WO2005116537A1 - Procede de realisation de la magnetisation et demagnetisation d'une substance de travail refroidissante magnetique utilisant un circuit magnetique dynamique - Google Patents

Procede de realisation de la magnetisation et demagnetisation d'une substance de travail refroidissante magnetique utilisant un circuit magnetique dynamique Download PDF

Info

Publication number
WO2005116537A1
WO2005116537A1 PCT/CN2004/000554 CN2004000554W WO2005116537A1 WO 2005116537 A1 WO2005116537 A1 WO 2005116537A1 CN 2004000554 W CN2004000554 W CN 2004000554W WO 2005116537 A1 WO2005116537 A1 WO 2005116537A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic circuit
magnetic field
magnet
dynamic
Prior art date
Application number
PCT/CN2004/000554
Other languages
English (en)
Chinese (zh)
Inventor
Dingwei Lu
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to PCT/CN2004/000554 priority Critical patent/WO2005116537A1/fr
Publication of WO2005116537A1 publication Critical patent/WO2005116537A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a type of refrigeration method, and particularly to a method for implementing magnetization and demagnetization of a magnetic refrigerant using a dynamic magnetic circuit in room temperature magnetic refrigeration. It can also be used in other applications where a changing magnetic field is used.
  • Refrigeration technology mainly includes liquid vaporization refrigeration, gas expansion refrigeration, adsorption refrigeration, thermoelectric refrigeration, vortex tube refrigeration, thermoacoustic refrigeration, pulse tube refrigeration, and magnetic refrigeration, etc., but the most popular is liquid vapor refrigeration.
  • Liquid vapor refrigeration requires the use of Freon. It not only destroys the ozone environment over the atmosphere, but also has a greenhouse effect. Therefore, refrigeration directly affects the use of energy and the quality of the environment. It is very urgent and significant to research and develop new energy-saving and environmental-friendly refrigeration methods. major.
  • NASA's Brown first used a sampan plate mixed with water-containing alcohol as a coolant to first achieve a temperature difference of 38 degrees in a superconducting magnetic field environment, showing the possibility of room-temperature magnetic refrigeration to humans.
  • AMR active magnetic regenerator
  • Room temperature magnetic refrigeration is an inevitable development of refrigeration, and it will certainly replace the current refrigeration method in the near future. All the air conditioners, refrigerators and other refrigerators associated with traditional cooling methods will complete a revolutionary change. However, to reach the market, room temperature magnetic refrigeration first needs to solve the problem of efficiency, reliability and economy. With the gradual maturity of room temperature magnetic refrigeration technology, the refrigeration industry around the world will completely change the existing product structure, and its market is immeasurable. Since 1997, practical research on room temperature magnetic refrigeration has begun. The initial success was achieved using a reciprocating approach. The method is to let the magnetic working medium enter the working space with a magnetic field by mechanical movement. At this time, the working medium is magnetized and has a heating effect.
  • the magnetic working fluid After the heat generated by the magnetocaloric effect is taken away by the cooling fluid, the magnetic working fluid is mechanically removed from the magnetic field region, so that the magnetic working fluid is cooled by the magnetocaloric effect. Because this working process is discontinuous, if the circulation speed of room temperature magnetic refrigerators is to be increased to increase the cooling capacity-while the cooling capacity of magnetic cooling is usually too small to have great application value, the reciprocating type is limited. Later, the research of room temperature magnetic refrigeration in the United States began to study the rotation mode. The magnetic structure of the magnet was changed from a hollow cylindrical shape to a shape where the letter C rotates around an axis outside the letter. It is because the magnetic working medium needs to use a driving robot arm to enter and leave the magnetic field space. This method reduces the magnetic field of the original 0-type magnet. In addition, the heat exchange is insufficient when the magnetic working medium is inside and outside the magnetic field.
  • the present invention is to provide a method for realizing the magnetization and demagnetization of a magnetic refrigerant using a dynamic magnetic circuit in room temperature magnetic refrigeration, which is capable of removing the band caused by the relative movement of the magnetic refrigerant and the magnet.
  • This is an effective method for difficult heat exchange fluid switching, while retaining the high refrigeration efficiency of magnetic refrigeration.
  • the magnetic field strength of room temperature magnetic refrigeration can be increased, the heat exchange effect can be improved, it is more suitable for practical use, and the cooling capacity of room temperature magnetic refrigeration can be increased.
  • Wide operating temperature range 20 ⁇ 330K.
  • a method for realizing magnetization and demagnetization of a magnetic refrigeration working medium by using a dynamic magnetic circuit in room temperature magnetic refrigeration which is characterized by using a dynamic magnetic circuit method to perform magnetic refrigeration working medium.
  • the method of magnetizing and demagnetizing the dynamic magnetic circuit is to control the size of the magnetic field of the magnetic refrigerant in the working space in the middle of the magnetic block by controlling the direction of the magnetic field of the permanent magnet block in the magnetic circuit.
  • the magnetic refrigerant is relative to the magnet. It is stationary without relative motion.
  • the method of the present invention performs dynamic magnetic circuit control on a closed magnetic circuit composed of a permanent magnet.
  • the magnetic circuit forms a closed loop with a plurality of small magnet units. Each small magnet unit is magnetized and installed at a certain angle in turn.
  • the central cavity of the block is the converging space of the magnetic field. At least four small magnets on the closed magnetic circuit rotate under the drive of external force. During the process of changing the magnetic field orientation, the magnetic field in the working space where the magnetic refrigerant is located will change from a strong magnetic field to Weak or no magnetic field changes periodically.
  • the method of the present invention further includes: closing the magnetic path to form a closed loop with a plurality of small magnet units, each of the small magnet units being magnetized and installed at a certain angle in turn, and at least four rotating small magnets on the closed magnetic circuit.
  • a cylindrical unit Is a cylindrical unit, and the shape of one end of the magnet adjacent to the cylinder on the closed magnetic circuit is a concave shape embedded in the cylinder.
  • the center of the entire magnet is equipped with a magnetic refrigeration working material.
  • the structure of the entire magnetic circuit can be square, rectangular or circular.
  • a pair of rotatable magnets can be provided on the magnetic circuit in the square, rectangle or circle to control the change of the magnetic field in the working space in the cavity.
  • an armature should be added for magnetic shielding. If a better shielding effect is required, the armature can be made in multiple layers, and a non-magnetic medium, such as plastic or graphite, is inserted between each layer of the armature.
  • the above-mentioned closed magnetic circuit magnets are connected in series with each other in the axial direction, and the adjacent magnetic blocks thereof have opposite orientations; they are combined with each other to form an even number.
  • the simplest and typical dynamic magnetic circuit is a square closed magnetic circuit. There are four cylindrical side magnet units on the four sides of the magnet, and cylindrical corner rotating magnet units can also be on the four corners.
  • All magnet units preferably require a high coercive force, which allows the permanent magnets to maintain the original magnetic field strength during repeated magnetization processes.
  • the magnetic refrigerant working medium is placed in the central cavity and is in a static state.
  • the inlet and outlet of the refrigerant can be made together to reduce the dead volume of the refrigerant flow and improve the heat exchange efficiency between the refrigerant and the cold accumulator.
  • Fig. 1 is a schematic diagram of the structure of a square closed magnetic circuit magnet of the present invention, and the center is a room temperature magnetic refrigerant.
  • Fig. 2 is a schematic diagram of the structure of a round closed magnetic circuit magnet of the present invention.
  • Fig. 3 is a schematic diagram of the magnetic field line distribution of the closed magnetic circuit of the present invention. Fig. 3 also shows that each small magnet constituting the ring has a different magnetization direction. Figure 3 shows a quadrant (1/4) small magnet distribution and magnetizing direction distribution. The remaining 3/4 are symmetrically distributed and form a closed magnetic circuit.
  • Figure 1 The structure of a square closed magnetic circuit magnet is a schematic diagram, which is not an ideal working magnetic circuit.
  • the ideal working magnetic circuit should have the closed magnetic circuit magnetic field lines as shown in FIG. 3, so that the central cavity has the strongest magnetic field, as shown in FIG.
  • each of the small magnets forming the ring has a different magnetization direction, so as to form the magnetic field distribution diagram of Fig. 3.
  • Selected materials NdFeB material, samarium cobalt alloy or other high performance permanent magnet materials.
  • the magnetization size of the four cylinders is the same, but can be different from other parts, but the cavity is required to have the largest magnetic field change when the cylindrical magnet unit rotates.
  • the two sets of magnets with the same field strength are stacked up and down in a manner that the magnetic field is reversed.
  • the magnetization directions of the two adjacent magnets are opposite. If the rotating shafts at the same position are connected, the attraction when rotating the magnets? ] Forces and repulsive forces can cancel each other out.
  • each small magnet unit is installed at a certain angle after being magnetized, so that the magnetic lines of force form a closed loop.
  • Such magnets must appear in pairs on symmetrical lines, so that the power required when rotating Smaller.
  • Figure 3 shows three pairs of rotatable magnets, and four pairs of rotatable magnets can also be provided.
  • Figure 1 is a sectional view after molding. The figure shows the shape of the magnetic block and the magnetic field direction of each magnetic block.
  • the eight magnetic blocks need to be processed before being magnetized and assembled.
  • the four blocks on the side are cylindrical, and there is a concave half garden that fits with this.
  • the shaft for rotary drive needs to use high-strength non-magnetic material metal or alloy material.
  • the shaft should be installed in a bearing to avoid or reduce the friction between the cylindrical magnetic block and the wall of the cylindrical cavity.
  • An armature should be added to the entire installed magnetic block for shielding. If a good shielding effect is required, the armature can be made in multiple layers, and a non-magnetic shield, such as plastic, is inserted between each layer of armature.
  • the magnets can be connected in series with each other in the axial direction, but it should be noted that the directions of the magnetic blocks are opposite;
  • Figure 1 The assembly structure of Figure 2-3 is shown in Figure 1: the structure of the cylindrically-connected magnet in Figure 2.
  • the figure is symmetrical left and right.
  • the internal magnetization direction of each sector is the same, and the magnetization directions of adjacent magnetic blocks differ by 60 ". Therefore, the magnetization direction of the first block on the top right is vertically 30 ° to the right, and Yu sequentially Add 60 °.
  • the left side is magnetized symmetrically to the right side.
  • Figure 3 This figure shows the distribution of magnetic field lines in a 1/4 cross section in a cylinder. The other parts are symmetrical. It is uniform in the center circular hole, and there are some magnetic leaks on the outside of the magnet because 16 finite blocks are used to form the loop.
  • the size of the outer cylinder is 13 cm in diameter, while the diameter of the inner cylinder hole is 3.2 cm.
  • Each small magnet unit in Figure 1-2 is installed at a certain angle after being magnetized.
  • the central cavity is the converging space of the magnetic field.
  • a region in which a strong magnetic field is formed from a closed magnetic circuit to a weak magnetic field or no magnetic field periodic change can be formed.
  • the size described in the present invention is only an example, and the size is not limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

Un procédé est utilisé pour réaliser la magnétisation et la démagnétisation d'une substance de travail réfrigérante magnétique dans un système de refroidissement magnétique à température ambiante qui utilise un circuit magnétique dynamique. La magnitude du champ magnétique dans l'espace de travail de la substance de travail refroidissante magnétique contrôlé par le circuit magnétique dynamique au moyen de la variation de la direction du champ magnétique d'un bloc d'aimant permanent. La substance de travail est au repos par rapport à l'aimant. Un circuit magnétique fermé est constitué de multiples unités d'aimants petites qui forment une boucle fermée. Chaque unité d'aimant petite est successivement montée selon un angle défini après chargement du magnétisme. Une cavité centrale constitue l'espace de convergence du champ magnétique. Au moins quatre petits aimants tournent sous l'actionnement de la force externe dans le circuit magnétique fermé. Le champ magnétique dans l'espace de travail de la substance de travail réfrigérante magnétique est modifié périodiquement à partir d'un champ magnétique intense afin d'affaiblir le champ magnétique ou d'éliminer le champ magnétique pendant la variation de la direction du champ magnétique. On peut réduire l'amplitude de mouvement des composants de mouvement et réduire le volume du système. L'efficacité de l'échange thermique du réfrigérant auxiliaire et l'accumulateur froid est amélioré étant donné que la substance de travail se trouve dans la cavité centrale.
PCT/CN2004/000554 2004-05-28 2004-05-28 Procede de realisation de la magnetisation et demagnetisation d'une substance de travail refroidissante magnetique utilisant un circuit magnetique dynamique WO2005116537A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2004/000554 WO2005116537A1 (fr) 2004-05-28 2004-05-28 Procede de realisation de la magnetisation et demagnetisation d'une substance de travail refroidissante magnetique utilisant un circuit magnetique dynamique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2004/000554 WO2005116537A1 (fr) 2004-05-28 2004-05-28 Procede de realisation de la magnetisation et demagnetisation d'une substance de travail refroidissante magnetique utilisant un circuit magnetique dynamique

Publications (1)

Publication Number Publication Date
WO2005116537A1 true WO2005116537A1 (fr) 2005-12-08

Family

ID=35450972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/000554 WO2005116537A1 (fr) 2004-05-28 2004-05-28 Procede de realisation de la magnetisation et demagnetisation d'une substance de travail refroidissante magnetique utilisant un circuit magnetique dynamique

Country Status (1)

Country Link
WO (1) WO2005116537A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105841422A (zh) * 2016-06-05 2016-08-10 山东商业职业技术学院 一种基于磁力旋转强化换热的非接触式永磁快速蓄冷系统
CN105890222A (zh) * 2016-06-05 2016-08-24 山东商业职业技术学院 一种基于磁力旋转强化换热的非接触式电磁快速蓄冷系统
CN105890259A (zh) * 2016-06-05 2016-08-24 山东商业职业技术学院 一种基于磁力线性运动强化换热的非接触压差式快速蓄冷系统
CN110277214A (zh) * 2019-07-26 2019-09-24 宁波尼兰德磁业股份有限公司 超高用磁场磁回路
CN110595105A (zh) * 2018-06-13 2019-12-20 青岛海尔智能技术研发有限公司 一种磁制冷换热装置、系统及其控制方法
CN112629059A (zh) * 2020-12-31 2021-04-09 包头稀土研究院 评价室温磁制冷材料制冷能力的方法及热交换装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0187078A1 (fr) * 1984-12-18 1986-07-09 Commissariat A L'energie Atomique Dispositif de réfrigération ou de pompage de chaleur
CN1368743A (zh) * 2001-02-05 2002-09-11 包头稀土研究院 室温附近的稀土磁液体材料及其磁制冷设备
JP2003028532A (ja) * 2001-07-16 2003-01-29 Sumitomo Special Metals Co Ltd 磁気冷凍作業物質および蓄冷式熱交換器ならびに磁気冷凍装置
CN1468357A (zh) * 2000-08-09 2004-01-14 �������˾ 旋转床磁制冷装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0187078A1 (fr) * 1984-12-18 1986-07-09 Commissariat A L'energie Atomique Dispositif de réfrigération ou de pompage de chaleur
CN1468357A (zh) * 2000-08-09 2004-01-14 �������˾ 旋转床磁制冷装置
CN1368743A (zh) * 2001-02-05 2002-09-11 包头稀土研究院 室温附近的稀土磁液体材料及其磁制冷设备
JP2003028532A (ja) * 2001-07-16 2003-01-29 Sumitomo Special Metals Co Ltd 磁気冷凍作業物質および蓄冷式熱交換器ならびに磁気冷凍装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105841422A (zh) * 2016-06-05 2016-08-10 山东商业职业技术学院 一种基于磁力旋转强化换热的非接触式永磁快速蓄冷系统
CN105890222A (zh) * 2016-06-05 2016-08-24 山东商业职业技术学院 一种基于磁力旋转强化换热的非接触式电磁快速蓄冷系统
CN105890259A (zh) * 2016-06-05 2016-08-24 山东商业职业技术学院 一种基于磁力线性运动强化换热的非接触压差式快速蓄冷系统
CN110595105A (zh) * 2018-06-13 2019-12-20 青岛海尔智能技术研发有限公司 一种磁制冷换热装置、系统及其控制方法
CN110595105B (zh) * 2018-06-13 2023-11-28 青岛海尔智能技术研发有限公司 一种磁制冷换热装置、系统及其控制方法
CN110277214A (zh) * 2019-07-26 2019-09-24 宁波尼兰德磁业股份有限公司 超高用磁场磁回路
CN112629059A (zh) * 2020-12-31 2021-04-09 包头稀土研究院 评价室温磁制冷材料制冷能力的方法及热交换装置
CN112629059B (zh) * 2020-12-31 2024-03-29 包头稀土研究院 评价室温磁制冷材料制冷能力的方法及热交换装置

Similar Documents

Publication Publication Date Title
US9273886B2 (en) Magnetic refrigerator utilizing a permanent magnet to create movement between plates comprising high and low temperature side heat exchangers
JP4303879B2 (ja) 磁気冷凍装置
US7552592B2 (en) Magnetic refrigerator
US6668560B2 (en) Rotating magnet magnetic refrigerator
JP5729050B2 (ja) 磁気冷凍機及び磁気冷凍方法
WO2003016794A1 (fr) Systeme de manipulation de fluides
WO2013029328A1 (fr) Réfrigérateur magnétique oscillant au-dessous de la température ambiante
JPH0325710B2 (fr)
WO2006136042A1 (fr) Réfrigérateur ou pompe thermique magnétique à rotation continue
Zimm et al. The evolution of magnetocaloric heat-pump devices
US20200003461A1 (en) Magnetic Heat Pump Apparatus
WO2005116537A1 (fr) Procede de realisation de la magnetisation et demagnetisation d'une substance de travail refroidissante magnetique utilisant un circuit magnetique dynamique
US11402136B2 (en) Drum-type magnetic refrigeration apparatus with multiple bed rings
KR101204325B1 (ko) 콤팩트한 능동형 자기 재생식 냉동기
CN218269638U (zh) 旋转式室温磁制冷机
US20190285319A1 (en) Magnetic Heat Pump Device
EP1847788A1 (fr) Réfrigérateur magnétique à aimant rotatif
CN218210166U (zh) 多级大功率磁制冷机
CN1811301A (zh) 采用外回路蓄冷的磁制冷方法及其磁制冷装置
CN115342548B (zh) 大功率磁制冷装置及其制冷方法
CN211400365U (zh) 磁制冷系统及具有其的磁制冷机
CN115355631B (zh) 高效大功率磁制机及其制冷方法
CN218210165U (zh) 高效大功率磁制冷机
US20240128118A1 (en) Expander unit with magnetic spring for a split stirling cryogenic refrigeration device
US20220250169A1 (en) Expander unit with magnetic spring for a split stirling cryogenic refrigeration device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase