US20140165594A1 - Magneto caloric device with continuous pump - Google Patents

Magneto caloric device with continuous pump Download PDF

Info

Publication number
US20140165594A1
US20140165594A1 US13/719,395 US201213719395A US2014165594A1 US 20140165594 A1 US20140165594 A1 US 20140165594A1 US 201213719395 A US201213719395 A US 201213719395A US 2014165594 A1 US2014165594 A1 US 2014165594A1
Authority
US
United States
Prior art keywords
regenerator housing
axial direction
pair
heat
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/719,395
Inventor
Michael Alexander Benedict
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haier US Appliance Solutions Inc
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US13/719,395 priority Critical patent/US20140165594A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENEDICT, MICHAEL ALEXANDER
Priority to PCT/US2013/070518 priority patent/WO2014099199A1/en
Priority to CN201380067028.0A priority patent/CN104870911B/en
Priority to EP13799164.2A priority patent/EP2936007A1/en
Priority to MX2015007963A priority patent/MX2015007963A/en
Priority to KR1020157019140A priority patent/KR20150096743A/en
Priority to CA2893874A priority patent/CA2893874A1/en
Publication of US20140165594A1 publication Critical patent/US20140165594A1/en
Assigned to HAIER US APPLIANCE SOLUTIONS, INC. reassignment HAIER US APPLIANCE SOLUTIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GENERAL ELECTRIC COMPANY
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • Conventional refrigeration technology typically utilizes a heat pump that relies on compression and expansion of a fluid refrigerant to receive and reject heat in a cyclic manner so as to effect a desired temperature change or i.e. transfer heat energy from one location to another.
  • This cycle can be used to provide e.g., for the receiving of heat from a refrigeration compartment and the rejecting of such heat to the environment or a location that is external to the compartment.
  • Other applications include air conditioning of residential or commercial structures.
  • a variety of different fluid refrigerants have been developed that can be used with the heat pump in such systems.
  • Magneto caloric materials i.e. materials that exhibit the magneto caloric effect—provide a potential alternative to fluid refrigerants for heat pump applications.
  • MCMs Magneto caloric materials
  • the magnetic moments of an MCM will become more ordered under an increasing, externally applied magnetic field and cause the MCM to generate heat.
  • decreasing the externally applied magnetic field will allow the magnetic moments of the MCM to become more disordered and allow the MCM to absorb heat.
  • Some MCMs exhibit the opposite behavior—i.e. generating heat when the magnetic field is removed (which are sometimes referred to as para-magneto caloric material but both types are referred to collectively herein as magneto caloric material or MCM).
  • the theoretical Carnot cycle efficiency of a refrigeration cycle based on an MCM can be significantly higher than for a comparable refrigeration cycle based on a fluid refrigerant. As such, a heat pump system that can effectively use an MCM would be useful.
  • a heat pump system that can address certain challenges such as those identified above would be useful.
  • Such a heat pump system that can also be used in e.g., a refrigerator appliance would also be useful.
  • the present invention provides a heat pump system having magneto caloric material positioned in a continuously rotating regenerator.
  • the magneto caloric material is staged so that as the regenerator is rotated, a portion of the material is cycled in and out of a magnetic field in a continuous manner.
  • a heat transfer fluid is circulated through the magneto caloric material simultaneously along at least two paths to provide for the transfer of heat both to and from the material in a cyclic manner.
  • the magneto caloric material may include zones having different temperature ranges of responsiveness to the magnetic field.
  • An appliance using a heat pump system based on magneto caloric material is also provided.
  • This exemplary system also includes a pair of seals with a first seal positioned adjacent to the first valve and a second seal adjacent to the second valve such that the regenerator housing and the pair of valves are rotatable relative to the pair of seals.
  • the first seal and the second seal each include a pair of ports positioned in an opposing manner relative to each other and also positioned so that each port can selectively align with at least one of the pair of openings of the plurality of chambers as the regenerator housing is rotated about the axial direction.
  • the present invention provides a refrigerator appliance that includes a compartment for the storage of food items; a first heat exchanger for the removal of heat from the compartment; a second heat exchanger for the delivery of heat removed by the first heat exchanger to a location external of the compartment; a pump for circulating a heat transfer fluid between the first heat exchanger and the second heat exchanger; and a heat pump in fluid communication with the pump.
  • the heat pump is also in fluid communication with the first heat exchanger through a first inlet port and a first outlet port and is in fluid communication with the second heat exchanger by a second inlet port and a second outlet port.
  • a plurality of stages are provided with each stage including magneto caloric material positioned within one of the plurality of chambers and extending along the axial direction.
  • a pair of valves includes a first valve attached to the first end of the regenerator housing and a second valve attached to the second end of the regenerator housing.
  • the first valve and second valve each include a plurality of apertures spaced apart from each other along the circumferential direction with each aperture positioned adjacent to one of the pair of openings of one of the plurality of chambers.
  • a magnetic element is positioned proximate to the regenerator housing and extends along the axial direction. The magnetic element creates a magnetic field. The magnetic element is positioned so that a subset of the plurality of stages are moved within the magnetic field as the regenerator housing is rotated about the axial direction.
  • a pair of seals are provided with a first seal positioned adjacent to the first valve and a second seal positioned adjacent to the second valve such that the regenerator housing and the pair of valves are rotatable relative to the pair of seals.
  • the first seal includes the first inlet port and the first outlet port.
  • the second seal includes the second inlet port and a second outlet port. The first inlet port and the first outlet port are positioned in an opposing manner about the first seal and second inlet port and the second outlet port are positioned in an opposing manner about the second seal.
  • FIG. 1 provides an exemplary embodiment of a refrigerator appliance of the present invention.
  • FIG. 2 is a schematic illustration of an exemplary heat pump system of the present invention positioned in an exemplary refrigerator with a machinery compartment and a refrigerated compartment.
  • FIG. 3 provides a perspective view of an exemplary heat pump of the present invention.
  • FIG. 4 is an exploded view of the exemplary heat pump of FIG. 3 .
  • FIG. 5 is a cross-sectional view of the exemplary heat pump of FIG. 3 .
  • FIG. 6 is perspective view of the exemplary heat pump of FIG. 3 . Seals located at the ends of a regenerator housing have been removed for purposes of further explanation of this exemplary embodiment of the invention as set forth below.
  • FIG. 7 is a schematic representation of various steps in the use of a stage of the heat pump of FIG. 3 .
  • refrigerator appliance 10 is depicted as an upright refrigerator having a cabinet or casing 12 that defines a number of internal storage compartments or chilled chambers.
  • refrigerator appliance 10 includes upper fresh-food compartments 14 having doors 16 and lower freezer compartment 18 having upper drawer 20 and lower drawer 22 .
  • the drawers 20 , 22 are “pull-out” type drawers in that they can be manually moved into and out of the freezer compartment 18 on suitable slide mechanisms.
  • Refrigerator 10 is provided by way of example only. Other configurations for a refrigerator appliance may be used as well including appliances with only freezer compartments, only chilled compartments, or other combinations thereof different from that shown in FIG. 1 .
  • the heat pump and heat pump system of the present invention is not limited to appliances and may be used in other applications as well such as e.g., air-conditioning, electronics cooling devices, and others.
  • the use of a heat pump to provide cooling within a refrigerator is provided by way of example herein, the present invention may also be used to provide for heating applications as well.
  • FIG. 2 is a schematic view of another exemplary embodiment of a refrigerator appliance 10 including a refrigeration compartment 30 and a machinery compartment 40 .
  • machinery compartment 30 includes a heat pump system 52 having a first heat exchanger 32 positioned in the refrigeration compartment 30 for the removal of heat therefrom.
  • a heat transfer fluid such as e.g., an aqueous solution, flowing within first heat exchanger 32 receives heat from the refrigeration compartment 30 thereby cooling its contents.
  • a fan 38 may be used to provide for a flow of air across first heat exchanger 32 to improve the rate of heat transfer from the refrigeration compartment 30 .
  • the heat transfer fluid flows out of first heat exchanger 32 by line 44 to heat pump 100 .
  • the heat transfer fluid receives additional heat from magneto caloric material (MCM) in heat pump 100 and carries this heat by line 48 to pump 42 and then to second heat exchanger 34 .
  • MCM magneto caloric material
  • Heat is released to the environment, machinery compartment 40 , and/or other location external to refrigeration compartment 30 using second heat exchanger 34 .
  • a fan 36 may be used to create a flow of air across second heat exchanger 34 and thereby improve the rate of heat transfer to the environment.
  • Pump 42 connected into line 48 causes the heat transfer fluid to recirculate in heat pump system 52 .
  • Motor 28 is in mechanical communication with heat pump 100 as will further described.
  • Heat pump system 52 is provided by way of example only. Other configurations of heat pump system 52 may be used as well. For example, lines 44 , 46 , 48 , and 50 provide fluid communication between the various components of the heat pump system 52 but other heat transfer fluid recirculation loops with different lines and connections may also be employed. For example, pump 42 can also be positioned at other locations or on other lines in system 52 . Still other configurations of heat pump system 52 may be used as well.
  • FIGS. 3 , 4 , 5 , and 6 depict various views of an exemplary heat pump 100 of the present invention.
  • Heat pump 100 includes a regenerator housing 102 that extends longitudinally along an axial direction between a first end 118 and a second end 120 .
  • the axial direction is defined by axis A-A about which regenerator housing 102 rotates.
  • a radial direction R is defined by a radius extending orthogonally from the axis of rotation A-A ( FIG. 5 ).
  • a circumferential direction is indicated by arrows C.
  • Regenerator housing 102 defines a plurality of chambers 104 that extend longitudinally along the axial direction defined by axis A-A. Chambers 104 are positioned proximate or adjacent to each other along circumferential direction C. Each chamber 104 includes a pair of openings 106 and 108 positioned at opposing ends 118 and 120 of regenerator housing 102 .
  • Heat pump 100 also includes a plurality of stages 112 that include MCM. Each stage 112 is located in one of the chambers 104 and extends along the axial direction. For the exemplary embodiment shown in the figures, heat pump 100 includes eight stages 112 positioned adjacent to each other along the circumferential direction as shown and extending longitudinally along the axial direction. As will be understood by one of skill in the art using the teachings disclosed herein, a different number of stages 112 other than eight may be used as well.
  • a pair of valves 114 and 116 are attached to regenerator housing 102 and rotate therewith along circumferential direction C. More particularly, a first valve 114 is attached to first end 118 and a second valve 116 is attached to second end 120 .
  • Each valve 114 and 116 includes a plurality of apertures 122 and 124 , respectively.
  • apertures 122 and 124 are configured as circumferentially-extending slots that are spaced apart along circumferential direction C.
  • Each aperture 122 is positioned adjacent to a respective opening 106 of a chamber 104 .
  • Each aperture 124 is positioned adjacent to a respective opening 108 of a chamber 104 .
  • a heat transfer fluid may flow into a chamber 104 through a respective aperture 122 and opening 106 so as to flow through the MCM in a respective stage 112 and then exit through opening 108 and aperture 124 .
  • a reverse path can be used for flow of the heat transfer fluid in the opposite direction through the stage 112 of a given chamber 104 .
  • Regenerator housing 102 defines a cavity 128 that is positioned radially inward of the plurality of chambers 104 and extends along the axial direction between first end 118 and second end 120 .
  • a magnetic element 126 is positioned within cavity 128 and, for this exemplary embodiment, extends along the axial direction between first end 118 and second end 120 .
  • Magnetic element 126 provides a magnetic field that is directed radially outward as indicated by arrows M in FIG. 5 .
  • the positioning and configuration of magnetic element 126 is such that only a subset of the plurality of stages 112 is within magnetic field M at any one time. For example, as shown in FIG. 5 , stages 112 a and 112 e are partially within the magnetic field while stages 112 b, 112 c, and 112 d are fully within the magnetic field M created by magnetic element 126 . Conversely, the magnetic element 126 is configured and positioned so that stages 112 f, 112 g, and 112 h are completely or substantially out of the magnetic field created by magnetic element 126 . However, as regenerator housing 102 is continuously rotated along the circumferential direction as shown by arrow W, the subset of stages 112 within the magnetic field will continuously change as some stages 112 will enter magnetic field M and others will exit.
  • a pair of seals 136 and 138 is provided with the seals positioned in an opposing manner at the first end 118 and second end 120 of regenerator housing 102 .
  • First seal 136 has a first inlet port 140 and a first outlet port 142 and is positioned adjacent to first valve 114 .
  • ports 140 and 142 are positioned 180 degrees apart about the circumferential direction C of first seal 114 .
  • ports 140 and 142 may be positioned within a range of about 170 degrees to about 190 degrees about the circumferential direction C as well.
  • First valve 114 and regenerator housing 102 are rotatable relative to first seal 136 .
  • Ports 140 and 142 are connected with lines 44 and 46 ( FIG. 1 ), respectively. As such, the rotation of regenerator housing 102 about axis A-A sequentially places lines 44 and 46 in fluid communication with at least two stages 112 of MCM at any one time as will be further described.
  • Second seal 138 has a second inlet port 144 and a second outlet port 146 and is positioned adjacent to second valve 116 . As shown, ports 144 and 146 are positioned 180 degrees apart about the circumferential direction C of second seal 116 . However, other configurations may be used. For example, ports 144 and 146 may be positioned within a range of about 170 degrees to about 190 degrees about the circumferential direction C as well. Second valve 116 and regenerator housing 102 are rotatable relative to second seal 138 . Ports 144 and 146 are connected with lines 50 and 48 ( FIG. 1 ), respectively.
  • regenerator housing 102 sequentially places lines 48 and 50 in fluid communication with at least two stages 112 of MCM at any one time as will be further described.
  • lines 46 and 50 will each be in fluid communication with at least one stage 112 while lines 44 and 48 will also be in fluid communication with at least one other stage 112 located about 180 degrees away along the circumferential direction.
  • FIG. 7 illustrates an exemplary method of the present invention using a schematic representation of stage 112 of MCM in regenerator housing 102 as it rotates in the direction of arrow W between positions 1 through 8 as shown in FIG. 6 .
  • stage 112 is fully within magnetic field M, which causes the magnetic moments of the material to orient and the MCM to heat as part of the magneto caloric effect. Ordering of the magnetic field is created and maintained as stage 112 is rotated sequentially through positions 2 , 3 , and then 4 ( FIG. 6 ) as regenerator housing 102 is rotated in the direction of arrow W.
  • the heat transfer fluid dwells in the MCM of stage 112 and, therefore, is heated.
  • the heat transfer fluid does not flow through stage 112 because the openings 106 , 108 , 122 , and 124 corresponding to stage 112 in positions 2 , 3 , and 4 are not aligned with any of the ports 140 , 142 , 144 , or 146 .
  • step 202 as regenerator housing 102 continues to rotate in the direction of arrow W, stage 112 will eventually reach position 5 .
  • the heat transfer fluid can flow through the material as first inlet port 140 is now aligned with an opening 122 in first valve 114 and an opening 106 at the first end 118 of stage 112 while second outlet port 146 is aligned with an opening 124 in second valve 116 at the second end 120 of stage 112 .
  • heat transfer fluid in stage 112 now heated by the MCM, can travel out of regenerator housing 102 and along line 48 to the second heat exchanger 34 .
  • heat transfer fluid from first heat exchanger 32 flows into stage 112 from line 44 when stage 112 is at position 5 . Because heat transfer fluid from the first heat exchanger 32 is relatively cooler than the MCM in stage 112 , the MCM will lose heat to the heat transfer fluid.
  • stage 112 is moved sequentially through positions 6 , 7 , and 8 where stage 112 is completely or substantially out of magnetic field M.
  • the absence or lessening of the magnetic field is such that the magnetic moments of the material become disordered and the MCM absorbs heat as part of the magneto caloric effect.
  • the heat transfer fluid dwells in the MCM of stage 112 and, therefore, is cooled by losing heat to the MCM as the magnetic moments disorder.
  • the heat transfer fluid does not flow through stage 112 because the openings 106 , 108 , 122 , and 124 corresponding to stage 112 when in positions 6 , 7 , and 8 are not aligned with any of the ports 140 , 142 , 144 , or 146 .
  • stage 112 will eventually reach position 1 .
  • the heat transfer fluid in stage 112 can flow through the material as second inlet port 144 is now aligned with an opening 124 in second valve 116 and an opening 108 at the second end 120 while first outlet port 142 is aligned with an opening 122 in first valve 114 and opening 106 at first end 118 .
  • heat transfer fluid in stage 112 now cooled by the MCM, can travel out of regenerator housing 102 and along line 46 to the first heat exchanger 32 .
  • heat transfer fluid from second heat exchanger 34 flows into stage 112 from line 50 when stage 112 is at position 5 . Because heat transfer fluid from the second heat exchanger 34 is relatively warmer than the MCM in stage 112 at position 5 , the MCM will lose some of its heat to the heat transfer fluid. The heat transfer fluid now travels along line 46 to the first heat exchanger 32 to receive heat and cool the refrigeration compartment 30 .
  • regenerator housing 102 As regenerator housing 102 is rotated continuously, the above described process of placing stage 112 in and out of magnetic field M is repeated. Additionally, the size of magnetic field M and regenerator housing 102 are such that a subset of the plurality of stages 112 is within the magnetic field at any given time during rotation. Similarly, a subset of the plurality of stages 112 are outside (or substantially outside) of the magnetic field at any given time during rotation. Additionally, at any given time, there are at least two stages 112 through which the heat transfer fluid is flowing while the other stages remain in a dwell mode. More specifically, while one stage 112 is losing heat through the flow of heat transfer fluid at position 5 , another stage 112 is receiving heat from the flowing heat transfer fluid at position 1 , while all remaining stages 112 are in dwell mode. As such, the system can be operated continuously to provide a continuous recirculation of heat transfer fluid in heat pump system 52 as stages 112 are each sequentially rotated through positions 1 through 8 .
  • each valve could be provided within two inlet ports and two outlet ports so that heat transfer fluid flows through at least four stages 112 at any particular point in time.
  • regenerator housing 102 , valves 122 and 124 , and/or seals 136 and 138 could be constructed so that e.g., at least two stages are in fluid communication with an inlet port and outlet port at any one time.
  • Other configurations may be used as well.
  • stage 112 includes MCM extending along the axial direction of flow.
  • the MCM may be constructed from a single magneto caloric material or may include multiple different magneto caloric materials.
  • appliance 10 may be used in an application where the ambient temperature changes over a substantial range.
  • a specific magneto caloric material may exhibit the magneto caloric effect over only a much narrower temperature range.
  • each stage 112 can be provided with zones 152 , 154 , 156 , 158 , 160 , and 162 of different magneto caloric materials.
  • Each such zone includes an MCM that exhibits the magneto caloric effect at a different temperature or a different temperature range than an adjacent zone along the axial direction of stage 112 .
  • zone 152 may exhibit the magnet caloric effect at a temperature less than the temperature at which zone 154 exhibits the magnet caloric effect, which may be less than such temperature for zone 156 , and so on.
  • Other configurations may be used as well.
  • magnetic element 126 is constructed in the shape of an arc from a plurality of magnets 130 arranged in a Halbach array for this exemplary embodiment. More specifically, magnets 130 are arranged so that magnetic element 126 provides a magnetic field M located radially outward of magnetic element 126 and towards regenerator housing 102 while minimal or no magnetic field is located radially-inward towards the axis of rotation A-A. Magnetic field M may be aligned in a curve or arc shape. A variety of other configurations may be used as well for magnetic element 126 and/or its resulting magnetic field.
  • magnetic element 126 could be constructed from a first plurality of magnets positioned in cavity 128 in a Halbach array that directs the field outwardly while a second plurality of magnetics is positioned radially outward of regenerator housing 102 and arranged to provide a magnetic field that is located radially inward to the regenerator housing 102 .
  • magnetic element 128 could be constructed from a plurality of magnets positioned radially outward of regenerator housing 102 and arranged to provide a magnetic field that is located radially inward towards the regenerator housing 102 .
  • Other configurations of magnetic element 128 may be provided as well. For example, coils instead of magnets may be used to create the magnetic field desired.
  • the arc created by magnetic element 128 provides a magnetic field extending circumferentially about 180 degrees.
  • the arc created by magnetic element 128 provides a magnetic field extending circumferentially in a range of about 170 degrees to about 190 degrees.
  • a motor 28 is in mechanical communication with regenerator housing 102 and provides for rotation of housing 102 about axis A-A.
  • motor 28 may be connected directly with housing 102 by a shaft or indirectly through a gear box. Other configurations may be used as well.

Abstract

A heat pump system having magneto caloric material positioned in a continuously rotating regenerator is provided. The magneto caloric material is staged so that as the regenerator is rotated, a portion of the material is cycled in and out of a magnetic field in a continuous manner. A heat transfer fluid is circulated through the magneto caloric material simultaneously along at least two paths to provide for the transfer of heat both to and from the material in a cyclic manner. The magneto caloric material may include zones having different temperature ranges of responsiveness to the magnetic field. An appliance using a heat pump system based on magneto caloric material is also provided.

Description

    FIELD OF THE INVENTION
  • The subject matter of the present disclosure relates generally to a heat pump system that uses magneto caloric materials to exchange heat with a circulating heat transfer fluid.
  • BACKGROUND OF THE INVENTION
  • Conventional refrigeration technology typically utilizes a heat pump that relies on compression and expansion of a fluid refrigerant to receive and reject heat in a cyclic manner so as to effect a desired temperature change or i.e. transfer heat energy from one location to another. This cycle can be used to provide e.g., for the receiving of heat from a refrigeration compartment and the rejecting of such heat to the environment or a location that is external to the compartment. Other applications include air conditioning of residential or commercial structures. A variety of different fluid refrigerants have been developed that can be used with the heat pump in such systems.
  • While improvements have been made to such heat pump systems that rely on the compression of fluid refrigerant, at best such can still only operate at about 45 percent or less of the maximum theoretical Carnot cycle efficiency. Also, some fluid refrigerants have been discontinued due to environmental concerns. The range of ambient temperatures over which certain refrigerant-based systems can operate may be impractical for certain locations. Other challenges with heat pumps that use a fluid refrigerant exist as well.
  • Magneto caloric materials (MCMs)—i.e. materials that exhibit the magneto caloric effect—provide a potential alternative to fluid refrigerants for heat pump applications. In general, the magnetic moments of an MCM will become more ordered under an increasing, externally applied magnetic field and cause the MCM to generate heat. Conversely, decreasing the externally applied magnetic field will allow the magnetic moments of the MCM to become more disordered and allow the MCM to absorb heat. Some MCMs exhibit the opposite behavior—i.e. generating heat when the magnetic field is removed (which are sometimes referred to as para-magneto caloric material but both types are referred to collectively herein as magneto caloric material or MCM). The theoretical Carnot cycle efficiency of a refrigeration cycle based on an MCM can be significantly higher than for a comparable refrigeration cycle based on a fluid refrigerant. As such, a heat pump system that can effectively use an MCM would be useful.
  • Challenges exist to the practical and cost competitive use of an MCM, however. In addition to the development of suitable MCMs, equipment that can attractively utilize an MCM is still needed. Provision should be made for the transfer or heat to and from the MCM, preferably in a continuous manner so that the equipment does not operate in a start and stop fashion that can be inefficient. Currently proposed equipment may require relatively large and expensive magnets, may be impractical for use in e.g., appliance refrigeration, and may not otherwise operate with enough efficiency to justify capital cost.
  • Additionally, as stated above, the ambient conditions under which a heat pump may be needed can vary substantially. For example, for a refrigerator appliance placed in a garage or located in a non-air conditioned space, ambient temperatures can range from below freezing to over 90° F. Some MCMs are capable of accepting and generating heat only within a much narrower temperature range than presented by such ambient conditions.
  • Accordingly, a heat pump system that can address certain challenges such as those identified above would be useful. Such a heat pump system that can also be used in e.g., a refrigerator appliance would also be useful.
  • BRIEF DESCRIPTION OF THE INVENTION
  • The present invention provides a heat pump system having magneto caloric material positioned in a continuously rotating regenerator. The magneto caloric material is staged so that as the regenerator is rotated, a portion of the material is cycled in and out of a magnetic field in a continuous manner. A heat transfer fluid is circulated through the magneto caloric material simultaneously along at least two paths to provide for the transfer of heat both to and from the material in a cyclic manner. The magneto caloric material may include zones having different temperature ranges of responsiveness to the magnetic field. An appliance using a heat pump system based on magneto caloric material is also provided. The heat pump may also be used in other applications for heating, cooling, or both. Additional aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.
  • In one exemplary embodiment, the present invention provides a heat pump system that includes a regenerator housing defining a circumferential direction and rotatable about an axial direction, the axial direction extending between a first end and a second end of the regenerator housing. The regenerator housing includes a plurality of chambers with each chamber extending longitudinally along the axial direction between a pair of openings. The plurality of chambers are arranged proximate to each other along the circumferential direction. A plurality of stages are provide with each stage comprising magneto caloric material positioned within one of the plurality of chambers and extending along the axial direction.
  • This exemplary embodiment further includes a pair of valves with a first valve attached to the first end of the regenerator housing and a second valve attached to the second end of the regenerator housing. The first valve and second valve each include a plurality of apertures spaced apart from each other along the circumferential direction with each aperture positioned adjacent to one of the pair of openings of one of the plurality of chambers. A magnetic element is positioned proximate to the regenerator housing and extends along the axial direction. The magnetic element creates a magnetic field and is positioned so that a subset of the plurality of stages are moved in and out of the magnetic field as the regenerator housing is rotated about the axial direction.
  • This exemplary system also includes a pair of seals with a first seal positioned adjacent to the first valve and a second seal adjacent to the second valve such that the regenerator housing and the pair of valves are rotatable relative to the pair of seals. The first seal and the second seal each include a pair of ports positioned in an opposing manner relative to each other and also positioned so that each port can selectively align with at least one of the pair of openings of the plurality of chambers as the regenerator housing is rotated about the axial direction.
  • In still another exemplary embodiment, the present invention provides a refrigerator appliance that includes a compartment for the storage of food items; a first heat exchanger for the removal of heat from the compartment; a second heat exchanger for the delivery of heat removed by the first heat exchanger to a location external of the compartment; a pump for circulating a heat transfer fluid between the first heat exchanger and the second heat exchanger; and a heat pump in fluid communication with the pump. The heat pump is also in fluid communication with the first heat exchanger through a first inlet port and a first outlet port and is in fluid communication with the second heat exchanger by a second inlet port and a second outlet port.
  • For this exemplary embodiment, the heat pump further includes a regenerator housing defining a circumferential direction and rotatable about an axial direction, the axial direction extending between a first end and a second end of the regenerator housing. The regenerator housing includes a plurality of chambers with each chamber extending longitudinally along the axial direction between a pair of openings. The plurality of chambers are arranged proximate to each other along the circumferential direction.
  • A plurality of stages are provided with each stage including magneto caloric material positioned within one of the plurality of chambers and extending along the axial direction. A pair of valves includes a first valve attached to the first end of the regenerator housing and a second valve attached to the second end of the regenerator housing. The first valve and second valve each include a plurality of apertures spaced apart from each other along the circumferential direction with each aperture positioned adjacent to one of the pair of openings of one of the plurality of chambers. A magnetic element is positioned proximate to the regenerator housing and extends along the axial direction. The magnetic element creates a magnetic field. The magnetic element is positioned so that a subset of the plurality of stages are moved within the magnetic field as the regenerator housing is rotated about the axial direction.
  • A pair of seals are provided with a first seal positioned adjacent to the first valve and a second seal positioned adjacent to the second valve such that the regenerator housing and the pair of valves are rotatable relative to the pair of seals. The first seal includes the first inlet port and the first outlet port. The second seal includes the second inlet port and a second outlet port. The first inlet port and the first outlet port are positioned in an opposing manner about the first seal and second inlet port and the second outlet port are positioned in an opposing manner about the second seal. The first inlet port and the second outlet port are positioned for fluid communication with the pair of openings of at least one chamber at a time as the regenerator housing is rotated about the axial direction so that heat transfer fluid from the first heat exchanger may receive heat from the stage of magneto caloric material located in the at least one chamber. The second inlet port and the first outlet port are positioned for fluid communication with the pair of openings of at least one other chamber at a time as the regenerator housing is rotated about the axial direction so that heat transfer fluid from the second heat exchanger may deliver heat to the magneto caloric material in the at least one other chamber.
  • These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
  • FIG. 1 provides an exemplary embodiment of a refrigerator appliance of the present invention.
  • FIG. 2 is a schematic illustration of an exemplary heat pump system of the present invention positioned in an exemplary refrigerator with a machinery compartment and a refrigerated compartment.
  • FIG. 3 provides a perspective view of an exemplary heat pump of the present invention.
  • FIG. 4 is an exploded view of the exemplary heat pump of FIG. 3.
  • FIG. 5 is a cross-sectional view of the exemplary heat pump of FIG. 3.
  • FIG. 6 is perspective view of the exemplary heat pump of FIG. 3. Seals located at the ends of a regenerator housing have been removed for purposes of further explanation of this exemplary embodiment of the invention as set forth below.
  • FIG. 7 is a schematic representation of various steps in the use of a stage of the heat pump of FIG. 3.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
  • Referring now to FIG. 1, an exemplary embodiment of an appliance refrigerator 10 is depicted as an upright refrigerator having a cabinet or casing 12 that defines a number of internal storage compartments or chilled chambers. In particular, refrigerator appliance 10 includes upper fresh-food compartments 14 having doors 16 and lower freezer compartment 18 having upper drawer 20 and lower drawer 22. The drawers 20, 22 are “pull-out” type drawers in that they can be manually moved into and out of the freezer compartment 18 on suitable slide mechanisms. Refrigerator 10 is provided by way of example only. Other configurations for a refrigerator appliance may be used as well including appliances with only freezer compartments, only chilled compartments, or other combinations thereof different from that shown in FIG. 1. In addition, the heat pump and heat pump system of the present invention is not limited to appliances and may be used in other applications as well such as e.g., air-conditioning, electronics cooling devices, and others. Thus, it should be understood that while the use of a heat pump to provide cooling within a refrigerator is provided by way of example herein, the present invention may also be used to provide for heating applications as well.
  • FIG. 2 is a schematic view of another exemplary embodiment of a refrigerator appliance 10 including a refrigeration compartment 30 and a machinery compartment 40. In particular, machinery compartment 30 includes a heat pump system 52 having a first heat exchanger 32 positioned in the refrigeration compartment 30 for the removal of heat therefrom. A heat transfer fluid such as e.g., an aqueous solution, flowing within first heat exchanger 32 receives heat from the refrigeration compartment 30 thereby cooling its contents. A fan 38 may be used to provide for a flow of air across first heat exchanger 32 to improve the rate of heat transfer from the refrigeration compartment 30.
  • The heat transfer fluid flows out of first heat exchanger 32 by line 44 to heat pump 100. As will be further described herein, the heat transfer fluid receives additional heat from magneto caloric material (MCM) in heat pump 100 and carries this heat by line 48 to pump 42 and then to second heat exchanger 34. Heat is released to the environment, machinery compartment 40, and/or other location external to refrigeration compartment 30 using second heat exchanger 34. A fan 36 may be used to create a flow of air across second heat exchanger 34 and thereby improve the rate of heat transfer to the environment. Pump 42 connected into line 48 causes the heat transfer fluid to recirculate in heat pump system 52. Motor 28 is in mechanical communication with heat pump 100 as will further described.
  • From second heat exchanger 34 the heat transfer fluid returns by line 50 to heat pump 100 where, as will be further described below, the heat transfer fluid loses heat to the MCM in heat pump 100. The now colder heat transfer fluid flows by line 46 to first heat exchanger 32 to receive heat from refrigeration compartment 30 and repeat the cycle as just described.
  • Heat pump system 52 is provided by way of example only. Other configurations of heat pump system 52 may be used as well. For example, lines 44, 46, 48, and 50 provide fluid communication between the various components of the heat pump system 52 but other heat transfer fluid recirculation loops with different lines and connections may also be employed. For example, pump 42 can also be positioned at other locations or on other lines in system 52. Still other configurations of heat pump system 52 may be used as well.
  • FIGS. 3, 4, 5, and 6 depict various views of an exemplary heat pump 100 of the present invention. Heat pump 100 includes a regenerator housing 102 that extends longitudinally along an axial direction between a first end 118 and a second end 120. The axial direction is defined by axis A-A about which regenerator housing 102 rotates. A radial direction R is defined by a radius extending orthogonally from the axis of rotation A-A (FIG. 5). A circumferential direction is indicated by arrows C.
  • Regenerator housing 102 defines a plurality of chambers 104 that extend longitudinally along the axial direction defined by axis A-A. Chambers 104 are positioned proximate or adjacent to each other along circumferential direction C. Each chamber 104 includes a pair of openings 106 and 108 positioned at opposing ends 118 and 120 of regenerator housing 102.
  • Heat pump 100 also includes a plurality of stages 112 that include MCM. Each stage 112 is located in one of the chambers 104 and extends along the axial direction. For the exemplary embodiment shown in the figures, heat pump 100 includes eight stages 112 positioned adjacent to each other along the circumferential direction as shown and extending longitudinally along the axial direction. As will be understood by one of skill in the art using the teachings disclosed herein, a different number of stages 112 other than eight may be used as well.
  • A pair of valves 114 and 116 are attached to regenerator housing 102 and rotate therewith along circumferential direction C. More particularly, a first valve 114 is attached to first end 118 and a second valve 116 is attached to second end 120. Each valve 114 and 116 includes a plurality of apertures 122 and 124, respectively. For this exemplary embodiment, apertures 122 and 124 are configured as circumferentially-extending slots that are spaced apart along circumferential direction C. Each aperture 122 is positioned adjacent to a respective opening 106 of a chamber 104. Each aperture 124 is positioned adjacent to a respective opening 108 of a chamber 104. Accordingly, a heat transfer fluid may flow into a chamber 104 through a respective aperture 122 and opening 106 so as to flow through the MCM in a respective stage 112 and then exit through opening 108 and aperture 124. A reverse path can be used for flow of the heat transfer fluid in the opposite direction through the stage 112 of a given chamber 104.
  • Regenerator housing 102 defines a cavity 128 that is positioned radially inward of the plurality of chambers 104 and extends along the axial direction between first end 118 and second end 120. A magnetic element 126 is positioned within cavity 128 and, for this exemplary embodiment, extends along the axial direction between first end 118 and second end 120. Magnetic element 126 provides a magnetic field that is directed radially outward as indicated by arrows M in FIG. 5.
  • The positioning and configuration of magnetic element 126 is such that only a subset of the plurality of stages 112 is within magnetic field M at any one time. For example, as shown in FIG. 5, stages 112 a and 112 e are partially within the magnetic field while stages 112 b, 112 c, and 112 d are fully within the magnetic field M created by magnetic element 126. Conversely, the magnetic element 126 is configured and positioned so that stages 112 f, 112 g, and 112 h are completely or substantially out of the magnetic field created by magnetic element 126. However, as regenerator housing 102 is continuously rotated along the circumferential direction as shown by arrow W, the subset of stages 112 within the magnetic field will continuously change as some stages 112 will enter magnetic field M and others will exit.
  • A pair of seals 136 and 138 is provided with the seals positioned in an opposing manner at the first end 118 and second end 120 of regenerator housing 102. First seal 136 has a first inlet port 140 and a first outlet port 142 and is positioned adjacent to first valve 114. As shown, ports 140 and 142 are positioned 180 degrees apart about the circumferential direction C of first seal 114. However, other configurations may be used. For example, ports 140 and 142 may be positioned within a range of about 170 degrees to about 190 degrees about the circumferential direction C as well. First valve 114 and regenerator housing 102 are rotatable relative to first seal 136. Ports 140 and 142 are connected with lines 44 and 46 (FIG. 1), respectively. As such, the rotation of regenerator housing 102 about axis A-A sequentially places lines 44 and 46 in fluid communication with at least two stages 112 of MCM at any one time as will be further described.
  • Second seal 138 has a second inlet port 144 and a second outlet port 146 and is positioned adjacent to second valve 116. As shown, ports 144 and 146 are positioned 180 degrees apart about the circumferential direction C of second seal 116. However, other configurations may be used. For example, ports 144 and 146 may be positioned within a range of about 170 degrees to about 190 degrees about the circumferential direction C as well. Second valve 116 and regenerator housing 102 are rotatable relative to second seal 138. Ports 144 and 146 are connected with lines 50 and 48 (FIG. 1), respectively. As such, the rotation of regenerator housing 102 about axis A-A sequentially places lines 48 and 50 in fluid communication with at least two stages 112 of MCM at any one time as will be further described. Notably, at any one time during rotation of regenerator housing 102, lines 46 and 50 will each be in fluid communication with at least one stage 112 while lines 44 and 48 will also be in fluid communication with at least one other stage 112 located about 180 degrees away along the circumferential direction.
  • FIG. 7 illustrates an exemplary method of the present invention using a schematic representation of stage 112 of MCM in regenerator housing 102 as it rotates in the direction of arrow W between positions 1 through 8 as shown in FIG. 6. During step 200, stage 112 is fully within magnetic field M, which causes the magnetic moments of the material to orient and the MCM to heat as part of the magneto caloric effect. Ordering of the magnetic field is created and maintained as stage 112 is rotated sequentially through positions 2, 3, and then 4 (FIG. 6) as regenerator housing 102 is rotated in the direction of arrow W. During the time at positions 2, 3, and 4, the heat transfer fluid dwells in the MCM of stage 112 and, therefore, is heated. More specifically, the heat transfer fluid does not flow through stage 112 because the openings 106,108, 122, and 124 corresponding to stage 112 in positions 2, 3, and 4 are not aligned with any of the ports 140, 142, 144, or 146.
  • In step 202, as regenerator housing 102 continues to rotate in the direction of arrow W, stage 112 will eventually reach position 5. As shown in FIGS. 3 and 6, at position 5 the heat transfer fluid can flow through the material as first inlet port 140 is now aligned with an opening 122 in first valve 114 and an opening 106 at the first end 118 of stage 112 while second outlet port 146 is aligned with an opening 124 in second valve 116 at the second end 120 of stage 112. As indicated by arrow QH-OUT, heat transfer fluid in stage 112, now heated by the MCM, can travel out of regenerator housing 102 and along line 48 to the second heat exchanger 34. At the same time, and as indicated by arrow QH-IN, heat transfer fluid from first heat exchanger 32 flows into stage 112 from line 44 when stage 112 is at position 5. Because heat transfer fluid from the first heat exchanger 32 is relatively cooler than the MCM in stage 112, the MCM will lose heat to the heat transfer fluid.
  • Referring again to FIG. 7 and step 204, as regenerator housing 102 continues to rotate in the direction of arrow W, stage 112 is moved sequentially through positions 6, 7, and 8 where stage 112 is completely or substantially out of magnetic field M. The absence or lessening of the magnetic field is such that the magnetic moments of the material become disordered and the MCM absorbs heat as part of the magneto caloric effect. During the time in positions 6, 7, and 8, the heat transfer fluid dwells in the MCM of stage 112 and, therefore, is cooled by losing heat to the MCM as the magnetic moments disorder. More specifically, the heat transfer fluid does not flow through stage 112 because the openings 106, 108, 122, and 124 corresponding to stage 112 when in positions 6, 7, and 8 are not aligned with any of the ports 140, 142, 144, or 146.
  • Referring to step 206 of FIG. 7, as regenerator housing 102 continues to rotate in the direction of arrow W, stage 112 will eventually reach position 1. As shown in FIGS. 3 and 6, at position 1 the heat transfer fluid in stage 112 can flow through the material as second inlet port 144 is now aligned with an opening 124 in second valve 116 and an opening 108 at the second end 120 while first outlet port 142 is aligned with an opening 122 in first valve 114 and opening 106 at first end 118. As indicated by arrow QC-OUT, heat transfer fluid in stage 112, now cooled by the MCM, can travel out of regenerator housing 102 and along line 46 to the first heat exchanger 32. At the same time, and as indicated by arrow QC-IN, heat transfer fluid from second heat exchanger 34 flows into stage 112 from line 50 when stage 112 is at position 5. Because heat transfer fluid from the second heat exchanger 34 is relatively warmer than the MCM in stage 112 at position 5, the MCM will lose some of its heat to the heat transfer fluid. The heat transfer fluid now travels along line 46 to the first heat exchanger 32 to receive heat and cool the refrigeration compartment 30.
  • As regenerator housing 102 is rotated continuously, the above described process of placing stage 112 in and out of magnetic field M is repeated. Additionally, the size of magnetic field M and regenerator housing 102 are such that a subset of the plurality of stages 112 is within the magnetic field at any given time during rotation. Similarly, a subset of the plurality of stages 112 are outside (or substantially outside) of the magnetic field at any given time during rotation. Additionally, at any given time, there are at least two stages 112 through which the heat transfer fluid is flowing while the other stages remain in a dwell mode. More specifically, while one stage 112 is losing heat through the flow of heat transfer fluid at position 5, another stage 112 is receiving heat from the flowing heat transfer fluid at position 1, while all remaining stages 112 are in dwell mode. As such, the system can be operated continuously to provide a continuous recirculation of heat transfer fluid in heat pump system 52 as stages 112 are each sequentially rotated through positions 1 through 8.
  • As will be understood by one of skill in the art using the teachings disclosed herein, the number of stages for housing 102, the number of ports in valve 114 and 116, and/or other parameters can be varied to provide different configurations of heat pump 100 while still providing for continuous operation. For example, each valve could be provided within two inlet ports and two outlet ports so that heat transfer fluid flows through at least four stages 112 at any particular point in time. Alternatively, regenerator housing 102, valves 122 and 124, and/or seals 136 and 138 could be constructed so that e.g., at least two stages are in fluid communication with an inlet port and outlet port at any one time. Other configurations may be used as well.
  • As stated, stage 112 includes MCM extending along the axial direction of flow. The MCM may be constructed from a single magneto caloric material or may include multiple different magneto caloric materials. By way of example, appliance 10 may be used in an application where the ambient temperature changes over a substantial range. However, a specific magneto caloric material may exhibit the magneto caloric effect over only a much narrower temperature range. As such, it may be desirable to use a variety of magneto caloric materials within a given stage to accommodate the wide range of ambient temperatures over which appliance 10 and/or heat pump 100 may be used.
  • Accordingly, as shown in FIG. 7, each stage 112 can be provided with zones 152, 154, 156, 158, 160, and 162 of different magneto caloric materials. Each such zone includes an MCM that exhibits the magneto caloric effect at a different temperature or a different temperature range than an adjacent zone along the axial direction of stage 112. For example, zone 152 may exhibit the magnet caloric effect at a temperature less than the temperature at which zone 154 exhibits the magnet caloric effect, which may be less than such temperature for zone 156, and so on. Other configurations may be used as well. By configuring the appropriate number sequence of zones of MCM, heat pump 100 can be operated over a substantial range of ambient temperatures.
  • Referring now to FIGS. 4, 5, and 6, magnetic element 126 is constructed in the shape of an arc from a plurality of magnets 130 arranged in a Halbach array for this exemplary embodiment. More specifically, magnets 130 are arranged so that magnetic element 126 provides a magnetic field M located radially outward of magnetic element 126 and towards regenerator housing 102 while minimal or no magnetic field is located radially-inward towards the axis of rotation A-A. Magnetic field M may be aligned in a curve or arc shape. A variety of other configurations may be used as well for magnetic element 126 and/or its resulting magnetic field. For example, magnetic element 126 could be constructed from a first plurality of magnets positioned in cavity 128 in a Halbach array that directs the field outwardly while a second plurality of magnetics is positioned radially outward of regenerator housing 102 and arranged to provide a magnetic field that is located radially inward to the regenerator housing 102. In still another embodiment, magnetic element 128 could be constructed from a plurality of magnets positioned radially outward of regenerator housing 102 and arranged to provide a magnetic field that is located radially inward towards the regenerator housing 102. Other configurations of magnetic element 128 may be provided as well. For example, coils instead of magnets may be used to create the magnetic field desired.
  • For this exemplary embodiment, the arc created by magnetic element 128 provides a magnetic field extending circumferentially about 180 degrees. In still another embodiment, the arc created by magnetic element 128 provides a magnetic field extending circumferentially in a range of about 170 degrees to about 190 degrees.
  • A motor 28 is in mechanical communication with regenerator housing 102 and provides for rotation of housing 102 about axis A-A. By way of example, motor 28 may be connected directly with housing 102 by a shaft or indirectly through a gear box. Other configurations may be used as well.
  • This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.

Claims (20)

What is claimed is:
1. A heat pump system, comprising:
a regenerator housing defining a circumferential direction and rotatable about an axial direction, the axial direction extending between a first end and a second end of the regenerator housing, the regenerator housing comprising a plurality of chambers with each chamber extending longitudinally along the axial direction between a pair of openings, the plurality of chambers arranged proximate to each other along the circumferential direction;
a plurality of stages, each stage comprising magneto caloric material positioned within one of the plurality of chambers and extending along the axial direction;
a pair of valves comprising a first valve attached to the first end of the regenerator housing and a second valve attached to the second end of the regenerator housing, the first valve and second valve each comprising a plurality of apertures spaced apart from each other along the circumferential direction with each aperture positioned adjacent to one of the pair of openings of one of the plurality of chambers;
a magnetic element positioned proximate to the regenerator housing and extending along the axial direction, the magnetic element creating a magnetic field, the magnetic element positioned so that a subset of the plurality of stages are moved in and out of the magnetic field as the regenerator housing is rotated about the axial direction; and
a pair of seals comprising a first seal positioned adjacent to the first valve and a second seal adjacent to the second valve such that the regenerator housing and the pair of valves are rotatable relative to the pair of seals, the first seal and the second seal each comprising a pair of ports positioned in an opposing manner relative to each other and also positioned so that each port can selectively align with at least one of the pair of openings of the plurality of chambers as the regenerator housing is rotated about the axial direction.
2. The heat pump system of claim 1, wherein the regenerator housing defines a radial direction and further comprises a cavity positioned radially-inward of the plurality of chambers, wherein the magnetic element is positioned within the cavity of the regenerator housing.
3. The heat pump system of claim 2, wherein the magnetic element comprises a plurality of magnets arranged in the shape of an arc and configured to project a magnetic field substantially along a radially-outward direction.
4. The heat pump system of claim 3, wherein the arc formed by the plurality of magnets extends about the circumferential direction by an amount in the range of about 170 degrees to about 190 degrees.
5. The heat pump system of claim 4, wherein the plurality of magnets are arranged in a HalBach array.
6. The heat pump system of claim of claim 1, wherein the regenerator housing defines a radial direction and further comprises a cavity positioned radially-inward of the plurality of chambers, and wherein the magnetic element further comprising a first plurality of magnets positioned within the cavity and a second plurality of magnets positioned radially outward of the regenerator housing.
7. The heat pump system of claim of claim 1, wherein the pair of ports on each of the pair of seals are positioned about the circumferential direction within a range of about 170 degrees to about 190 degrees from each other.
8. The heat pump system of claim of claim 1, wherein each stage of the plurality of stages comprises a plurality of zones of magneto caloric material arranged sequentially along the axial direction, wherein each zone comprises magneto caloric material having a different temperature range over which a change in the magnetic moments of the magneto caloric material occurs as compared to an adjacent zone.
9. The heat pump system of claim of claim 8, wherein the plurality of zones are arranged along the axial direction so that the temperature range over which the change in the magnetic moments of magneto caloric material occurs increases sequentially from zone to zone along the axial direction.
10. The heat pump system of claim 1, further comprising a motor in mechanical communication with the regenerator housing and configured for rotating the regenerator housing about the axial direction.
11. A refrigerator appliance, comprising:
a compartment for the storage of food items;
a first heat exchanger for the removal of heat from the compartment;
a second heat exchanger for the delivery of heat removed by the first heat exchanger to a location external of the compartment;
a pump for circulating a heat transfer fluid between the first heat exchanger and the second heat exchanger;
a heat pump in fluid communication with the pump, the heat pump also in fluid communication with the first heat exchanger through a first inlet port and a first outlet port, the heat pump also in fluid communication with the second heat exchanger by a second inlet port and a second outlet port, the heat pump further comprising
a regenerator housing defining a circumferential direction and rotatable about an axial direction, the axial direction extending between a first end and a second end of the regenerator housing, the regenerator housing comprising a plurality of chambers with each chamber extending longitudinally along the axial direction between a pair of openings, the plurality of chambers arranged proximate to each other along the circumferential direction;
a plurality of stages, each stage comprising magneto caloric material positioned within one of the plurality of chambers and extending along the axial direction;
a pair of valves comprising a first valve attached to the first end of the regenerator housing and a second valve attached to the second end of the regenerator housing, the first valve and second valve each comprising a plurality of apertures spaced apart from each other along the circumferential direction with each aperture positioned adjacent to one of the pair of openings of one of the plurality of chambers;
a magnetic element positioned proximate to the regenerator housing and extending along the axial direction, the magnetic element creating a magnetic field, the magnetic element positioned so that a subset of the plurality of stages are moved within the magnetic field as the regenerator housing is rotated about the axial direction; and
a pair of seals comprising a first seal positioned adjacent to the first valve and a second seal positioned adjacent to the second valve such that the regenerator housing and the pair of valves are rotatable relative to the pair of seals, the first seal comprising the first inlet port and the first outlet port, the second seal comprising the second inlet port and a second outlet port,
wherein the first inlet port and the first outlet port are positioned in an opposing manner about the first seal and second inlet port and the second outlet port are positioned in an opposing manner about the second seal,
wherein the first inlet port and the second outlet port are positioned for fluid communication with the pair of openings of at least one chamber at a time as the regenerator housing is rotated about the axial direction so that heat transfer fluid from the first heat exchanger may receive heat from the stage of magneto caloric material located in the at least one chamber, and
wherein the second inlet port and the first outlet port are positioned for fluid communication with the pair of openings of at least one other chamber at a time as the regenerator housing is rotated about the axial direction so that heat transfer fluid from the second heat exchanger may deliver heat to the magneto caloric material in the at least one other chamber.
12. The refrigerator appliance of claim 11, wherein the regenerator housing defines a radial direction and further comprises a cavity positioned radially-inward of the plurality of chambers, wherein the magnetic element is positioned within the cavity of the regenerator housing.
13. The refrigerator appliance of claim 12, wherein the magnetic element comprises a plurality of magnets arranged in the shape of an arc and configured to project a magnetic field substantially along a radially-outward direction.
14. The refrigerator appliance of claim 13, wherein the arc formed by the plurality of magnets extends about the circumferential direction by an amount in the range of about 170 degrees to about 190 degrees.
15. The refrigerator appliance of claim 14, wherein the plurality of magnets are arranged in a HalBach array.
16. The refrigerator appliance of claim 11, wherein the regenerator housing defines a radial direction and further comprises a cavity positioned radially-inward of the plurality of chambers, and wherein the magnetic element further comprising a first plurality of magnets positioned within the cavity and a second plurality of magnets positioned radially outward of the regenerator housing.
17. The refrigerator appliance of claim 11, wherein the pair of ports on each of the pair of seals are positioned about the circumferential direction within a range of about 170 degrees to about 190 degrees from each other.
18. The refrigerator appliance of claim 11, wherein each stage of the plurality of stages comprises a plurality of zones of magneto caloric material arranged sequentially along the axial direction, wherein each zone comprises magneto caloric material having a different temperature range over which a change in the magnetic moments of the magneto caloric material occurs as compared to an adjacent zone.
19. The refrigerator appliance of claim 18, wherein the plurality of zones are arranged along the axial direction so that the temperature range over which the change in the magnetic moments of magneto caloric material occurs increases sequentially from zone to zone along the axial direction.
20. The refrigerator appliance of claim 11, further comprising a motor in mechanical communication with the regenerator housing and configured for rotating the regenerator housing about the axial direction.
US13/719,395 2012-12-19 2012-12-19 Magneto caloric device with continuous pump Abandoned US20140165594A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/719,395 US20140165594A1 (en) 2012-12-19 2012-12-19 Magneto caloric device with continuous pump
PCT/US2013/070518 WO2014099199A1 (en) 2012-12-19 2013-11-18 Magneto caloric device with continuous pump
CN201380067028.0A CN104870911B (en) 2012-12-19 2013-11-18 Mangneto thermal with continuous pump
EP13799164.2A EP2936007A1 (en) 2012-12-19 2013-11-18 Magneto caloric device with continuous pump
MX2015007963A MX2015007963A (en) 2012-12-19 2013-11-18 Magneto caloric device with continuous pump.
KR1020157019140A KR20150096743A (en) 2012-12-19 2013-11-18 Magneto caloric device with continuous pump
CA2893874A CA2893874A1 (en) 2012-12-19 2013-11-18 Magneto caloric device with continuous pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/719,395 US20140165594A1 (en) 2012-12-19 2012-12-19 Magneto caloric device with continuous pump

Publications (1)

Publication Number Publication Date
US20140165594A1 true US20140165594A1 (en) 2014-06-19

Family

ID=49684093

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/719,395 Abandoned US20140165594A1 (en) 2012-12-19 2012-12-19 Magneto caloric device with continuous pump

Country Status (7)

Country Link
US (1) US20140165594A1 (en)
EP (1) EP2936007A1 (en)
KR (1) KR20150096743A (en)
CN (1) CN104870911B (en)
CA (1) CA2893874A1 (en)
MX (1) MX2015007963A (en)
WO (1) WO2014099199A1 (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017081048A2 (en) 2015-11-13 2017-05-18 Basf Se Magnetocaloric heat pump, cooling device and method of operating thereof
WO2017182285A1 (en) * 2016-04-20 2017-10-26 Cooltech Applications Method for cooling or heating a fluid in a thermal enclosure by means of a magnetocaloric thermal generator and thermal apparatus implementing said method
US9851128B2 (en) 2014-04-22 2017-12-26 Haier Us Appliance Solutions, Inc. Magneto caloric heat pump
US9857106B1 (en) 2016-10-10 2018-01-02 Haier Us Appliance Solutions, Inc. Heat pump valve assembly
US9857105B1 (en) 2016-10-10 2018-01-02 Haier Us Appliance Solutions, Inc. Heat pump with a compliant seal
US9869493B1 (en) 2016-07-19 2018-01-16 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US9915448B2 (en) 2016-07-19 2018-03-13 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006674B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006672B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006675B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006673B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047979B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047980B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10126025B2 (en) 2013-08-02 2018-11-13 Haier Us Appliance Solutions, Inc. Magneto caloric assemblies
US10222101B2 (en) 2016-07-19 2019-03-05 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10274231B2 (en) 2016-07-19 2019-04-30 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10281177B2 (en) 2016-07-19 2019-05-07 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10288326B2 (en) 2016-12-06 2019-05-14 Haier Us Appliance Solutions, Inc. Conduction heat pump
US10295227B2 (en) 2016-07-19 2019-05-21 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10299655B2 (en) * 2016-05-16 2019-05-28 General Electric Company Caloric heat pump dishwasher appliance
US20190178535A1 (en) * 2017-12-12 2019-06-13 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US20190178536A1 (en) * 2017-12-12 2019-06-13 Haier Us Appliance Solutions, Inc. Elasto-caloric heat pump system
US10386096B2 (en) 2016-12-06 2019-08-20 Haier Us Appliance Solutions, Inc. Magnet assembly for a magneto-caloric heat pump
US10422555B2 (en) 2017-07-19 2019-09-24 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10443585B2 (en) 2016-08-26 2019-10-15 Haier Us Appliance Solutions, Inc. Pump for a heat pump system
US10451322B2 (en) 2017-07-19 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10451320B2 (en) 2017-05-25 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with water condensing features
US10520229B2 (en) 2017-11-14 2019-12-31 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US10527325B2 (en) 2017-03-28 2020-01-07 Haier Us Appliance Solutions, Inc. Refrigerator appliance
US10541070B2 (en) 2016-04-25 2020-01-21 Haier Us Appliance Solutions, Inc. Method for forming a bed of stabilized magneto-caloric material
US10551095B2 (en) 2018-04-18 2020-02-04 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10557649B2 (en) 2018-04-18 2020-02-11 Haier Us Appliance Solutions, Inc. Variable temperature magneto-caloric thermal diode assembly
US10641539B2 (en) 2018-04-18 2020-05-05 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648705B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648704B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648706B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder
US10684044B2 (en) 2018-07-17 2020-06-16 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a rotating heat exchanger
US10782051B2 (en) 2018-04-18 2020-09-22 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10830506B2 (en) 2018-04-18 2020-11-10 Haier Us Appliance Solutions, Inc. Variable speed magneto-caloric thermal diode assembly
US10876770B2 (en) 2018-04-18 2020-12-29 Haier Us Appliance Solutions, Inc. Method for operating an elasto-caloric heat pump with variable pre-strain
US10989449B2 (en) 2018-05-10 2021-04-27 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial supports
US11009282B2 (en) 2017-03-28 2021-05-18 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US11015843B2 (en) 2019-05-29 2021-05-25 Haier Us Appliance Solutions, Inc. Caloric heat pump hydraulic system
US11015842B2 (en) 2018-05-10 2021-05-25 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial polarity alignment
US11054176B2 (en) 2018-05-10 2021-07-06 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a modular magnet system
US11092364B2 (en) 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
US11112146B2 (en) 2019-02-12 2021-09-07 Haier Us Appliance Solutions, Inc. Heat pump and cascaded caloric regenerator assembly
US11149994B2 (en) 2019-01-08 2021-10-19 Haier Us Appliance Solutions, Inc. Uneven flow valve for a caloric regenerator
US11168926B2 (en) 2019-01-08 2021-11-09 Haier Us Appliance Solutions, Inc. Leveraged mechano-caloric heat pump
US11193697B2 (en) 2019-01-08 2021-12-07 Haier Us Appliance Solutions, Inc. Fan speed control method for caloric heat pump systems
US11274860B2 (en) 2019-01-08 2022-03-15 Haier Us Appliance Solutions, Inc. Mechano-caloric stage with inner and outer sleeves

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9625185B2 (en) 2013-04-16 2017-04-18 Haier Us Appliance Solutions, Inc. Heat pump with magneto caloric materials and variable magnetic field strength
US9377221B2 (en) * 2013-07-24 2016-06-28 General Electric Company Variable heat pump using magneto caloric materials
US9797630B2 (en) 2014-06-17 2017-10-24 Haier Us Appliance Solutions, Inc. Heat pump with restorative operation for magneto caloric material
US10254020B2 (en) 2015-01-22 2019-04-09 Haier Us Appliance Solutions, Inc. Regenerator including magneto caloric material with channels for the flow of heat transfer fluid
US9631843B2 (en) 2015-02-13 2017-04-25 Haier Us Appliance Solutions, Inc. Magnetic device for magneto caloric heat pump regenerator
WO2018232143A1 (en) * 2017-06-16 2018-12-20 Carrier Corporation Ferroic response through application of conjugate field
CN108413675B (en) * 2018-02-25 2021-01-05 中科磁凌(北京)科技有限公司 Modularization refrigerator based on magnetic refrigeration
CN111380242B (en) * 2020-03-20 2020-11-13 中国科学院理化技术研究所 Active magnetic heat regenerator for reducing demagnetization effect

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4549155A (en) * 1982-09-20 1985-10-22 The United States Of America As Represented By The United States Department Of Energy Permanent magnet multipole with adjustable strength
WO2002012800A1 (en) * 2000-08-09 2002-02-14 Astronautics Corporation Of America Rotating bed magnetic refrigeration apparatus
JP2008051412A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device
US20100071383A1 (en) * 2008-09-24 2010-03-25 Hussmann Corporation Magnetic refrigeration device
US20110239662A1 (en) * 2007-08-17 2011-10-06 The Technical University Of Denmark refrigeration device and a method of refrigerating
US20130300243A1 (en) * 2012-05-11 2013-11-14 Jacek F. Gieras High power density permanent magnet machine
US20140190182A1 (en) * 2013-01-10 2014-07-10 General Electric Company Magneto caloric heat pump with variable magnetization

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979937B (en) * 2010-10-15 2012-05-23 西安交通大学 Rotary magnetic refrigeration device and application thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4549155A (en) * 1982-09-20 1985-10-22 The United States Of America As Represented By The United States Department Of Energy Permanent magnet multipole with adjustable strength
WO2002012800A1 (en) * 2000-08-09 2002-02-14 Astronautics Corporation Of America Rotating bed magnetic refrigeration apparatus
JP2008051412A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device
US20110239662A1 (en) * 2007-08-17 2011-10-06 The Technical University Of Denmark refrigeration device and a method of refrigerating
US20100071383A1 (en) * 2008-09-24 2010-03-25 Hussmann Corporation Magnetic refrigeration device
US20130300243A1 (en) * 2012-05-11 2013-11-14 Jacek F. Gieras High power density permanent magnet machine
US20140190182A1 (en) * 2013-01-10 2014-07-10 General Electric Company Magneto caloric heat pump with variable magnetization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Tetsuji Okamura, Performance of a room-temperature rotary magnetic refrigerator, 28/11/2005, Elsevier *

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10126025B2 (en) 2013-08-02 2018-11-13 Haier Us Appliance Solutions, Inc. Magneto caloric assemblies
US9851128B2 (en) 2014-04-22 2017-12-26 Haier Us Appliance Solutions, Inc. Magneto caloric heat pump
WO2017081048A2 (en) 2015-11-13 2017-05-18 Basf Se Magnetocaloric heat pump, cooling device and method of operating thereof
WO2017182285A1 (en) * 2016-04-20 2017-10-26 Cooltech Applications Method for cooling or heating a fluid in a thermal enclosure by means of a magnetocaloric thermal generator and thermal apparatus implementing said method
FR3050517A1 (en) * 2016-04-20 2017-10-27 Cooltech Applications PROCESS FOR COOLING OR HEATING A FLUID IN A THERMAL ENCLOSURE USING A MAGNETOCALORIC THERMAL GENERATOR AND THERMAL INSTALLATION USING SAID METHOD
US10541070B2 (en) 2016-04-25 2020-01-21 Haier Us Appliance Solutions, Inc. Method for forming a bed of stabilized magneto-caloric material
US10299655B2 (en) * 2016-05-16 2019-05-28 General Electric Company Caloric heat pump dishwasher appliance
US10047979B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10274231B2 (en) 2016-07-19 2019-04-30 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10006672B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006675B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006673B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US9915448B2 (en) 2016-07-19 2018-03-13 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047980B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US9869493B1 (en) 2016-07-19 2018-01-16 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10222101B2 (en) 2016-07-19 2019-03-05 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006674B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10281177B2 (en) 2016-07-19 2019-05-07 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10648703B2 (en) 2016-07-19 2020-05-12 Haier US Applicance Solutions, Inc. Caloric heat pump system
US10295227B2 (en) 2016-07-19 2019-05-21 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10443585B2 (en) 2016-08-26 2019-10-15 Haier Us Appliance Solutions, Inc. Pump for a heat pump system
US9857105B1 (en) 2016-10-10 2018-01-02 Haier Us Appliance Solutions, Inc. Heat pump with a compliant seal
US9857106B1 (en) 2016-10-10 2018-01-02 Haier Us Appliance Solutions, Inc. Heat pump valve assembly
US10288326B2 (en) 2016-12-06 2019-05-14 Haier Us Appliance Solutions, Inc. Conduction heat pump
US10386096B2 (en) 2016-12-06 2019-08-20 Haier Us Appliance Solutions, Inc. Magnet assembly for a magneto-caloric heat pump
US11009282B2 (en) 2017-03-28 2021-05-18 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10527325B2 (en) 2017-03-28 2020-01-07 Haier Us Appliance Solutions, Inc. Refrigerator appliance
US10451320B2 (en) 2017-05-25 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with water condensing features
US10451322B2 (en) 2017-07-19 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10422555B2 (en) 2017-07-19 2019-09-24 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10520229B2 (en) 2017-11-14 2019-12-31 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US20190178536A1 (en) * 2017-12-12 2019-06-13 Haier Us Appliance Solutions, Inc. Elasto-caloric heat pump system
US11022348B2 (en) * 2017-12-12 2021-06-01 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US20190178535A1 (en) * 2017-12-12 2019-06-13 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US10823464B2 (en) * 2017-12-12 2020-11-03 Haier Us Appliance Solutions, Inc. Elasto-caloric heat pump system
US10648705B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10557649B2 (en) 2018-04-18 2020-02-11 Haier Us Appliance Solutions, Inc. Variable temperature magneto-caloric thermal diode assembly
US10648706B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder
US10551095B2 (en) 2018-04-18 2020-02-04 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10782051B2 (en) 2018-04-18 2020-09-22 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10641539B2 (en) 2018-04-18 2020-05-05 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10830506B2 (en) 2018-04-18 2020-11-10 Haier Us Appliance Solutions, Inc. Variable speed magneto-caloric thermal diode assembly
US10876770B2 (en) 2018-04-18 2020-12-29 Haier Us Appliance Solutions, Inc. Method for operating an elasto-caloric heat pump with variable pre-strain
US10648704B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10989449B2 (en) 2018-05-10 2021-04-27 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial supports
US11015842B2 (en) 2018-05-10 2021-05-25 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial polarity alignment
US11054176B2 (en) 2018-05-10 2021-07-06 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a modular magnet system
US10684044B2 (en) 2018-07-17 2020-06-16 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a rotating heat exchanger
US11092364B2 (en) 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
US11149994B2 (en) 2019-01-08 2021-10-19 Haier Us Appliance Solutions, Inc. Uneven flow valve for a caloric regenerator
US11168926B2 (en) 2019-01-08 2021-11-09 Haier Us Appliance Solutions, Inc. Leveraged mechano-caloric heat pump
US11193697B2 (en) 2019-01-08 2021-12-07 Haier Us Appliance Solutions, Inc. Fan speed control method for caloric heat pump systems
US11274860B2 (en) 2019-01-08 2022-03-15 Haier Us Appliance Solutions, Inc. Mechano-caloric stage with inner and outer sleeves
US11112146B2 (en) 2019-02-12 2021-09-07 Haier Us Appliance Solutions, Inc. Heat pump and cascaded caloric regenerator assembly
US11015843B2 (en) 2019-05-29 2021-05-25 Haier Us Appliance Solutions, Inc. Caloric heat pump hydraulic system

Also Published As

Publication number Publication date
CN104870911A (en) 2015-08-26
CN104870911B (en) 2017-06-30
WO2014099199A1 (en) 2014-06-26
EP2936007A1 (en) 2015-10-28
CA2893874A1 (en) 2014-06-26
MX2015007963A (en) 2015-10-08
KR20150096743A (en) 2015-08-25

Similar Documents

Publication Publication Date Title
US9625185B2 (en) Heat pump with magneto caloric materials and variable magnetic field strength
US20140165594A1 (en) Magneto caloric device with continuous pump
US10465951B2 (en) Magneto caloric heat pump with variable magnetization
US9377221B2 (en) Variable heat pump using magneto caloric materials
US10254020B2 (en) Regenerator including magneto caloric material with channels for the flow of heat transfer fluid
US9797630B2 (en) Heat pump with restorative operation for magneto caloric material
US9631843B2 (en) Magnetic device for magneto caloric heat pump regenerator
US10520229B2 (en) Caloric heat pump for an appliance
US10281177B2 (en) Caloric heat pump system
US10641539B2 (en) Magneto-caloric thermal diode assembly
US10648704B2 (en) Magneto-caloric thermal diode assembly
US10648705B2 (en) Magneto-caloric thermal diode assembly
US9851128B2 (en) Magneto caloric heat pump
US11022348B2 (en) Caloric heat pump for an appliance
US11015842B2 (en) Magneto-caloric thermal diode assembly with radial polarity alignment
US11112146B2 (en) Heat pump and cascaded caloric regenerator assembly

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BENEDICT, MICHAEL ALEXANDER;REEL/FRAME:029499/0331

Effective date: 20121129

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: HAIER US APPLIANCE SOLUTIONS, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:038951/0577

Effective date: 20160606