Us Appliance Solutions, Inc. Fan speed control method for caloric heat pump systems
US11112146B2 (en) 2019-02-12 2021-09-07 Haier Us Appliance Solutions, Inc. Heat pump and cascaded caloric regenerator assembly
US11015843B2 (en) 2019-05-29 2021-05-25 Haier Us Appliance Solutions, Inc. Caloric heat pump hydraulic system
CN111380242B (zh) * 2020-03-20 2020-11-13 中国科学院理化技术研究所 减小退磁效应的主动式磁回热器
WO2021214836A1 (ja) * 2020-04-20 2021-10-28 三菱電機株式会社 磁気冷凍装置および冷凍サイクル装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332135A (en) * 1981-01-27 1982-06-01 The United States Of America As Respresented By The United States Department Of Energy Active magnetic regenerator
JPS58124178A (ja) * 1982-01-20 1983-07-23 アメリカ合衆国 ホイ−ル型磁気冷凍機
JPS62153662A (ja) * 1985-11-08 1987-07-08 ドイチェ フォルシュングスアンシュタルト フュア ルフトーウント ラウムファールト エー.ファウ 磁気熱量式冷却装置
US5249424A (en) * 1992-06-05 1993-10-05 Astronautics Corporation Of America Active magnetic regenerator method and apparatus
US5444983A (en) * 1994-02-28 1995-08-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Magnetic heat pump flow director
US5934078A (en) * 1998-02-03 1999-08-10 Astronautics Corporation Of America Reciprocating active magnetic regenerator refrigeration apparatus

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4107935A (en) * 1977-03-10 1978-08-22 The United States Of America As Represented By The United States Department Of Energy High temperature refrigerator
FR2517415A1 (fr) 1981-11-27 1983-06-03 Commissariat Energie Atomique Procede de refrigeration ou de pompage de chaleur et dispositif pour la mise en oeuvre de ce procede
US4459811A (en) 1983-03-28 1984-07-17 The United States Of America As Represented By The United States Department Of Energy Magnetic refrigeration apparatus and method
US4507927A (en) * 1983-05-26 1985-04-02 The United States Of America As Represented By The United States Department Of Energy Low-temperature magnetic refrigerator
US4507928A (en) 1984-03-09 1985-04-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Reciprocating magnetic refrigerator employing tandem porous matrices within a reciprocating displacer
JPS60223972A (ja) 1984-04-20 1985-11-08 株式会社日立製作所 回転型磁気冷凍機
US4704871A (en) 1986-04-03 1987-11-10 The United States Of America As Represented By The United States Department Of Energy Magnetic refrigeration apparatus with belt of ferro or paramagnetic material
US4702090A (en) 1986-10-24 1987-10-27 Astronautics Corporation Of America Magnetic refrigeration apparatus with conductive heat transfer
US4727722A (en) 1987-02-11 1988-03-01 The United States Of America As Represented By The United States Department Of Energy Rotary magnetic heat pump
US5182914A (en) 1990-03-14 1993-02-02 Astronautics Corporation Of America Rotary dipole active magnetic regenerative refrigerator
US5091361A (en) 1990-07-03 1992-02-25 Hed Aharon Z Magnetic heat pumps using the inverse magnetocaloric effect
US5381664A (en) 1990-09-28 1995-01-17 The United States Of America, As Represented By The Secretary Of Commerce Nanocomposite material for magnetic refrigeration and superparamagnetic systems using the same
US5447034A (en) 1991-04-11 1995-09-05 Kabushiki Kaisha Toshiba Cryogenic refrigerator and regenerative heat exchange material
US5332029A (en) 1992-01-08 1994-07-26 Kabushiki Kaisha Toshiba Regenerator
CN1025125C (zh) * 1992-05-07 1994-06-22 冶金工业部钢铁研究总院 铁-稀土基磁致冷材料及制备方法
CN1107565A (zh) * 1994-02-25 1995-08-30 王金柱 磁致冷机
US5743095A (en) 1996-11-19 1998-04-28 Iowa State University Research Foundation, Inc. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332135A (en) * 1981-01-27 1982-06-01 The United States Of America As Respresented By The United States Department Of Energy Active magnetic regenerator
JPS58124178A (ja) * 1982-01-20 1983-07-23 アメリカ合衆国 ホイ−ル型磁気冷凍機
JPS62153662A (ja) * 1985-11-08 1987-07-08 ドイチェ フォルシュングスアンシュタルト フュア ルフトーウント ラウムファールト エー.ファウ 磁気熱量式冷却装置
US5249424A (en) * 1992-06-05 1993-10-05 Astronautics Corporation Of America Active magnetic regenerator method and apparatus
US5444983A (en) * 1994-02-28 1995-08-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Magnetic heat pump flow director
US5934078A (en) * 1998-02-03 1999-08-10 Astronautics Corporation Of America Reciprocating active magnetic regenerator refrigeration apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522657A (ja) * 2004-02-03 2007-08-09 アストロノーティックス コーポレイション オブ アメリカ 永久磁石組立体
JP2012047385A (ja) * 2010-08-26 2012-03-08 Railway Technical Research Institute 磁気冷凍装置
JP2012179266A (ja) * 2011-03-02 2012-09-20 Hitachi Appliances Inc 洗濯乾燥機
JP2014531014A (ja) * 2011-10-28 2014-11-20 クールテックアプリケーションズ エス.エイ.エス. 磁気熱量効果型熱発生器
JP2017522532A (ja) * 2014-07-28 2017-08-10 アストロノーティックス コーポレイション オブ アメリカ 分離した入口流及び出口流を有する磁気冷却システム
JP2017526890A (ja) * 2014-09-15 2017-09-14 アストロノーティックス コーポレイション オブ アメリカ 不等ブローを有する磁気冷凍システム

Also Published As

Publication number Publication date
ATE362084T1 (de) 2007-06-15
CN100412467C (zh) 2008-08-20
EP1307692A4 (en) 2005-07-20
AU2001286426A1 (en) 2002-02-18
KR100797681B1 (ko) 2008-01-23
EP1307692A1 (en) 2003-05-07
DE60128361D1 (de) 2007-06-21
EP1307692B1 (en) 2007-05-09
US6526759B2 (en) 2003-03-04
CN1468357A (zh) 2004-01-14
BR0113171A (pt) 2003-06-24
DK1307692T3 (da) 2007-09-10
KR20030029818A (ko) 2003-04-16
US20020053209A1 (en) 2002-05-09
JP4879449B2 (ja) 2012-02-22
DE60128361T2 (de) 2008-01-17
BR0113171B1 (pt) 2010-02-23
WO2002012800A1 (en) 2002-02-14
ES2284683T3 (es) 2007-11-16

Similar Documents

Publication Publication Date Title
JP4879449B2 (ja) 回転ベッド式磁気冷却装置
US6668560B2 (en) Rotating magnet magnetic refrigerator
JP3670659B2 (ja) 能動型磁気再生式熱交換器装置
KR102086373B1 (ko) 자기 냉각 장치 및 그 제어방법
TWI425177B (zh) 在使用磁熱材料的熱產生器中增加溫度梯度的方法和裝置
US20160025385A1 (en) Magnetic refrigeration system with separated inlet and outlet flow
KR101954538B1 (ko) 자기 냉각 시스템
CN110345680A (zh) 一种蓄冷床和磁制冷系统
KR101204325B1 (ko) 콤팩트한 능동형 자기 재생식 냉동기
EP1847788A1 (en) Rotating magnet magnetic refrigerator
KR20170092150A (ko) 개선된 동축 밸브를 구비하는 자기 냉장 시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110309

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

R150 Certificate of patent or registration of utility model

Ref document number: 4879449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees