WO2013029328A1 - Réfrigérateur magnétique oscillant au-dessous de la température ambiante - Google Patents
Réfrigérateur magnétique oscillant au-dessous de la température ambiante Download PDFInfo
- Publication number
- WO2013029328A1 WO2013029328A1 PCT/CN2011/084871 CN2011084871W WO2013029328A1 WO 2013029328 A1 WO2013029328 A1 WO 2013029328A1 CN 2011084871 W CN2011084871 W CN 2011084871W WO 2013029328 A1 WO2013029328 A1 WO 2013029328A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic
- permanent magnet
- fluid
- working
- heat exchanger
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B21/00—Machines, plants or systems, using electric or magnetic effects
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/002—Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
- F25B2321/0021—Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Definitions
- the invention relates to a magnetic refrigerator, in particular to a swing type room temperature magnetic refrigerator.
- Gd and its compounds.
- the most typical material that can be used as a magnetic refrigeration cycle is the lanthanide rare earth metal yttrium Gd.
- Gd has a Curie temperature of 293K, is close to room temperature, and has a large magnetocaloric effect.
- Rare earth-transition intermetallic compounds In addition to the GdSiGe series of compounds mentioned above, other rare earth-transition intermetallic compounds also have large magnetic entropy changes, and the Curie temperature can be conveniently adjusted by ion doping. For example, MnFePAs, MnAsSb, NiMnGa, La(Fe, Si)13, and the like.
- the reciprocating type has the disadvantage of low efficiency
- the rotary type has the disadvantages of complicated structure and the working disk is subjected to the unilateral force.
- the present invention provides a swing type room temperature magnetic refrigerator.
- the technical solution is as follows:
- An oscillating room temperature magnetic refrigerator comprising a permanent magnet magnetic field source system, a magnetic working disk turntable system, a fluid heat exchange system, and a motion control system;
- Permanent magnet magnetic field source system symmetrically arranged by two identical permanent magnet systems, including a permanent magnet providing an excitation source and an E-type magnetically permeable frame for magnetic conduction, a magnet in the middle of the magnetically permeable frame
- the core divides the whole frame into upper and lower sections, and the outer end of the magnetic core is a platform structure protruding upward and downward; two magnetic conductive materials are respectively disposed in the upper and lower sections, and the outer end of the magnetic conductive material and the magnetic core The outer end is flush, the inner end is separated from the inner wall of the frame, and a working gap is formed between the magnetic conductive material and the platform of the magnetic core.
- the filling is filled in the direction determined by the Halbach rotation theorem. a permanent magnet in the magnetic direction;
- Magnetic working medium turntable system including rotating shaft and eight turntable boxes fixed on the rotating shaft, the turntable box is divided into two layers, four on each layer, and symmetrically arranged, wherein the two opposite turntables in the upper layer and the lower layer are symmetrical
- the two turntable boxes are respectively located in the four working gaps of the two permanent magnet systems; the magnetic working medium is respectively placed in the eight turntable boxes, and the magnetic working medium enters and exits the magnetic field with the rotation of the rotating shaft; the four located in the working gap
- the magnetic working fluid cartridges are sequentially connected to form a heat generating group through a fluid pipeline, and the other four magnetic working fluid cartridges are sequentially connected by a fluid pipeline to form an endothermic group;
- the fluid heat exchange system includes a hot end heat exchanger, a low temperature sealed space, and a cold end heat exchanger enclosed therein; the refrigeration is controlled by a motion control system, wherein the cooling process is: the fluid flows along the pipeline driven by the water pump The four magnetosomes in the endothermic group pass through the cold-end heat exchanger, and the fluid flowing out of the cold-end heat exchanger flows through the four magnetosomes of the exothermic group, and then flows through the hot-end heat exchanger, and the heat The end dissipates heat into the air.
- the motion control system comprises: a programmable logic controller (PLC), a stepping motor and a solenoid valve, wherein the electromagnetic valves are divided into two groups, and the control process of the motion control system is: when programmable The controller issues a command to cause a set of magnetic working fluid cartridges to enter the magnetic field region driven by the stepping motor.
- PLC programmable logic controller
- the programmable controller issues a command to open a group of solenoid valves and pumps to complete a refrigeration process; then programmable control The stepping motor rotates the rotating shaft 90 degrees to make another set of magnetic working chambers enter the magnetic field; the programmable controller issues a command to switch to another set of solenoid valves to open, complete the second cooling process; then programmable control The stepping motor rotates the rotating shaft in the reverse direction by 90 degrees, repeats the first cooling process, and sequentially performs cooling.
- the magnetically permeable material is fixed to the E-shaped magnetically permeable frame.
- the protruding platform width accounts for 30% to 50% of the width of the magnetic core.
- a gap is left between the inner end surface of the magnetic conductive material and the permanent magnet filled on one side thereof.
- the width of the magnetically permeable material is the same as the width of the protruding platform.
- the permanent magnet system has a fan shape in cross section.
- the permanent magnet is a rare earth neodymium iron boron permanent magnet; the magnetic conductive core frame and the magnetic conductive material are all electrical pure iron.
- the principle of the invention is that the rotating shaft oscillates the magnetic working medium into and out of the magnetic field space, and the magnetic working medium in the magnetic field space is magnetized and exothermic, and the heat transfer fluid flows to the hot end heat exchanger, and the heat generated by the magnetic working medium is transferred to the hot end heat.
- the exchanger, the hot end heat exchanger transfers heat to the high temperature space; the magnetism in the magnetic field space demagnetizes and absorbs heat, the heat transfer fluid flows to the cold end heat exchanger, and the magnetic medium passes through the fluid and the cold end heat exchanger from the low temperature
- the confined space absorbs heat.
- the 180 degree symmetric fixed arrangement effectively reduces the magnetic unilateral tension and axial force of the magnetic working disk, and increases the service life of the turntable.
- the internal fluid pipeline of the magnetic working disk turntable adopts multi-stage series connection, which further simplifies the pipeline structure and enables progressive cooling.
- the permanent magnet system of the present invention has the following advantages: a symmetrical structure having a double air gap, which can simultaneously excite (demagnetize) two parts of the magnetic working medium, thereby making the structure of the room temperature magnetic refrigerator more compact and efficient;
- the uniformity of the magnetic field strength is good, which reduces the heat exchange between the working fluids during the excitation (demagnetization) process, thereby improving the cooling efficiency;
- the symmetrical structure with double air gaps can greatly reduce the axial force when properly installed. Reduce the input power and improve the cooling efficiency; have a larger air gap field space, which is beneficial to load more magnetic working medium and improve the cooling capacity of the room temperature magnetic refrigerator.
- FIG. 1 is a schematic cross-sectional view of a permanent magnet system of the present invention.
- FIG. 2 is a schematic view showing the structure of a permanent magnet system used in a swing type room temperature magnetic refrigerator.
- Fig. 3 is a schematic view showing the arrangement of the excitation source permanent magnets of the swing type room temperature magnetic refrigerator.
- Fig. 4 is a schematic view showing the wiring of the fluid line of the working medium turntable box in the swing type room temperature magnetic refrigerator.
- Fig. 5 is a schematic view showing the swinging motion of the swing type room temperature magnetic refrigerator.
- Figure 6 is a schematic diagram of the principle of a swing type room temperature magnetic refrigerator.
- Figure 7 is a magnetic line diagram of the permanent magnet structure.
- Figure 8 is a graph showing the distribution of magnetic field strength in the working gap.
- the embodiment provides an oscillating room temperature magnetic refrigerator, comprising a permanent magnet magnetic field source system, a magnetic working disk turntable system, a fluid heat exchange system, and a motion control system.
- Permanent magnet magnetic field source system symmetrically arranged by two identical permanent magnet systems, the permanent magnet system, the cross-sectional structure is shown in Figure 1, and the three-dimensional structure is shown in Figure 2, including the permanent magnets that provide the excitation source and the magnetic permeability.
- the width is 40% of the width of the magnetic core.
- Two layers of magnetically permeable materials 1, 5 are respectively disposed in the upper and lower sections, and the magnetic permeable materials 1, 5 are fixed to the E-shaped magnetic permeable frame 9.
- the outer ends of the magnetic conductive materials 1, 5 are flush with the outer ends of the magnetic core 3, the inner ends are separated from the inner walls of the frame 9, and the magnetic conductive materials 1, 5 are formed between the upper and lower protruding platforms 4, 2 of the magnetic core.
- permanent magnets 6, 7, 8, 10, 11, 12 in different magnetization directions are filled in the direction determined by the Halbach rotation theorem between the magnetically permeable materials 1, 5 and the frame 9 outside the working gap.
- a gap is left between the inner end surface of the magnetic conductive material 1, 5 and the filled permanent magnets 8, 10, and the width of the magnetic conductive material is the same as the width of the upper and lower protruding platforms 4, 2, thereby increasing the size and uniformity of the magnetic field. degree.
- the permanent magnet is a rare earth neodymium iron boron permanent magnet; the magnetic conductive core frame and the magnetic conductive material are all electrical pure iron.
- the upper curve of Figure 8 represents the magnetic field strength distribution of the upper working gap, and the lower curve represents the magnetic field strength distribution of the working gap below. It can be seen that the fan-shaped permanent magnet used in the rotary magnetic refrigerator has a very large working gap, and this space is completely filled with the magnetic refrigerant metal Gd, and its quality reaches 3100. g. By reducing the size of the working gap or increasing the relative size of the magnet, the magnetic field strength of the working gap will be further increased. In the magnetic refrigerator, two sets of magnet systems and two sets of magnetic working materials are used. For this structure, the axial magnetic pulling force and the radial magnetic pulling force produced by the whole system are substantially zero.
- two identical permanent magnet systems shown in FIG. 1 are symmetrically arranged 180 degrees, so that the arrangement can better utilize the advantages of the double air gap magnetic field and reduce the axial force and magnetic force of the magnetic working disk turntable box.
- Unilateral force A magneto-optical turntable is mounted in a plane of the two-layer magnetic field air gap, and the rotating shaft is located on the central axis for driving the magnetic medium into and out of the magnetic field.
- Magnetic working medium turntable system including rotating shaft and eight turntable boxes fixed on the rotating shaft.
- the magnetic working medium turntable box is designed as a double-layer structure, and each layer is divided into four, and symmetrically arranged, the turntable
- the magnetic medium (metal Gd) is loaded in the box, wherein two rotisserie boxes in the upper layer and two rotisserie boxes in the lower layer are respectively located in four working gaps of the two permanent magnet systems; the magnetic working medium
- the magnetic working medium enters and exits the magnetic field with the rotation of the rotating shaft; thus, when the refrigerator is running, half of the magnetic working medium is in the exciting heat release, and half is in the demagnetizing endothermic state, which is improved compared with the conventional rotating type. Cooling efficiency.
- the upper and lower boxes are placed in the same plane, and the dotted line is the position of the magnet, which can easily represent the magnetic field.
- 2, 3, 4, 5, 6, 7, 8 are small boxes loaded with magnetic working fluid.
- the magnetisms 1, 3, 5, and 7 in Fig. 4 are excited in a magnetic field to conduct heat, and the solid line indicates a heat exchange fluid pipe in which 1, 3, 7, and 5 are sequentially connected, and finally heat exchange is performed to the hot end. .
- the remaining magnetosomes 2, 4, 6, and 8 are also connected in a similar manner, as indicated by dotted lines.
- the method of step-by-step series connection is used to connect the magneto-plastic capsules of the upper and lower layers in the excitation (demagnetization) state by pipes, which greatly simplifies the arrangement of the fluid pipelines and can realize the hierarchical cooling.
- the room temperature magnetic refrigerator provided by the present invention is called a swing type, and its biggest feature is that its motion mode is neither a conventional reciprocating linear type nor a conventional rotating type, but a swing type similar to a pendulum.
- the rotating shaft is first rotated 90 degrees counterclockwise, the rotating shaft is temporarily 4S, the fluid is passed, and then rotated 90 degrees clockwise.
- the rotating shaft is again suspended for 4S, and the fluid is circulated.
- the characteristic of the oscillating type is that there is no problem of entanglement and entanglement of the pipeline, and it is not necessary to equip the complicated fluid distribution valve, so the fluid pipeline can be as simple as reciprocating; at the same time, the angular positioning can realize the rapid positioning of the magnetic plastid cartridge. To increase the operating frequency of the refrigerator.
- the fluid heat exchange system includes a hot end heat exchanger, a low temperature sealed space, and a cold end heat exchanger sealed therein; the refrigeration is controlled by a motion control system: the programmable controller, the stepping Motor and solenoid valve, the solenoid valve is a total of 4, divided into two groups.
- a motion control system the programmable controller, the stepping Motor and solenoid valve, the solenoid valve is a total of 4, divided into two groups.
- the magnetic medium capsules 1, 3, 5, and 7 are in an excited state, and the magnetic medium capsules 2, 4, 6, and 8 are in a demagnetized state.
- Programmable controller controls the stepping motor to drive the rotating shaft to rotate counterclockwise by 90 degrees, the magnetoplasmic small boxes 1, 3, 5, 7 are in the demagnetization state, and the magnetic medium capsules 2, 4, 6, and 8 are in the excited state. .
- the motion control system controls the stepping motor to drive the rotating shaft to rotate 90 degrees clockwise, and returns to step 1. Cycle through the above steps to achieve the cooling effect.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Linear Motors (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
L'invention porte sur un réfrigérateur magnétique oscillant au-dessous de la température ambiante qui comprend un système source de champ magnétique fait d'aimants permanents, un système à table tournante du milieu de travail magnétique, un système d'échange de chaleur à fluide et un système de commande du mouvement. Le système de commande du mouvement commande le fonctionnement d'une boîte de table tournante du système de table tournante du milieu de travail magnétique et le milieu de travail magnétique (1-8) est amené à entrer dans l'espace du champ magnétique et à en sortir. Le milieu de travail magnétique (1-8) placé dans l'espace de champ magnétique est magnétisé et produit de la chaleur. La chaleur produite par le milieu de travail magnétique est transférée à un échangeur de chaleur d'extrémité chaude par un fluide caloporteur qui s'écoule vers l'échangeur de chaleur d'extrémité chaude et l'échangeur de chaleur d'extrémité chaude transfère ensuite la chaleur à un espace à haute température. Le milieu de travail magnétique (1-8) sortant de l'espace de champ magnétique est démagnétisé et absorbe de la chaleur. Le fluide de transfert de chaleur s'écoule jusqu'à un échangeur de chaleur d'extrémité froide. Le milieu de travail magnétique (1-8) absorbe de la chaleur d'un espace à basse température fermé au moyen du fluide et de l'échangeur de chaleur d'extrémité froide, de telle sorte qu'on obtient l'effet de réfrigération au-dessous de la température ambiante et la simplification de la structure du réfrigérateur magnétique.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110253057.9A CN102305491B (zh) | 2011-08-30 | 2011-08-30 | 摆动式室温磁制冷机 |
CN201110253057.9 | 2011-08-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013029328A1 true WO2013029328A1 (fr) | 2013-03-07 |
Family
ID=45379379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/084871 WO2013029328A1 (fr) | 2011-08-30 | 2011-12-29 | Réfrigérateur magnétique oscillant au-dessous de la température ambiante |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102305491B (fr) |
WO (1) | WO2013029328A1 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110595105A (zh) * | 2018-06-13 | 2019-12-20 | 青岛海尔智能技术研发有限公司 | 一种磁制冷换热装置、系统及其控制方法 |
CN110595104A (zh) * | 2018-06-13 | 2019-12-20 | 青岛海尔智能技术研发有限公司 | 一种磁制冷换热装置、系统及其控制方法 |
CN112484335A (zh) * | 2020-12-22 | 2021-03-12 | 包头稀土研究院 | 具有磁场定位功能的磁制冷机及定位方法 |
CN112594960A (zh) * | 2020-12-31 | 2021-04-02 | 包头稀土研究院 | 双列多级串联式双磁场磁制冷机及其热交换方法 |
CN112629061A (zh) * | 2020-12-31 | 2021-04-09 | 包头稀土研究院 | 磁场制冷热交换流体循环系统及其热循环方法 |
CN112629058A (zh) * | 2020-12-31 | 2021-04-09 | 包头稀土研究院 | 单列多级串联式磁制冷机及其热交换方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9995511B2 (en) * | 2013-12-17 | 2018-06-12 | Astronautics Corporation Of America | Magnetic refrigeration system with improved flow efficiency |
CN103925732B (zh) * | 2014-04-11 | 2016-05-04 | 佛山市川东磁电股份有限公司 | 一种旋转式串极磁制冷系统 |
CN105526733B (zh) * | 2014-09-29 | 2019-07-12 | 青岛海尔股份有限公司 | 往复式磁制冷设备 |
CN106016819B (zh) * | 2016-05-19 | 2018-09-07 | 横店集团东磁股份有限公司 | 一种磁制冷机用高效换热式蓄冷床系统 |
CN108007013B (zh) * | 2017-11-27 | 2023-10-27 | 珠海格力节能环保制冷技术研究中心有限公司 | 磁制冷组件及具有其的磁制冷机 |
CN110926056A (zh) * | 2018-09-20 | 2020-03-27 | 青岛海尔智能技术研发有限公司 | 一种磁制冷换热系统及其控制方法 |
CN110926055A (zh) * | 2018-09-20 | 2020-03-27 | 青岛海尔智能技术研发有限公司 | 一种磁制冷换热系统及其控制方法 |
CN109612151B (zh) * | 2018-12-06 | 2024-05-24 | 珠海格力电器股份有限公司 | 一种磁制冷装置 |
CN110631287A (zh) * | 2019-09-09 | 2019-12-31 | 包头稀土研究院 | 旋转式室温磁制冷机用双c形磁场 |
CN110864471B (zh) * | 2019-11-27 | 2021-06-08 | 横店集团东磁股份有限公司 | 一种自带传动动力的磁制冷装置及方法和用途 |
CN112665210B (zh) * | 2020-12-31 | 2024-03-29 | 包头稀土研究院 | 单列多级串联式双磁场制冷仓及其制冷制热方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002195683A (ja) * | 2000-12-20 | 2002-07-10 | Denso Corp | 磁気温調装置 |
EP1736718A1 (fr) * | 2005-06-20 | 2006-12-27 | Haute Ecole d'Ingénieurs et de Gestion du Canton | Réfrigérateur magnétique et/ou pompe à chaleur utilisant un fluide magnétocalorique et procédé de chauffage et/ou de réfrigération magnétique avec un tel réfrigérateur et/ou une telle pompe à chaleur |
CN101135510A (zh) * | 2007-10-19 | 2008-03-05 | 中国科学院电工研究所 | 一种永磁旋转式磁制冷机的热交换系统 |
KR20080043644A (ko) * | 2006-11-14 | 2008-05-19 | 주식회사 대우일렉트로닉스 | 자기냉동기의 영구자석 조립체 |
CN101280983A (zh) * | 2007-12-25 | 2008-10-08 | 包头稀土研究院 | 室温磁制冷系统及其应用 |
CN102095274A (zh) * | 2009-12-14 | 2011-06-15 | 杨龙清 | 励磁制冷机 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60128361T2 (de) * | 2000-08-09 | 2008-01-17 | Astronautics Corp. Of America, Milwaukee | Magnetisches kältegerät mit drehbett |
CN1207523C (zh) * | 2003-07-31 | 2005-06-22 | 清华大学 | 一种静止式室温磁致冷机 |
FR2868519B1 (fr) * | 2004-03-30 | 2006-06-16 | Christian Muller | Generateur thermique a materiau magneto-calorique et procede de generation de thermies |
CN101221001B (zh) * | 2008-01-09 | 2010-09-29 | 华南理工大学 | 一种往复式室温磁制冷机 |
EP2108904A1 (fr) * | 2008-04-07 | 2009-10-14 | Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud (HEIG-VD) | Dispositif magnétocalorique, en particulier réfrigérateur magnétique, pompe à chaleur ou générateur de puissance |
US20110061398A1 (en) * | 2009-09-17 | 2011-03-17 | Cheng-Yen Shih | Magnetic refrigerator |
US20110067415A1 (en) * | 2009-09-24 | 2011-03-24 | Mao Tze-Chern | Magnetic component compiling structure and magnetic refrigerator adapting magnetic component compiling structure thereof |
CN202216447U (zh) * | 2011-08-30 | 2012-05-09 | 华南理工大学 | 摆动式室温磁制冷机 |
-
2011
- 2011-08-30 CN CN201110253057.9A patent/CN102305491B/zh not_active Expired - Fee Related
- 2011-12-29 WO PCT/CN2011/084871 patent/WO2013029328A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002195683A (ja) * | 2000-12-20 | 2002-07-10 | Denso Corp | 磁気温調装置 |
EP1736718A1 (fr) * | 2005-06-20 | 2006-12-27 | Haute Ecole d'Ingénieurs et de Gestion du Canton | Réfrigérateur magnétique et/ou pompe à chaleur utilisant un fluide magnétocalorique et procédé de chauffage et/ou de réfrigération magnétique avec un tel réfrigérateur et/ou une telle pompe à chaleur |
KR20080043644A (ko) * | 2006-11-14 | 2008-05-19 | 주식회사 대우일렉트로닉스 | 자기냉동기의 영구자석 조립체 |
CN101135510A (zh) * | 2007-10-19 | 2008-03-05 | 中国科学院电工研究所 | 一种永磁旋转式磁制冷机的热交换系统 |
CN101280983A (zh) * | 2007-12-25 | 2008-10-08 | 包头稀土研究院 | 室温磁制冷系统及其应用 |
CN102095274A (zh) * | 2009-12-14 | 2011-06-15 | 杨龙清 | 励磁制冷机 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110595105A (zh) * | 2018-06-13 | 2019-12-20 | 青岛海尔智能技术研发有限公司 | 一种磁制冷换热装置、系统及其控制方法 |
CN110595104A (zh) * | 2018-06-13 | 2019-12-20 | 青岛海尔智能技术研发有限公司 | 一种磁制冷换热装置、系统及其控制方法 |
CN110595105B (zh) * | 2018-06-13 | 2023-11-28 | 青岛海尔智能技术研发有限公司 | 一种磁制冷换热装置、系统及其控制方法 |
CN110595104B (zh) * | 2018-06-13 | 2023-12-26 | 青岛海尔智能技术研发有限公司 | 一种磁制冷换热装置、系统及其控制方法 |
CN112484335A (zh) * | 2020-12-22 | 2021-03-12 | 包头稀土研究院 | 具有磁场定位功能的磁制冷机及定位方法 |
CN112594960A (zh) * | 2020-12-31 | 2021-04-02 | 包头稀土研究院 | 双列多级串联式双磁场磁制冷机及其热交换方法 |
CN112629061A (zh) * | 2020-12-31 | 2021-04-09 | 包头稀土研究院 | 磁场制冷热交换流体循环系统及其热循环方法 |
CN112629058A (zh) * | 2020-12-31 | 2021-04-09 | 包头稀土研究院 | 单列多级串联式磁制冷机及其热交换方法 |
CN112629058B (zh) * | 2020-12-31 | 2024-03-29 | 包头稀土研究院 | 单列多级串联式磁制冷机及其热交换方法 |
CN112629061B (zh) * | 2020-12-31 | 2024-03-29 | 包头稀土研究院 | 磁场制冷热交换流体循环系统及其热循环方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102305491A (zh) | 2012-01-04 |
CN102305491B (zh) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013029328A1 (fr) | Réfrigérateur magnétique oscillant au-dessous de la température ambiante | |
JP4908469B2 (ja) | 回転磁石式磁気冷凍機 | |
JP2008544200A (ja) | 連続回転磁気冷凍機またはヒートポンプ | |
JPS58124178A (ja) | ホイ−ル型磁気冷凍機 | |
CN103206804A (zh) | 磁冷却设备及其控制方法 | |
JPS58108370A (ja) | 冷却またはヒ−トポンプ作動方法および装置 | |
Zimm et al. | The evolution of magnetocaloric heat-pump devices | |
CN110345680B (zh) | 一种蓄冷床和磁制冷系统 | |
CN105004093B (zh) | 一种双循环往复式室温磁制冷系统 | |
CN112629058B (zh) | 单列多级串联式磁制冷机及其热交换方法 | |
CN214371050U (zh) | 多列多级并联式磁制冷机 | |
CN202216447U (zh) | 摆动式室温磁制冷机 | |
KR101204325B1 (ko) | 콤팩트한 능동형 자기 재생식 냉동기 | |
TWI398609B (zh) | 室溫下迴轉式磁製冷機裝置 | |
CN214371051U (zh) | 双列多级串联式双磁场磁制冷仓 | |
CN214371052U (zh) | 双列多级串联式双磁场磁制冷机 | |
CN214199262U (zh) | 双列多级串联式磁制冷机 | |
CN214199265U (zh) | 单列多级串联式制冷仓 | |
CN214371053U (zh) | 双列多级串联式磁制冷机的制冷仓 | |
CN112594961A (zh) | 双列多级串联式磁制冷机及其热交换方法 | |
WO2005116537A1 (fr) | Procede de realisation de la magnetisation et demagnetisation d'une substance de travail refroidissante magnetique utilisant un circuit magnetique dynamique | |
CN112629062A (zh) | 单列多级串联式制冷仓及其制冷制热方法 | |
CN112594962B (zh) | 双列多级串联式双磁场磁制冷仓及其制冷制热方法 | |
CN218210167U (zh) | 大功率磁制冷装置 | |
CN112629056B (zh) | 双列多级串联式磁制冷机的制冷仓及其制冷制热方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11871534 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11871534 Country of ref document: EP Kind code of ref document: A1 |