JP4942751B2 - 磁気熱変換材料による熱発生器 - Google Patents

磁気熱変換材料による熱発生器 Download PDF

Info

Publication number
JP4942751B2
JP4942751B2 JP2008528547A JP2008528547A JP4942751B2 JP 4942751 B2 JP4942751 B2 JP 4942751B2 JP 2008528547 A JP2008528547 A JP 2008528547A JP 2008528547 A JP2008528547 A JP 2008528547A JP 4942751 B2 JP4942751 B2 JP 4942751B2
Authority
JP
Japan
Prior art keywords
heat
circuit
heating
thermal
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008528547A
Other languages
English (en)
Other versions
JP2009507168A (ja
Inventor
ドゥピン,ジャン−ルイス
ヘイツラー,ジャン−クラウド
ミューラー,クリスチャン
Original Assignee
クールテック アプリケーションズ エス.エー.エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クールテック アプリケーションズ エス.エー.エス. filed Critical クールテック アプリケーションズ エス.エー.エス.
Publication of JP2009507168A publication Critical patent/JP2009507168A/ja
Application granted granted Critical
Publication of JP4942751B2 publication Critical patent/JP4942751B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0022Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a rotating or otherwise moving magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Hard Magnetic Materials (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • External Artificial Organs (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • General Induction Heating (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Catalysts (AREA)

Description

【技術分野】
【0001】
本発明は少なくとも2つの磁気熱変換材料の熱要素が含まれる少なくとも1つの固定支持材、前記熱要素がその温度を変化させるために磁場の変動を受けるようにこれらに対して可動する磁気手段、少なくとも2つの熱媒体液回路が含まれる前記熱要素により放出される熱量および冷気の回収手段であるいわば「加熱」回路および「冷却」回路が含まれ、各回路が少なくとも1台の熱交換器に連結されると同時に対応する熱要素を前記回路中におくための切替手段を備える磁気熱変換材料の熱発生器に関する。
【背景技術】
【0002】
磁気熱変換材料の熱発生器は、磁場の影響下で加熱されると同時に、磁場の消滅後またはこの磁場の減少とともに当初温度より低い温度まで冷却される特徴を示すある種のガドリニウム合金といったある一定材料の磁気熱特性を利用するものである。この磁気熱変換効果は材料のキューリー点近傍で生じる。この新たな熱発生器による熱量または冷気の発生は無公害性なので極めて生態環境的な解決方案をもたらすというメリットを示す。しかしながら、経済的に収益が上がると同時に良好なエネルギー効率をもたらすためには、この発生器とこれらの材料により放出されるこれらの熱量および冷気の回収手段の考え方が極めて重要なものとなる。
【0003】
国際公開特許WO-A-03/050456には、磁気熱変換材料の熱発生器に、継手により分離されると同時にそれぞれ多孔質形態のガドリニウムを受け入れる12区画を区分する単一区間の管状区域が含まれる第1例が挙げられている。各区画には、加熱回路に接続されるその入口と出口および冷却回路に接続されるその入口と出口の4つの孔が備えられている。異なる区画に連続して異なる磁場を受けさせながらこれらの区画を走査するように、2つの永久磁石が連続回転運動で動かされる。異なる区画のガドリニウムにより放出される熱量と冷気量は、熱媒体液が中を循環するとともにこれらの熱交換器がその回転が磁石の回転と同期がとられる回転継手を介して連続して接続される、加熱および冷却の回路を通じて熱交換器に向けて誘導される。同期をとる回転にしばられるこの必須要件によってこの装置が技術的に難しくなるとともに製作に費用がかかるものとなる。さらに、その機能原理によりその将来の技術上の進展が極めて限定されている。加熱および冷却の回路製作に必要な種々の導管、接続具および仕切弁を考慮するとその構造はなお、さらに複雑でかつ費用がかかるものとなる。その一方で、この発生器の効率も不十分なままでその用途は限定されている。実際、磁気熱変換材料の細孔を通過して循環する熱媒液は、加熱回路に関しても冷却回路に関しても同じであり、その循環方向が逆転されるだけであるので、この点からの熱慣性によりかなりの不利益がもたらされる。
【0004】
仏国特許出願公開FR- A-2 861 454では、熱要素が磁気熱変換材料の近傍に位置すると同時に、これらが取り付けられる地板を通過する熱媒体液回路と通じる導管を通過する第2例が挙げられている。この地板には熱媒体液が中を循環すると同時に、熱要素の導管が導管も中間接続も無しに、直接、接続される加熱および冷却回路を定める導管が含まれる。このタイプの構造には、この発生器の製作費用を実質的に削減すると同時に、構成の柔軟性を大きくするメリットがある。しかしながら、冷却回路についても加熱回路についても熱要素中を循環する唯一の熱媒体液にしばられるデメリットがある。従って、この解決方案の熱効率は不十分である。
【特許文献1】
国際公開特許WO-A-03/050456
【特許文献2】
仏国特許出願公開FR- A-2 861 454
【発明の開示】
【0005】
本発明は、発展的で、柔軟性のある、家庭用用途に関するだけでなく大規模工業用の施設でも利用可能なユニットの組合せによる、非常にエネルギー効率の良い、単純な概念でかつ経済的で、エネルギー消費の少ない無公害熱発生器を提案してこれらのデメリットの改善をめざすものである。
【0006】
この目的で、本発明は序文で指摘されたジャンルの熱発生器に関するもので、各熱要素に少なくとも2つの別個の収集回路を形成する液体(35)の通路、すなわち、磁場を受ける前記熱要素により放出される熱量の収集を担う加熱回路の熱媒体液が中を循環するいわば「加熱」収集回路、および磁場を受けない前記熱要素により放出される冷気の回収を担う冷却回路の熱媒体液が循環するいわゆる「冷却」収集回路が含まれ、前記熱要素が磁場を受けるか否かと同時にこれが放出するものが熱量または冷気のいずれであるかに応じて前記熱媒体液がいずれかの回収回路内で交互に運動状態におかれることを特徴とする。
【0007】
熱要素は少なくとも非中空版、非中空版または非中空板の積層、粒子の集合、多孔性版、多孔性版または多孔性板の積層、これらの形態の組合せが含まれる集団から選択される形態のもとで示される磁気熱変換材料で製作される少なくとも1部分である。
【0008】
回収回路はそれぞれ広い熱交換面積をもたらすため、熱要素の厚み内に割付けられる複数の液体通路から形成されるのが好ましく、これらの液体通路は熱要素を通過する熱媒体液がほぼ層流の流れを作り出すのに適切な0.01ミリと5ミリの間に含まれる好ましくは0.15ミリに等しい薄いサイズである。各熱要素の2つの収集回路の液体通路は平行あるいは例えば垂直な異なる方向を有しえる。これらは穿孔、溝、スリット、隙間、これらの組合せを含む集団から選択される少なくとも1形態により定められ、これらの形態は加工、化学的、イオン的、または機械的なエッチング、成型、版または板間の差込板、粒子間空間により得られる。
【0009】
本発明の好ましい実施形態では、固定支持材に、そこに熱要素を受け入れるための複数空洞の境界を定める少なくとも2つの開口部、および加熱および冷却熱媒体液回路の1部分を形成すると同時に、熱要素に対応する液体通路との連絡に適切な入口孔と出口孔すなわち、空洞を通る2つの入口孔および出口孔を通じて各空洞に通じる少なくとも2連の導管を備えた少なくとも1枚の地板が含まれる。
【0010】
該導管は該地板の両面のうちのどちらかまたは両方の面に割り付けられる溝により形成可能であり、その片面あるいは両面はこれらの導管を塞ぎかつ出入を遮断するために設置される側板により覆われる。
【0011】
熱要素と空洞は、ほぼ平行6面体であってよい相互補完の嵌合形態を有し、空洞の各側面には加熱および冷却熱媒体液回路の内のどちらかの入口孔または出口孔が含まれると同時に、熱要素の各側面にはその回収回路のうちのいずれかの入口または出口が含まれるのが有利な方法である。
【0012】
好ましい実施形態では、0.05ミリから15ミリ間に含まれる、好ましくは1ミリに等しい遊びが空洞間の各側面に設けられると同時に、熱要素により熱要素の厚みにわたる熱媒体液の割付空間が形成され、出入遮断手段が空洞の各隅に配置される。
【0013】
この熱発生器には中央支持軸周囲にほぼ円状に割り付けられる多数の組の熱要素が含まれると都合が良いと同時に、磁気手段はこの中央軸廻りに回転する噛合手段に連結されるのが好ましい。
【0014】
これらの磁気手段には多数の熱要素に対応する多数の磁石が含まれることが可能で、これらの磁石は組毎に結合されると同時に、2つの磁石毎に1つの熱要素が磁場を受けるよう熱要素の両側に配置される。好ましい実施形態では、1組の磁石郡が磁場を壊さずに次々とセットの熱要素を通過するように熱要素が相互に隣接するよう配置される。
【0015】
これらの熱量および冷気の回収手段には熱媒体液回路のどちらかまたは両方に設置される熱媒体液の複数強制循環手段が含まれうる。第1の場合には、加熱および冷気熱媒体液の2回路は閉ループ状態に接続され、加熱熱媒体液回路では冷却熱交換器の出口が加熱熱交換器入口に接続されると同時に、冷却熱媒体液回路では加熱熱交換器の出口が冷気熱交換器に入口に接続される。第2の場合には、加熱および冷却熱媒体液の2回路は独立していると同時に、それぞれ閉ループを形成する。加熱および冷却の2回路の熱媒体液は逆の方向に循環するのが好ましい。
【0016】
切替手段には加熱および冷却熱媒体液の各回路上に設置されると同時に、磁場を受けるか否かまた生じるのは熱量か冷気かに応じて熱要素の収集回路を相互に連続させるために設置される少なくとも1つ仕切り弁が含まれうる。
【実施例】
【0017】
図1および図2を参照すると、本発明による熱磁気材料熱発生器1に、少なくとも2つの、図示例では、磁気熱変換材料の8つの熱要素3を支えるために設置される地板2の形で示される固定支持材が含まれる。これにはまた熱要素3にその温度が変化するよう磁場の変動を受けさせるためにこれら熱要素と関連して可動である磁気手段4ならびに該熱要素3により放出される熱量および冷気の回収手段5も含まれる。
これらの熱量および冷気の回収手段5には、特に、別々の2つの、つまり相互に圧力の出入りを封じられた熱媒体液回路51,52、すなわち、熱量を回収する「加熱」回路51および冷気を回収する「冷却」回路52が含まれ、各回路51,52は家庭用のみならず産業用の暖房、温度調節、冷房、空調等の用途に向けたこれらの熱量および冷気量の利用に適当な少なくとも1台の熱交換器に連結される。
【0018】
図示の例では、熱要素3は地板2の空洞20内に置かれるとともに、中央軸Bの周囲にほぼ円状に割り付けられる。磁気手段4には磁場を該手段2つに1つの熱要素3に受けさせるように地板2の両側に組毎に割り充てられる永久磁石40が含まれる。これらの永久磁石40は地板2の各側面に設置される2つの極板41により支えられるとともに、原動機、原動減速機、逐次原動機、サーボ原動機、回転ジャッキ等といったあらゆるタイプの作動装置に直接、またはあらゆるタイプの適合した機械伝動装置を通じて連結される駆動軸(図示されず)により回転駆動される。
【0019】
この軸B廻りの円状熱要素3からなる構成形態のメリットにより同一方向の連続回転による単純な磁気手段4駆動形態の利用が可能となる。その他のあらゆる構成形態においても対応可能であることは勿論である。たとえば、熱要素3が直線に並んで配置される場合には、交互平行移動による磁気手段4の駆動形態が選択されよう。
【0020】
永久磁石はその磁場線を熱要素3の方向に集中させると同時に向けさせる1種あるいは複数種の磁性材料に関連した非中空、焼結化、または薄板化されたものであっても良い。電磁石または超伝導体といったその他のあらゆるタイプの磁石にも対応可能である。しかしながら、永久磁石は、大きさ、利用の単純性、ならびにコストが低いなどの点で確かなメリットを示す。最低1テスラの磁場の発生可能な永久磁石40が選択されるのが好ましい。
【0021】
さらに、熱要素3は1組の磁石40が、磁気の流れを壊すことなくある1組の熱要素3から次のものまで通過するように隣接して相互間に配置される。この配置により磁力を妨げる必要がない限りに磁気手段4を運動状態にするために必要な原動力が相当抑制されるメリットを有する。
【0022】
地板2は断熱性でかつ非磁性の材料で製作されるのが好ましい板から構成される。これには、熱要素3と相互に補完しあう嵌合形態と熱要素3が地板2の面と合うようほぼ等しい厚みとを有する空洞20を形成する開口部が含まれる。その他の構成形態も可能であり、必須なことは各熱要素3が永久磁石40の磁場により活発に動くようにできることである。
【0023】
さらに、特に、図3を参照すると、この地板2には加熱51および冷却52熱媒体液回路の内部部分を形成する2連の導管21,22が含まれる。各一連の導管21,22は、一方では、熱要素3と通じるために設置される入口および出口の孔を通って、すなわち、空洞20、2つの入口孔および2つの出口孔を通って空洞20内に通じ、他方で、特に熱交換器が含まれる加熱51および冷却52の熱媒体液回路の外側部分の接続用に設置される入口孔および出口孔を通って地板2の外側に通じる。示された例では、これらの導管21,22は地板20の両面にわたり割り付けられると同時に、例えば、加工、エッチング、成型、またはその他の適当な技術により製作される溝が形成される。この実施例では、地板2はこうして導管21,22を塞ぎかつ出入の遮断を可能にする薄膜形態の継手61を介して、地板2の片面へのそれぞれ取付け用に設置される非金属の2枚の側板60の形態にある出入遮断手段6と結合される。
示された例では、側板60と継手61には熱要素3に対応して配置される溝62,63が含まれるとともに、例えばビス止めあるいは他の等価な任意手段により地板2に組立てられる。側板60と継手61は非中空であっても良い。導管21,22が地板2の片面にのみ設置されてもよいことも勿論である。この地板2も、2部品で別々に成型されて組立てられて製作されて良く、例えば、導管21,22は内部に置かれる。同様に、継手61は適当な接着剤あるいは同様剤の層により置き換えられても良い。
【0024】
熱要素3は、例えば、ガドリニウム(Gd)、例えば、シリカ(Si)、ゲルマニウム(Ge)、例えば鉄(Fe)、マグネシウム(Mg)、燐(P)またはその他の任意材料が含まれるマンガン合金が含まれるガドリニウム合金、または等価な磁性合金といった少なくとも部分的に好ましくは全体的に磁気熱変換材料で製作される。これらの磁気熱変換材料間の選択は求められる熱量および冷気性能および必要な温度範囲に応じて行われる。一般的方法では、磁気熱変換材料は非中空版、非中空版または非中空板の積層、粉末または粒子形態の粒子の集合、多孔性版、多孔性版または多孔性板の積層の形態あるいはこれらの形態の組合せといったその他の任意の適合した形態を呈しうる。同様に、熱要素3は異なる磁気熱変換材料の集合から構成されても良い。これらは1種類あるいは複数種類の磁気熱変換材料が含まれる熱伝導体材料で製作されても良い。
【0025】
これらの熱要素3は、それぞれ少なくとも2つの別々の、つまり、相互に圧力上の出入が遮断される収集回路31,32、すなわち、加熱熱媒体液回路21,51に接続される「加熱」収集回路31、と冷却熱媒体液回路22,52に接続される「冷却」収集回路32が含まれ、これらの回路のそれぞれの熱媒体液が、熱要素3が磁場を受けるか否か、かつ、これが熱量と冷気のいずれを放出するかに応じて相互の収集回路31,32内で交互に運動状態におかれるという特徴を有する。
【0026】
図4および図4Aに示され詳細説明される例では、熱要素3は、ガドリニウムで製作される非中空板30の積層から構成される。これらは四角形状であるとともに、板30が液の通路35を形成する2ヶ所の狭く平行な溝に重ねられるときに、これらの間を区画するために設置される中央リブ33と2つの端部リブ34のそれぞれ3つのリブが含まれる。板30は2つの別々の収集回路31,32を形成する2組の液体通路35を形成するように交互に垂直な方向に向けられる。このように、これらの収集回路31,32は、かなり広い熱交換表面積が提供されるように熱要素3の厚みにわたり割り付けられる多数の液体通路35から形成される。これらの板30はミリ程度の厚みを有し、液体通路35は、最小量の熱媒体液を利用してこの熱交換効率をさらに促進する、熱要素3を通る熱媒体液の層状の流れを作るのにふさわしい0.1ミリ程度のものである。これらの熱要素3はこうして交互の磁化と脱磁化に応じて通過する熱媒体液を利用する熱量と冷気量の発生と交換に有効なミニあるいはマイクロ熱交換器から構成される。これらの液体通路35は平行な方向に向けられることも可能である。
【0027】
各収集回路31,32は、熱要素3が地板2に取り付けられるときに、各空洞20と通じ合って設置される加熱21および冷却22の回路の熱媒体液の入口および出口孔と自然に通じる流体の入口と出口を通って、熱要素3の対向する2側面上に到達する。このため、0.05ミリと15ミリの間にある、好ましくは1ミリに等しい遊びが、熱要素3の厚みにわたり拡がる熱媒体割付けの空間を区切るため、地板2の対応する側面と熱要素3との間に設けられる。収集回路31,32の出入の遮断性は、一方で、例えば、割付空間間で空洞20の4隅に設置される継手(図示されない)により、他方で、地板2の表裏面上で側板60と継手61により確保される。
【0028】
これらの収集回路31,32は、磁気熱変換材料の形態に応じて様々に製作可能であることは当然である。図示される例では、板30およびこれらのリブ33,34は加工、圧延、プレス、放電加工または類似な方法により得られる。もうひとつの実施形態では、地板30は平面でありえると同時に、液体通路の境界を定める挿入薄片またはスペーサー間に挿入される。液体通路35は穿孔、様々な形態の溝、スリット、隙間、これらの形態の組合せにより形成可能であり、これらの形態は加工、化学的、イオン的、または機械的エッチング、成型、粒子間の隙間により得られる。これらの液体通路35は、0.01ミリと5ミリの間にある好ましくは0.15ミリに等しいサイズであり、この薄いサイズがいわゆる層状の熱媒体液の流れを作り出すのに寄与する。
【0029】
さて、図5Aおよび図5Bを参照すると、少なくともいずれかの熱媒体液回路51,52には、例えば、ポンプ53、熱サイホンまたはその他任意の等価な手段といった熱媒体液の強制循環手段が含まれる。この循環は、熱媒体液の温度差の働きにより単純に自由でかつ自然であることもできる。
【0030】
熱媒体液の化学的構成は最大限の熱交換を得るために所望されかつ選択される温度範囲に合わせられる。例えば、プラス温度用の純水、ならびに、マイナス温度用の例えば、グリコール化生成物の凍結防止剤の添加水が利用される。この熱発生器1はこうして腐食性または人および/またはその環境に有害な液体の利用をしないで済むことが可能になる。
【0031】
熱媒体液の各回路51,52には、例えば、加熱熱交換器55と冷却熱交換器56またはその他の等価な任意手段といったそれぞれ加熱および冷却用に収集される熱量および冷気量の排出手段が含まれる。同様に、各回路51,52には、例えば、2方電磁弁57,58またはその類似品といった当該熱要素3を当該回路51,52内に置くために切替手段が含まれる。これらの電磁弁57,58の制御は、後でさらに説明されるように磁石40の回転と同期が取られるのは当然である。これらの切替手段は、加工および/または成型および成分の集合により地板2に一体化されても良く、切替は、弁を定める2つの部分間を動くピストン、鋼球等の磁気引力により得られる。
【0032】
本発明による熱発生器1の機能が、4つの熱要素3および2組の磁石40とともに熱発生器1の2つの機能サイクルを単純化のため模式的に説明する図5Aと図5Bを参照して説明される。この例では、回収手段に加熱回路51に設置されるポンプ53、1台だけが含まれると同時に、加熱51と冷却52の2回路は閉ループ状態に接続され、熱媒体液の加熱回路51により冷却熱交換器56の出口Sfが加熱熱交換器55の入口Ecに接続されると同時に、冷却回路52により加熱熱交換器55の出口Scが冷却熱交換器56の加熱熱交換器の入口Efに接続される。それぞれ、閉鎖ループを形成する完全に独立した2回路51,52の設置も可能である。この場合には、各回路51,52にその適当なポンプ53が含まれる。すべての場合において、これらの2回路51,52内の熱媒体液の循環方向は、逆であるのが好ましい。単純化のため、加熱および冷却の回路は51,52で参照され、これらの加熱冷却回路の1部分は熱発生器1より内側にあると同時に、参照記号21,22のもとにある地板2に一体化されることが知れる。
【0033】
図5Aにより説明される機能の第1サイクルでは、磁石40は磁場効果のもとで加熱される2つの熱要素3(1)、3(3)に向き合っており、2つのその他熱要素、3(2)、3(4)は磁場を受けないので冷却される。電磁弁57,58は第1位置に移動し、加熱される熱要素3(1)、3(3)を加熱回路51内で連続状態に、そして、冷却される熱要素3(2)、3(4)を冷却回路52内で連続状態にすることを可能にし、両回路内では熱媒体液が実線で示される運動状態となる。冷却熱交換器56の出口Sfは電磁弁58により、熱要素3(1)の入口Ec(1)に接続され、この出口Sc(1)は熱要素3(3)の入口Ec(3)に、またその出口Sc(3)は加熱熱交換器51の入口Ecに接続される。この加熱回路51は熱要素3(1)、3(3)の加熱収集回路31内で熱媒体液を運動状態におき、その他は動かない。同様にして、加熱熱交換器55の出口Scは、電磁弁57により熱要素3(4)の入口Ef(4)に接続され、その出口Sf(4)は熱要素3(2)の入口Ef(2)に、またその出口Sf(2)は冷却熱交換器56の入口Efに接続される。冷却回路52は熱要素3(2)、3(4)の冷却収集回路32内で熱媒体液を運動状態におき、その他は動かない。このサイクルはつかの間であると同時に、熱要素3(1)および3(3)の前の磁石40の通過時間に対応して千分の数秒から20秒の間、好ましくは1秒の間持続する。
【0034】
熱要素3(2)および3(4)の前にくるためこれらの熱要素を去るときには、電磁仕切弁57,58は、磁石40が磁場効果のもとで加熱される残りの2つの熱要素3(2)、3(4)と向かい合う第2機能サイクルに対応する図5Bに示される第2位置内に移動し、2つの第1熱要素3(1)、3(3)はもはや磁場を受けないので冷却される。これらの第2位置に移動した電磁仕切弁57,58は、加熱される熱要素3(2)、3(4)を加熱回路51に、また、冷却される熱要素3(1)、3(3)を冷却回路52におくが、これらの熱媒体液は運動状態にある回路が実線で示されている。冷却熱交換器56の出口Sfは電磁仕切弁58を通じて熱要素3(2)の入口Ec(2)に接続され、その出口Sc(2)は熱要素3(4)の入口Ec(4)に、その出口Sc(4)は加熱熱交換器55の入口Ecに接続される。加熱回路51は熱要素3(2)、3(4)の加熱収集回路31内で熱媒体液を運動状態におき、その他は動かない。同様にして、加熱熱交換器55の出口Scは、電磁気弁57を通じて、熱要素3(3)の入口Ef(3)に接続され、その出口Sf(3)は、熱要素3(1)の入口Ef(1)に、その出口Sf(1)は冷却熱交換器56の入口Efに接続される。冷却回路52は、熱要素3(1)、3(3)の冷却収集回路32内で熱媒体液を運動状態におき、その他は動かない。この手短なサイクルは熱要素3(2)と3(4)の前の磁石40の通過時間に対応する。これらが熱要素3(1)と3(3)の前に再度くるためにこれらの熱要素を離れるときに、電磁仕切弁57,58は図5Aに示されるこれらの第1位置に移行するとともに、第1機能サイクルが再開される。
【0035】
熱媒体液として液体、および非液体のガスを利用する点により抗戻り弁を利用しないで済むことになる。この例は図5Aと図5Bの中の加熱55と冷却56熱交換器の入口EcとEfに見ることができ、加熱51と冷却52加熱の二重回路はそれぞれつながる。液体である熱媒体液は圧縮不可能でありかつ閉じられた回路内に自然と向けられると同時に開放されたものには向けられない。
【0036】
2つの加熱51および冷却52の回路は、熱要素3がすべて活用されるばかりでなく、2つの機能サイクル内を動きかつ動的であるというこの説明ははっきり分かる。さらに、熱量の回収を担う熱媒体液はこの機能に限定され、冷気の回収を担う熱媒体液についても同様である。先行技術の場合のような温度の異なる熱媒体液の混合が一切ない以上、2つの加熱51および冷却52の回路は別個なものであり、特に、熱要素3内の収集回路31,32の領域では、回路間で熱の交換も混合も一切ない。この新技術により、こうして、かなりの熱損失の低減、機能サイクルの加速、熱発生器1の能力向上、ならびに磁石40の回転に必要な低伝動能力を考慮したごく少ないエネルギーニーズに向けた極めて高い熱効率の達成が可能となる。
【0037】
さらに、この加熱21,31,51、と冷却22,32,52の別々の回路の技術により「AMR」といわれるサイクルの実用化が可能となり、熱発生器1の新しい各機能サイクルにおいて、それぞれ加熱回路51と冷却回路52上のサイクルの最初と最後の温度間の温度差が増加し、これにより、このタイプの現在知られる発生器より大きな加熱と冷却の温度領域に到達可能となる。さらに、発明の熱発生器1は人についても環境についても一切の危険がない。実際に、加熱51および冷却52回路内で熱媒体液が不足するようになると、熱交換はもはやなくなるので過熱の危険はない。
【産業上の利用可能性】
【0038】
この熱発生器1の用途は暖房、温度調節、冷房、空調が必要であるあらゆる分野内で、
すなわち、冷蔵および冷凍向け家電製品、家庭用や産業上の空調および暖房において、
また車両や農産加工業向け陳列棚および冷凍庫、空調されるワインセラーにおいてさえも、そしてさらにはあらゆるタイプの冷蔵、冷凍区画においても見出される。
【0039】
本発明は説明された実施例に限定されず、専門家にとって明らかなあらゆる修正と変型にも、付録の請求項に定義される保護の範囲が保持されて拡張される。特に、図示された諸形態、熱要素3と磁石40の数、収集回路31,32の創出方法、および加熱21および冷却22回路の地板2への一体化方法は異なる場合がある。
【図面の簡単な説明】
【0040】
本発明とそのメリットは付録図面を参照して例として与えられる実施形態に関する以降の説明の中でより明らかになろう。すなわち、
【0041】
【図1】本発明による熱発生器が単純化された透視図
【図2】図1の発生器の分解図
【図3】熱要素が無い状態の図1の発生器の地板の透視図
【図4】図3の地板への取り付けに向けられる熱要素の透視図
【図4A】図4のA部詳細の拡大図
【図5A】2サイクル運転による熱媒体液回路を説明する模式図
【図5B】2サイクル運転による熱媒体液回路を説明する模式図

Claims (22)

  1. 磁気熱変換材料の少なくとも2つの熱要素(3)を支える少なくとも1つの固定支持材(2)、
    該熱要素が温度変動を目的に磁場の変動を受けるように前記熱要素(3)に関連して移動する複数磁気手段(4)、回収される熱量または冷気の排出に適当な少なくとも1台の熱交換器(55,56)および対応する前記熱要素(3)を回路(51,52)内に交互におくために設置される切替手段(57,58)に連結されるいわば「加熱」回路(51)ならびにいわば「冷却」回路(52)の、熱媒体液が中を循環する少なくとも2つの別々の回路(51,52)に接続されるとともに、前記熱媒体液が内部を貫流する前記熱要素(3)により放出される熱量および冷気回収手段(5)が含まれるものにおいて、各熱要素(3)に、磁場を受ける前記熱要素(3)による放出熱量の収集を担う加熱回路(51)の熱媒体液が中を循環するいわば「加熱」収集回路(31)および磁場を受けない前記熱要素(3)による放出冷気の収集を担う冷却回路(52)の熱媒体液が中を循環するいわば「冷却」収集回路(32)の、少なくとも2つの別々の収集回路(31,32)を形成する液体通路(35)が含まれ、前記熱要素(3)が磁場を受けるか否かと同時に熱量か冷気のいずれを放出するかに応じて前記熱媒体液が収集回路(31,32)のいずれかの中で交互に運動状態におかれることを特徴とする磁気熱変換材料を含む、熱発生器(1)
  2. 熱要素(3)が非中空版、非中空版または非中空板(30)の積層、粒子の集合、多孔性版、多孔性版または多孔性板の積層、これらの形態の組み合わせが含まれる集団の中で選択される少なくとも1形態下で示される電磁熱材料で製作される少なくとも部分であることを特徴とする請求項1に記載の発生器
  3. 前記収集回路(31,32)が広い熱交換面積の提供のために熱要素(3)の厚み上に割付けられる複数液体通路(35)からそれぞれ形成されることを特徴とする請求項2に記載の発生器
  4. 前記液体通路(35)が前記熱要素(3)を通過する前記熱媒体液の流れを生じさせるのに適当な0.01ミリから5ミリの間に含まれる、狭いサイズのものであり、前記流れがほぼ層流状であることを特徴とする請求項3に記載の発生器
  5. 前記液体通路(35)が0.15ミリに等しい狭いサイズのものであることを特徴とする請求項4に記載の発生器
  6. 各熱要素(3)の2つの収集回路(31,32)の液体通路(35)が異なる方向を有することを特徴とする請求項3に記載の発生器
  7. 各熱要素(3)の2つの収集回路(31,32)の液体通路(35)がほぼ平行であることを特徴とする請求項3に記載の発生器
  8. 前記液体通路(35)が少なくとも穿孔、溝、スリット、隙間、これらの形態の組合せが含まれる集団の中から選択される形態により定められ、これらの形態が加工、化学的、イオン的、または機械的なエッチング、成型、版または板間の差込板、粒子間空間により得られることを特徴とする請求項3に記載の発生器
  9. 前記固定支持材に、前記熱要素(3)をそこに受け入れるための複数空洞(20)の境界を定める少なくとも2つの開口部を備えた少なくとも1枚の地板(2)ならびに、熱媒体液の前記加熱(51)および冷却(52)回路の一部を形成すると同時に、前記熱要素(3)に対応する液体通路(35)との連絡に適当な各熱媒体液回路(51,52)用の入口孔および出口孔、すなわち、空洞(20)を通る2つの入口孔と2つの出口孔を通じて各空洞(20)内に通じる少なくとも2連の導管(21,22)が含まれることを特徴とする請求項1に記載の発生器
  10. 前記導管(21,22)が前記地板(2)の少なくとも1面上に割付けられる溝により形成されること、ならびに熱発生器(1)に前記導管(21,22)を塞ぐと同時に出入りを封ずる前記地板(2)面に設置される少なくとも1つの側板(60)が含まれることを特徴とする請求項9に記載の発生器
  11. 前記熱要素(3)と前記空洞(20)が相互補完的嵌合の形態を有することを特徴とする請求項4に記載の発生器
  12. これらの相互補完的嵌合形態がほぼ平行6面体であること、空洞(20)の各側面に前記加熱(51)および冷却(52)の熱媒体液回路の入口孔または出口孔が含まれることならびに熱要素(3)の各側面にその収集回路(31、32)の入口または出口が含まれることを特徴とする請求項11に記載の発生器
  13. 0.05ミリから15ミリの間にある遊びが空洞(20)と熱要素(3)との間の各側面に設けられ、この遊びが前記熱要素(3)の厚みにわたる前記熱媒体液の割付空間を形成することならびに出入遮断手段が空洞(20)の各隅に配されることを特徴とする請求項11に記載の発生器
  14. 前記遊びは1ミリに等しいことを特徴とする請求項13に記載の発生器
  15. 前記支持材(2)の中央軸(B)の周囲にほぼ円状に割付けられる1組の熱要素(3)が含まれることならびに前記磁気手段(4)がこの中央軸(B)廻りの回転噛合手段に連結されることを特徴とする請求項1に記載の発生器
  16. 磁気手段(4)に熱要素(3)の数に一致する多数の磁石(40)が含まれ、これらの磁石(40)が組毎に結合されると同時に、該磁石2個につき1個の熱要素(3)に前記磁場を受けさせるために前記熱要素(3)の両側に配置されることを特徴とする請求項14に記載の発生器
  17. 複数熱要素(3)が複数組の磁石(40)が磁場を破壊せずにあるセットの熱要素(3)から次のセットのものに移るように相互に隣接して配置されることを特徴とする請求項16に記載の発生器
  18. 加熱(51)および冷却(52)の熱媒体液が互いに逆の方向に循環することを特徴とする請求項1に記載の発生器
  19. 熱量および冷気の回収手段に、熱媒体液回路(51,52)の少なくとも1つに設けられる前記熱媒体液の強制循環手段(53)が含まれることを特徴とする請求項1に記載の発生器
  20. 加熱(51)と冷却(52)の回路が閉鎖ループ状態で接続され、該熱媒体液加熱回路(51)により冷却熱交換器(56)の出口(Sf)が加熱熱交換器(55)の入口(Ec)に接続されるとともに、該熱媒体液冷却回路(52)により加熱熱交換器(55)の出口(Sc)が冷却熱交換器(56)の入口(Ef)に接続されることを特徴とする請求項19に記載の発生器
  21. 熱量および冷気回収手段に各熱媒体液回路(51、52)に設置される前記熱媒体液の強制循環手段(53)が含まれ、これらの回路により独立しかつ閉鎖したループがそれぞれ形成されることを特徴とする請求項1に記載の発生器
  22. 切替手段に、加熱(51)および冷却(52)の各熱媒体液回路に設置されると同時に、これらが磁場を受けるか否かさらに熱量あるいは冷気のいずれを放出するかに応じて、熱要素(3)の収集回路(31,32)を相互に連続させるために設置される少なくとも1つの仕切り弁(57,58)が含まれることを特徴とする請求項1に記載の発生器
JP2008528547A 2005-09-01 2006-08-16 磁気熱変換材料による熱発生器 Expired - Fee Related JP4942751B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0508963 2005-09-01
FR0508963A FR2890158A1 (fr) 2005-09-01 2005-09-01 Generateur thermique a materiau magnetocalorique
PCT/FR2006/001948 WO2007026062A1 (fr) 2005-09-01 2006-08-16 Generateur thermique a materiau magnetocalorique

Publications (2)

Publication Number Publication Date
JP2009507168A JP2009507168A (ja) 2009-02-19
JP4942751B2 true JP4942751B2 (ja) 2012-05-30

Family

ID=36572446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008528547A Expired - Fee Related JP4942751B2 (ja) 2005-09-01 2006-08-16 磁気熱変換材料による熱発生器

Country Status (19)

Country Link
US (1) US8037692B2 (ja)
EP (1) EP1938023B1 (ja)
JP (1) JP4942751B2 (ja)
KR (1) KR101316515B1 (ja)
CN (1) CN101253375B (ja)
AR (1) AR057784A1 (ja)
AT (1) ATE426136T1 (ja)
AU (1) AU2006286474B2 (ja)
BR (1) BRPI0615261A2 (ja)
CA (1) CA2616489C (ja)
DE (1) DE602006005829D1 (ja)
DK (1) DK1938023T3 (ja)
ES (1) ES2323478T3 (ja)
FR (1) FR2890158A1 (ja)
MY (1) MY149232A (ja)
PL (1) PL1938023T3 (ja)
RU (1) RU2436022C2 (ja)
WO (1) WO2007026062A1 (ja)
ZA (1) ZA200801372B (ja)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2904098B1 (fr) 2006-07-24 2008-09-19 Cooltech Applic Soc Par Action Generateur thermique magnetocalorique
DE202007006404U1 (de) * 2006-11-09 2008-03-20 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
DE202007003577U1 (de) * 2006-12-01 2008-04-10 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
DE112007003321B4 (de) * 2007-02-12 2017-11-02 Vacuumschmelze Gmbh & Co. Kg Gegenstand zum magnetischen Wärmeaustausch und Verfahren zu dessen Herstellung
FR2922999A1 (fr) 2007-10-30 2009-05-01 Cooltech Applic Soc Par Action Generateur thermique a materiau magnetocalorique
FR2924489B1 (fr) * 2007-12-04 2015-09-04 Cooltech Applications Generateur magnetocalorique
DE202008001117U1 (de) * 2007-12-21 2009-04-30 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
US8551210B2 (en) 2007-12-27 2013-10-08 Vacuumschmelze Gmbh & Co. Kg Composite article with magnetocalorically active material and method for its production
EP2108904A1 (en) 2008-04-07 2009-10-14 Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud (HEIG-VD) A magnetocaloric device, especially a magnetic refrigerator, a heat pump or a power generator
EP2272111B1 (de) 2008-04-28 2015-01-28 Technology Foundation - STW Thermomagnetischer generator
JP2010531968A (ja) * 2008-05-16 2010-09-30 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー 磁気熱交換用構造体及び磁気熱交換用構造体の製造方法
FR2933539B1 (fr) * 2008-07-07 2011-02-25 Cooltech Applications Procede et dispositif de regulation thermique d'une batterie rechargeable de stockage d'energie electrique
JP4703699B2 (ja) * 2008-09-04 2011-06-15 株式会社東芝 磁気冷凍用磁性材料、磁気冷凍デバイスおよび磁気冷凍システム
FR2936363B1 (fr) * 2008-09-25 2011-08-19 Cooltech Applications Generateur thermique a materiau magnetocalorique
WO2010038099A1 (en) * 2008-10-01 2010-04-08 Vacuumschmelze Gmbh & Co. Kg Article for use in magnetic heat exchange, intermediate article and method for producing an article for use in magnetic heat exchange
US8938872B2 (en) 2008-10-01 2015-01-27 Vacuumschmelze Gmbh & Co. Kg Article comprising at least one magnetocalorically active phase and method of working an article comprising at least one magnetocalorically active phase
GB2463931B (en) 2008-10-01 2011-01-12 Vacuumschmelze Gmbh & Co Kg Method for producing a magnetic article
FR2937182B1 (fr) 2008-10-14 2010-10-22 Cooltech Applications Generateur thermique a materiau magnetocalorique
FR2937466B1 (fr) * 2008-10-16 2010-11-19 Cooltech Applications Generateur thermique magnetocalorique
FR2937793B1 (fr) * 2008-10-24 2010-11-19 Cooltech Applications Generateur thermique magnetocalorique
FR2942304B1 (fr) * 2009-02-17 2011-08-12 Cooltech Applications Generateur thermique magnetocalorique
FR2943407B1 (fr) 2009-03-20 2013-04-12 Cooltech Applications Generateur thermique magnetocalorique et son procede d'echange thermique
WO2010128357A1 (en) * 2009-05-06 2010-11-11 Vacuumschmelze Gmbh & Co. Kg Article for magnetic heat exchange and method of fabricating an article for magnetic heat exchange
FR2947093B1 (fr) * 2009-06-18 2012-05-04 Cooltech Applications Generateur de champ magnetique et appareil thermique magnetocalorique comportant ledit generateur
US8453466B2 (en) * 2009-08-31 2013-06-04 Delta Electronics, Inc. Heat-power conversion magnetism device and system for converting energy thereby
US20110225980A1 (en) * 2010-03-22 2011-09-22 Delta Electronics, Inc. Magnetic flux generating device and magnetic heat pump
FR2959602B1 (fr) * 2010-04-28 2013-11-15 Cooltech Applications Procede de generation d'un flux thermique et generateur thermique magnetocalorique
US9702594B2 (en) * 2010-06-07 2017-07-11 Aip Management, Llc Magnetocaloric refrigerator
GB2482880B (en) 2010-08-18 2014-01-29 Vacuumschmelze Gmbh & Co Kg An article for magnetic heat exchange and a method of fabricating a working component for magnetic heat exchange
GB201022113D0 (en) 2010-12-30 2011-02-02 Delaval Internat Ab Bulk fluid refrigeration and heating
ITPN20110023A1 (it) 2011-04-11 2012-10-12 Parker Hannifin S R L Apparato e procedimento per raffreddare un gas, in particolare compresso
JP5278486B2 (ja) * 2011-04-25 2013-09-04 株式会社デンソー 熱磁気エンジン装置、および可逆熱磁気サイクル装置
JP5267613B2 (ja) 2011-04-25 2013-08-21 株式会社デンソー 磁気熱量効果型ヒートポンプ装置
CN103620320B (zh) * 2011-05-17 2016-01-27 日产自动车株式会社 磁冷暖气装置
GB201111235D0 (en) * 2011-06-30 2011-08-17 Camfridge Ltd Multi-Material-Blade for active regenerative magneto-caloric or electro-caloricheat engines
FR2982015B1 (fr) * 2011-10-28 2019-03-15 Cooltech Applications Generateur thermique magnetocalorique
US8729718B2 (en) * 2011-10-28 2014-05-20 Delta Electronics, Inc. Thermomagnetic generator
US20130186107A1 (en) * 2012-01-20 2013-07-25 Delta Electronics, Inc. Magnetic refrigeration control system, and method thereof
FR2987433B1 (fr) * 2012-02-28 2014-03-28 Cooltech Applications Generateur de champ magnetique pour appareil thermique magnetocalorique
KR101866840B1 (ko) * 2012-03-26 2018-06-14 삼성전자주식회사 자기냉각장치
ES2424818B1 (es) * 2012-04-03 2014-09-05 Universidade Da Coruña Bomba de calor/refrigerador magnetocalórico alternativo de accionamiento compensado por restitución ajustable de fuerzas.
FR2994018B1 (fr) * 2012-07-27 2015-01-16 Cooltech Applications Generateur de champ magnetique pour appareil thermique magnetocalorique et appareil thermique magnetocalorique equipe d'un tel generateur
KR101639544B1 (ko) 2012-12-17 2016-07-13 애스트로노틱스 코포레이션 오브 아메리카 자기 냉각 시스템들의 단방향 흐름 모드들의 사용
EP2796811A1 (en) 2013-04-24 2014-10-29 Technical University of Denmark Magnetocaloric heat pump device, a heating or cooling system and a magnetocaloric heat pump assembly
US20160273811A1 (en) * 2013-11-18 2016-09-22 Technical University Of Denmark System for cooling a cabinet
JP6003879B2 (ja) * 2013-12-26 2016-10-05 株式会社デンソー 熱磁気サイクル装置
FR3016026B1 (fr) 2013-12-27 2016-01-22 Cooltech Applications Generateur thermique magnetocalorique
KR20160119173A (ko) * 2014-02-05 2016-10-12 덴마크스 텍니스케 유니버시테트 활성 자기 재생기 장치
EP2910873A1 (de) * 2014-02-19 2015-08-26 Siemens Aktiengesellschaft Kühlung einer elektrischen Maschine
JP7218988B2 (ja) 2015-06-19 2023-02-07 マグネート ベー.フェー. パックスクリーン型磁気熱量素子
US10443928B2 (en) 2016-02-22 2019-10-15 Battelle Memorial Institute Active magnetic regenerative liquefier using process gas pre-cooling from bypass flow of heat transfer fluid
US11233254B2 (en) 2016-02-22 2022-01-25 Battelle Memorial Institute Process for delivering liquid H2 from an active magnetic regenerative refrigerator H2 liquefier to a liquid H2 vehicle dispenser
WO2017162243A1 (de) * 2016-03-24 2017-09-28 Hanning Elektro-Werke Gmbh & Co. Kg Antriebseinheit
DE102016208226A1 (de) * 2016-05-12 2017-11-16 Bruker Biospin Ag Kryogenfreies Magnetsystem mit magnetokalorischer Wärmesenke
EP3601915A4 (en) 2017-03-28 2020-12-23 John Barclay ACTIVE MAGNETIC REGENERATIVE PROCEDURES AND SYSTEMS USING HYDROGEN HEAT TRANSFER LIQUID
EP3601914A4 (en) 2017-03-28 2020-12-23 Barclay, John ADVANCED MULTI-LAYER ACTIVE MAGNETIC REGENERATOR SYSTEMS AND MAGNETOCALORIC LIQUEFACTION PROCESSES
WO2019038719A1 (en) 2017-08-25 2019-02-28 Astronautics Corporation Of America MULTI-BED RING DRUM TYPE MAGNETIC REFRIGERATION APPARATUS
US11125477B2 (en) 2017-08-25 2021-09-21 Astronautics Corporation Of America Drum-type magnetic refrigeration apparatus with improved magnetic-field source
US11092364B2 (en) * 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
WO2021214836A1 (ja) 2020-04-20 2021-10-28 三菱電機株式会社 磁気冷凍装置および冷凍サイクル装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028532A (ja) * 2001-07-16 2003-01-29 Sumitomo Special Metals Co Ltd 磁気冷凍作業物質および蓄冷式熱交換器ならびに磁気冷凍装置
JP2005015911A (ja) * 2003-03-28 2005-01-20 Toshiba Corp 複合磁性材料及びその製造方法
JP2005513393A (ja) * 2001-12-12 2005-05-12 アストロノーティックス コーポレイション オブ アメリカ 回転磁石式磁気冷凍機
WO2005043052A1 (fr) * 2003-10-23 2005-05-12 Cooltech Applications Dispositif de generation de flux thermique a materiau magneto-calorique
WO2005064245A2 (fr) * 2003-12-23 2005-07-14 Cooltech Applications Echangeur thermique
WO2005095872A1 (fr) * 2004-03-30 2005-10-13 Cooltech Applications Generateur thermique a materiau magneto-calorique et procede de generation de thermies

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231834A (en) * 1990-08-27 1993-08-03 Burnett James E Magnetic heating and cooling systems
US5156003A (en) * 1990-11-08 1992-10-20 Koatsu Gas Kogyo Co., Ltd. Magnetic refrigerator
JP2933731B2 (ja) * 1991-01-22 1999-08-16 高圧ガス工業株式会社 静止型磁気冷凍機
US5249424A (en) * 1992-06-05 1993-10-05 Astronautics Corporation Of America Active magnetic regenerator method and apparatus
US5444983A (en) * 1994-02-28 1995-08-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Magnetic heat pump flow director
US5887449A (en) * 1996-07-03 1999-03-30 Iowa State University Research Foundation, Inc. Dual stage active magnetic regenerator and method
CA2408168C (en) * 2000-05-05 2009-10-20 University Of Victoria Innovation And Development Corporation Apparatus and methods for cooling and liquefying a fluid using magnetic refrigeration
WO2002012800A1 (en) * 2000-08-09 2002-02-14 Astronautics Corporation Of America Rotating bed magnetic refrigeration apparatus
JP2002195683A (ja) 2000-12-20 2002-07-10 Denso Corp 磁気温調装置
CH695836A5 (fr) * 2002-12-24 2006-09-15 Ecole D Ingenieurs Du Canton D Procédé et dispositif pour générer en continu du froid et de la chaleur par effet magnetique.
TW575158U (en) * 2003-03-20 2004-02-01 Ind Tech Res Inst Heat transfer structure for magnetic heat energy
US7168255B2 (en) * 2003-03-28 2007-01-30 Kabushiki Kaisha Toshiba Magnetic composite material and method for producing the same
US6935121B2 (en) * 2003-12-04 2005-08-30 Industrial Technology Research Institute Reciprocating and rotary magnetic refrigeration apparatus
US20050217278A1 (en) * 2004-03-31 2005-10-06 Mongia Rajiv K Apparatus to use a magnetic based refrigerator in mobile computing device
US7281388B2 (en) * 2004-03-31 2007-10-16 Intel Corporation Apparatus to use a refrigerator in mobile computing device
JP4231022B2 (ja) * 2005-03-31 2009-02-25 株式会社東芝 磁気冷凍機
JP4660412B2 (ja) * 2006-03-30 2011-03-30 株式会社東芝 冷凍機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028532A (ja) * 2001-07-16 2003-01-29 Sumitomo Special Metals Co Ltd 磁気冷凍作業物質および蓄冷式熱交換器ならびに磁気冷凍装置
JP2005513393A (ja) * 2001-12-12 2005-05-12 アストロノーティックス コーポレイション オブ アメリカ 回転磁石式磁気冷凍機
JP2005015911A (ja) * 2003-03-28 2005-01-20 Toshiba Corp 複合磁性材料及びその製造方法
WO2005043052A1 (fr) * 2003-10-23 2005-05-12 Cooltech Applications Dispositif de generation de flux thermique a materiau magneto-calorique
WO2005064245A2 (fr) * 2003-12-23 2005-07-14 Cooltech Applications Echangeur thermique
WO2005095872A1 (fr) * 2004-03-30 2005-10-13 Cooltech Applications Generateur thermique a materiau magneto-calorique et procede de generation de thermies

Also Published As

Publication number Publication date
WO2007026062A1 (fr) 2007-03-08
AU2006286474B2 (en) 2010-12-23
RU2436022C2 (ru) 2011-12-10
JP2009507168A (ja) 2009-02-19
FR2890158A1 (fr) 2007-03-02
ES2323478T3 (es) 2009-07-16
EP1938023B1 (fr) 2009-03-18
DE602006005829D1 (de) 2009-04-30
BRPI0615261A2 (pt) 2011-05-17
MY149232A (en) 2013-07-31
RU2008107448A (ru) 2009-10-10
AR057784A1 (es) 2007-12-19
US20080236172A1 (en) 2008-10-02
CN101253375A (zh) 2008-08-27
CN101253375B (zh) 2010-12-08
KR20080066915A (ko) 2008-07-17
EP1938023A1 (fr) 2008-07-02
DK1938023T3 (da) 2009-07-20
ZA200801372B (en) 2008-11-26
CA2616489A1 (fr) 2007-03-08
AU2006286474A1 (en) 2007-03-08
US8037692B2 (en) 2011-10-18
CA2616489C (fr) 2014-04-08
KR101316515B1 (ko) 2013-10-08
ATE426136T1 (de) 2009-04-15
PL1938023T3 (pl) 2009-08-31

Similar Documents

Publication Publication Date Title
JP4942751B2 (ja) 磁気熱変換材料による熱発生器
US7644588B2 (en) Magnetic refrigerator
JP5278486B2 (ja) 熱磁気エンジン装置、および可逆熱磁気サイクル装置
JP4231022B2 (ja) 磁気冷凍機
Kitanovski et al. Innovative ideas for future research on magnetocaloric technologies
KR101116457B1 (ko) 자기열 물질을 갖는 열 플럭스 발생장치
US9528728B2 (en) Parallel magnetic refrigerator assembly and a method of refrigerating
US8820093B2 (en) Magnetocaloric heat generator
US20100236258A1 (en) Thermal generator with magneto-caloric material
EP3175186A1 (en) Magnetic refrigeration system with separated inlet and outlet flow
US7603865B2 (en) Magnetic refrigerator
WO2003016794A1 (en) A fluid handling system
US20100146989A1 (en) Continuously rotary magnetic refrigerator or heat pump
JP2008051412A (ja) 磁気冷凍装置
JP2012241943A (ja) 磁気ヒートポンプ装置
KR101954538B1 (ko) 자기 냉각 시스템
US9249999B2 (en) Magnetocaloric heat generator
JP2008051410A (ja) 磁気冷凍装置
JP2008051411A (ja) 磁気冷凍装置
MX2008002478A (es) Generador termico con material magnetocalorico
JP6683138B2 (ja) 熱磁気サイクル装置
JP2016151393A (ja) 熱交換器及び磁気ヒートポンプ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110608

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110615

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110705

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110712

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110808

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees