WO2003016794A1 - Systeme de manipulation de fluides - Google Patents

Systeme de manipulation de fluides Download PDF

Info

Publication number
WO2003016794A1
WO2003016794A1 PCT/SE2002/000634 SE0200634W WO03016794A1 WO 2003016794 A1 WO2003016794 A1 WO 2003016794A1 SE 0200634 W SE0200634 W SE 0200634W WO 03016794 A1 WO03016794 A1 WO 03016794A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
magnetocaloric material
magnetocaloric
rotor
magnetic field
Prior art date
Application number
PCT/SE2002/000634
Other languages
English (en)
Inventor
Min Pan
Liu Yujing
Peter Löfgren
Original Assignee
Abb Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Ab filed Critical Abb Ab
Publication of WO2003016794A1 publication Critical patent/WO2003016794A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0022Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a rotating or otherwise moving magnet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0023Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with modulation, influencing or enhancing an existing magnetic field
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a fluid-handling system comprising a device to change the temperature of fluid flowing through the system, said device relying on the magnetocaloric effect of magnetic materials to effect temperature changes. More particularly, the present invention concerns the means for imposing a magnetic field on said magnetocaloric material, i.e. magnetic material exhibiting a magnetocaloric effect.
  • fluid-handling systems such as ventilation/air- conditioning or chemical processing units
  • One of the functions of fluid-handling systems is to provide fluid at the right temperature for a particular environment.
  • regenerative heat exchangers in which incoming fluid is heated or cooled by thermal contact with material previously heated or cooled by outgoing fluid, are often used in such fluid-handling systems.
  • Refrigeration systems today are based on the gas compression cooling process.
  • the efficiency of these conventional refrigeration systems is only about 40% of the Carnot refrigeration cycle and the refrigerants used in these systems, such as chlorofluorocarbons, hydrofluorocarbons and ammonia, are harmful for the environment.
  • Magnetic refrigeration which has higher efficiency and is more environmentally friendly, compact and cost-effective, is being considered as an alternative technique to gas compression technology.
  • the magnetocaloric effect is the ability of certain materials to heat up in the presence of a magnetic field and cool down when the field is removed.
  • a magnetic material such as a ferromagnet or paramagnet
  • the magnetic moments of its atoms become aligned, making the material more ordered and thus decreasing the magnetic entropy of the material. If the magnetic field is applied adiabatically, the total entropy of the material must be conserved, so the material's atoms vibrate more rapidly, consequently raising the lattice entropy of the material and the material's temperature.
  • magnetocaloric material is magnetized by placing it in a magnetic field, which causes the material to warm up. Heat is removed from the magnetocaloric material while it is in the magnetic field, by bringing the magnetocaloric material into thermal contact with a heat-conducting fluid, for example. The magnetocaloric material cools upon its removal from the magnetic field. Heat can be absorbed from a thermal load by bringing the thermal load into thermal contact with the cooling magnetocaloric material immediately after it is taken out of the magnetic field. Continuous refrigeration of a thermal load can be achieved by repeating the described refrigeration cycle.
  • the temperature change arising due to the magnetocaloric effect depends on the magnetocaloric material used; it is proportional to the intensity of the applied magnetic field; and it's magnitude decreases with increasing difference between the material's temperature and it's Curie temperature.
  • the magnetocaloric effect reaches its maximum for a ferromagnetic material at the material's Curie temperature, the transition point above which thermally induced disorder overcomes the alignment of magnetic dipole moments of the material's atoms.
  • the magnetocaloric effect is relatively weak in most ferromagnetic materials at room temperature. Gadolinium is an exception as it's Curie temperature is 21 °C.
  • These new materials have been developed exhibiting an enhanced magnetocaloric effect, two to three times that of pure gadolinium.
  • These new materials include intermetallic alloys comprising lanthanides, such as gadolinium-germanium-silicon alloys, and Al-Ni alloys.
  • An 8 Tesla magnetic field such as that produced by a superconducting magnet, can produce a magnetocaloric temperature change of up to 15°C in some of these materials.
  • a common configuration of AMR devices is to incorporate magnetocaloric material into a wheel, ring, piston or the like and cyclically move the magnetocaloric material through a stationary magnetic field to alternately magnetize and demagnetize said material.
  • Rotary devices of this type give rise to the inevitable problem concerning fluid tightness since a heat- conducting fluid has to be brought into thermal contact with a moving body. Although this problem is not insurmountable, the components of the system transporting a heat-conducting fluid to, through and from the moving body have to be manufactured to within very close tolerances to avoid fluid leakage and thus a decrease in the thermal efficiency of the system. Furthermore, as friction is generated by the means of rotating the magnetocaloric material, the efficiency of such a system used as a refrigerator is lowered.
  • US 4532770 discloses a magnetic refrigerator utilizing a plurality of coils arranged on the outer peripheral surface of a hollow cylindrical rotor. Magnetocaloric material is arranged in a stator around the outer or inner periphery of said rotor and an air gap separates said rotor and stator. A current flows through said coils, to form a distributed magnetic field around the periphery of the rotor and when the rotor rotates a magnetic field is periodically applied to and removed from the magnetocaloric material in the stator, which is magnetized and demagnetized respectively.
  • superconducting coils are used to increase the intensity of the magnetic field to which said magnetocaloric material is subjected.
  • US 5182914 describes an AMR refrigerator comprising first and second elongated regenerative beds of magnetocaloric material positioned end to end and within fixed first and second inner dipole magnets respectively.
  • the two inner dipole magnets are connected in opposition so that the field produced by one is in the opposite direction to that of the other.
  • An outer dipole magnet that rotates around the longitudinal axis on which said regenerative beds are located, surrounds the magnetized regenerative beds.
  • the outer dipole magnet produces a magnetic field of the same magnitude as the inner dipole magnets transverse to its axis of rotation.
  • Said beds of magnetocaloric material are magnetized and demagnetized as the vector sums of the magnetic fields of the inner dipole magnets and the outer dipole magnet are added together upon rotation of the outer dipole magnet.
  • constructive interference increases the intensity of the magnetic field imposed on the first bed of magnetocaloric material positioned within the first inner dipole magnet.
  • anti-alignment of the magnetic fields of the outer dipole magnet and the second inner dipole magnet cancel each other out yielding zero intensity.
  • the field of the first inner dipole magnet is anti-aligned with the magnetic field of the outer dipole magnet which causes the magnetic fields to essentially cancel each other out while the intensity of the magnetic field experienced by the second inner dipole magnet is increased.
  • Said regenerative beds are brought into contact with a heat-conducting fluid.
  • a heat-conducting fluid In order to achieve a large temperature change of said fluid it is preferable to make the fluid to flow axially along the regenerator beds and to make them as long as possible so as to increase heat transferring time.
  • a system housing two beds of magnetocaloric material along a common longitudinal axis would be relatively large.
  • a large outer magnet as well as sufficiently powerful means to rotate said magnet would be required.
  • any imbalances in the system would give rise to an uneven rotation of the outer dipole magnet if attraction forces, arising when unlike magnetic poles separate, and repulsion forces, arising when like poles meet, were not overcome. Said imbalances would result in irrecoverable energy losses as the magnets were rotated.
  • a device that includes two components in the form of a stator and a rotor, which are rotatable with respect to each other around a common axis and radially separated by an annular gap.
  • One of said components contain at least one element comprising magnetocaloric material.
  • the other component comprises means to impose a magnetic field on said magnetocaloric material and is adapted to alternately magnetize said material contained in the other component in order to increase the material's temperature and demagnetize said material in order to decrease the material's temperature.
  • the device also comprises means to bring said at least one element comprising magnetocaloric material into direct thermal contact with a fluid to change the temperature of that fluid.
  • the component containing means to impose a magnetic field comprises a plurality of pairs of elongated permanent magnets, that are arranged substantially radially around said axis and magnetized so that unlike poles of each magnet pair face each other and like poles of adjacent permanent magnet pairs face each other. Since the resultant magnetic field at any point and time is the sum of all individual magnetic fields at that point and time, as the magnetic fields from adjacent magnet pairs are in phase and act in the same direction across said gap, the magnetic fields superimpose constituting constructive interference and thus providing an intensified magnetic field that extends substantially radially across said annular gap.
  • This arrangement of magnets is a very effective way to increase the magnetic flux density across the gap and in the magnetocaloric material, which consequently increases the magnetocaloric temperature change obtained and the heating/cooling capacity of the temperature-changing device.
  • the use of permanent magnets allows more reliable, simple and portable systems to be constructed. Furthermore, no electricity is consumed to produce a magnetic field leading to savings in operational costs.
  • the permanent magnets comprise neodymium-boron-iron, samarium-cobalt or ferrite and the term substantially radially is, here and as it stands in claim 1 , intended to also include elongated permanent magnets arranged parallel to each other in a pair.
  • the magnets are arranged either in the rotor or the stator of said temperature-changing device. Said rotor revolves either inside or around said stator. Arranging the magnets in the rotor and magnetocaloric material in the stator is however advantageous in that it simplifies the construction of a fluid tight system for the fluid that is brought into thermal contact with the magnetocaloric material.
  • the component comprising magnetocaloric material is encased in a magnetically soft material, such as iron, that contains the magnetic flux in a localized area.
  • said component comprising magnetocaloric material comprises laminated members, separated by insulating material for example, around said magnetocaloric material to hinder thermal conduction.
  • said stator comprises a substantially cylindrical member containing at least one element comprising magnetocaloric material around its inner or outer periphery, through which said fluid flows axially.
  • said stator comprises a substantially circular ring-like member containing at least one element comprising magnetocaloric material through which said fluid flows circumferentially i.e. via channels that are substantially parallel to the ring-like member's periphery.
  • said stator includes a plurality of elements comprising magnetocaloric material each of which is brought into direct thermal contact with a fluid and said rotor is adapted to impose substantially the same magnetic field on said plurality of elements comprising magnetocaloric material.
  • said rotor is adapted to impose magnetic fields of different magnitudes on said plurality of elements comprising magnetocaloric material.
  • a fluid flows into direct thermal contact with each of said plurality of elements of magnetocaloric material. The temperature change of the fluid flowing past each element is determined by the choice of magnetocaloric material constituting the element and the intensity of the magnetic field to which said element is exposed.
  • Each element can therefore be used to provide a different amount of heating or cooling to fluids in a plurality of channels simultaneously using the same temperature changing device and thus achieve distributed heating or cooling, for example for different rooms in a building.
  • the fluid that is brought into thermal contact with said at least one element of magnetocaloric material is the fluid flowing through the fluid-handling system whose temperature is to be changed.
  • the fluid that is brought into direct thermal contact with said at least one element of magnetocaloric material is a heat transfer medium that flows through at least one heat exchanger that is in thermal contact with the fluid flowing through the fluid-handling system, said heat transfer medium transferring heat between said at least one element of magnetocaloric material and the fluid whose temperature is to be changed.
  • the heat transfer medium is water that is non-toxic, inexpensive, nonflammable and environmentally friendly.
  • the heat transfer medium is water comprising antifreeze to allow cooling below 0°C.
  • means are provided to reverse the flow of the heat transfer medium through the system to enable the temperature changing device to change from heating to cooling a fluid flowing through a fluid-handling system or vice versa.
  • the device can act as a heat exchanger and heating device in an air-conditioning system in winter and as a heat exchanger and cooling device in the summer and thus provide the option of the device being used to heat or cool the fluid flowing into the fluid-handling system.
  • said material constituting said at least one element is porous and has a high specific area per unit volume.
  • the magnetocaloric material constituting said at least one element is arranged in at least one of the following geometries: hollow tubes, parallel wires, perforated plates, corrugated plates, wire meshes, thin parallel plates, packed individual particles or in the form of solid foam.
  • the geometry of said at least one element is optimized to provide good heat transfer between the magnetocaloric material and fluid in thermal contact with said material while fluid flow resistance giving rise to a pressure drop in the system is minimized. If for example the fluid in contact with said at least one element is air flowing through an air-handling system, a pressure drop means that the fan forcing the air through the system has to consume more energy in order to attain the same airflow through the system.
  • said at least one element comprises a plurality of magnetocaloric materials having different Curie temperatures that are arranged in layers in order of increasing Curie temperature in the direction of fluid flowing past the element or in order of decreasing Curie temperature in the direction of fluid flowing past the element depending on whether the fluid is to be cooled or heated on passing through the element.
  • This grading of magnetocaloric material along an element is advantageous as the different magnetocaloric materials are arranged to correspond to the temperature profile that arises during the fluid-handling system's operation. This means that the different magnetocaloric materials are maintained at a temperature as near as possible to their Curie temperature thus optimizing the performance of the element.
  • the magnetocaloric material comprises a rare earth metal such as gadolinium, a rare earth metal-based alloy such as a gadolinium-silicon-germanium alloy or an Al-Ni alloy.
  • the magnetocaloric material is covered with a protective coating which is at least one of the following: hygroscopic, oxidation resistant, chemically resistant, hydrophobic.
  • the fluid-handling system of the present invention is primarily intended to be used to either increase or decrease the temperature of fluid, such as liquid flowing in a process fluid flow, or gas flowing into an enclosed environment such as a building or a vehicle, particularly, but not exclusively, in the temperature range from -30°C to 25°C.
  • figure 1 depicts the cross section of a stator and rotor according to a first preferred embodiment of the present invention
  • figure 2 shows the cross section of a stator and rotor according to a second preferred embodiment of the present invention
  • figure 3 illustrates an AMR device according to a preferred embodiment of the present invention
  • figure 4 shows an AMR device according to another preferred embodiment of the present invention
  • figure 5 is a chart showing the temperature attained by fluid in thermal contact with magnetocaloric material in the systems shown in figures 3 and 4, and
  • figure 6 shows an AMR device that is used to achieve distributed heating or cooling according to another preferred embodiment of the present invention.
  • Figure 1 shows the cross-section of a cylindrical rotor 10 comprising four pairs 11 of elongated permanent magnets 12 that are arranged substantially radially around said rotor's axis of rotation 13.
  • the axis of rotation 13 comprises a magnetically hard material.
  • the rotor 10 rotates inside a hollow cylindrical stator 14 that comprises a plurality of elements of magnetocaloric material 15,16 on its inner peripheral surface.
  • Insulators 21 having a low themal conductivity divide said elements of magnetocaloric material 15, 16 and insulate said elements from the surrounding stator material 18.
  • Means are provided to bring said magnetocaloric material into direct thermal contact with a fluid via static fluid channels, flowing perpendicular to the plane of figure 1 , to change the temperature of that fluid.
  • Fluid to be heated flows through elements 15 upon their magnetization. Fluid to be cooled flows through elements 16 upon their demagnetization.
  • the geometry of the elements is optimized to provide good heat transfer between the magnetocaloric material and fluid flowing through the elements while minimizing fluid flow resistance.
  • Said rotor 10 and stator 14 are separated by an annular air gap 17.
  • the four permanent magnet pairs 11 are arranged so that unlike poles of each magnet pair face each other and like poles of adjacent magnet pairs face each other in order to provide an intensified magnetic field that extends substantially radially across said annular air gap 17.
  • the magnetic flux density in the gap, B gap , between the rotor and stator can be calculated from the ratio of the area of the magnets, S magnet , to the area of the gap, S gap , and the flux density in the magnets, B magnet , using the following equation:
  • the magnetic flux density in the gap depends on the parameter S ma gne t /Sg a p- If the area of the magnets is equal to area of the gap between said magnets, the magnetic flux density in said gap, B gap , will be two times greater than the magnetic flux density in one magnet, B magnet .
  • the stator 14 is encased in a magnetically soft material 18, such as iron, that contains the magnetic flux 20 in a localized area around the magnetocaloric material 15,16.
  • the rotor 10 also comprises a magnetically soft material 19 in between the magnets 12.
  • FIG 2 shows second preferred embodiment of the present invention where the rotor 10, comprising pairs 11 of permanent magnets 12, rotates around a stator 14 that comprises magnetocaloric material 15,16 on it's outer peripheral surface.
  • the stator core comprises laminated members that are separated by insulating material 21.
  • An annular gap 17 separates said rotor 10 and stator 14.
  • the stator and rotor comprise a magnetically soft material 18, 19 that contains the magnetic flux 20 in a localized area.
  • the outer periphery of the rotor can be encased in a magnetically hard material.
  • Figure 3 shows an AMR device including a rotor 10 comprising means to impose a magnetic field on at least one element of magnetocaloric material 15, 16 in a stator 14.
  • a heat transfer medium 31 such as water or any other heat conducting fluid, is brought into thermal contact with the element via a static fluid channel.
  • the heat transfer medium 31 flows axially through said element when it is magnetized and is consequently warmed.
  • the heat transfer medium exiting the element at B has a higher temperature than heat transfer medium entering the element at A.
  • a temperature profile is established along the element where the material nearer side A is colder than material nearer side B.
  • Magnetocaloric materials having different Curie temperatures are arranged in order of Curie temperature so that material with the highest Curie temperature is nearest to B and material having the lowest temperature is nearest to A to optimize the performance of the element by maintaining the magnetocaloric materials as near to their Curie temperature as possible.
  • the layers or sections of different magnetocaloric materials are not necessarily of the same thickness, as their thickness will depend upon the temperature profile along the element.
  • the element comprises, for example, layers of porous gadolinium-silicon-germanium alloys of different compositions. By adjusting the alloys' compositions, their Curie temperatures can be controlled. The higher the germanium content of the alloy in a layer, the lower it's Curie temperature.
  • an element can be tuned to a specific operating temperature range. In order to achieve a different operating temperature range, the intensity of the applied magnetic field can be changed or the magnetocaloric material constituting an element can be replaced without having to redesign the whole fluid- handling system.
  • the magnetocaloric material is coated with a protective coating that is chemically resistant to some component of the fluid flowing through the system.
  • the coating removes moisture from humid gas passing through a gas-handling system.
  • the heat transfer medium 31 On exiting said at least one element of magnetocaloric material at B, the heat transfer medium 31 is then driven through a heat exchanger 32 where it dissipates heat, Q out . On having passed through the heat exchanger 32, the heat transfer medium is then brought into thermal contact with demagnetized magnetocaloric material 16 via a second static fluid channel 33. The heat transfer medium is cooled as it flows axially through said material from C to D. It is then driven through a heat exchanger 34 where is absorbs heat, Q in . The heat transfer medium 31 is in thermal contact with fluid flowing through a fluid-handling system via the heat exchangers 32 and 34.
  • heat exchanger 32 If the fluid flowing into the fluid-handling system is to be heated it is directed to flow past heat exchanger 32, as indicated by arrow 35, where it is heated by heat transfer medium flowing through heat exchanger 32. If the fluid flowing into the fluid-handling system is to be cooled it is directed to flow past heat exchanger 34, as indicated by arrow 36, where it is cooled by heat transfer medium flowing through heat exchanger 34.
  • FIG. 4 shows an AMR device comprising a stator 14 comprising at least one element of magnetocaloric material located at the rim of a ring-like member.
  • a rotor (not shown) provides a magnetic field 40 in the vicinity of magnetocaloric material at the top of said ring-like member.
  • a heat transfer fluid 31 is brought into thermal contact with the element via a first fixed channel.
  • the fluid 31 flows circumferentially with respect to the ring-like member via channels that are substantially parallel to the plane of the ring- like member's circular surfaces through the magnetized magnetocaloric material whereby it is consequently warmed as it flows from A to B.
  • Said heat transfer fluid is then passed through a heat exchanger 32 where it dissipates heat, Q ou t-
  • a pump 37 reverses flow direction of the heat transfer fluid and the rotor imposes a magnetic field on at least one element of magnetocaloric material located in the lower part of the ring-like member.
  • the heat transfer fluid is brought into thermal contact with demagnetized magnetocaloric material, via a first fixed channel 31 and flows circumferentially with respect to the ring-like member through the demagnetized magnetocaloric material from B to A whereby it is cooled and transferred to a heat exchanger 34 where it absorbs heat Q in from fluid flowing through the fluid handling system.
  • stator contains magnetocaloric material and the stator contains means for providing a magnetic field.
  • stator can take which would be obvious to a person with ordinary skill in the art.
  • Figure 5 shows the how the temperature of fluid in thermal contact with magnetocaloric material in the systems shown in figures 3 and 4 changes as said fluid flows between the points labeled A, B, C and D. If fluid flows from A to B as magnetocaloric material located between those points is magnetized, said fluid is heated. The fluid dissipates this heat, Q out when it loses contact with the magnetocaloric material. When the fluid flows past demagnetized material located between points C and D, the temperature of said fluid decreases. The fluid absorbs heat Q in once it loses contact with the magnetocaloric material. The longer the distance (A to B or C to D) in the flow direction of the magnetocaloric material, the longer the heat transferring time and the larger the fluid temperature change achieved.
  • Figure 6 shows a stator including a plurality of elements 61 , 62, 63, comprising magnetocaloric material 15,16.
  • the rotor 10 is adapted to impose magnetic fields on each of said plurality of elements.
  • a fluid 31 flows into direct thermal contact with each of said elements 61 , 62, 63.
  • the temperature change of the fluid flowing past each element is determined by the choice of magnetocaloric material constituting said element and the intensity of the magnetic field to which said material is exposed.
  • Each element 61, 62, 63 can therefore be used to provide a different amount of heating or cooling to fluid 31 flowing in a plurality of channels.
  • said system is used to heat two fluids 64, 65 and to cool a fluid 66 simultaneously. These fluids could for example be air used to heat two rooms 64, 65 in a house and to cool a third 66.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Hard Magnetic Materials (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Système de manipulation de fluides caractérisé en ce qu'il comprend un stator (14) et un rotor (10) entraînés en rotation l'un par rapport à l'autre autour d'un axe commun (13) et séparés radialement par un entrefer annulaire (17), en ce que l'un desdits composants contient au moins un élément comprenant un matériau magnéto-calorique (15, 16), et l'autre composant comprend des moyens permettant d'impartir un champ magnétique sur ledit matériau magnétocalorique et est adapté pour aimanter et désaimanter alternativement ledit matériau, ainsi que des moyens permettant d'amener ledit matériau en contact thermique avec un fluide pour changer la température de ce fluide, et en ce que le composant présentant des moyens pour impartir un champ magnétique comprend une pluralité de paires (11) d'aimants permanents allongés (12) qui sont agencés sensiblement radialement autour dudit axe et aimantés de façon que les pôles de nom contraire de chaque paire d'aimants soient tournés l'un vers l'autre, et que des pôles de même nom de paires d'aimants adjacents soient tournés l'un vers l'autre, en vue de fournir un champ magnétique d'une plus grande intensité s'étendant radialement à travers ledit entrefer annulaire (17).
PCT/SE2002/000634 2001-08-17 2002-03-27 Systeme de manipulation de fluides WO2003016794A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0102753A SE0102753D0 (sv) 2001-08-17 2001-08-17 A fluid handling system
SE0102753-1 2001-08-17

Publications (1)

Publication Number Publication Date
WO2003016794A1 true WO2003016794A1 (fr) 2003-02-27

Family

ID=20285055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2002/000634 WO2003016794A1 (fr) 2001-08-17 2002-03-27 Systeme de manipulation de fluides

Country Status (2)

Country Link
SE (1) SE0102753D0 (fr)
WO (1) WO2003016794A1 (fr)

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007068134A3 (fr) * 2005-12-13 2007-11-22 Heig Vd Dispositif de generation de froid et de chaleur par effet magneto-calorique
WO2007110066A3 (fr) * 2006-03-29 2007-11-22 Webasto Ag Dispositif de refroidissement d'air s'appuyant sur l'effet magnétocalorique
WO2008132342A1 (fr) * 2007-03-19 2008-11-06 Cooltech Applications (S.A.S.) Procede et dispositif pour accroitre le gradient de temperature dans un generateur thermique magnetocalorique
FR2930692A1 (fr) * 2008-04-28 2009-10-30 Cooltech Applic Soc Par Action Moteur electrique pourvu de moyens de refroidissement selectifs
FR2930679A1 (fr) * 2008-04-28 2009-10-30 Cooltech Applic Soc Par Action Dispositif de generation de flux thermique a materiau magnetocalorique
WO2009136022A2 (fr) * 2008-04-28 2009-11-12 Cooltech Applications Dispositif de generation de flux thermique a materiau magnetocalorique
FR2933537A1 (fr) * 2008-07-01 2010-01-08 Cooltech Applications Dispositif de generation de flux thermique a materiau magnetocalorique
FR2936363A1 (fr) * 2008-09-25 2010-03-26 Cooltech Applications Generateur thermique a materiau magnetocalorique
FR2940526A1 (fr) * 2008-12-19 2010-06-25 Cooltech Applications Procede d'etablissement accelere d'un gradient de temperature dans un element magnetocalorique et generateur thermique magnetocalorique mettant en oeuvre ledit procede
US20100236258A1 (en) * 2007-10-30 2010-09-23 Cooltech Applications S.A.S. Thermal generator with magneto-caloric material
US20110063060A1 (en) * 2009-09-17 2011-03-17 Chang Shao Hsiung Magnetic apparatus and magnetic system for outputting power
WO2011059541A1 (fr) * 2009-11-11 2011-05-19 Southern Illinois University Edwardsville Système de réfrigération magnétique à boucle combinée
US20110192833A1 (en) * 2008-10-16 2011-08-11 Cooltech Applications Magnetocaloric thermal generator
US20120036868A1 (en) * 2010-08-16 2012-02-16 Cooltech Applications S.A.S Magnetocaloric thermal applicance
FR2963823A1 (fr) * 2010-08-16 2012-02-17 Cooltech Applications Generateur thermique magnetocalorique
WO2012102016A1 (fr) * 2011-01-27 2012-08-02 株式会社デンソー Système de réfrigération magnétique, et système de climatiseur pour automobiles
CN102778074A (zh) * 2011-05-13 2012-11-14 株式会社电装 热磁循环设备
EP2541167A3 (fr) * 2011-06-30 2013-03-20 Camfridge Ltd Lame multimatériaux pour moteurs thermiques électrocaloriques ou magnétocaloriques actifs régénérateurs
CN103925732A (zh) * 2014-04-11 2014-07-16 佛山市川东磁电股份有限公司 一种旋转式串极磁制冷系统
WO2014099663A3 (fr) * 2012-12-17 2014-10-16 Astronautics Corporation Of America Utilisation de modes d'écoulement unidirectionnel de systèmes de refroidissement magnétiques
WO2014172027A1 (fr) * 2013-04-16 2014-10-23 General Electric Company Pompe à chaleur dotée de matériaux magnétocaloriques et d'une intensité de champ magnétique variable
WO2015012975A1 (fr) * 2013-07-24 2015-01-29 General Electric Company Pompe à chaleur variable utilisant des matériaux magnétocaloriques
WO2015099404A1 (fr) * 2013-12-27 2015-07-02 Samsung Electronics Co., Ltd. Appareil de refroidissement magnétique et système réfrigérant magnétique comprenant ledit appareil
CN104930749A (zh) * 2014-03-18 2015-09-23 三星电子株式会社 磁蓄冷器单元以及具有其的磁冷却系统
ES2569434A1 (es) * 2014-11-10 2016-05-10 Fagor, S.Coop. Elemento magnetocalórico para refrigeración magnética, conjunto magnético y sistema de refrigeración magnética
WO2016202663A1 (fr) * 2015-06-19 2016-12-22 Basf Se Élément magnétocalorique de type à écran emballé
US9534817B2 (en) 2013-03-29 2017-01-03 General Electric Company Conduction based magneto caloric heat pump
US9602043B2 (en) 2014-08-29 2017-03-21 General Electric Company Magnet management in electric machines
US9631843B2 (en) 2015-02-13 2017-04-25 Haier Us Appliance Solutions, Inc. Magnetic device for magneto caloric heat pump regenerator
US9698660B2 (en) 2013-10-25 2017-07-04 General Electric Company System and method for heating ferrite magnet motors for low temperatures
US9797630B2 (en) 2014-06-17 2017-10-24 Haier Us Appliance Solutions, Inc. Heat pump with restorative operation for magneto caloric material
US9851128B2 (en) 2014-04-22 2017-12-26 Haier Us Appliance Solutions, Inc. Magneto caloric heat pump
US9857106B1 (en) 2016-10-10 2018-01-02 Haier Us Appliance Solutions, Inc. Heat pump valve assembly
US9857105B1 (en) 2016-10-10 2018-01-02 Haier Us Appliance Solutions, Inc. Heat pump with a compliant seal
US9869493B1 (en) 2016-07-19 2018-01-16 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US9915448B2 (en) 2016-07-19 2018-03-13 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
WO2018088167A1 (fr) * 2016-11-14 2018-05-17 サンデンホールディングス株式会社 Dispositif de pompe à chaleur magnétique
US10006673B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006672B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006675B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006674B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047980B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047979B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10126025B2 (en) 2013-08-02 2018-11-13 Haier Us Appliance Solutions, Inc. Magneto caloric assemblies
US20190063795A1 (en) * 2017-08-25 2019-02-28 Astronautics Corporation Of America Drum-type magnetic refrigeration apparatus with improved magnetic-field source
US10222101B2 (en) 2016-07-19 2019-03-05 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10230321B1 (en) 2017-10-23 2019-03-12 General Electric Company System and method for preventing permanent magnet demagnetization in electrical machines
US10254020B2 (en) 2015-01-22 2019-04-09 Haier Us Appliance Solutions, Inc. Regenerator including magneto caloric material with channels for the flow of heat transfer fluid
US10274231B2 (en) 2016-07-19 2019-04-30 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10281177B2 (en) 2016-07-19 2019-05-07 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10288326B2 (en) 2016-12-06 2019-05-14 Haier Us Appliance Solutions, Inc. Conduction heat pump
US10295226B2 (en) 2015-04-09 2019-05-21 Eberspächer Climate Control Systems GmbH & Co. KG Temperature control unit, especially vehicle temperature control unit
US10295227B2 (en) 2016-07-19 2019-05-21 Haier Us Appliance Solutions, Inc. Caloric heat pump system
CN109780751A (zh) * 2018-12-24 2019-05-21 珠海格力电器股份有限公司 一种磁制冷系统
US10299655B2 (en) 2016-05-16 2019-05-28 General Electric Company Caloric heat pump dishwasher appliance
US10386096B2 (en) 2016-12-06 2019-08-20 Haier Us Appliance Solutions, Inc. Magnet assembly for a magneto-caloric heat pump
US10422555B2 (en) 2017-07-19 2019-09-24 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10443585B2 (en) 2016-08-26 2019-10-15 Haier Us Appliance Solutions, Inc. Pump for a heat pump system
US10451320B2 (en) 2017-05-25 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with water condensing features
US10451322B2 (en) 2017-07-19 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US20190323739A1 (en) * 2018-04-18 2019-10-24 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US20190323760A1 (en) * 2018-04-18 2019-10-24 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US20190323743A1 (en) * 2018-04-18 2019-10-24 Haier Us Appliance Solutions, Inc. Variable speed magneto-caloric thermal diode assembly
US20190323744A1 (en) * 2018-04-18 2019-10-24 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder
US20190323740A1 (en) * 2018-04-18 2019-10-24 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10465951B2 (en) 2013-01-10 2019-11-05 Haier Us Appliance Solutions, Inc. Magneto caloric heat pump with variable magnetization
US10520229B2 (en) 2017-11-14 2019-12-31 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US10527325B2 (en) 2017-03-28 2020-01-07 Haier Us Appliance Solutions, Inc. Refrigerator appliance
US10541070B2 (en) 2016-04-25 2020-01-21 Haier Us Appliance Solutions, Inc. Method for forming a bed of stabilized magneto-caloric material
WO2020015644A1 (fr) * 2018-07-17 2020-01-23 Qingdao Haier Refrigerator Co., Ltd. Ensemble de diode thermique magnéto-calorique avec un échangeur de chaleur rotatif
US10551095B2 (en) 2018-04-18 2020-02-04 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10557649B2 (en) 2018-04-18 2020-02-11 Haier Us Appliance Solutions, Inc. Variable temperature magneto-caloric thermal diode assembly
US10782051B2 (en) 2018-04-18 2020-09-22 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
WO2020224264A1 (fr) * 2019-05-09 2020-11-12 珠海格力电器股份有限公司 Dispositif de réfrigération magnétique
US10876770B2 (en) 2018-04-18 2020-12-29 Haier Us Appliance Solutions, Inc. Method for operating an elasto-caloric heat pump with variable pre-strain
US10989449B2 (en) 2018-05-10 2021-04-27 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial supports
US11009282B2 (en) 2017-03-28 2021-05-18 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US11015842B2 (en) 2018-05-10 2021-05-25 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial polarity alignment
US11015843B2 (en) 2019-05-29 2021-05-25 Haier Us Appliance Solutions, Inc. Caloric heat pump hydraulic system
US11022348B2 (en) 2017-12-12 2021-06-01 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US11054176B2 (en) 2018-05-10 2021-07-06 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a modular magnet system
US11092364B2 (en) 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
US11112146B2 (en) 2019-02-12 2021-09-07 Haier Us Appliance Solutions, Inc. Heat pump and cascaded caloric regenerator assembly
US11149994B2 (en) 2019-01-08 2021-10-19 Haier Us Appliance Solutions, Inc. Uneven flow valve for a caloric regenerator
US11168926B2 (en) 2019-01-08 2021-11-09 Haier Us Appliance Solutions, Inc. Leveraged mechano-caloric heat pump
US11193697B2 (en) 2019-01-08 2021-12-07 Haier Us Appliance Solutions, Inc. Fan speed control method for caloric heat pump systems
US11274860B2 (en) 2019-01-08 2022-03-15 Haier Us Appliance Solutions, Inc. Mechano-caloric stage with inner and outer sleeves
US11402136B2 (en) 2017-08-25 2022-08-02 Astronautics Corporation Of America Drum-type magnetic refrigeration apparatus with multiple bed rings

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11747054B2 (en) * 2020-05-14 2023-09-05 Mitsubishi Electric Corporation Magnetic refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441325A (en) * 1981-11-27 1984-04-10 Commissariat A L'energie Atomique Refrigerating or heat pumping process and apparatus
SU1651055A1 (ru) * 1988-12-05 1991-05-23 Московский энергетический институт Магнитокалорический рефрижератор
SU1673803A1 (ru) * 1988-11-04 1991-08-30 Предприятие П/Я М-5727 Магнитокалорический рефрижератор
US5091361A (en) * 1990-07-03 1992-02-25 Hed Aharon Z Magnetic heat pumps using the inverse magnetocaloric effect
SU1719816A1 (ru) * 1990-05-15 1992-03-15 Омское Научно-Производственное Объединение Микрокриогенной Техники Магнитный рефрижератор
WO2001033145A1 (fr) * 1999-11-02 2001-05-10 Abb Ab Installation d'extraction de gaz et procede de sa liquefaction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441325A (en) * 1981-11-27 1984-04-10 Commissariat A L'energie Atomique Refrigerating or heat pumping process and apparatus
SU1673803A1 (ru) * 1988-11-04 1991-08-30 Предприятие П/Я М-5727 Магнитокалорический рефрижератор
SU1651055A1 (ru) * 1988-12-05 1991-05-23 Московский энергетический институт Магнитокалорический рефрижератор
SU1719816A1 (ru) * 1990-05-15 1992-03-15 Омское Научно-Производственное Объединение Микрокриогенной Техники Магнитный рефрижератор
US5091361A (en) * 1990-07-03 1992-02-25 Hed Aharon Z Magnetic heat pumps using the inverse magnetocaloric effect
WO2001033145A1 (fr) * 1999-11-02 2001-05-10 Abb Ab Installation d'extraction de gaz et procede de sa liquefaction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199242, Derwent World Patents Index; AN 1992-347364/42 *

Cited By (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8191375B2 (en) 2005-12-13 2012-06-05 Haute Ecole d'Ingenierie et de Gestion du Canton de Vaud ( Heig-VD) Device for generating cold and heat by a magneto-calorific effect
WO2007068134A3 (fr) * 2005-12-13 2007-11-22 Heig Vd Dispositif de generation de froid et de chaleur par effet magneto-calorique
WO2007110066A3 (fr) * 2006-03-29 2007-11-22 Webasto Ag Dispositif de refroidissement d'air s'appuyant sur l'effet magnétocalorique
WO2008132342A1 (fr) * 2007-03-19 2008-11-06 Cooltech Applications (S.A.S.) Procede et dispositif pour accroitre le gradient de temperature dans un generateur thermique magnetocalorique
TWI425177B (zh) * 2007-03-19 2014-02-01 Cooltech Applications 在使用磁熱材料的熱產生器中增加溫度梯度的方法和裝置
US8904806B2 (en) 2007-03-19 2014-12-09 Cooltech Applications Societe Par Actions Simplifiee Process and apparatus to increase the temperature gradient in a thermal generator using magneto-calorific material
US20100236258A1 (en) * 2007-10-30 2010-09-23 Cooltech Applications S.A.S. Thermal generator with magneto-caloric material
US8869541B2 (en) * 2007-10-30 2014-10-28 Cooltech Applications Societe Par Actions Simplifiee Thermal generator with magnetocaloric material and incorporated heat transfer fluid circulation means
KR101570548B1 (ko) 2007-10-30 2015-11-19 쿨테크 어플리케이션즈 에스.에이.에스. 자기열 물질을 지닌 열 발생기
WO2009133323A2 (fr) * 2008-04-28 2009-11-05 Cooltech Applications Moteur electrique
FR2930679A1 (fr) * 2008-04-28 2009-10-30 Cooltech Applic Soc Par Action Dispositif de generation de flux thermique a materiau magnetocalorique
WO2009133323A3 (fr) * 2008-04-28 2010-03-11 Cooltech Applications Moteur electrique
FR2930692A1 (fr) * 2008-04-28 2009-10-30 Cooltech Applic Soc Par Action Moteur electrique pourvu de moyens de refroidissement selectifs
WO2009136022A3 (fr) * 2008-04-28 2010-01-14 Cooltech Applications Dispositif de generation de flux thermique a materiau magnetocalorique
JP2011519009A (ja) * 2008-04-28 2011-06-30 クールテック アプリケーションズ エス.エイ.エス. 磁気熱量材料を備える熱流束発生装置
US8258658B2 (en) 2008-04-28 2012-09-04 Cooltech Applications Electric motor
US8695354B2 (en) 2008-04-28 2014-04-15 Cooltech Applications Thermal flux generating device with magnetocaloric material
WO2009136022A2 (fr) * 2008-04-28 2009-11-12 Cooltech Applications Dispositif de generation de flux thermique a materiau magnetocalorique
FR2933537A1 (fr) * 2008-07-01 2010-01-08 Cooltech Applications Dispositif de generation de flux thermique a materiau magnetocalorique
FR2936363A1 (fr) * 2008-09-25 2010-03-26 Cooltech Applications Generateur thermique a materiau magnetocalorique
WO2010061064A1 (fr) * 2008-09-25 2010-06-03 COOLTECH APPLICATIONS S.A.S. Impasse Antoine Imbs 67810 HOLTZHEIM - FRANCE Generateur thermioue a materiau magnetocalorioue
US8656725B2 (en) 2008-09-25 2014-02-25 Cooltech Applications Société par actions simplifiée Thermal generator with magnetocaloric material
US9476616B2 (en) * 2008-10-16 2016-10-25 Cooltech Applications Societe Par Actions Simplifiee Magnetocaloric thermal generator
US20110192833A1 (en) * 2008-10-16 2011-08-11 Cooltech Applications Magnetocaloric thermal generator
WO2010076405A1 (fr) * 2008-12-19 2010-07-08 Cooltech Applications S.A.S Procede d'etablissement accelere d'un gradient de temperature dans un element magnetocalorioue et generateur thermique magnetocalorioue mettant en oeuvre ledit procede
FR2940526A1 (fr) * 2008-12-19 2010-06-25 Cooltech Applications Procede d'etablissement accelere d'un gradient de temperature dans un element magnetocalorique et generateur thermique magnetocalorique mettant en oeuvre ledit procede
US20110063060A1 (en) * 2009-09-17 2011-03-17 Chang Shao Hsiung Magnetic apparatus and magnetic system for outputting power
WO2011059541A1 (fr) * 2009-11-11 2011-05-19 Southern Illinois University Edwardsville Système de réfrigération magnétique à boucle combinée
US20120036868A1 (en) * 2010-08-16 2012-02-16 Cooltech Applications S.A.S Magnetocaloric thermal applicance
US9435570B2 (en) * 2010-08-16 2016-09-06 Cooltech Applications S.A.S. Magnetocaloric thermal appliance
FR2963823A1 (fr) * 2010-08-16 2012-02-17 Cooltech Applications Generateur thermique magnetocalorique
JP2012255641A (ja) * 2011-01-27 2012-12-27 Denso Corp 磁気冷凍システムおよび自動車用空調装置
US20130298571A1 (en) * 2011-01-27 2013-11-14 Denso Corporation Magnetic refrigeration system and vehicle air conditioning device
CN103562658A (zh) * 2011-01-27 2014-02-05 株式会社电装 磁性制冷系统和车辆空气调节装置
WO2012102016A1 (fr) * 2011-01-27 2012-08-02 株式会社デンソー Système de réfrigération magnétique, et système de climatiseur pour automobiles
CN103562658B (zh) * 2011-01-27 2015-08-26 株式会社电装 磁性制冷系统和车辆空气调节装置
US9995512B2 (en) 2011-01-27 2018-06-12 Denso Corporation Magnetic refrigeration system with single direction coolant devices and vehicle air conditioning device applications
CN102778074A (zh) * 2011-05-13 2012-11-14 株式会社电装 热磁循环设备
JP2018077042A (ja) * 2011-06-30 2018-05-17 ケンフリッジ リミテッド 能動型再生磁気熱量ヒートエンジンまたは能動型再生電気熱量ヒートエンジンのための複数材料ブレード
WO2013001061A3 (fr) * 2011-06-30 2013-05-10 Camfridge Ltd. Pale multi-matériaux pour moteurs thermiques magnétocaloriques ou électrocaloriques régénérateurs actifs
CN103703326A (zh) * 2011-06-30 2014-04-02 坎布里奇有限公司 用于主动再生磁热或电热热力发动机的多材料叶片
CN108332444B (zh) * 2011-06-30 2020-07-31 坎布里奇有限公司 用于主动再生磁热或电热热力发动机的多材料叶片
EP2541167A3 (fr) * 2011-06-30 2013-03-20 Camfridge Ltd Lame multimatériaux pour moteurs thermiques électrocaloriques ou magnétocaloriques actifs régénérateurs
CN108332444A (zh) * 2011-06-30 2018-07-27 坎布里奇有限公司 用于主动再生磁热或电热热力发动机的多材料叶片
US10222099B2 (en) 2011-06-30 2019-03-05 Camfridge Ltd. Multi-material-blade for active regenerative magneto-caloric and electro-caloric heat engines
KR101730051B1 (ko) * 2011-06-30 2017-04-25 캠프리지 리미티드 능동형 재생 자기열 또는 전기열 열기관용 다중재료 블레이드
JP2017026305A (ja) * 2011-06-30 2017-02-02 ケンフリッジ リミテッド 能動型再生磁気熱量ヒートエンジンまたは能動型再生電気熱量ヒートエンジンのための複数材料ブレード
JP2014518371A (ja) * 2011-06-30 2014-07-28 ケンフリッジ リミテッド 能動型再生磁気熱量ヒートエンジンまたは能動型再生電気熱量ヒートエンジンのための複数材料ブレード
CN103703326B (zh) * 2011-06-30 2016-12-14 坎布里奇有限公司 用于主动再生磁热或电热热力发动机的多材料叶片
EP3358275A1 (fr) * 2011-06-30 2018-08-08 Camfridge Ltd Lame multimatériaux pour moteurs thermiques électrocaloriques ou magnétocaloriques actifs régénérateurs
CN105444458A (zh) * 2011-06-30 2016-03-30 坎布里奇有限公司 用于主动再生磁热或电热热力发动机的多材料叶片
CN104884879A (zh) * 2012-12-17 2015-09-02 美国宇航公司 磁冷却系统的单向流模式的用途
US9746214B2 (en) 2012-12-17 2017-08-29 Astronautics Corporation Of America Use of unidirectional flow modes of magnetic cooling systems
WO2014099663A3 (fr) * 2012-12-17 2014-10-16 Astronautics Corporation Of America Utilisation de modes d'écoulement unidirectionnel de systèmes de refroidissement magnétiques
US10288327B2 (en) 2012-12-17 2019-05-14 Astronautics Corporation Of America Use of unidirectional flow modes of magnetic cooling systems
JP2016507714A (ja) * 2012-12-17 2016-03-10 アストロノーティックス コーポレイション オブ アメリカ 磁気冷却システムの一方向流モードの使用
CN104884879B (zh) * 2012-12-17 2016-10-12 美国宇航公司 双模式磁冷藏装置和组合磁冷藏-冷冻装置
US10465951B2 (en) 2013-01-10 2019-11-05 Haier Us Appliance Solutions, Inc. Magneto caloric heat pump with variable magnetization
US9534817B2 (en) 2013-03-29 2017-01-03 General Electric Company Conduction based magneto caloric heat pump
US9625185B2 (en) 2013-04-16 2017-04-18 Haier Us Appliance Solutions, Inc. Heat pump with magneto caloric materials and variable magnetic field strength
WO2014172027A1 (fr) * 2013-04-16 2014-10-23 General Electric Company Pompe à chaleur dotée de matériaux magnétocaloriques et d'une intensité de champ magnétique variable
WO2015012975A1 (fr) * 2013-07-24 2015-01-29 General Electric Company Pompe à chaleur variable utilisant des matériaux magnétocaloriques
US9377221B2 (en) 2013-07-24 2016-06-28 General Electric Company Variable heat pump using magneto caloric materials
KR20160034995A (ko) * 2013-07-24 2016-03-30 제너럴 일렉트릭 캄파니 자기열 물질을 사용하는 가변 히트 펌프
CN105408702A (zh) * 2013-07-24 2016-03-16 通用电气公司 使用磁致热材料的可变热泵
KR102217279B1 (ko) 2013-07-24 2021-02-19 하이엘 유에스 어플라이언스 솔루션스 인코포레이티드 자기열 물질을 사용하는 가변 히트 펌프
US10126025B2 (en) 2013-08-02 2018-11-13 Haier Us Appliance Solutions, Inc. Magneto caloric assemblies
US9698660B2 (en) 2013-10-25 2017-07-04 General Electric Company System and method for heating ferrite magnet motors for low temperatures
US9966897B2 (en) 2013-10-25 2018-05-08 General Electric Company System and method for heating ferrite magnet motors for low temperatures
CN105849478A (zh) * 2013-12-27 2016-08-10 三星电子株式会社 磁冷却设备和具有磁冷却设备的磁制冷系统
US10281176B2 (en) 2013-12-27 2019-05-07 Samsung Electronics Co., Ltd. Magnetic cooling apparatus and magnetic refrigerating system having the same
WO2015099404A1 (fr) * 2013-12-27 2015-07-02 Samsung Electronics Co., Ltd. Appareil de refroidissement magnétique et système réfrigérant magnétique comprenant ledit appareil
KR102149733B1 (ko) 2013-12-27 2020-08-31 삼성전자주식회사 자기냉각장치 및 이를 갖춘 자기냉각시스템
KR20150077236A (ko) * 2013-12-27 2015-07-07 삼성전자주식회사 자기냉각장치 및 이를 갖춘 자기냉각시스템
WO2015142010A1 (fr) * 2014-03-18 2015-09-24 Samsung Electronics Co., Ltd. Unité de régénérateur magnétique et système de refroidissement magnétique la comportant
CN104930749A (zh) * 2014-03-18 2015-09-23 三星电子株式会社 磁蓄冷器单元以及具有其的磁冷却系统
CN103925732A (zh) * 2014-04-11 2014-07-16 佛山市川东磁电股份有限公司 一种旋转式串极磁制冷系统
US9851128B2 (en) 2014-04-22 2017-12-26 Haier Us Appliance Solutions, Inc. Magneto caloric heat pump
US9797630B2 (en) 2014-06-17 2017-10-24 Haier Us Appliance Solutions, Inc. Heat pump with restorative operation for magneto caloric material
US9602043B2 (en) 2014-08-29 2017-03-21 General Electric Company Magnet management in electric machines
ES2569434A1 (es) * 2014-11-10 2016-05-10 Fagor, S.Coop. Elemento magnetocalórico para refrigeración magnética, conjunto magnético y sistema de refrigeración magnética
US10254020B2 (en) 2015-01-22 2019-04-09 Haier Us Appliance Solutions, Inc. Regenerator including magneto caloric material with channels for the flow of heat transfer fluid
US9631843B2 (en) 2015-02-13 2017-04-25 Haier Us Appliance Solutions, Inc. Magnetic device for magneto caloric heat pump regenerator
US10295226B2 (en) 2015-04-09 2019-05-21 Eberspächer Climate Control Systems GmbH & Co. KG Temperature control unit, especially vehicle temperature control unit
US11802720B2 (en) 2015-06-19 2023-10-31 Magneto B.V. Packed-screen type magnetocaloric element
WO2016202663A1 (fr) * 2015-06-19 2016-12-22 Basf Se Élément magnétocalorique de type à écran emballé
US10541070B2 (en) 2016-04-25 2020-01-21 Haier Us Appliance Solutions, Inc. Method for forming a bed of stabilized magneto-caloric material
US10299655B2 (en) 2016-05-16 2019-05-28 General Electric Company Caloric heat pump dishwasher appliance
US9915448B2 (en) 2016-07-19 2018-03-13 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006674B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10222101B2 (en) 2016-07-19 2019-03-05 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006672B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10274231B2 (en) 2016-07-19 2019-04-30 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10281177B2 (en) 2016-07-19 2019-05-07 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10047979B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006673B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047980B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10648703B2 (en) 2016-07-19 2020-05-12 Haier US Applicance Solutions, Inc. Caloric heat pump system
US10295227B2 (en) 2016-07-19 2019-05-21 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US9869493B1 (en) 2016-07-19 2018-01-16 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006675B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10443585B2 (en) 2016-08-26 2019-10-15 Haier Us Appliance Solutions, Inc. Pump for a heat pump system
US9857106B1 (en) 2016-10-10 2018-01-02 Haier Us Appliance Solutions, Inc. Heat pump valve assembly
US9857105B1 (en) 2016-10-10 2018-01-02 Haier Us Appliance Solutions, Inc. Heat pump with a compliant seal
CN109937335A (zh) * 2016-11-14 2019-06-25 三电控股株式会社 磁热泵装置
WO2018088167A1 (fr) * 2016-11-14 2018-05-17 サンデンホールディングス株式会社 Dispositif de pompe à chaleur magnétique
US10386096B2 (en) 2016-12-06 2019-08-20 Haier Us Appliance Solutions, Inc. Magnet assembly for a magneto-caloric heat pump
US10288326B2 (en) 2016-12-06 2019-05-14 Haier Us Appliance Solutions, Inc. Conduction heat pump
US11009282B2 (en) 2017-03-28 2021-05-18 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10527325B2 (en) 2017-03-28 2020-01-07 Haier Us Appliance Solutions, Inc. Refrigerator appliance
US10451320B2 (en) 2017-05-25 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with water condensing features
US10451322B2 (en) 2017-07-19 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10422555B2 (en) 2017-07-19 2019-09-24 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US11125477B2 (en) 2017-08-25 2021-09-21 Astronautics Corporation Of America Drum-type magnetic refrigeration apparatus with improved magnetic-field source
US11402136B2 (en) 2017-08-25 2022-08-02 Astronautics Corporation Of America Drum-type magnetic refrigeration apparatus with multiple bed rings
US20190063795A1 (en) * 2017-08-25 2019-02-28 Astronautics Corporation Of America Drum-type magnetic refrigeration apparatus with improved magnetic-field source
US10230321B1 (en) 2017-10-23 2019-03-12 General Electric Company System and method for preventing permanent magnet demagnetization in electrical machines
US10520229B2 (en) 2017-11-14 2019-12-31 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US11022348B2 (en) 2017-12-12 2021-06-01 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US10557649B2 (en) 2018-04-18 2020-02-11 Haier Us Appliance Solutions, Inc. Variable temperature magneto-caloric thermal diode assembly
US10830506B2 (en) 2018-04-18 2020-11-10 Haier Us Appliance Solutions, Inc. Variable speed magneto-caloric thermal diode assembly
US10648705B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10641539B2 (en) 2018-04-18 2020-05-05 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648706B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder
US20190323739A1 (en) * 2018-04-18 2019-10-24 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10551095B2 (en) 2018-04-18 2020-02-04 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648704B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10782051B2 (en) 2018-04-18 2020-09-22 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US20190323743A1 (en) * 2018-04-18 2019-10-24 Haier Us Appliance Solutions, Inc. Variable speed magneto-caloric thermal diode assembly
US20190323760A1 (en) * 2018-04-18 2019-10-24 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10876770B2 (en) 2018-04-18 2020-12-29 Haier Us Appliance Solutions, Inc. Method for operating an elasto-caloric heat pump with variable pre-strain
US20190323740A1 (en) * 2018-04-18 2019-10-24 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US20190323744A1 (en) * 2018-04-18 2019-10-24 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder
US10989449B2 (en) 2018-05-10 2021-04-27 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial supports
US11015842B2 (en) 2018-05-10 2021-05-25 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial polarity alignment
US11054176B2 (en) 2018-05-10 2021-07-06 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a modular magnet system
WO2020015644A1 (fr) * 2018-07-17 2020-01-23 Qingdao Haier Refrigerator Co., Ltd. Ensemble de diode thermique magnéto-calorique avec un échangeur de chaleur rotatif
US11092364B2 (en) 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
US10684044B2 (en) 2018-07-17 2020-06-16 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a rotating heat exchanger
CN109780751A (zh) * 2018-12-24 2019-05-21 珠海格力电器股份有限公司 一种磁制冷系统
US11149994B2 (en) 2019-01-08 2021-10-19 Haier Us Appliance Solutions, Inc. Uneven flow valve for a caloric regenerator
US11168926B2 (en) 2019-01-08 2021-11-09 Haier Us Appliance Solutions, Inc. Leveraged mechano-caloric heat pump
US11193697B2 (en) 2019-01-08 2021-12-07 Haier Us Appliance Solutions, Inc. Fan speed control method for caloric heat pump systems
US11274860B2 (en) 2019-01-08 2022-03-15 Haier Us Appliance Solutions, Inc. Mechano-caloric stage with inner and outer sleeves
US11112146B2 (en) 2019-02-12 2021-09-07 Haier Us Appliance Solutions, Inc. Heat pump and cascaded caloric regenerator assembly
WO2020224264A1 (fr) * 2019-05-09 2020-11-12 珠海格力电器股份有限公司 Dispositif de réfrigération magnétique
US11015843B2 (en) 2019-05-29 2021-05-25 Haier Us Appliance Solutions, Inc. Caloric heat pump hydraulic system

Also Published As

Publication number Publication date
SE0102753D0 (sv) 2001-08-17

Similar Documents

Publication Publication Date Title
WO2003016794A1 (fr) Systeme de manipulation de fluides
KR101938717B1 (ko) 자기 재생기 유닛과 이를 갖는 자기 냉각 시스템
EP1454098B1 (fr) Refrigerateur magnetique a aimants rotatifs
Engelbrecht et al. Experimental results for a novel rotary active magnetic regenerator
JP4557874B2 (ja) 磁気冷凍機
US7481064B2 (en) Method and device for continuous generation of cold and heat by means of the magneto-calorific effect
JP4942751B2 (ja) 磁気熱変換材料による熱発生器
JP4231022B2 (ja) 磁気冷凍機
EP1899660A1 (fr) Réfrigérateur ou pompe thermique magnétique à rotation continue
JP4921891B2 (ja) 磁気冷凍装置
US4459811A (en) Magnetic refrigeration apparatus and method
EP1053437B1 (fr) Appareil de refrigeration a regenerateur magnetique actif alternatif
US20100212327A1 (en) Magnetic assembly system and method
Zimm et al. The evolution of magnetocaloric heat-pump devices
JP2008082663A (ja) 磁気冷凍デバイスおよび磁気冷凍方法
EP1736717A1 (fr) Réfrigérateur magnétique continuellement rotatif et pompe à chaleur et procédé pour le chauffage magnétique et/ou la réfrigération avec un tel réfrigérateur ou une telle pompe
JP2008051409A (ja) 磁気冷凍装置
JP4917386B2 (ja) 磁気冷凍装置
JP4921890B2 (ja) 磁気冷凍装置
EP1847788A1 (fr) Réfrigérateur magnétique à aimant rotatif
US8966912B2 (en) Heat exchanging system
CN112229087B (zh) 磁制冷装置、磁制冷系统和磁制冷控制方法
JP6601300B2 (ja) 熱磁気サイクル装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE CH CY DE DK FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP