CN1025125C - 铁-稀土基磁致冷材料及制备方法 - Google Patents

铁-稀土基磁致冷材料及制备方法 Download PDF

Info

Publication number
CN1025125C
CN1025125C CN92103258A CN92103258A CN1025125C CN 1025125 C CN1025125 C CN 1025125C CN 92103258 A CN92103258 A CN 92103258A CN 92103258 A CN92103258 A CN 92103258A CN 1025125 C CN1025125 C CN 1025125C
Authority
CN
China
Prior art keywords
iron
rare earth
magnetic
present
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN92103258A
Other languages
English (en)
Other versions
CN1065294A (zh
Inventor
李锋
吴建民
张晓玲
郑大立
戴礼智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Iron and Steel Research Institute
Original Assignee
Central Iron and Steel Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Iron and Steel Research Institute filed Critical Central Iron and Steel Research Institute
Priority to CN92103258A priority Critical patent/CN1025125C/zh
Publication of CN1065294A publication Critical patent/CN1065294A/zh
Application granted granted Critical
Publication of CN1025125C publication Critical patent/CN1025125C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

本发明系一种铁-稀土基磁致冷材料及其制造方法。该材料的化学式为:La(1-x)Rx(Fel-y-zMyAlz)13。其制造方法是氩气保护下电弧炉冶炼,合金锭在真空炉中进行均匀化处理;真空度为(2.0~2.93)×10-3pa,均匀化温度900~1100℃,均匀化时间≥100小时,合金锭均匀化后,随即在外壁通水冷却的铜管中急冷到室温。该材料居里点处于室温左右,且磁滞回线面积小,饱和磁化场低,电阻率高,是一种优异的磁致冷材料。

Description

本发明属于铁-稀土基合金。
近几年来,随着超导技术的发展及其超导电性在电子、电力、能源、信息、医疗和军事领域等中的应用,低温和室温致冷技术也相应的得到了发展。
现有的低温致冷技术中,传统的方法是气体压缩-膨胀致冷方法,该方法的主要缺点是致冷效率很低,且设备装置庞大复杂。
磁致冷技术是一种新的先进的致冷技术。它是利用磁性材料具有磁热效应的原理,即利用磁性物质中的自旋在磁场中平行排列状态和去掉磁场后自旋又混乱排列状态之间熵变,在等温磁化和绝热去磁过程中致冷的原理。磁致冷技术的主要优点是致冷效率高,设备装置小,是一种有广阔发展前途的致冷方法。
磁致冷材料即为磁致冷剂。磁致冷方法要求磁致冷材料具有大的熵变,较高的热导率和小的铁损。在低于20K温区的磁致材料中,典型的有GGG(Gd3Ga5O12)和DAG(Dy3Al5O3);在15~77K温区内的磁致冷材料是具有Laves相的RM2(M=Ni、Co、Al)复合体(特开昭62-80247,US4849017);150K以下温区的磁致冷材料有非晶态合金(PCT WO86/00936)。
随着低温磁致冷技术及相应材料的发展,室温区(240~320K)磁致冷材料也相继开发。现有的室温区磁致冷材料有两类:(1)稀土金属轧(《J.Appl.Phys.》,47,3673,1976);(2)以3d过渡元素为基的合金和化合物,如Mn3AlC,Ni2MnSn和Fe-Zr系非晶合金(《日本金属学会志》,47,683~691,1983)。稀土金属间化合物通常具有较大的磁致熵变△SM,但Tc低于室温,并易氧化,耐蚀性差,磁滞损耗大,且价格贵;3d过渡族元素基合金,虽然有较好的抗氧化性和耐蚀性,但为了使Tc落在室温区域,通常只好减少具有磁矩的元素(产生磁致冷熵变的来源)的含量,致使降低△SM。上述材料中,有的电阻率小,产生的涡流损耗较大,这些损耗在室温区域对磁致冷效果产生不利的影响。
本发明的目的在于提供一种新的铁-稀土基磁致冷材料及制备方法,该材料既有较大的磁矩和熵变△SM,又有良好的耐蚀性和抗氧化性能,还具有高的电阻率,小的磁滞性和良好的导热性,成为综合性能良好的室温磁致冷材料。
为达到上述目的,本发明所采用的技术方案是利用稀土金属间化合物和3d过渡元素为基的合金的优点,并克服它们各自的缺点。
为了使本发明既有较大的磁熵变△SM和高的自旋浓度,又有良好的耐蚀性和抗氧化性能,以及价格低廉的特点,选择以稀土元素和3d过渡旋金属元素为基的合金或化合物,从要求具有铁磁性及价格低廉考虑,3d过渡旋金属中,以铁较理想。为此,构成以铁-稀土为基的特点;另一方面根据磁致冷材料要求饱和磁化场低、磁滞损耗小和电阻高的特点,选择磁晶各向异性小的立方对称性晶体结构,且Tc处于室温左右的化合物较合适。
综上所述,本发明的磁致冷材料的化学成分选择依据是:该材料既具有铁磁性结构,又为立方对称性晶体结构。在一系列的Fe、Co、Ni与稀土元素的二元合金中,只有两类化合物能满足上述条件:一类是Laves相的RM2合金(M代表Fe、Co、Ni)等,它们的居里点Tc绝大多数低于室温(特开昭62-80247,US4849017);另一类是镧钴 合金(LaCo13),它是目前已知的3d过渡族金属元素与稀土化合时,其含量比值为最大的二元合金,但它的Tc太高(约1290K)。为了降低Tc,又继续保持晶体结构,采取以Fe和Al替代Co,达到了预期效果。为了进一步改善性能,用其它稀土元素(如Ce、Pr、Nd、Sm、Eu、Gd、Dy、Tb、Ho、Er、Yb)部分替代La,其中轻稀土元素能提高△SM,并基本不改变材料的Tc。经X射线检测表明,轻稀土元素替代La≤30%,未检测到第二相。同时,用其它3d过渡族金属元素(Ti、V、Cr、Mn、Co、Ni)部分替代Al,既能提高△SM,又能降低Tc。
基于上述考虑,本发明磁致冷材料的化学成分为:
以化学式表示,即为
La(1-x)Rx(Fel-y-zMyAlz)13
以重量百分数表示,即为:
(1)La13~25%,R0.1~10%,Fe55~70%,M0.1~15%,Al4~13%;
(2)La13~25%,Fe55~70%,M0.1~55%,Al4~13%;上述化学成分中:
M为Ti、V、Cr、Mn、Co、Ni、Si、Ge、Ga、Sn、Pb和Bi中任一种或两种以上。
R为Ge、Pr、Nd、Sm、Eu、Gd、Dy、Tb、Ho、Er、Y任一种。
本发明铁-稀土基磁致冷材料的制备方法如下:
配料-电弧炉或感应炉熔炼-真空均匀化处理-急冷-加工。
按其化学成分进行配料后,在氩气保护下的电弧炉内进行熔炼,浇铸成合金锭;合金在真空炉内进行均匀化处理,其温度为900~1100℃,真空度为(2.0~2.93)×10-3Pa,保温时间≥100小时;然后,随即将合金锭置于外壁通水冷却的铜管中急冷到室温;然后再加工成所需的制品。
根据本发明的化学成分及其制备方法所得到的磁致冷材料,具有这种材料必须具备的优异的综合性能,其中
Tc:260~340K,处于室温区内
△SM(14kOe):>13KJ/m3·K
室温电阻率可达190μΩ·cm,比金属钆高1/4
饱和磁化场μ0H0.5~0.7T
热导率≥100W/mk
在室温下和在0~14kOe磁场中,磁滞回线的面积约为金属钆的一半(见附图1)。
本发明的最大磁熵变(△SM)max小于金属钆,但它的△SM随温度变化很缓慢(见附图3)。因此,在大的致冷温度范围内,总的磁变化仍与金属钆相当。这对埃里克森(Ericsson)循环较合适。
与现有技术相比,本发明具有如下优点:
1、材料的磁滞回线面积小,因而磁滞损耗小。
2、材料的电阻率高,涡流损耗小。
3、饱和磁化场低,适用于低的工作磁场中,并且降低磁滞损耗。
4、本发明的磁熵变△SM随温度变化很缓慢,有利于埃里克森循环。
由于上述优点,致使本发明具有优异磁致冷效果。
实施例
根据本发明所述的化学成分范围及其制造方法,在氩气保护下的电弧炉内冶炼了14炉本发明合金,其具体的化学成分如表1所示;合金熔炼完后,合金锭在真空炉内进行均匀化处理,其工艺参数如表2所示;之后,随即将试验的合金锭置于外壁通水冷却的铜管中,急冷到室温;各炉次均取样,测量其居里点,其结果如表2所示。为了对比,在同样条件、同样设备下还冶炼和制备了三个对比合金,其相应的成分、工艺参数和居里点分别于表1、表2所示。
附图说明
附图1为本发明材料与对比例的磁滞回线测试图。图中横座标为外加磁场,纵座标为材料的磁化强度,图中的实线为本发明的磁滞回线,虚线为金属钆的磁滞回线。从图看出,本发明的磁滞回线面积比后者小得多。
附图2为本发明材料的磁化强度与磁场的关系曲线。其中横座标表示外加磁场,纵座标表示磁化强度。
附图3为本发明材料的磁熵与温度的关系曲线。其中横座标为温度,纵座标表示磁熵变的变化。(表见文后)
表1    实施例与对比例合金的化学成分(重量%)
成分
La    Fe    Al    M    R
炉号
1    21.64    57.01    11.80    Co    9.55
2    21.69    61.69    11.83    Co    4.79
3    21.72    64.51    11.85    Co    1.92
实    4    20.88    63.74    8.01    Co    7.34
5    21.19    64.71    9.48    Co    4.68
6    21.52    65.71    10.87    Co    1.90
施    7    21.57    65.85    10.90    Cr    1.68
8    21.55    65.79    10.89    Mn    1.77
9    21.53    65.71    10.87    Ni    1.89
例    10    19.52    64.40    11.83    Co    1.91    Sm    2.44
11    19.54    64.45    11.84    Co    1.92    Nd    2.25
12    19.55    64.48    11.85    Co    1.92    Pr    2.20
13    19.55    64.49    11.85    Co    1.92    Ce    2.19
14    13.02    64.46    11.85    Co    1.92    Ce    8.76
对    15    21.25    69.31    9.44
比    16    21.55    67.57    10.88
例    17    21.75    66.39    11.86
表2    实施例与对比例合金制造工艺参数及性能
真空均匀化处理    性能
炉号
真空度 温度 时间 Tc (△SM)max 电阻率ρ
×10-3Pa ℃ 小时 k kJ/m3·K μΩ·cm
1    2.66    1000    120    318    10.0    190
2    2.66    1000    120    305    11.4    192
实    3    2.66    1000    120    391    13.0    195
4    2.66    1000    120    348    15.0    188
5    2.66    1000    120    327    14.0    190
施    6    2.69    1000    120    -    -    205
7    2.93    1050    100    278    11.8    191
8    2.93    1050    100    267    11.5    189
例    9    2.93    1050    100    288    12.3    191
10    2.00    950    150    397    -    185
11    2.00    950    150    311    12.7    188
12    2.00    950    150    300    11.0    189
13    2.00    950    150    291    12.8    185
14    2.00    950    150    289    13.5    180
对    15    2.66    1000    100    247    -    188
比    16    2.66    1000    100    255    10.0    190
例    17    2.66    1000    100    250    -    192

Claims (3)

1、一种铁-稀土基磁致冷材料,其特征在于它的化学成分(重量%)为:La13~25%,R0.1~10%,Fe55~70%,M0.1~15%,Al4~13%;
其中M为Ti、V、Cr、Mn、Co、Ni、Si、Ge、Ga、Sn、Pb和Bi中任一种或两种以上:
R为Ce、Pr、Nd、Sm、Eu、Gd、Dy、Tb、Ho、Er、Yb中任一种。
2、一种铁-稀土基磁致冷材料,其特征在于它的化学成分(重量%)为La13~25%,Fe55~70%,M0.1~15%,Al4~13%(M范围同权利要求1)。
3、一种权利要求1或2所述的铁-稀土基磁致冷材料的制造方法,其特征在于该材料经配料后,在氩气保护的电弧炉或感应炉中熔炼;合金锭在真空炉中进行均匀化处理:真空度为(2.0~2.93)×10-3Pa,均匀化温度900~1100℃,均匀化时间≥100小时,合金锭时效后,随即在外壁通水冷却的铜管中急冷到室温。
CN92103258A 1992-05-07 1992-05-07 铁-稀土基磁致冷材料及制备方法 Expired - Fee Related CN1025125C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN92103258A CN1025125C (zh) 1992-05-07 1992-05-07 铁-稀土基磁致冷材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN92103258A CN1025125C (zh) 1992-05-07 1992-05-07 铁-稀土基磁致冷材料及制备方法

Publications (2)

Publication Number Publication Date
CN1065294A CN1065294A (zh) 1992-10-14
CN1025125C true CN1025125C (zh) 1994-06-22

Family

ID=4940099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN92103258A Expired - Fee Related CN1025125C (zh) 1992-05-07 1992-05-07 铁-稀土基磁致冷材料及制备方法

Country Status (1)

Country Link
CN (1) CN1025125C (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4879449B2 (ja) * 2000-08-09 2012-02-22 アストロノーティックス コーポレイション オブ アメリカ 回転ベッド式磁気冷却装置
US7695574B2 (en) * 2002-10-25 2010-04-13 Showda Denko K.K. Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
EP2687618B1 (en) * 2011-03-16 2017-10-11 Santoku Corporation Magnetic refrigeration material
CN103649352B (zh) * 2011-07-05 2015-12-02 株式会社三德 磁制冷材料和磁制冷装置
CN103065749A (zh) * 2012-12-28 2013-04-24 青岛爱维互动信息技术有限公司 一种电阻
WO2016140350A1 (ja) * 2015-03-05 2016-09-09 株式会社三徳 磁気冷凍モジュールの製造方法
CN108193116B (zh) * 2017-12-28 2020-01-07 苏州科技大学 一种磁致冷稀土-铁-铝材料、制备方法及其应用

Also Published As

Publication number Publication date
CN1065294A (zh) 1992-10-14

Similar Documents

Publication Publication Date Title
JP2022543491A (ja) R-t-b系永久磁石材料、製造方法、並びに応用
JP7409754B2 (ja) 結晶粒界を調整可能なNd-Fe-B系磁性体の製造方法
CN107858579A (zh) 利用恒磁场热处理提高高熵合金磁性能的方法
CN1025125C (zh) 铁-稀土基磁致冷材料及制备方法
WO2009124447A1 (zh) 一种高温超导材料及其制备方法
CN1140646C (zh) 一种具有大磁熵变的稀土-铁基化合物
CN107393670A (zh) 一种高性能MnBi基永磁合金及其制备方法
CN1929044B (zh) 含有Si元素和C元素的MgB2超导材料及其制备方法
CN105834407B (zh) 具有NaZn13型结构的稀土铁基合金化合物的制备方法
CN1022520C (zh) 新型稀土-铁-氮永磁材料
CN108277416A (zh) 一种用于磁制冷的稀土高熵合金
CN111254338B (zh) 一种磁致伸缩材料及其制备方法
AU600156B2 (en) Meltable high temperature superconductor
KR20210076311A (ko) Mn-Bi-Sb계 자성체 및 이의 제조방법
CN110423932A (zh) 一种轻稀土Pr掺杂的磁致伸缩材料及制备方法
CN105986177A (zh) 高导热的室温磁制冷内生复合材料、其制备方法及应用
CN102992771A (zh) 一种二硼化镁基超导块材的制造方法
CN109801767A (zh) 一种具有旋转磁热效应的钕钴基磁制冷材料及其制备方法
CN109616271B (zh) 一种Cu掺杂的MnAl基磁制冷材料及其制备方法
Tachikawa Recent developments in high-field superconductors
CN114613589B (zh) 一种Gd,Co永磁材料及制备方法
JP3283691B2 (ja) 高ダンピング酸化物超伝導材料およびその製造方法
CN1598977A (zh) 一种稀土-铁基室温磁制冷材料及其制备方法
CN85104348A (zh) 一种具有温度补偿的2-17型稀土永磁材料
WO2024048972A1 (ko) Thmn12형 자성체 분말의 제조방법

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee