WO2012056560A1 - 磁気冷凍システム - Google Patents

磁気冷凍システム Download PDF

Info

Publication number
WO2012056560A1
WO2012056560A1 PCT/JP2010/069297 JP2010069297W WO2012056560A1 WO 2012056560 A1 WO2012056560 A1 WO 2012056560A1 JP 2010069297 W JP2010069297 W JP 2010069297W WO 2012056560 A1 WO2012056560 A1 WO 2012056560A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
transport medium
unit
heat transport
heat exchange
Prior art date
Application number
PCT/JP2010/069297
Other languages
English (en)
French (fr)
Inventor
亮介 八木
斉藤 明子
忠彦 小林
志織 加治
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2010/069297 priority Critical patent/WO2012056560A1/ja
Priority to JP2012540598A priority patent/JP5728489B2/ja
Publication of WO2012056560A1 publication Critical patent/WO2012056560A1/ja
Priority to US13/872,781 priority patent/US20130227965A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • Embodiments of the present invention relate to a magnetic refrigeration system.
  • the magnetic refrigeration cycle is constructed using the magnetocaloric effect, and the expectation for the magnetic refrigeration technology that generates the high temperature part and the low temperature part has increased.
  • Research and development has become active.
  • the lattice entropy which has been positioned as an impediment to magnetic refrigeration in the cryogenic temperature range, is used rather positively, and magnetic refrigeration using the magnetocaloric effect is used as a magnetocaloric effect material.
  • a refrigeration technique called an AMR (Active Magnetic Regenerative Refrigeration) system has been proposed in which an element including the refrigeration is carried out and at the same time has a heat storage effect of storing the cold heat generated by the magnetic refrigeration work in the element.
  • AMR Active Magnetic Regenerative Refrigeration
  • Embodiments of the present invention provide a magnetic refrigeration system capable of improving heat exchange efficiency.
  • a first heat exchange unit including a magnetocaloric effect material, a magnetic field changing unit that changes a magnetic field with respect to the first heat exchange unit, a first heat transport medium, and the first heat
  • a second heat transport medium that is separated from the transport medium and has a different specific heat per unit volume, the first heat transport medium, and the second heat transport medium are sequentially supplied to the first heat exchange unit.
  • a magnetic refrigeration system comprising a transport section to be introduced.
  • FIG. 1 is a schematic configuration diagram for illustrating a magnetic refrigeration system according to a first embodiment. It is a schematic cross section for illustrating the heat exchange part which concerns on 1st Embodiment. It is a flowchart for demonstrating the effect
  • A) is a case where a magnetic field is applied to a heat exchange part
  • (b) is a case where the magnetic field applied to the heat exchange part is removed.
  • FIG. 1 It is a schematic block diagram for illustrating the magnetic refrigeration system which concerns on 3rd Embodiment.
  • A is a schematic block diagram for illustrating a magnetic refrigeration system using only the heat generation of the magnetocaloric effect material
  • (b) is a schematic configuration diagram for illustrating a magnetic refrigeration system using only the heat absorption of the magnetocaloric effect material.
  • (A) represents the case where a magnetic field was applied, and (b) represents the case where the applied magnetic field was removed.
  • It is a schematic cross section for illustrating the heat exchange part of the AMR type magnetic refrigeration system concerning a comparative example. It is a graph which shows the comparison with the heat transport efficiency in Example 1, and the heat transport efficiency in the comparative example 1.
  • FIG. 1 is a schematic block diagram for illustrating a magnetic refrigeration system using only the heat generation of the magnetocaloric effect material
  • (b) is a schematic configuration diagram for
  • FIG. 1 is a schematic configuration diagram for illustrating a magnetic refrigeration system according to the first embodiment.
  • the magnetic refrigeration system 100 includes a heat exchanging unit (ARM bed) 1 (first heat exchanging unit), a magnetic field generating unit 2, a moving unit 3, and a high temperature side heat exchanging unit 4 (second second exchanging unit).
  • Heat exchanger), low temperature side heat exchanger 5 (second heat exchanger), pipe 6, pipe 7, heat transport medium 8, heat transport medium 9, transport section 10, transport section 11, and control section 24 are provided. ing.
  • FIG. 2 is a schematic cross-sectional view for illustrating the heat exchange unit.
  • the moving direction of the heat transport media 8 and 9 is the x direction, and the direction perpendicular thereto is the y direction.
  • the heat exchanging unit 1 including the magnetocaloric effect material includes a region 14, a region 12 (first region) connected to the pipe 6, and a region 13 (second region) connected to the pipe 7. Is provided.
  • Region 14 is assumed to contain a magnetocaloric effect material.
  • the region 14 may include a magnetocaloric effect material such as Gd (gadolinium).
  • Gd gallium
  • the region 12 is provided so as to penetrate the region 14. Therefore, the outer peripheral surface of the region 12 is in contact with the region 14.
  • the region 12 can be, for example, a flow path that penetrates the region 14.
  • the heat transport medium 8 introduced through the pipe 6 can flow through the region 12.
  • the region 13 is provided so as to penetrate the region 14. Therefore, the outer peripheral surface of the region 13 is in contact with the region 14.
  • the region 13 can be, for example, a flow path that penetrates the region 14.
  • the heat transport medium 9 introduced through the pipe 7 can flow through the region 13. Note that the heat transport medium 8 flowing through the region 12 and the heat transport medium 9 flowing through the region 13 are separated from each other by the region 14, so that the heat transport medium 8 and the heat transport medium 9 do not mix. ing.
  • the region 14 generates heat and absorbs heat. Then, heat exchange is performed between the region 14 and the heat transport medium 8 in the region 12. Further, heat exchange is performed between the region 14 and the heat transport medium 9 in the region 13.
  • the heat transport medium 80 a is introduced into the region 12
  • the heat transport medium 90 b is introduced into the region 13
  • a transport medium 90a is introduced.
  • the region 14 described above is preferably configured so that the heat transport media 8 and 9 are transmitted therethrough and the heat transport media are not mixed (for example, a plate-like body having no voids). It is not limited.
  • a partition part (not shown) that does not allow the heat transport medium to pass through may be provided between the region 14 and the region 12 and between the region 14 and the region 13.
  • a tubular body can be provided as a partition (not shown), the inside of the tubular body can be the regions 12 and 13, and the outside of the tubular body can be the region 14.
  • the region 14 can be formed from a sintered body having voids, or can be formed by filling a granular material.
  • the magnetocaloric effect material is not limited to Gd (gadolinium) described above, and any material that exhibits the magnetocaloric effect may be used.
  • Examples of magnetocaloric effect materials include Gd compounds in which various elements are mixed with Gd (gadolinium), intermetallic compounds composed of various rare earth elements and transition metal elements, Ni 2 MnGa alloys, GdGeSi compounds, LaFe 13 series compounds, LaFe 13 H.
  • Various magnetic materials such as can be used.
  • the magnetic field generator 2 is arranged outside the heat exchange unit 1 and applies a magnetic field to the heat exchange unit 1.
  • the magnetic field generator 2 can be, for example, a permanent magnet.
  • permanent magnets include NdFeB (neodymium / iron / boron) magnets, SmCo (samarium cobalt) magnets, and ferrite magnets.
  • the moving unit 3 is connected to the magnetic field generation unit 2 and changes the relative position between the heat exchange unit 1 and the magnetic field generation unit 2.
  • changing the relative position means that a position 22 (ON position) where the magnetic field generating unit 2 applies a magnetic field to the heat exchanging unit 1 and a position 23 (OFF position) where no magnetic field is applied to the heat exchanging unit 1.
  • heat generation and heat absorption occur due to application of a magnetic field and removal of the magnetic field, and details regarding the operation of the heat exchange unit 1 will be described later.
  • the moving unit 3 can apply mechanical fluctuations to the magnetic field generating unit 2 in order to change the relative position between the heat exchange unit 1 and the magnetic field generating unit 2.
  • the magnetic field generator 2 and the moving unit 3 serve as a magnetic field changing unit that changes the magnetic field with respect to the heat exchanging unit 1.
  • the moving unit 3 and the magnetic field generating unit 2 are connected and mechanical variation is given to the magnetic field generating unit 2, but the moving unit 3 and the heat exchanging unit 1 are connected to generate heat. Mechanical changes may be given to the exchange unit 1.
  • the moving part 3 can be provided with drive means, such as a motor, for example.
  • the permanent magnet was illustrated as the magnetic field generation part 2, an electromagnet etc. can also be used as the magnetic field generation part 2, for example.
  • the moving unit 3 that gives mechanical fluctuation to the magnetic field generating unit 2 can be used. You can also
  • the high temperature side heat exchange unit 4 performs heat exchange between the heat transport medium 8 heated in the heat exchange unit 1 and a heat exchange destination (not shown).
  • Examples of the high temperature side heat exchanging unit 4 include one that heats air by performing heat exchange between the high temperature heat transport medium 8 and air.
  • the low temperature side heat exchange unit 5 performs heat exchange between the heat transport medium 9 that has absorbed heat in the heat exchange unit 1 and a heat exchange destination (not shown). As the low temperature side heat exchange part 5, what cools air by performing the heat exchange between the low temperature heat transport medium 9 and air can be illustrated, for example.
  • the pipe 6 connects the heat exchange part 1, the high temperature side heat exchange part 4, and the transport part 10 in a closed loop shape. Therefore, the heat transport medium 8 can be circulated through a closed loop flow path formed by the heat exchange unit 1, the high temperature side heat exchange unit 4, the transport unit 10, and the pipe 6.
  • the piping 7 connects the heat exchange part 1, the low temperature side heat exchange part 5, and the transport part 11 in a closed loop shape. Therefore, the heat transport medium 9 can be circulated through a closed loop flow path formed by the heat exchange unit 1, the low temperature side heat exchange unit 5, the transport unit 11, and the pipe 7.
  • the heat transport medium 8 can be composed of two or more heat transport media having different specific heat per unit volume.
  • the heat transport medium 8 includes, for example, a heat transport medium 80a (first heat transport medium) and a heat transport medium 80b (second heat transport medium) having a specific heat per unit volume lower than that of the heat transport medium 80a. Is done.
  • the heat transport medium 9 can be composed of two or more heat transport media having different specific heat per unit volume.
  • the heat transport medium 9 includes, for example, a heat transport medium 90a (first heat transport medium) and a heat transport medium 90b (second heat transport medium) having a specific heat per unit volume lower than that of the heat transport medium 90a. Is done.
  • the heat transport medium 80a and the heat transport medium 80b are separated from each other.
  • the heat transport medium 90a and the heat transport medium 90b are separated from each other.
  • being separated means that heat transport media having different specific heat per unit volume form respective phases with respect to the moving direction of the heat transport media.
  • different heat transport media are not mixed into each heat transport media.
  • the respective phases may be formed.
  • the heat transport medium is water and air having a specific heat per unit volume lower than that of water, part of the air may be dissolved in the water.
  • the solubility of air in water is 0 vol% or more and 30 vol% or less, each phase can be formed. That is, it can be assumed that the water phase and the air phase are separated.
  • the heat transport medium may be any of gas, liquid, and solid, and those having different specific heat per unit volume can be appropriately selected and used.
  • a combination that increases the difference in specific heat per unit volume is preferable.
  • a combination of gas-liquid, solid-liquid, solid-gas, and the like can be used.
  • Examples of the gas heat transport medium include air and nitrogen gas. If a gaseous heat transport medium is used, the pressure loss during transport can be reduced.
  • Examples of the liquid heat transport medium include water, oil-based media such as mineral oil and silicon, and solvent-based media such as alcohols (for example, ethylene glycol). In this case, water has the highest specific heat and is inexpensive. However, since there is a risk of freezing in a temperature range of 0 ° C. or lower, it is preferable to use an oil-based medium, a solvent-based medium, a mixed liquid of water and an oil-based medium, a mixed liquid of water and a solvent-based medium, or the like. Therefore, according to the operating temperature range of the magnetic refrigeration system 100, the type of liquid and the mixing ratio can be changed as appropriate.
  • the solid heat transport medium examples include inorganic substances such as resins, metals, and ceramics.
  • an integrally configured solid heat transport medium can be used, or an aggregate of granular solids can be used as the heat transport medium.
  • it is set as the solid heat transport medium comprised integrally, it can suppress that a different heat transport medium mixes.
  • heat transport medium 8 and the heat transport medium 9 can have the same configuration or different configurations.
  • the transport unit 10 circulates the heat transport medium 8 through a closed loop flow path formed by the heat exchange unit 1, the high temperature side heat exchange unit 4, the transport unit 10, and the pipe 6. That is, the heat transport medium 80a and the heat transport medium 80b are sequentially introduced into the heat exchange unit 1, and the heat transport medium 80a and the heat transport medium 80b heated in the heat exchange unit 1 are sent to the high temperature side heat exchange unit 4 to The heat transport medium 80a and the heat transport medium 80b exchanged with the heat exchange destination (not shown) in the side heat exchange unit 4 are sent to the heat exchange unit 1 again.
  • the transport unit 11 circulates the heat transport medium 9 through a closed loop flow path formed by the heat exchange unit 1, the low temperature side heat exchange unit 5, the transport unit 11, and the pipe 7.
  • the heat transport medium 90a and the heat transport medium 90b are sequentially introduced into the heat exchange unit 1, and the heat transport medium 90a and the heat transport medium 90b absorbed by the heat exchange unit 1 are sent to the low temperature side heat exchange unit 5 to
  • the heat transport medium 90a and the heat transport medium 90b that have been heat-exchanged with a heat exchange destination (not shown) in the side heat exchange unit 5 are sent to the heat exchange unit 1 again.
  • various pumps can be used as the transport units 10 and 11, for example.
  • the control unit 24 controls operations of the moving unit 3, the transport unit 10, and the transport unit 11. That is, the control unit 24 moves the moving unit 3, the transport unit 10, the transport unit so that a magnetic field is applied to the heat exchange unit 1 when the heat transport medium 80 a and the heat transport medium 90 b are introduced into the heat exchange unit 1. 11 operations are controlled. Further, the control unit 24 moves the moving unit 3, the transport unit so that the magnetic field applied to the heat exchange unit 1 is removed when the heat transport medium 80 b and the heat transport medium 90 a are introduced into the heat exchange unit 1. 10. Control the operation of the transport unit 11.
  • the transport unit 10 when heat is generated, the transport unit 10 is controlled to introduce the heat transport medium 80a having a higher specific heat per unit volume than the heat transport medium 80b into the heat exchange unit 1, thereby constituting a magnetic field changing unit. 3 is applied to apply a magnetic field to the heat exchange unit 1.
  • the transport unit 11 when performing heat absorption, the transport unit 11 is controlled to introduce the heat transport medium 90a having a specific heat per unit volume higher than that of the heat transport medium 90b into the heat exchange unit 1, thereby forming a magnetic field changing unit.
  • the moving unit 3 is controlled to remove the magnetic field from the heat exchange unit 1. The relationship between the application of the magnetic field and the removal of the magnetic field in the heat exchanging unit 1 and the heat transport medium having a different specific heat per unit volume will be described later.
  • FIG. 3 is a flowchart for illustrating the operation of the heat exchange unit according to the first embodiment.
  • FIG. 4 is a schematic cross-sectional view for illustrating the state of heat exchange in the heat exchange unit according to the first embodiment. 4A shows a case where a magnetic field is applied to the heat exchanging unit 1, and FIG. 4B shows a case where the magnetic field applied to the heat exchanging unit is removed.
  • the heat transport medium 80a and the heat transport medium 90b are introduced into the heat exchanging unit 1 (step S1). That is, the control unit 24 controls the transport unit 10 to introduce the heat transport medium 80 a into the region 12 of the heat exchange unit 1. Further, the transport unit 11 is controlled by the control unit 24 to introduce the heat transport medium 90 b into the region 13 of the heat exchange unit 1.
  • control unit 24 controls the moving unit 3 to move the magnetic field generating unit 2 to a position 22 (ON position) where a magnetic field is applied to the heat exchanging unit 1 (step S2).
  • the state at this time is as illustrated in FIG.
  • the magnetocaloric effect material forming the region 14 generates heat. Therefore, the generated heat is absorbed by the transport medium 80 a introduced into the region 12 and the transport medium 90 b introduced into the region 13.
  • the transport unit 10 is controlled by the control unit 24 to introduce the heat transport medium 80 b into the region 12 of the heat exchange unit 1. Further, the control unit 24 controls the transport unit 11 to introduce the heat transport medium 90a into the region 13 of the heat exchange unit 1 (step S3).
  • the transport medium 80a is discharged from the region 12 toward the high temperature side heat exchange unit 4.
  • the transport medium 90 b is discharged from the region 13 toward the low temperature side heat exchange unit 5.
  • control unit 24 controls the moving unit 3 to move the magnetic field generating unit 2 to a position 23 (OFF position) where no magnetic field is applied to the heat exchanging unit 1 (step S4).
  • the state at this time is as illustrated in FIG.
  • the magnetocaloric effect material forming the region 14 absorbs heat. Therefore, heat is taken away from the heat transport medium 80 b introduced into the region 12 and the heat transport medium 90 a introduced into the region 13.
  • step S4 the process returns to step S1. That is, the control unit 24 controls the transport unit 10 to introduce the heat transport medium 80 a into the region 12 of the heat exchange unit 1. Further, the transport unit 11 is controlled by the control unit 24 to introduce the heat transport medium 90 b into the region 13 of the heat exchange unit 1. As a result, the transport medium 80b is discharged from the region 12 toward the high temperature side heat exchange unit 4. The transport medium 90 a is discharged from the region 13 toward the low temperature side heat exchange unit 5.
  • the heat transport medium 8 (heat transport medium 80a, 80b) is sent to the high temperature side heat exchange section 4.
  • the heat transport medium 9 (heat transport media 90 a and 90 b) is sent to the low temperature side heat exchange unit 5.
  • the heat taken out from the heat transport medium 8 in the high temperature side heat exchanging unit 4 can be used for heating.
  • the heat transport medium 9 can absorb heat in the low-temperature side heat exchanging section 5 and can be used for cooling.
  • heat transport media having different specific heat per unit volume are introduced into the regions 12 and 13 of the heat exchange unit 1.
  • heat transport medium having a higher specific heat per unit volume Even under the same temperature environment Absorbs a lot of heat.
  • the magnetocaloric effect material is made to absorb heat by removing the application of a magnetic field, and heat is taken away from a heat transport medium having a different specific heat per unit volume, the heat having a high specific heat per unit volume even under the same temperature environment. The transport medium loses more heat.
  • step S2 in which the magnetocaloric effect material generates heat, the heat transport medium 80a having a high specific heat per unit volume is introduced into the region 12 of the heat exchange unit 1, and the heat transport medium 90b having a low specific heat per unit volume is obtained. It is introduced into the region 13 of the heat exchange unit 1. Therefore, a large amount of heat from the magnetocaloric effect material is absorbed by the heat transport medium 80a having a high specific heat per unit volume. That is, heat is selectively given to the heat transport medium 80a.
  • step S4 in which the magnetocaloric effect material absorbs heat, the heat transport medium 80b having a low specific heat per unit volume is introduced into the region 12 of the heat exchange unit 1, and the heat transport medium 90a having a high specific heat per unit volume is heated. It is introduced into the area 13 of the exchange unit 1. Therefore, a larger amount of heat is taken from the heat transport medium 90b having a high specific heat per unit volume. That is, heat is selectively removed from the heat transport medium 90b.
  • step S ⁇ b> 2 in which the magnetocaloric effect material generates heat the heat transport medium 80 a having a high specific heat per unit volume is introduced into the region 12 of the heat exchange unit 1, and the magnetocaloric effect material is In step S4 where heat is absorbed, the heat transport medium 80b having a low specific heat per unit volume is introduced into the region 12 of the heat exchange unit 1. Therefore, the heat quantity when the magnetocaloric effect material generates heat is selectively given to the heat transport medium 80a. On the other hand, when the magnetocaloric effect material absorbs heat, the amount of heat taken from the heat transport medium 80b can be suppressed. As a result, the generated warm heat can be efficiently sent to the high temperature side heat exchange unit 4.
  • step S4 where the magnetocaloric effect material absorbs heat
  • the heat transport medium 90a having a high specific heat per unit volume is introduced into the region 13 of the heat exchanging portion 1, and the magnetocaloric effect material generates heat.
  • the heat transport medium 90b having a low specific heat per unit volume is introduced into the region 13 of the heat exchange unit 1. Therefore, when the magnetocaloric effect material absorbs heat, the amount of heat is selectively taken from the heat transport medium 90a, and when the magnetocaloric effect material generates heat, the amount of heat absorbed from the heat transport medium 90b can be suppressed. . As a result, the generated cold heat can be efficiently sent to the low temperature side heat exchange section 5.
  • FIG. 5 is a schematic configuration diagram for illustrating a magnetic refrigeration system according to the second embodiment.
  • the magnetic refrigeration system 101 includes a heat exchanging unit 1, a magnetic field generating unit 2, a moving unit 3, a high temperature side heat exchanging unit 4, a low temperature side heat exchanging unit 5, a pipe 6, a pipe 7, and heat transport.
  • a medium 8, a heat transport medium 9, a transport unit 10, a transport unit 11, a high temperature side discharge unit 16, a low temperature side discharge unit 17, an introduction unit 18, and a control unit 34 are provided.
  • the high temperature side heat exchange unit 4 performs heat exchange between the heat transport medium 8 heated in the heat exchange unit 1 and a heat exchange destination (not shown).
  • the low temperature side heat exchange part 5 performs heat exchange between the heat transport medium 9 absorbed in the heat exchange part 1 and a heat exchange destination (not shown).
  • the heat transport media 8 and 9 stay inside the high temperature side heat exchange unit 4 and the low temperature side heat exchange unit 5, the heat exchange efficiency may be lowered.
  • the heat transport media 80a and 90a are liquid (for example, water) and the heat transport media 80b and 90b are gas (for example, air) will be described.
  • the heat transport media 80b and 90b that are gases stay in the high temperature side heat exchange unit 4 and the low temperature side heat exchange unit 5, the inflow of the heat transport media 80a and 90a is hindered and the high temperature side heat exchange unit 4 and low temperature There is a possibility that the heat exchange efficiency in the side heat exchanging section 5 is lowered.
  • the temperature of the heat transport medium 80a is increased by heating, a part of the heat transport medium 80a that is a liquid evaporates, and there is a possibility that gas due to evaporation coexists (floats) in the heat transport medium 80a. is there. In such a case, the phases of the heat transport medium 80a and the heat transport medium 80b may be mixed, and the heat exchange efficiency in the high temperature side heat exchange section 4 may be reduced.
  • the high temperature side discharge unit 16 and the low temperature side discharge unit 17 are provided, and before the gas having a low contribution to the heat exchange flows into the high temperature side heat exchange unit 4 and the low temperature side heat exchange unit 5. It is trying to discharge into the atmosphere. That is, the high temperature side discharge part 16 which discharges the heat transport medium 80b is provided on the inflow side (upstream side) of the high temperature side heat exchange part 4, and the heat transport medium 90b is provided on the inflow side (upstream side) of the low temperature side heat exchange part 5.
  • the low temperature side discharge part 17 which discharges is provided.
  • a gas-liquid separator provided with a gas-liquid separation membrane etc. can be illustrated, for example. If the high temperature side discharge part 16 and the low temperature side discharge part 17 are provided, the said subject can be solved.
  • the high temperature side discharge unit 16 and the low temperature side discharge unit 17 illustrated in FIG. 5 are provided separately from the high temperature side heat exchange unit 4 and the low temperature side heat exchange unit 5, but are not limited thereto. is not.
  • the high temperature side discharge unit 16 may be provided inside the high temperature side heat exchange unit 4, and the low temperature side discharge unit 17 may be provided inside the low temperature side heat exchange unit 5.
  • the low temperature side discharge part 17 since there is little possibility that the gas by evaporation coexists in the heat transport medium 90a, the low temperature side discharge part 17 may be omitted and only the high temperature side discharge part 16 may be provided.
  • the introduction unit 18 reconfigures the heat transport media 8 and 9. For example, the introduction unit 18 causes the heat transport medium 80 b discharged by the high temperature side discharge unit 16 to be formed again on the outflow side (downstream side) of the high temperature side heat exchange unit 4. Further, the introduction unit 18 causes the heat transport medium 90 b discharged by the low temperature side discharge unit 17 to be formed again on the outflow side (downstream side) of the low temperature side heat exchange unit 5. In the case described above, after the heat transport medium 80a passes through the high temperature side heat exchanging section 4, a predetermined amount of the heat transport medium 80b is introduced into the pipe 6 by the introducing section 18, and the heat transport medium 80a and the heat transport medium The heat transport medium 8 composed of 80b is reconfigured.
  • the heat transport medium 90a passes through the low temperature side heat exchanging unit 5
  • a predetermined amount of the heat transport medium 90b is introduced into the pipe 7 by the introduction unit 18, and the heat transport medium 90a and the heat transport medium 90b are configured.
  • the heat transport medium 9 is reconfigured.
  • the control unit 34 controls operations of the moving unit 3, the transport unit 10, the transport unit 11, and the introduction unit 18. That is, the control unit 34 moves the moving unit 3, the transport unit 10, and the transport unit so that a magnetic field is applied to the heat exchange unit 1 when the heat transport medium 80 a and the heat transport medium 90 b are introduced into the heat exchange unit 1. 11 operations are controlled. The control unit 34 also moves the moving unit 3, the transport unit so that the magnetic field applied to the heat exchange unit 1 is removed when the heat transport medium 80 b and the heat transport medium 90 a are introduced into the heat exchange unit 1. 10. Control the operation of the transport unit 11. Further, the control unit 34 controls the operation of the introduction unit 18 so that the heat transport media 8 and 9 are reconfigured.
  • the operation of the heat exchanging unit 1 can be the same as that illustrated in FIG. That is, when applying a magnetic field to the heat exchange unit 1 to generate heat, the heat transport medium 80a having a high specific heat per unit volume is introduced into the region 12, and the heat transport medium 90b having a low specific heat per unit volume is introduced into the region 13. Is done.
  • the heat transport medium 90b since the heat transport medium 90b has a lower specific heat per unit volume, a large amount of heat generated in the same temperature environment is absorbed by the heat transport medium 80a having a higher specific heat per unit volume. Therefore, the amount of heat generated by heat generation is selectively absorbed by the heat transport medium 80a, and the heat transport medium 80a is efficiently heated.
  • the heat transport medium 80b having a low specific heat per unit volume is introduced into the region 12, and the heat transport having a high specific heat per unit volume is introduced into the region 13.
  • Medium 90a is introduced.
  • the heat transport medium 80b since the heat transport medium 80b has a lower specific heat per unit volume, the heat transport medium 90a having a higher specific heat per unit volume under the same temperature environment can generate a larger amount of heat as a magnetocaloric effect material. Stolen. Therefore, heat is selectively removed from the heat transport medium 90a to the magnetocaloric effect material, and the heat transport medium 90a is efficiently cooled.
  • the heat transport medium 8 heat transport media 80a and 80b
  • the heat transport medium 9 heat transport media 90 a and 90 b
  • the heat transport medium 80 b is removed by the high temperature side discharge unit 16 before flowing into the high temperature side heat exchange unit 4.
  • the heat transport medium 90 b is removed by the low temperature side discharge unit 17 before flowing into the low temperature side heat exchange unit 5.
  • heat extracted from the heat transport medium 80a can be used for heating.
  • heat transport medium 90a absorb heat, for example.
  • the heat transport medium 8 is reconfigured by the introduction unit 18 on the outflow side (downstream side) of the high temperature side heat exchange unit 4. Further, the heat transport medium 9 is reconfigured on the outflow side (downstream side) of the low temperature side heat exchange unit 5 by the introduction unit 18.
  • FIG. 6 is a schematic configuration diagram for illustrating a magnetic refrigeration system according to the third embodiment.
  • 6A is a schematic configuration for illustrating a magnetic refrigeration system 100a that uses only the heat generation of the magnetocaloric effect material
  • FIG. 6B is a schematic configuration for illustrating a magnetic refrigeration system 100b that uses only the heat absorption of the magnetocaloric effect material.
  • FIG. 6A is a schematic configuration for illustrating a magnetic refrigeration system 100a that uses only the heat generation of the magnetocaloric effect material
  • FIG. 6B is a schematic configuration for illustrating a magnetic refrigeration system 100b that uses only the heat absorption of the magnetocaloric effect material.
  • the magnetic refrigeration system 100a includes a heat exchanging unit 1, a magnetic field generating unit 2, a moving unit 3, a high temperature side heat exchanging unit 4, a pipe 6, a heat transport medium 8, a transport unit 10, A control unit 24a is provided.
  • the control unit 24 a controls the operation of the moving unit 3 and the transport unit 10. That is, the control unit 24 a controls the operations of the moving unit 3 and the transport unit 10 so that a magnetic field is applied to the heat exchange unit 1 when the heat transport medium 80 a is introduced into the heat exchange unit 1.
  • the control unit 24a controls the operation of the moving unit 3 and the transport unit 10 so that the magnetic field applied to the heat exchange unit 1 is removed when the heat transport medium 80b is introduced into the heat exchange unit 1. To do.
  • the heat can be efficiently absorbed by the heat transport medium 80a having a high specific heat per unit volume. Further, when the magnetocaloric effect material absorbs heat, it is possible to prevent the magnetocaloric effect material from being deprived of heat by the heat transport medium 80b having a low specific heat per unit volume. As a result, the heat exchange efficiency can be improved.
  • the magnetic refrigeration system 100b includes a heat exchanging unit 1, a magnetic field generating unit 2, a moving unit 3, a low temperature side heat exchanging unit 5, a pipe 7, a heat transport medium 9, a transport unit 11, A control unit 24b is provided.
  • the control unit 24 b controls the operations of the moving unit 3 and the transport unit 11. That is, the control unit 24 b controls the operations of the moving unit 3 and the transport unit 11 so that a magnetic field is applied to the heat exchange unit 1 when the heat transport medium 90 b is introduced into the heat exchange unit 1. Further, the control unit 24b controls the operations of the moving unit 3 and the transport unit 11 so that the magnetic field applied to the heat exchange unit 1 is removed when the heat transport medium 90a is introduced into the heat exchange unit 1. To do.
  • the heat transport medium 90b having a low specific heat per unit volume is suppressed from absorbing heat.
  • the magnetocaloric effect material absorbs heat, the magnetocaloric effect material is efficiently deprived of heat by the heat transport medium 90a having a high specific heat per unit volume. As a result, the heat exchange efficiency can be improved.
  • transducing part 18 can also be provided in the magnetic refrigeration system 100a.
  • transducing part 18 can also be provided in 100b.
  • the case where the phases of the heat transport medium having different specific heat per unit volume are formed and the formed phases of the heat transport medium are sequentially introduced into the heat exchanging unit 1 is illustrated. It is not limited to. For example, by switching the heat transport medium introduced into the heat exchange unit 1 using a switching valve or the like, heat transport media having different specific heat per unit volume may be sequentially introduced into the heat exchange unit 1. . In other words, heat transport media having different specific heat per unit volume may be sequentially introduced into the heat exchange unit 1.
  • FIG. 7 is a schematic cross-sectional view for illustrating the heat exchange unit 1 of the magnetic refrigeration system according to the present embodiment.
  • FIG. 7A shows the case where a magnetic field is applied
  • FIG. 7B shows the case where the applied magnetic field is removed.
  • the region 14 of the heat exchange unit 1 illustrated in FIG. 7 is formed from a Gd (gadolinium) plate.
  • the weight of the Gd plate was 100 g
  • the thickness in the z direction was 3 mm
  • the length in the x direction was 115 mm.
  • linear flow channels each having a z-direction depth of 3 mm, a y-direction width of 2 mm, and an x-direction length of 115 mm were formed on the Gd plate.
  • the regions 12 and 6 and the regions 13 and 7 were alternately formed with water and air phases, respectively.
  • the volume ratio of the water phase and the air phase was made equal.
  • the occupied volume per each phase was set to be the same as the channel volume.
  • the water phase is positioned in the region 12, and the air phase is positioned in the region 13.
  • the magnetocaloric effect material Gd (gadolinium)
  • the water phase was discharged from the region 12 so that the air phase was positioned in the region 12.
  • the air phase was discharged from the region 13 so that the water phase was located in the region 13.
  • the magnetocaloric effect material was made to absorb heat by removing the magnetic field applied to the heat exchange unit 1.
  • thermocouple in contact with water.
  • the endothermic amount was determined from the temperature change, the water phase weight, and the air phase weight, and the heat transport efficiency was measured.
  • the heat transport efficiency (the amount of water absorbed in region 12 + the amount of heat absorbed in air) / theoretical heating value of 100 g of Gd (gadolinium) when a magnetic field is applied during one cycle (1)
  • the endothermic amount of water is: specific heat of water (4.2 kJ / kg / k) ⁇ density of water (1000 kg / m 3 ) ⁇ volume of area 12 (m 3 ) ⁇ maximum amount of water temperature rise ( ⁇ T H2O ),
  • the endothermic amount of air is the specific heat of air (1 kJ / kg / k) ⁇ the density of air (1.29 kg / m 3 ) ⁇ the volume of area 12 (m 3 ) ⁇ the temperature rise of air ( ⁇ T air ) is there.
  • FIG. 8 is a schematic cross-sectional view for illustrating the heat exchanging portion 51 of the AMR magnetic refrigeration system according to the comparative example.
  • Gd gadolinium
  • a cylindrical container 52 having an inner diameter of 15 mm and a length of 115 mm at a filling rate of 60%, and a partition plate 53 made of a metal mesh is provided at the end. It was. And the remaining space inside the heat exchange part 51 was filled with water, and the heat exchange part 51 was created.
  • Gd (gadolinium) particles were caused to generate heat by applying a magnetic field having the same strength as in Example 1 to the heat exchange unit 51. Thereafter, the water was moved by moving the +1 cm partition plate 53 in the X-axis direction. The moving speed was 0.4 cm / s. Next, the applied magnetic field was removed, and after removal, water was moved by moving the partition plate 53 in the X-axis direction by ⁇ 1 cm. The moving speed was 0.4 cm / s.
  • the above process was made into 1 cycle, and the time-dependent change of the water temperature in 1 cycle was measured with the thermocouple arrange
  • Heat transport efficiency endothermic amount of water / theoretical calorific value of 100 g of Gd when a magnetic field is applied during one cycle (2)
  • the endothermic amount of water is: specific heat of water (4.2 kJ / kg / k) ⁇ density of water (1000 kg / m 3 ) ⁇ filling volume of water in cylindrical container 52 (m 3 ) ⁇ maximum of water This is the temperature rise amount ( ⁇ T H2O ).
  • FIG. 9 is a graph showing a comparison between the heat transport efficiency in Example 1 and the heat transport efficiency in Comparative Example 1.
  • the initial temperature of water and the initial temperature of air were set to 25 ° C., which is equal to the environmental temperature.
  • the heat transport efficiency in Example 1 was 50%, and the heat transport efficiency in Comparative Example 1 was 2.6%. That is, it was confirmed that the heat transport efficiency of Example 1 can be significantly higher than that of Comparative Example 1.
  • a magnetic refrigeration system capable of improving the heat exchange efficiency can be realized.
  • each element included in the magnetic refrigeration system 100, the magnetic refrigeration system 101, the magnetic refrigeration system 100a, the magnetic refrigeration system 100b, and the like are not limited to those illustrated, but may be changed as appropriate. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

 本発明の実施形態に係る磁気冷凍システムは、磁気熱量効果材料を含む第1の熱交換部と、前記第1の熱交換部に対する磁場を変化させる磁場変化部と、第1の熱輸送媒体と、前記第1の熱輸送媒体とは分離され、単位体積あたりの比熱が異なる第2の熱輸送媒体と、前記第1の熱輸送媒体と、前記第2の熱輸送媒体と、を前記第1の熱交換部に順次導入する輸送部と、を備えている。

Description

磁気冷凍システム
 本発明の実施形態は、磁気冷凍システムに関する。
 近年、環境配慮型でかつ効率の高い冷凍技術の一つとして、磁気熱量効果を利用して、磁気冷凍サイクルを構成し、高温部と低温部とを生成する磁気冷凍技術への期待が高まり、研究開発が活発化してきている。 
 このような磁気冷凍技術の一つとして、極低温域における磁気冷凍にとって阻害要因と位置付けられていた格子エントロピーを、むしろ積極的に利用し、磁気熱量効果を利用した磁気冷凍作業を磁気熱量効果材料を含んだ要素に行わせるとともに、この磁気冷凍作業により生成された冷熱を当該要素に蓄える蓄熱効果を同時に担わせるAMR(Active Magnetic Regenerative Refrigeration)方式と呼ばれる冷凍技術が提案されている。 
 AMR方式によれば、気体の圧縮・膨張サイクルを利用した気体冷凍技術と比べて高い熱交換効率を得ることができる。 
 しかしながら、省エネルギー化などの観点からさらなる熱交換効率の向上が望まれていた。
米国特許第4,332,135号明細書 特開2009-210165号公報
 本発明の実施形態は、熱交換効率の向上を図ることができる磁気冷凍システムを提供する。
 実施形態によれば、磁気熱量効果材料を含む第1の熱交換部と、前記第1の熱交換部に対する磁場を変化させる磁場変化部と、第1の熱輸送媒体と、前記第1の熱輸送媒体とは分離され、単位体積あたりの比熱が異なる第2の熱輸送媒体と、前記第1の熱輸送媒体と、前記第2の熱輸送媒体と、を前記第1の熱交換部に順次導入する輸送部と、を備えたことを特徴とする磁気冷凍システムが提供される。
第1の実施形態に係る磁気冷凍システムを例示するための模式構成図である。 第1の実施形態に係る熱交換部を例示するための模式断面図である。 第1の実施形態に係る熱交換部の作用を例示するためのフローチャートである。 第1の実施形態に係る熱交換部における熱交換の様子を例示するための模式断面図である。(a)は熱交換部に磁場が印加される場合、(b)は熱交換部に印加していた磁場が除去された場合である。 第2の実施形態に係る磁気冷凍システムを例示するための模式構成図である。 第3の実施形態に係る磁気冷凍システムを例示するための模式構成図である。(a)は磁気熱量効果材料の発熱のみを利用する磁気冷凍システム、(b)は磁気熱量効果材料の吸熱のみを利用する磁気冷凍システムを例示するための模式構成図である。 本実施の形態に係る磁気冷凍システムの熱交換部を例示するための模式断面図である。(a)は磁場が印加された場合を表し、(b)は印加された磁場が除去された場合を表している。 比較例に係るAMR式磁気冷凍システムの熱交換部を例示するための模式断面図である。 実施例1における熱輸送効率と、比較例1における熱輸送効率との比較を示すグラフ図である。
 以下、図面を参照しつつ、実施の形態について例示をする。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。 
 [第1の実施形態] 
 図1は、第1の実施形態に係る磁気冷凍システムを例示するための模式構成図である。 
 図1に示すように、磁気冷凍システム100には、熱交換部(ARM bed)1(第1の熱交換部)、磁場発生部2、移動部3、高温側熱交換部4(第2の熱交換部)、低温側熱交換部5(第2の熱交換部)、配管6、配管7、熱輸送媒体8、熱輸送媒体9、輸送部10、輸送部11、制御部24が設けられている。
 図2は、熱交換部を例示するための模式断面図である。 
 図2においては、熱輸送媒体8、9の移動方向をx方向とし、それと垂直な方向をy方向としている。 
 磁気熱量効果材料を含む熱交換部1には、領域14と、配管6と接続された領域12(第1の領域)と、配管7と接続された領域13(第2の領域)と、が設けられている。
 領域14は、磁気熱量効果材料を含んだものとされている。領域14は、例えば、Gd(ガドリニウム)などの磁気熱量効果材料を含んだものとすることができる。 
 領域12は、領域14を貫通するようにして設けられている。そのため、領域12の外周面が領域14と接している。領域12は、例えば、領域14を貫通する流路とすることができる。 
 そして、配管6を介して導入された熱輸送媒体8が領域12を流通できるようになっている。
 領域13は、領域14を貫通するようにして設けられている。そのため、領域13の外周面が領域14と接している。領域13は、例えば、領域14を貫通する流路とすることができる。 
 そして、配管7を介して導入された熱輸送媒体9が領域13を流通できるようになっている。 
 なお、領域12を流通する熱輸送媒体8と、領域13を流通する熱輸送媒体9とは、領域14によって相互に分離されており熱輸送媒体8と熱輸送媒体9とが混合しないようになっている。
 後述するように、領域14においては発熱と吸熱とが生じる。そして、領域14と、領域12にある熱輸送媒体8との間において熱交換が行われる。また、領域14と、領域13にある熱輸送媒体9との間において熱交換が行われる。 
 この場合、例えば、領域12に熱輸送媒体80aが導入される場合には、領域13に熱輸送媒体90bが導入され、領域12に熱輸送媒体80bが導入される場合には、領域13に熱輸送媒体90aが導入される。
 また、前述した領域14は、熱輸送媒体8、9が透過し、各熱輸送媒体が混合しないような構成(例えば、空隙などのない板状体)とされていることが好ましいが、これに限定されるわけではない。 
 例えば、領域14と領域12との間、領域14と領域13との間に熱輸送媒体が透過しないような図示しない仕切り部を設けるようにすることもできる。例えば、図示しない仕切り部として管状体を設け、管状体の内部を領域12、13とし、管状体の外部を領域14とすることができる。この様にすれば、領域14を空隙を有する焼結体から形成されたものとしたり、粒状体を充填することで形成されたものとしたりすることができる。
 なお、磁気熱量効果材料は、前述したGd(ガドリニウム)に限定されるわけではなく、磁気熱量効果を発現する材料であればよい。磁気熱量効果材料は、例えば、Gd(ガドリニウム)に各種元素を混合したGd化合物、各種希土類元素と遷移金属元素からなる金属間化合物、NiMnGa合金、GdGeSi化合物、LaFe13系化合物、LaFe13Hなどの各種磁性体を用いることができる。
 磁場発生部2は、熱交換部1の外部に配置されており、熱交換部1に磁場を印加する。 
 磁場発生部2は、例えば、永久磁石などとすることができる。永久磁石としては、NdFeB(ネオジム・鉄・ホウ素)磁石、SmCo(サマリウムコバルト)磁石、フェライト磁石などを例示することができる。
 移動部3は、磁場発生部2と接続され、熱交換部1と磁場発生部2との相対位置を変化させる。 
 ここで、相対位置を変化させるとは、磁場発生部2が熱交換部1に磁場を印加する位置22(ON位置)と、熱交換部1に磁場を印加しない位置23(OFF位置)とが切り替えられるように、熱交換部1と磁場発生部2との相対位置を変化させることを意味する。 
 そのため、移動部3により熱交換部1と磁場発生部2との相対位置を変化させることで、熱交換部1に磁場を印加したり、熱交換部1に印加されていた磁場を除去したりすることができる。熱交換部1においては、磁場の印加と磁場の除去により発熱と吸熱とが生じるが、熱交換部1の作用に関する詳細は後述する。
 移動部3は、例えば、熱交換部1と磁場発生部2との相対位置を変化させるために磁場発生部2に機械的変動を印加するものとすることができる。 
 図1に例示をしたものの場合には、磁場発生部2と移動部3とが熱交換部1に対する磁場を変化させる磁場変化部となる。
 図1に例示をしたものの場合には、移動部3と磁場発生部2とを接続し磁場発生部2に機械的変動を与えているが、移動部3と熱交換部1とを接続し熱交換部1に機械的変動を与えても良い。 
 移動部3は、例えば、モータなどの駆動手段を備えたものとすることができる。
 なお、磁場発生部2として永久磁石を例示したが、例えば、磁場発生部2として電磁石などを用いることもできる。磁場発生部2として電磁石を用いる場合には、磁場発生部2に機械的変動を与える移動部3とすることもできるが、電磁石への通電と通電の停止とを切り替えるスイッチなどを移動部3とすることもできる。
 高温側熱交換部4は、熱交換部1において加熱された熱輸送媒体8と図示しない熱交換先との間における熱交換を行う。高温側熱交換部4としては、例えば、高温の熱輸送媒体8と空気との間における熱交換を行うことで、空気を加熱するようなものを例示することができる。
 低温側熱交換部5は、熱交換部1において吸熱された熱輸送媒体9と図示しない熱交換先との間における熱交換を行う。低温側熱交換部5としては、例えば、低温の熱輸送媒体9と空気との間における熱交換を行うことで、空気を冷却するようなものを例示することができる。
 配管6は、熱交換部1、高温側熱交換部4、輸送部10を閉ループ状に接続する。そのため、熱交換部1、高温側熱交換部4、輸送部10、配管6で形成される閉ループの流路に熱輸送媒体8を循環させることができる。
 配管7は、熱交換部1、低温側熱交換部5、輸送部11を閉ループ状に接続する。そのため、熱交換部1、低温側熱交換部5、輸送部11、配管7で形成される閉ループの流路に熱輸送媒体9を循環させることができる。
 熱輸送媒体8は、単位体積あたりの比熱が異なる2つ以上の熱輸送媒体から構成されるものとすることができる。熱輸送媒体8は、例えば、熱輸送媒体80a(第1の熱輸送媒体)と、熱輸送媒体80aよりも単位体積あたりの比熱が低い熱輸送媒体80b(第2の熱輸送媒体)とから構成される。 
 熱輸送媒体9は、単位体積あたりの比熱が異なる2つ以上の熱輸送媒体から構成されるものとすることができる。熱輸送媒体9は、例えば、熱輸送媒体90a(第1の熱輸送媒体)と、熱輸送媒体90aよりも単位体積あたりの比熱が低い熱輸送媒体90b(第2の熱輸送媒体)とから構成される。
 また、熱輸送媒体80aと熱輸送媒体80bとは相互に分離されている。熱輸送媒体90aと熱輸送媒体90bとは相互に分離されている。 
 ここで、分離されているとは、単位体積あたりの比熱が異なる熱輸送媒体が、熱輸送媒体の移動方向に対して各々の相を形成することを意味する。 
 相を形成する時、各々の熱輸送媒体に異なる熱輸送媒体が混入しないことが好ましい。ただし、ある特定の熱輸送媒体に、異なる熱輸送媒体が体積比率で30%以下混入する場合も、各々の相を形成するとしても良い。 
 例えば、熱輸送媒体が、水と、水よりも単位体積あたりの比熱が低い空気である場合には、水の中に空気が一部溶け込むことがある。しかしながら、空気の水への溶解度は0vol%以上、30vol%以下であるため、各々の相を形成することができる。すなわち、水の相と空気の相とが分離されているとすることができる。
 また、熱輸送媒体は、気体、液体、固体のいずれでも良く、単位体積あたりの比熱の異なるものを適宜選択して用いることができる。 
 この場合、単位体積あたりの比熱の差が大きくなる様な組み合わせとすることが好ましく、例えば、気体-液体、固体-液体、固体-気体などの組み合わせとすることができる。
 気体の熱輸送媒体としては、例えば、空気、窒素ガスなどを例示することができる。気体の熱輸送媒体とすれば、輸送時の圧力損失を低減させることができる。また、液体の熱輸送媒体としては、例えば、水、鉱油やシリコンなどのオイル系媒体、アルコール類(例えば、エチレングリコールなど)などの溶剤系媒体などとすることができる。 
 この場合、水は最も比熱が高く安価である。ただし、0℃以下の温度域では凍結するおそれがあるのでオイル系媒体、溶剤系媒体、水とオイル系媒体との混合液、水と溶剤系媒体との混合液などとすることが好ましい。そのため、磁気冷凍システム100の運転温度域に応じて液体の種類や混合比などを適宜変更することができる。
 固体の熱輸送媒体としては、例えば、樹脂、金属、セラミックスなどの無機物などとすることができる。 
 この場合、例えば、一体的に構成された固体の熱輸送媒体とすることもできるし、粒状の固体の集合体を熱輸送媒体とすることもできる。ただし、一体的に構成された固体の熱輸送媒体とすれば、異なる熱輸送媒体が混入することを抑制することができる。
 なお、熱輸送媒体8と熱輸送媒体9とを同じ構成とすることもできるし、異なる構成とすることもできる。
 輸送部10は、熱交換部1、高温側熱交換部4、輸送部10、配管6で形成される閉ループの流路に熱輸送媒体8を循環させる。すなわち、熱輸送媒体80aと熱輸送媒体80bとを熱交換部1に順次導入し、熱交換部1において加熱された熱輸送媒体80a、熱輸送媒体80bを高温側熱交換部4に送り、高温側熱交換部4において図示しない熱交換先との間で熱交換された熱輸送媒体80a、熱輸送媒体80bを再び熱交換部1に送るようにする。
 輸送部11は、熱交換部1、低温側熱交換部5、輸送部11、配管7で形成される閉ループの流路に熱輸送媒体9を循環させる。すなわち、熱輸送媒体90aと熱輸送媒体90bとを熱交換部1に順次導入し、熱交換部1において吸熱された熱輸送媒体90a、熱輸送媒体90bを低温側熱交換部5に送り、低温側熱交換部5において図示しない熱交換先との間で熱交換された熱輸送媒体90a、熱輸送媒体90bを再び熱交換部1に送るようにする。
 輸送部10、11としては、例えば、各種ポンプを用いることができる。
 制御部24は、移動部3、輸送部10、輸送部11の動作を制御する。 
 すなわち、制御部24は、熱交換部1に熱輸送媒体80a、熱輸送媒体90bが導入された場合には熱交換部1に磁場が印加されるように移動部3、輸送部10、輸送部11の動作を制御する。また、制御部24は、熱交換部1に熱輸送媒体80b、熱輸送媒体90aが導入された場合には熱交換部1に印加されていた磁場が除去されるように移動部3、輸送部10、輸送部11の動作を制御する。
 例えば、発熱を行う際には、輸送部10を制御して熱輸送媒体80bよりも単位体積あたりの比熱が高い熱輸送媒体80aを熱交換部1に導入し、磁場変化部を構成する移動部3を制御して熱交換部1に対して磁場を印加する。 
 また、例えば、吸熱を行う際には、輸送部11を制御して熱輸送媒体90bよりも単位体積あたりの比熱が高い熱輸送媒体90aを熱交換部1に導入し、磁場変化部を構成する移動部3を制御して熱交換部1に対して磁場を除去する。 
 なお、熱交換部1における磁場の印加、磁場の除去と、単位体積あたりの比熱が異なる熱輸送媒体との関係に関しては後述する。
 次に、磁気冷凍システム100の作用について例示をする。 
 図3は、第1の実施形態に係る熱交換部の作用を例示するためのフローチャートである。 
 図4は、第1の実施形態に係る熱交換部における熱交換の様子を例示するための模式断面図である。なお、図4(a)は熱交換部1に磁場が印加される場合、図4(b)は熱交換部に印加していた磁場が除去された場合である。
 まず、図3に示すように、熱交換部1に熱輸送媒体80a、熱輸送媒体90bを導入する(ステップS1)。 
 すなわち、制御部24により輸送部10を制御して熱交換部1の領域12に熱輸送媒体80aを導入する。また、制御部24により輸送部11を制御して熱交換部1の領域13に熱輸送媒体90bを導入する。
 次に、制御部24により移動部3を制御して、熱交換部1に磁場を印加する位置22(ON位置)に磁場発生部2を移動させる(ステップS2)。 
 この際の状態は図4(a)に例示をしたもののようになる。 
 熱交換部1に磁場が印加されると、領域14を形成する磁気熱量効果材料が発熱する。そのため、発生した熱は、領域12に導入された輸送媒体80aと、領域13に導入された輸送媒体90bとに吸収される。
 次に、制御部24により輸送部10を制御して熱交換部1の領域12に熱輸送媒体80bを導入する。また、制御部24により輸送部11を制御して熱交換部1の領域13に熱輸送媒体90aを導入する(ステップS3)。 
 これにより、輸送媒体80aは領域12から高温側熱交換部4へ向けて排出される。輸送媒体90bは領域13から低温側熱交換部5へ向けて排出される。
 次に、制御部24により移動部3を制御して、熱交換部1に磁場を印加しない位置23(OFF位置)に磁場発生部2を移動させる(ステップS4)。 
 この際の状態は図4(b)に例示をしたもののようになる。 
 熱交換部1に印加されていた磁場が除去されると領域14を形成する磁気熱量効果材料が吸熱する。そのため、領域12に導入された熱輸送媒体80bと、領域13に導入された熱輸送媒体90aとから熱が奪われる。
 ステップS4の後はステップS1に戻る。 
 すなわち、制御部24により輸送部10を制御して熱交換部1の領域12に熱輸送媒体80aを導入する。また、制御部24により輸送部11を制御して熱交換部1の領域13に熱輸送媒体90bを導入する。 
 これにより、輸送媒体80bは領域12から高温側熱交換部4へ向けて排出される。輸送媒体90aは領域13から低温側熱交換部5へ向けて排出される。
 以上の手順を繰り返すことで、熱輸送媒体8(熱輸送媒体80a、80b)は高温側熱交換部4へと送られる。熱輸送媒体9(熱輸送媒体90a、90b)は低温側熱交換部5へと送られる。 
 そして、例えば、高温側熱交換部4において熱輸送媒体8から取り出した熱を暖房に利用することができる。また、例えば、低温側熱交換部5において熱輸送媒体9に熱を吸収させることで冷房に利用することができる。
 なお、磁場を印加することで磁気熱量効果材料が発熱することや、印加されていた磁場が除去されることで磁気熱量効果材料が吸熱することは既知の現象であるため、これに関する説明は省略する。
 次に、単位体積あたりの比熱が異なる熱輸送媒体が熱交換部1の領域12、13に導入されることに関してさらに説明する。 
 磁場を印加して磁気熱量効果材料を発熱させ、単位体積あたりの比熱が異なる熱輸送媒体に熱を吸収させる場合、同じ温度環境下であっても単位体積あたりの比熱が高い熱輸送媒体の方が熱を多く吸収する。 
 また、磁場の印加を除去して磁気熱量効果材料に吸熱をさせ、単位体積あたりの比熱が異なる熱輸送媒体から熱を奪う場合、同じ温度環境下であっても単位体積あたりの比熱が高い熱輸送媒体の方が熱を多く奪われる。
 ここで、磁気熱量効果材料が発熱するステップS2においては、単位体積あたりの比熱が高い熱輸送媒体80aが熱交換部1の領域12に導入され、単位体積あたりの比熱が低い熱輸送媒体90bが熱交換部1の領域13に導入される。 
 そのため、磁気熱量効果材料からの熱は単位体積あたりの比熱が高い熱輸送媒体80aにより多く吸収される。すなわち、熱輸送媒体80aに選択的に熱が与えられる。
 一方、磁気熱量効果材料が吸熱するステップS4においては、単位体積あたりの比熱が低い熱輸送媒体80bが熱交換部1の領域12に導入され、単位体積あたりの比熱が高い熱輸送媒体90aが熱交換部1の領域13に導入される。 
 そのため、単位体積あたりの比熱が高い熱輸送媒体90bからより多くの熱量が奪われる。すなわち、熱輸送媒体90bから選択的に熱が奪われる。
 ここで、熱輸送媒体8においては、磁気熱量効果材料が発熱するステップS2の場合に単位体積あたりの比熱が高い熱輸送媒体80aが熱交換部1の領域12に導入され、磁気熱量効果材料が吸熱するステップS4の場合に単位体積あたりの比熱が低い熱輸送媒体80bが熱交換部1の領域12に導入される。 
 そのため、磁気熱量効果材料が発熱した際の熱量が選択的に熱輸送媒体80aに与えられる。一方、磁気熱量効果材料が吸熱する際には熱輸送媒体80bから奪われる熱量を抑制することができる。その結果、生成した温熱を高温側熱交換部4へ効率よく送ることができる。
 また、熱輸送媒体9においては、磁気熱量効果材料が吸熱するステップS4の場合に単位体積あたりの比熱が高い熱輸送媒体90aが熱交換部1の領域13に導入され、磁気熱量効果材料が発熱するステップS2の場合に単位体積あたりの比熱が低い熱輸送媒体90bが熱交換部1の領域13に導入される。 
 そのため、磁気熱量効果材料が吸熱する際には熱輸送媒体90aから選択的に熱量が奪われ、磁気熱量効果材料が発熱した際には熱輸送媒体90bから吸収される熱量を抑制することができる。その結果、生成した冷熱を低温側熱交換部5へ効率よく送ることができる。
 [第2の実施形態] 
 図5は、第2の実施形態に係る磁気冷凍システムを例示するための模式構成図である。 
 図5に示すように、磁気冷凍システム101には、熱交換部1、磁場発生部2、移動部3、高温側熱交換部4、低温側熱交換部5、配管6、配管7、熱輸送媒体8、熱輸送媒体9、輸送部10、輸送部11、高温側排出部16、低温側排出部17、導入部18、制御部34が設けられている。
 前述した磁気冷凍システム100の場合と同様に高温側熱交換部4は、熱交換部1において加熱された熱輸送媒体8と図示しない熱交換先との間における熱交換を行う。また、低温側熱交換部5は、熱交換部1において吸熱された熱輸送媒体9と図示しない熱交換先との間における熱交換を行う。
 この際、熱輸送媒体8、9が高温側熱交換部4、低温側熱交換部5の内部で滞留すると熱交換効率が低下するおそれがある。 
 ここでは、一例として、熱輸送媒体80a、90aが液体(例えば、水など)、熱輸送媒体80b、90bが気体(例えば、空気など)の場合について説明する。
 例えば、気体である熱輸送媒体80b、90bが高温側熱交換部4、低温側熱交換部5の内部で滞留すると、熱輸送媒体80a、90aの流入が阻害され高温側熱交換部4、低温側熱交換部5における熱交換効率が低下するおそれがある。また、加熱されることで熱輸送媒体80aの温度が上昇した場合、液体である熱輸送媒体80aの一部が蒸発し、熱輸送媒体80aの中に蒸発による気体が共存(浮遊)するおそれがある。この様な場合、熱輸送媒体80aと熱輸送媒体80bの相が混合してしまうほか、高温側熱交換部4における熱交換効率が低下するおそれがある。
 そこで、本実施の形態においては、高温側排出部16、低温側排出部17を設けて、熱交換に対する寄与が低い気体が高温側熱交換部4、低温側熱交換部5に流入する前に大気中へ排出するようにしている。 
 すなわち、高温側熱交換部4の流入側(上流側)において熱輸送媒体80bを排出する高温側排出部16を設け、低温側熱交換部5の流入側(上流側)において熱輸送媒体90bを排出する低温側排出部17を設けている。 
 高温側排出部16、低温側排出部17としては、例えば、気液分離膜を備えた気液分離器などを例示することができる。 
 高温側排出部16、低温側排出部17を設ける様にすれば、前記課題を解決することができる。
 なお、図5に例示をした高温側排出部16、低温側排出部17は、高温側熱交換部4、低温側熱交換部5とは別個に設けられるものとしたがこれに限定されるわけではない。例えば、高温側熱交換部4の内部に高温側排出部16を設け、低温側熱交換部5の内部に低温側排出部17を設けても良い。 
 また、熱輸送媒体90aには蒸発による気体が共存しているおそれが少ないので低温側排出部17を省略して高温側排出部16のみを設けても良い。
 導入部18は、熱輸送媒体8、9を再構成する。 
 例えば、導入部18は、高温側排出部16により排出された熱輸送媒体80bが高温側熱交換部4の流出側(下流側)で再度形成されるようにする。また、導入部18は、低温側排出部17により排出された熱輸送媒体90bが低温側熱交換部5の流出側(下流側)で再度形成されるようにする。 
 前述したものの場合には、熱輸送媒体80aが高温側熱交換部4を通過した後、導入部18により所定量の熱輸送媒体80bを配管6内に導入し、熱輸送媒体80aと熱輸送媒体80bとから構成される熱輸送媒体8を再構成する。また、熱輸送媒体90aが低温側熱交換部5を通過した後、導入部18により所定量の熱輸送媒体90bを配管7内に導入し、熱輸送媒体90aと熱輸送媒体90bとから構成される熱輸送媒体9を再構成する。
 制御部34は、移動部3、輸送部10、輸送部11、導入部18の動作を制御する。 
 すなわち、制御部34は、熱交換部1に熱輸送媒体80a、熱輸送媒体90bが導入された場合には熱交換部1に磁場が印加されるように移動部3、輸送部10、輸送部11の動作を制御する。また、制御部34は、熱交換部1に熱輸送媒体80b、熱輸送媒体90aが導入された場合には熱交換部1に印加していた磁場が除去されるように移動部3、輸送部10、輸送部11の動作を制御する。また、制御部34は、熱輸送媒体8、9が再構成されるように導入部18の動作を制御する。
 次に、磁気冷凍システム101の作用について例示をする。 
 熱交換部1の作用に関しては、図3に例示をしたものと同様とすることができる。 
 つまり、熱交換部1に磁場を印加して発熱させる時には、領域12に単位体積あたりの比熱が高い熱輸送媒体80aが導入され、領域13に単位体積あたりの比熱が低い熱輸送媒体90bが導入される。
 前述したように、熱輸送媒体90bの方が単位体積あたりの比熱が低いため、同じ温度環境下において発熱した熱量は単位体積あたりの比熱が高い熱輸送媒体80aに多く吸収される。よって、発熱による熱量は、熱輸送媒体80aに選択的に吸収され、熱輸送媒体80aが効率よく加熱される。
 一方、熱交換部1に印加されていた磁場を除去して吸熱させる時には、領域12に単位体積あたりの比熱が低い熱輸送媒体80bが導入され、領域13に単位体積あたりの比熱が高い熱輸送媒体90aが導入される。
 前述したように、熱輸送媒体80bの方が単位体積あたりの比熱が低いため、同じ温度環境下において単位体積あたりの比熱が高い熱輸送媒体90aの方がより多くの熱量を磁気熱量効果材料に奪われる。よって、熱輸送媒体90aから磁気熱量効果材料に選択的に熱が奪われ、熱輸送媒体90aが効率よく冷却される。
 そして、熱輸送媒体8(熱輸送媒体80a、80b)は高温側熱交換部4へと送られる。熱輸送媒体9(熱輸送媒体90a、90b)は低温側熱交換部5へと送られる。 
 この際、高温側排出部16により、熱輸送媒体80bが高温側熱交換部4に流入する前に除去される。また、低温側排出部17により、熱輸送媒体90bが低温側熱交換部5に流入する前に除去される。
 高温側熱交換部4においては、例えば、熱輸送媒体80aから取り出した熱を暖房に利用することができる。また、低温側熱交換部5においては、例えば、熱輸送媒体90aに熱を吸収させることで冷房に利用することができる。
 そして、導入部18により高温側熱交換部4の流出側(下流側)において熱輸送媒体8が再構成される。また、導入部18により低温側熱交換部5の流出側(下流側)において熱輸送媒体9が再構成される。
 [第3の実施形態] 
 図6は、第3の実施形態に係る磁気冷凍システムを例示するための模式構成図である。なお、図6(a)は磁気熱量効果材料の発熱のみを利用する磁気冷凍システム100a、図6(b)は磁気熱量効果材料の吸熱のみを利用する磁気冷凍システム100bを例示するための模式構成図である。
 図6(a)に示すように、磁気冷凍システム100aには、熱交換部1、磁場発生部2、移動部3、高温側熱交換部4、配管6、熱輸送媒体8、輸送部10、制御部24aが設けられている。 
 制御部24aは、移動部3、輸送部10の動作を制御する。 
 すなわち、制御部24aは、熱交換部1に熱輸送媒体80aが導入された場合には熱交換部1に磁場が印加されるように移動部3、輸送部10の動作を制御する。また、制御部24aは、熱交換部1に熱輸送媒体80bが導入された場合には熱交換部1に印加していた磁場が除去されるように移動部3、輸送部10の動作を制御する。
 そのため、磁気熱量効果材料が発熱した場合には、単位体積あたりの比熱が高い熱輸送媒体80aにより熱を効率よく吸収することができる。また、磁気熱量効果材料が吸熱した場合には、単位体積あたりの比熱が低い熱輸送媒体80bにより磁気熱量効果材料に熱が奪われることを抑制することができる。その結果、熱交換効率の向上を図ることができる。
 図6(b)に示すように、磁気冷凍システム100bには、熱交換部1、磁場発生部2、移動部3、低温側熱交換部5、配管7、熱輸送媒体9、輸送部11、制御部24bが設けられている。 
 制御部24bは、移動部3、輸送部11の動作を制御する。 
 すなわち、制御部24bは、熱交換部1に熱輸送媒体90bが導入された場合には熱交換部1に磁場が印加されるように移動部3、輸送部11の動作を制御する。また、制御部24bは、熱交換部1に熱輸送媒体90aが導入された場合には熱交換部1に印加していた磁場が除去されるように移動部3、輸送部11の動作を制御する。
 そのため、磁気熱量効果材料が発熱した場合には、単位体積あたりの比熱が低い熱輸送媒体90bにより熱を吸収することが抑制される。また、磁気熱量効果材料が吸熱した場合には、単位体積あたりの比熱が高い熱輸送媒体90aにより磁気熱量効果材料に熱が効率よく奪われる。その結果、熱交換効率の向上を図ることができる。
 なお、磁気冷凍システム100aに図5において例示をした高温側排出部16、導入部18を設けるようにすることもできる。また、100bに図5において例示をした低温側排出部17、導入部18を設けるようにすることもできる。
 以上に例示をした実施形態においては、単位体積あたりの比熱が異なる熱輸送媒体の相をそれぞれ形成し、形成された熱輸送媒体の相を熱交換部1に順次導入する場合を例示したがこれに限定されるわけではない。 
 例えば、切換弁などを用いて、熱交換部1に導入される熱輸送媒体を切り替えることで、単位体積あたりの比熱が異なる熱輸送媒体が熱交換部1に順次導入されるようにしても良い。 
 すなわち、単位体積あたりの比熱が異なる熱輸送媒体が熱交換部1に順次導入されるようにすれば良い。
 [実施例] 
 次に、本実施の形態に係る磁気冷凍システムの効果を検討するために行った比較例に係るAMR式磁気冷凍システムとの比較について説明する。
 (実施例1) 
 図7は、本実施の形態に係る磁気冷凍システムの熱交換部1を例示するための模式断面図である。なお、図7(a)は磁場が印加された場合を表し、図7(b)は印加された磁場が除去された場合を表している。 
 図7に例示をする熱交換部1の領域14は、Gd(ガドリニウム)板から形成されている。Gd板の重量は100g、z方向厚みは3mm、x方向長さは115mmとした。領域12、領域13は、前記Gd板上に、z方向深さ3mm、y方向幅2mm、x方向長さ115mmの直線状の流路を各々形成した。そして、領域12と配管6、領域13と配管7にはそれぞれ水の相と空気の相を交互に形成した。また、水の相と空気の相との体積比率が等しくなるようにした。それぞれの相一つあたりの占有体積は、前記流路体積と同じになるようにした。
 まず、図7(a)に示すように領域12に水の相が位置するようにし、領域13に空気の相が位置するようにした。その後、熱交換部1に磁場を印加することで磁気熱量効果材料(Gd(ガドリニウム))を発熱させた。 
 次に、図7(b)に示すように領域12から水の相を排出し、領域12に空気の相が位置するようにした。また、領域13から空気の相を排出し、領域13に水の相が位置するようにした。その後、熱交換部1に印加されていた磁場を除去することで磁気熱量効果材料に吸熱させた。
 以上の過程を1サイクルとし、1サイクル中に領域12を流れた空気と水の温度Tを領域12内の空気、水と接する熱電対で測定した。その際の温度変化、水の相の重量、空気の相の重量から吸熱量を求め、熱輸送効率を測定した。
 この場合、熱輸送効率は、式(1)で定義した。 

 熱輸送効率=(領域12における水の吸熱量+空気の吸熱量)/1サイクル中の磁場印加時におけるGd(ガドリニウム)100gの理論発熱量 ・・・(1) 

 ここで、水の吸熱量は、水の比熱(4.2kJ/kg/k)×水の密度(1000kg/m)×領域12の体積(m)×水の最大温度上昇量(ΔTH2O)、空気の吸熱量は、空気の比熱(1kJ/kg/k)×空気の密度(1.29kg/m)×領域12の体積(m)×空気の温度上昇量(ΔTair)である。また、1サイクル中の磁場印加時におけるGd100gの理論発熱量(QGd)は、QGd=T(298k)×磁気エントロピー変化(ΔS:2.5kJ/kg/k)×0.1(kg-Gd)より求めた。
 (比較例1) 
 図8は、比較例に係るAMR式磁気冷凍システムの熱交換部51を例示するための模式断面図である。 
 まず、磁気熱量効果を有する直径1mmのGd(ガドリニウム)粒子100gを、内径15mm、長さ115mmの円筒容器52に充填率60%で充填し、端部には金属メッシュから成る仕切り板53を設けた。そして、熱交換部51内部の残りの空間に水を満し、熱交換部51を作成した。
 熱交換部51に対し、実施例1と同じ強度の磁場を印加することでGd(ガドリニウム)粒子を発熱させた。 
 その後、X軸方向に+1cm仕切り板53を移動させることで、水を移動させた。移動速度は、0.4cm/sとした。 
 次に、印加された磁場を除去し、除去後、X軸方向に-1cm仕切り板53を移動させることで、水を移動させた。移動速度は、0.4cm/sとした。
 以上の過程を1サイクルとし、1サイクル中における水の温度の経時変化を水中に配置した熱電対で測定した。そして、その温度変化と水の重量から発熱時の熱輸送効率を測定した。
 この場合、熱輸送効率の算出には、以下の式(2)を用いた。 

 熱輸送効率=水の吸熱量/1サイクル中の磁場印加時におけるGd100gの理論発熱量 ・・・(2) 

 ここで、水の吸熱量は、水の比熱(4.2kJ/kg/k)×水の密度(1000kg/m)×円筒容器52中への水の充填体積(m)×水の最大温度上昇量(ΔTH2O)である。また、1サイクル中の磁場印加時におけるGd100gの理論発熱量(QGd)は、QGd=T(298k)×磁気エントロピー変化(ΔS:2.5kJ/kg/k)×0.1(kg-Gd)より求めた。
 図9は、実施例1における熱輸送効率と、比較例1における熱輸送効率との比較を示すグラフ図である。 
 なお、温度の測定においては、水の初期温度、空気の初期温度を環境温度と等しい25℃とした。 
 図9に示すように、実施例1における熱輸送効率は50%、比較例1における熱輸送効率は2.6%となった。すなわち、比較例1に比べて実施例1の方が格段に高い熱輸送効率を得られることが確認された。
 以上説明した実施形態によれば、熱交換効率の向上を図ることができる磁気冷凍システムを実現することができる。
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明及びそれと等価とみなされるものの範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。
 例えば、磁気冷凍システム100、磁気冷凍システム101、磁気冷凍システム100a、磁気冷凍システム100bなどが備える各要素の形状、寸法、材質、配置などは、例示をしたものに限定されるわけではなく適宜変更することができる。
 1    熱交換部
 2    磁場発生部
 3    磁場移動部
 4    高温側熱交換部
 5    低温側熱交換部
 6    配管
 7    配管
 8    熱輸送媒体
 9    熱輸送媒体
 10   輸送部
 11   輸送部
 12   領域
 13   領域
 14   領域
 16   高温側排出部
 17   低温側排出部
 18   導入部
 24   制御部
 24a  制御部
 24b  制御部
 34   制御部
 80a  熱輸送媒体
 80b  熱輸送媒体
 90a  熱輸送媒体
 90b  熱輸送媒体
 100  磁気冷凍システム
 100a 磁気冷凍システム
 100b 磁気冷凍システム
 101  磁気冷凍システム

Claims (6)

  1.  磁気熱量効果材料を含む第1の熱交換部と、
     前記第1の熱交換部に対する磁場を変化させる磁場変化部と、
     第1の熱輸送媒体と、
     前記第1の熱輸送媒体とは分離され、単位体積あたりの比熱が異なる第2の熱輸送媒体と、
     前記第1の熱輸送媒体と、前記第2の熱輸送媒体と、を前記第1の熱交換部に順次導入する輸送部と、
     を備えたことを特徴とする磁気冷凍システム。
  2.  前記輸送部は、前記第2の熱輸送媒体よりも単位体積あたりの比熱が高い前記第1の熱輸送媒体を前記第1の熱交換部に導入し、
     前記磁場変化部は、前記第1の熱交換部に対して磁場を印加することにより、前記熱交換部が発熱することを特徴とする請求項1記載の磁気冷凍システム。
  3.  前記輸送部は、前記第2の熱輸送媒体よりも単位体積あたりの比熱が高い前記第1の熱輸送媒体を前記第1の熱交換部に導入し、
     前記磁場変化部は、前記第1の熱交換部に対して磁場の印加を除去することにより、前記熱交換部が吸熱することを特徴とする請求項1記載の磁気冷凍システム。
  4.  前記第1の熱交換部は、熱輸送媒体を流通させる第1の領域と、第2の領域と、を有し、
     前記第1の領域に前記第1の熱輸送媒体が導入される場合には、前記第2の領域に前記第2の熱輸送媒体が導入され、
     前記第1の領域に前記第2の熱輸送媒体が導入される場合には、前記第2の領域に前記第1の熱輸送媒体が導入されることを特徴とする請求項1記載の磁気冷凍システム。
  5.  前記第1の熱輸送媒体と前記第2の熱輸送媒体は、いずれか一方が液体であり、他方が気体であることを特徴とする請求項1記載の磁気冷凍システム。
  6.  前記第1の熱交換部から流出した前記第1の熱輸送媒体と、熱交換先との間における熱交換を行う第2の熱交換部と、
     前記第2の熱交換部の流入側において前記第2の熱輸送媒体を排出する排出部と、
     前記第2の熱交換部の流出側において前記第2の熱輸送媒体を導入する導入部と、
     をさらに備えたことを特徴とする請求項1記載の磁気冷凍システム。
PCT/JP2010/069297 2010-10-29 2010-10-29 磁気冷凍システム WO2012056560A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/069297 WO2012056560A1 (ja) 2010-10-29 2010-10-29 磁気冷凍システム
JP2012540598A JP5728489B2 (ja) 2010-10-29 2010-10-29 磁気冷凍システム
US13/872,781 US20130227965A1 (en) 2010-10-29 2013-04-29 Magnetic refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/069297 WO2012056560A1 (ja) 2010-10-29 2010-10-29 磁気冷凍システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/872,781 Continuation US20130227965A1 (en) 2010-10-29 2013-04-29 Magnetic refrigeration system

Publications (1)

Publication Number Publication Date
WO2012056560A1 true WO2012056560A1 (ja) 2012-05-03

Family

ID=45993314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069297 WO2012056560A1 (ja) 2010-10-29 2010-10-29 磁気冷凍システム

Country Status (3)

Country Link
US (1) US20130227965A1 (ja)
JP (1) JP5728489B2 (ja)
WO (1) WO2012056560A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180306470A1 (en) * 2015-06-19 2018-10-25 Fujikura Ltd. Heat exchanger, magnetic heat pump device, and manufacturing method of heat exchanger

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10436481B2 (en) * 2011-06-06 2019-10-08 Jan Vetrovec Magnetocaloric refrigerator
WO2015017230A1 (en) 2013-08-02 2015-02-05 General Electric Company Magneto-caloric assemblies
US9995511B2 (en) * 2013-12-17 2018-06-12 Astronautics Corporation Of America Magnetic refrigeration system with improved flow efficiency
DE102015108954A1 (de) * 2015-06-08 2016-12-08 Eberspächer Climate Control Systems GmbH & Co. KG Temperiergerät, insbesondere Fahrzeugtemperiergerät
CN105004093B (zh) * 2015-06-24 2017-10-20 华南理工大学 一种双循环往复式室温磁制冷系统
JP6418110B2 (ja) * 2015-09-01 2018-11-07 株式会社デンソー 磁気ヒートポンプ装置
US10541070B2 (en) 2016-04-25 2020-01-21 Haier Us Appliance Solutions, Inc. Method for forming a bed of stabilized magneto-caloric material
US10299655B2 (en) 2016-05-16 2019-05-28 General Electric Company Caloric heat pump dishwasher appliance
US10295227B2 (en) 2016-07-19 2019-05-21 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10006675B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047979B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006674B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047980B2 (en) * 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US9915448B2 (en) * 2016-07-19 2018-03-13 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10222101B2 (en) * 2016-07-19 2019-03-05 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10274231B2 (en) 2016-07-19 2019-04-30 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10006672B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US9869493B1 (en) 2016-07-19 2018-01-16 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10281177B2 (en) 2016-07-19 2019-05-07 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10006673B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10443585B2 (en) 2016-08-26 2019-10-15 Haier Us Appliance Solutions, Inc. Pump for a heat pump system
US10288326B2 (en) 2016-12-06 2019-05-14 Haier Us Appliance Solutions, Inc. Conduction heat pump
US10386096B2 (en) 2016-12-06 2019-08-20 Haier Us Appliance Solutions, Inc. Magnet assembly for a magneto-caloric heat pump
US11009282B2 (en) 2017-03-28 2021-05-18 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10527325B2 (en) 2017-03-28 2020-01-07 Haier Us Appliance Solutions, Inc. Refrigerator appliance
US10451320B2 (en) 2017-05-25 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with water condensing features
JP2018199860A (ja) * 2017-05-30 2018-12-20 株式会社フジクラ ガドリニウム線材、それを用いた金属被覆ガドリニウム線材、熱交換器及び磁気冷凍装置
US10422555B2 (en) 2017-07-19 2019-09-24 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10451322B2 (en) 2017-07-19 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
WO2019094737A1 (en) * 2017-11-10 2019-05-16 Neiser Paul Refrigeration apparatus and method
US10520229B2 (en) 2017-11-14 2019-12-31 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US11022348B2 (en) 2017-12-12 2021-06-01 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US10648706B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder
US10648704B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10782051B2 (en) 2018-04-18 2020-09-22 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10641539B2 (en) 2018-04-18 2020-05-05 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10551095B2 (en) 2018-04-18 2020-02-04 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648705B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10876770B2 (en) 2018-04-18 2020-12-29 Haier Us Appliance Solutions, Inc. Method for operating an elasto-caloric heat pump with variable pre-strain
US10830506B2 (en) 2018-04-18 2020-11-10 Haier Us Appliance Solutions, Inc. Variable speed magneto-caloric thermal diode assembly
US10557649B2 (en) 2018-04-18 2020-02-11 Haier Us Appliance Solutions, Inc. Variable temperature magneto-caloric thermal diode assembly
US11015842B2 (en) 2018-05-10 2021-05-25 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial polarity alignment
US11054176B2 (en) 2018-05-10 2021-07-06 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a modular magnet system
US10989449B2 (en) 2018-05-10 2021-04-27 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial supports
US10684044B2 (en) 2018-07-17 2020-06-16 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a rotating heat exchanger
US11092364B2 (en) 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
US11168926B2 (en) 2019-01-08 2021-11-09 Haier Us Appliance Solutions, Inc. Leveraged mechano-caloric heat pump
US11149994B2 (en) 2019-01-08 2021-10-19 Haier Us Appliance Solutions, Inc. Uneven flow valve for a caloric regenerator
US11274860B2 (en) 2019-01-08 2022-03-15 Haier Us Appliance Solutions, Inc. Mechano-caloric stage with inner and outer sleeves
US11193697B2 (en) 2019-01-08 2021-12-07 Haier Us Appliance Solutions, Inc. Fan speed control method for caloric heat pump systems
US11112146B2 (en) 2019-02-12 2021-09-07 Haier Us Appliance Solutions, Inc. Heat pump and cascaded caloric regenerator assembly
US11015843B2 (en) 2019-05-29 2021-05-25 Haier Us Appliance Solutions, Inc. Caloric heat pump hydraulic system
CN110657603B (zh) * 2019-10-30 2024-02-06 中国长江三峡集团有限公司 一种磁制冷换热器和制冷制热系统及方法
CN112594962B (zh) * 2020-12-31 2024-06-25 包头稀土研究院 双列多级串联式双磁场磁制冷仓及其制冷制热方法
CN112594960B (zh) * 2020-12-31 2024-06-25 包头稀土研究院 双列多级串联式双磁场磁制冷机及其热交换方法
CN112629057B (zh) * 2020-12-31 2024-03-29 包头稀土研究院 单列多级串联式双磁场磁制冷机及其热交换方法
CN112665210B (zh) * 2020-12-31 2024-03-29 包头稀土研究院 单列多级串联式双磁场制冷仓及其制冷制热方法
CN112629056B (zh) * 2020-12-31 2024-03-29 包头稀土研究院 双列多级串联式磁制冷机的制冷仓及其制冷制热方法
CN112629060B (zh) * 2020-12-31 2024-03-29 包头稀土研究院 多列多级并联式磁制冷机及其热交换方法
CN112629058B (zh) * 2020-12-31 2024-03-29 包头稀土研究院 单列多级串联式磁制冷机及其热交换方法
CN114484925B (zh) * 2021-12-08 2024-02-20 包头稀土研究院 高效反作用式磁制冷机及热交换方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332135A (en) * 1981-01-27 1982-06-01 The United States Of America As Respresented By The United States Department Of Energy Active magnetic regenerator
JPS59183264A (ja) * 1983-04-01 1984-10-18 株式会社東芝 連続磁気冷凍装置
JP2006512556A (ja) * 2002-12-24 2006-04-13 エコール ディ’インゲニエウルス ドゥ カントン デ ヴァウド 電磁熱効果による冷気及び熱の連続生成方法および装置
JP2009520946A (ja) * 2005-12-21 2009-05-28 株式会社大宇エレクトロニクス 磁気冷凍機
JP2009210165A (ja) * 2008-03-03 2009-09-17 Toshiba Corp 磁気冷凍デバイスおよび磁気冷凍システム
JP2010112606A (ja) * 2008-11-05 2010-05-20 Toshiba Corp 磁気式温度調整装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3108444A (en) * 1962-07-19 1963-10-29 Martin Marietta Corp Magneto-caloric cryogenic refrigerator
US4078392A (en) * 1976-12-29 1978-03-14 Borg-Warner Corporation Direct contact heat transfer system using magnetic fluids
DE3800098A1 (de) * 1987-09-25 1989-07-13 Heinz Munk Magnetokalorischer induktor mit kompensationskern fuer die erzeugung elektrischer energie
US5249424A (en) * 1992-06-05 1993-10-05 Astronautics Corporation Of America Active magnetic regenerator method and apparatus
ATE362084T1 (de) * 2000-08-09 2007-06-15 Astronautics Corp Magnetisches kältegerät mit drehbett
US6676772B2 (en) * 2001-03-27 2004-01-13 Kabushiki Kaisha Toshiba Magnetic material
DE102006006326B4 (de) * 2006-02-11 2007-12-06 Bruker Biospin Ag Hybrid-Wärmepumpe/Kältemaschine mit magnetischer Kühlstufe
US20080276623A1 (en) * 2007-05-11 2008-11-13 Naushad Ali Magnetic refrigerant material
KR100962136B1 (ko) * 2008-06-16 2010-06-10 현대자동차주식회사 냉난방 시스템
US20110162388A1 (en) * 2010-01-05 2011-07-07 General Electric Company Magnetocaloric device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332135A (en) * 1981-01-27 1982-06-01 The United States Of America As Respresented By The United States Department Of Energy Active magnetic regenerator
JPS59183264A (ja) * 1983-04-01 1984-10-18 株式会社東芝 連続磁気冷凍装置
JP2006512556A (ja) * 2002-12-24 2006-04-13 エコール ディ’インゲニエウルス ドゥ カントン デ ヴァウド 電磁熱効果による冷気及び熱の連続生成方法および装置
JP2009520946A (ja) * 2005-12-21 2009-05-28 株式会社大宇エレクトロニクス 磁気冷凍機
JP2009210165A (ja) * 2008-03-03 2009-09-17 Toshiba Corp 磁気冷凍デバイスおよび磁気冷凍システム
JP2010112606A (ja) * 2008-11-05 2010-05-20 Toshiba Corp 磁気式温度調整装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180306470A1 (en) * 2015-06-19 2018-10-25 Fujikura Ltd. Heat exchanger, magnetic heat pump device, and manufacturing method of heat exchanger

Also Published As

Publication number Publication date
JPWO2012056560A1 (ja) 2014-03-20
US20130227965A1 (en) 2013-09-05
JP5728489B2 (ja) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5728489B2 (ja) 磁気冷凍システム
JP4643668B2 (ja) 磁気冷凍デバイスおよび磁気冷凍システム
KR102149720B1 (ko) 자기냉각장치
JP5859117B2 (ja) 磁気冷凍用材料および磁気冷凍デバイス
JP4783406B2 (ja) 磁気冷凍デバイス、磁気冷凍システムおよび磁気冷凍方法
JP4703699B2 (ja) 磁気冷凍用磁性材料、磁気冷凍デバイスおよび磁気冷凍システム
JP4950918B2 (ja) 磁気冷凍装置用磁性材料、熱交換容器および磁気冷凍装置
JP4231022B2 (ja) 磁気冷凍機
JP5355071B2 (ja) 磁気冷凍デバイスおよび磁気冷凍システム
US20130232993A1 (en) Heat exchanger and magnetic refrigeration system
JP5060602B2 (ja) 磁気冷凍デバイスおよび磁気冷凍システム
US20030051774A1 (en) Magnetic material
JP2008082663A (ja) 磁気冷凍デバイスおよび磁気冷凍方法
JP2002356748A (ja) 磁性材料
US20090133409A1 (en) Combination Thermo-Electric and Magnetic Refrigeration System
JP5330526B2 (ja) 磁気冷凍用磁性材料、磁気冷凍デバイスおよび磁気冷凍システム
JP2009221494A (ja) 磁気冷凍材料
JP2012177499A (ja) 磁気式温度調整装置
JP6594229B2 (ja) 蓄熱型磁気ヒートポンプ
JP2019086261A (ja) 磁気熱サイクル装置およびその運転方法
US10995973B2 (en) Cooling device and a method for cooling
JP7030658B2 (ja) 磁気冷凍機
JP2019138613A (ja) 磁気ヒートポンプ装置
JP2013068333A (ja) 磁気温度調節装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012540598

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858949

Country of ref document: EP

Kind code of ref document: A1