JP2004505993A - 宿主細胞随伴性のヘルペスウイルスに対するワクチン接種 - Google Patents

宿主細胞随伴性のヘルペスウイルスに対するワクチン接種 Download PDF

Info

Publication number
JP2004505993A
JP2004505993A JP2002518259A JP2002518259A JP2004505993A JP 2004505993 A JP2004505993 A JP 2004505993A JP 2002518259 A JP2002518259 A JP 2002518259A JP 2002518259 A JP2002518259 A JP 2002518259A JP 2004505993 A JP2004505993 A JP 2004505993A
Authority
JP
Japan
Prior art keywords
genome
mdv
virus
vaccine
host cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002518259A
Other languages
English (en)
Other versions
JP2004505993A5 (ja
JP4313036B2 (ja
Inventor
フェーラー,フランク
オステリーデル,クラウス
Original Assignee
ローマン・アニマル・ヘルス・ゲーエムベーハー・ウント・コー・カーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローマン・アニマル・ヘルス・ゲーエムベーハー・ウント・コー・カーゲー filed Critical ローマン・アニマル・ヘルス・ゲーエムベーハー・ウント・コー・カーゲー
Publication of JP2004505993A publication Critical patent/JP2004505993A/ja
Publication of JP2004505993A5 publication Critical patent/JP2004505993A5/ja
Application granted granted Critical
Publication of JP4313036B2 publication Critical patent/JP4313036B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/245Herpetoviridae, e.g. herpes simplex virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/523Bacterial cells; Fungal cells; Protozoal cells expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16311Mardivirus, e.g. Gallid herpesvirus 2, Marek-like viruses, turkey HV
    • C12N2710/16322New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明は、鳥類の家畜のマレク病様ウイルス(MDV)およびヒトの水痘−帯状疱疹ウイルス(VZV)のような、いわゆる宿主細胞随伴性のヘルペスウイルスの分野に、およびこれらのウイルスによって引起こされる疾患に対するワクチン接種に関する。本発明は、本質的に宿主細胞が随伴されるヘルペスウイルスによって引起こされる感染に対して指向されるワクチンを提供し、該ヘルペスウイルスに由来する組換えウイルスゲノムを含み、該ゲノムは該宿主細胞が本質的にない組換えを可能とする。

Description

【0001】
本発明は、鳥類の家畜のマレク病様ウイルス(MDV)およびヒトの水痘−帯状疱疹ウイルス(Varicella Zoster Virus)(VZV、潜伏性から再活性化後に水痘および帯状疱疹を引起こす)のような、いわゆる宿主細胞随伴性のヘルペスウイルスの分野に、ならびにこれらのウイルスによって引起こされる疾患に対するワクチン接種に関し、そして特に、鳥類の家畜の疾患に、特にマレク病に対するワクチン接種の分野に関する。
【0002】
特に、マレク病は、鶏肉の集中強化的な生産の当初から、鳥類家畜産業の問題であった。これは、免疫抑制、神経学的異常、虚血、および不特定の無関心から開始され、そして感染のより後の段階で重篤なリンパ性ガンを伴って終結する、非常に多様な臨床的徴候を引起こすヘルペスウイルス疾患である。マレク病の歴史の最初は、処置および予防方策は何もなかった。ついで、無病原性(apathogenic)関連(血清型3)ウイルスが、シチメンチョウから単離され(HVT)、そしてワクチン接種のために最初に使用された。
【0003】
しかし、HVTでのワクチン接種の導入後のある時点で、マレク病が再度出現し、そして流布する現場のウイルスは、HVT株によって誘導される防御を迂回するように変化されたことが明白になる。この時点で、新規な無病原性(apathogenic)ウイルスが発見され(Rispens株)、これは一般に疾患を引起こすウイルスと同じ血清型を有する。このワクチン株は、市場に非常に迅速に導入され、および非常に良好なワクチン接種結果を生じた。
【0004】
しかし、10年後再び、疾患の新規な発生が生じ、再度流布する現場のウイルスは現在の使用におけるワクチン株によって誘導される防御を迂回するように変化した。次いで、両方のワクチン(HVTおよびRispens)の組合わせが、動物を防御するために使用されたが、満足の行く結果は一時的にしか見られなかった。現在、疾患の新規な発生が、すべてのこれらのワクチン接種にもかかわらず生じる。これについての理由は未だ理解されていないが、新規な強力なワクチンの導入についての明らかな必要性がある。
【0005】
マレク病に対するワクチン接種と関連される問題は、マレクワクチンが長期間生成されてきたという事実にもかかわらず、ワクチンの調製のための方法が改善され得なかったことである。これについての理由は、一般に、本質的に宿主細胞随伴性のウイルスが、MDVまたはHVTの場合におけるように、病原体のないニワトリのような鳥類家畜から調製される線維芽細胞のような一次宿主細胞において、および水痘−帯状疱疹ウイルスの場合におけるように、(本質的に一次)ヒト細胞(再度、もちろん混入する病原体はない)において、一次細胞においてのみ本質的に増殖し得、ならびに各宿主の特定の細胞の情況を逸脱しては達成され得ないか、または非常な困難を伴ってのみ達成され得ることである。これは一般に、実施レベルに対してほとんど不可能でないにしても、ウイルスの感染またはウイルスのこれらのタイプによって引起こされる疾患に対して指向されるワクチンが生成されることを困難にし、したがって高価にする。
【0006】
たとえば、マレク病に対して指向されるRispensワクチンは、唯一の充分に強力なワクチンであると現在考慮され、すべての血清型1マレクウイルスとして、厳密に宿主細胞随伴性である。細胞随伴性ウイルス(たとえば血清型1および2)の感染力は、通常の凍結および凍結溶解の間に完全に喪失される。それゆえ、ワクチンの調製は非常に複雑なおよび高価な工程を包含し、全細胞が液体窒素中で凍結されなくてはならない。ワクチンは、使用されるまで液体窒素下で、保存、および輸送、そして維持されなくてはならず、それゆえ輸送の間に途方もない費用および問題を引起こす。
【0007】
次いで、使用の側で、ワクチンは非常に注意深く使用されなくてはならない。なぜなら、感染された細胞は、環境因子に対して非常に敏感であるからである。上昇された温度、光への曝露およびガラス器具中の残留洗浄剤のような因子はしばしばウイルスを障害し、その結果充分に生存可能なワクチンバッチは何ら調製され得ず、完全なワクチン失敗を導く。このような失敗は、疾患が既に出現し始め、および罹患された鳥類家畜が疾患の徴候を示す場合においてのみ認識され得る。
【0008】
簡潔には、現在まで、マレク病に対して防御するための不活性化された、サブユニットのまたは組換えのワクチンを提供するためのすべての試みは失敗し、それゆえ、現在、マレク病を含む生の、細胞随伴性ワクチンに対する代替は何もない。マレク病はワクチンのような感染された細胞調製物の適用によって制御されたままである。これらの調製物は、DMSOを含有する媒体中で懸濁された生存細胞および全体の多様な細胞抗原を含むのみでなく、これらはまた液体窒素中で保存されなくてはならない。したがって、冷却回路が、ワクチン生成からワクチン使用者まで、および投与まで維持されなくてはならない。さらに、一旦溶解されると、ワクチンは非常に短期間内に投与されなくてはならず、そしてすべてのトリに注射されなくてはならない。これらの問題のいくつかは、水痘−帯状疱疹ウイルスのような他の本質的に細胞随伴性のヘルペスウイルスに対するワクチンを調製するというそれらの願望によって共有される。
【0009】
マレク病ウイルス(MDV)はヘルペスウイルスのアルファヘルペスウイルス(Alphaherpesvirinae)サブファミリーのメンバーである、Leeら、2000、Murphyら、1995)。ニワトリについての病原性およびT細胞リンパ腫を誘導する能力に基づいて、MDVは一般に、3つの血清型(MDV−1、MDV−2、MDV−3)に分類される。MDV−3は、シチメンチョウのヘルペスウイルス(HVT)を示し、これはMDV関連性疾患に対するワクチン接種について広範に使用された。しかし、ワクチン接種の失敗、そしていわゆる病原性の、または非常に病原性のMDV−1(Witter、1985)の発生の後、弱毒化されたMDV−2株、そして後には弱毒化されたMDV−1株(たとえば、株CVI 988 Rispens)が、ワクチン処方物において使用された(Witter、1985)。近年のおよび米国における最初の報告において、さらにより病原性のMDV−1、いわゆる非常に病原性+(vv+)、MDV−1改変体が出現し、そしてマレク病の高い発生率、ならびに腫瘍発生および感染後初期の免疫沈降によって引起される死亡率を引起こした(Witter、1997)。1つのvv+株、584Aは、ニワトリ胚線維芽細胞(CRF)において100回を越えて継代され、そしてニワトリについての病原性を緩めることが示された(Witter、1997)。しかし、vv+MDV−1の増加される病原性についての、および同様に病原性の喪失についての細胞基準は、MDV−1の分子解析を実施することが困難であるので不十分に理解される。一方、感染性ウイルス子孫は全くまたは少量しか培養細胞中に放出されず、他方MDV−1組換え体の生成は困難であり、および細胞培養物中の因子の高度な細胞随伴性の性質に起因して、ウイルス組換え体の複数回の精製が必要とされる(Cantelloら、1991;Sakaguchiら、1993;Parcellsら、1994;Schatら、1998;Andersonら、1998)。
【0010】
上部ですでに上記されるように、ワクチン接種はマレク病現場のウイルスから動物を防御することを保証し得ない。ウイルス―すべてのヘルペスウイルスのような−は、ワクチンによって誘導される免疫応答を逃れるための方法を見出し得る。それゆえ、現場の状況に対するワクチンの迅速な適合が必要とされる。現在、これは、現場の単離物(たとえば、HVTもしくはRispens)の単離、および/またはインビトロにおけるさらなる弱毒化によって行われる。単離自身は、細胞随伴性の感染性ウイルスをニワトリから得ること、および細胞培養物中で細胞を感染することの困難性のために、途方もない問題を引起こす。その後の弱毒化工程は非常に困難であり、そして特にプラーク精製が極めて困難であるので時間の無駄づかいであり、これはまた、ウイルスの細胞随伴性の性質に起因する。
【0011】
弱毒化からの結果は通常規定されない。これらの事実の結果として、長い間、現在のHVTおよびRispens型ワクチンを損なうことを救済するような、市場に登場したワクチンはなにもなかった。さらにしばしば、過弱毒化がワクチン生成の間に生じる。なぜならウイルスが非常に多くの回数で継代されたからである。これは現場におけるHVT−およびRispens型ワクチンの低い効力をさらに悪化する。簡潔には、以下の問題が、MDV制御における現在の難局の大きな部分を構成する。伝統的なワクチン生成の低い再現性、ワクチンウイルスの過弱毒化、ワクチンウイルスの規定されない弱毒化、高い精製費用、高い保存および輸送の費用、環境因子に対するワクチンの高い感受性、および特に細胞随伴性ウイルスについての新規なワクチン株の非常に遅延された開発が存在する。
【0012】
これらの問題は、現在流布する現場のウイルスが鳥類家畜生成ストックにおいて非常に高い力価を生じるという事実によって構成され、それによってこれらの高い抗体力価は、卵における母性抗体を介して子孫を介して与えられる。現在のワクチンウイルスによる最初の感染の間のこれらの母性抗体の影響はさらに、マレク病に対するワクチン接種の現在の効果を減少する。
【0013】
本発明は、本質的に宿主細胞に随伴されるヘルペスウイルスによって引起される感染に対して指向されるワクチンであって、該ヘルペスウイルス由来の組換えゲノムを含み、該ゲノムは該宿主細胞がない組換えを可能とすることを特徴とするワクチンを提供する。この効果に対して、本発明は本明細書中で本質的に宿主細胞随伴性であると考えられるヘルペスウイルスに由来する組換えウイルスゲノムを提供し、該ゲノムは好ましくは、該宿主細胞における複製の少なくともいくつかの測定を行い得、および同時に該宿主細胞がないまたはそれから独立した複製を許容し、真核生物細胞における相同組換えはもはや必要とされない。詳細な説明において、このようなゲノムはマレク病様ウイルスについて提供される。
【0014】
そこで、例としてマレク病ウイルス血清型1(MDV−1)、株584Ap80Cのゲノムが、細菌人工染色体(BAC)としてEscherichia coliにおいてクローン化された。BACベクター配列は、ウイルスDNAと、MDV−1 U2遺伝子および隣接領域の代わりにBAC配列およびEco−gpt遺伝子を含んだ組換えプラスミドpDS−pHA1とでのニワトリ胚線維芽細胞(CEF)の同時形質転換後の相同組換えによってMDV−1ゲノムのUs2遺伝子配座に導入された。トランスフェクション子孫はミコフェノール酸(mycophenolic acid)およびキサンチン/ヒポキサンチンの存在下、CEF細胞上で継代された。4回の選択後、ウイルスDNAを調製され、そしてEscherichia coli株DH10Bを形質転換するために使用された。完全なMDV−1ゲノムを保有するいくつかのコロニーが同定された。これらのMDV−1 BACはCEF細胞にトランスフェクトされ、そしてトランスフェクション後3日目から感染性MDV−1が回収された。種々のBACから回収されたMDV−1の増殖は、プラーク形成および増殖曲線の測定によってアッセイされるように、親ウイルスの増殖と区別できなかった。
【0015】
本発明はしたがって、MDVおよび/またはVZV単離物に由来する(必要とされる場合、ほぼ完全なまたは完全な)感染性ヘルペスウイルス核酸を含む、組換えの本質的に宿主細胞随伴性のヘルペスウイルスゲノムを生成するまたは得るための方法を提供する。
【0016】
もちろん、今や本質的に完全なゲノムは、元来堅固に随伴されると考えられていた宿主細胞がなく得られるので、本発明はまた、分子生物学の当業者に利用可能であるすべての組換え技術の充分な適用を可能とする本発明のゲノムを提供し、したがって本発明はたとえば、少なくとも(複製可能な)ミニゲノムを含む本発明のワクチンを提供する。
【0017】
たとえば、本発明は糖タンパク質の組(たとえば、gB、gC、gD、またはそれらの組合せ)のみの、およびヘルペスウイルスにおける細胞性免疫を誘導することが示されたたとえばICP4または別の遺伝子産物の、発現のためのみに提供されるミニゲノムを提供する。このようなミニ遺伝子はたとえば、遺伝子を同定するために作用し、これは防御において重要であり、(真核生物)宿主細胞におけるゲノムの複製はもはや提供されないことが考慮される。各遺伝子または遺伝子構築物の前にたとえばHCMVまたはSV40プロモーターを付加することは、最小防御単位の最終的な同定を提供する。複製適格性ミニゲノムについて、本発明はまた、US領域の完全な、または主要な部分を欠失することを提供し、それによって得られるミニウイルスはまた宿主細胞において複製する。
【0018】
別の実施態様において、本発明は該ヘルペスウイルスに由来する本質的に完全長のコピーを含むこのようなゲノムを提供し、本明細書中で本質的に完全長は、該ウイルスゲノムの大部分が存在することを示すが、詳細な説明において本明細書中に提供されるような宿主または宿主細胞培養物におけるウイルスの複製および伝播に必須の遺伝子のような好ましくは(少なくとも機能的に)除外されるいくつかを除く。そこで、たとえば、本発明の回収されたゲノムの1つ、BAC20において、糖タンパク質B(gB)をコードする配列は、直鎖状DNAフラグメントを使用する1工程のrecE媒介性変異誘発によって欠失された。gBネガティブなBAC20 DNA(20DgB)のトランスフェクション後に再構成された糖タンパク質BネガティブなMDV−1は、トランスでgBを提供する細胞において増殖し得るのみであり、培養された宿主細胞においてgBがMDV−1増殖に必須であることを実証する。増殖に、およびトランスで遺伝子産物を生成する細胞が提供されることが必要な他の遺伝子は、gH、ICP4、UL15、UL28,およびUL9、または以下に列挙されるような増殖に必須と考慮される別の遺伝子である。
【0019】
さらに、本発明は、ワクチンの生成のための本発明のゲノムの使用を提供し、1つの実施態様において、このようなワクチンは本質的に宿主細胞随伴性のヘルペスウイルスでの感染によって引起される疾患に対して指向されるが、別の実施態様において、このようなワクチンはベクターワクチンとして使用され得、そして他のおよびさらなる病原体またはそれについてコードする核酸ストレッチを含み得る。MDVについて、好ましいさらなる病原体核酸はたとえばNewcastle Diseaseウイルス、Eimeria spp、サルモネラ spp、ニワトリ感染性虚血ウイルス、インフルエンザウイルス、感染性ブルサ病ウイルス、レオウイルス、または鳥類家畜において一般に見られる他の病原体に由来する核酸を包含する。
【0020】
したがって、本発明はまた、ワクチンであって、該ゲノムは宿主細胞における該ウイルスの複製および/または伝播に必須の遺伝子における機能的な欠失を包含するか、または該ウイルスゲノムは少なくとも、該ヘルペスウイルスでの個体の感染に対して(好ましくは本質的に防御性の)免疫応答を誘発し得る抗原性物質をコードする核酸を含むことを特徴とするワクチンを提供する。欠失される典型的な必須遺伝子またはそのフラグメントは、たとえば、UL1=糖タンパク質L;UL5;UL8;UL9;UL15;UL18;UL19;UL22=糖タンパク質H;UL26;UL26.5;UL27=糖タンパク質B:UL28;UL29;UL30;UL52;UL53;ICP4のMDV相同体、またはゲノムのUS領域から選択される遺伝子またはそのフラグメントであり得る(図1)。
【0021】
好ましい実施態様において、本発明は、ワクチンであって、該ワクチンでワクチン接種された個体と、該本質的に細胞随伴性のヘルペスウイルスで感染された個体との間の免疫学的な区別を可能とする、該ヘルペスウイルスに特異的なマーカー免疫応答を誘発するために必須の遺伝子における機能的欠失を含むワクチンを提供する。好ましいマーカー応答はたとえば、gC、gM、gD、またはgEにて指向され、それによって詳細な説明はさらに(ここではgMの場合において)、マーカー免疫応答を誘発するために必須の遺伝子におけるこのような欠失を説明する。
【0022】
さらに、本発明は、発明に従うワクチンであって、該ウイルスゲノムは少なくとも、該ヘルペスウイルスでの個体の感染に対して免疫応答を誘発し得る抗原性物質をコードする核酸の転写および/または翻訳を調節し得るタンパク質分解性物質をコードする核酸を含むことを特徴とするワクチンを提供する。
【0023】
好ましくは、該ワクチンは、ワクチン接種された宿主におけるワクチンゲノムの転写および/または翻訳の効果的な調節のために必要とされる多くの機能を維持するために、該ヘルペスウイルスに由来する本質的に完全長のコピーを含むが、しかし、ミニゲノムワクチン接種がまた本明細書中で提供される。該ゲノムからさらなる病原体、またはそれに由来する抗原性物質を発現する場合、外来病原体、またはそれに由来する抗原性物質をコードする核酸の転写および/または翻訳を効果的に調節することはもちろん好ましく、およびまた外来(すなわち、非ヘルペスウイルス調節性エレメント)が、本発明のワクチンを提供する場合該ゲノムに提供されることが考えられ得るが、さらなる病原体をコードする核酸は除く。
【0024】
特に、本発明は、発明に従うワクチンであって、該ヘルペスウイルスはマレク病様ウイルスを含むことを特徴とするワクチンを提供する。特に、該マレク病様ウイルスは血清型1を含むことを特徴とするワクチンを提供することが好ましい。また、ゲノムの操作のための方法は、ゲノムが元来随伴される宿主細胞の情況を超えて包含されるゲノムの操作のための方法が提供され、マレク病様ウイルスの通常弱毒化されるかまたは病原性の単離物に由来する代わりに、病原性の、非常に病原性の、または非常に病原性+現場のウイルスから代わりに由来するワクチンが提供される。なぜなら、現場の単離物からの感染性クローンの迅速な単離が今や可能であるからであり、ニワトリおよびシチメンチョウにおけるマレク病ワクチンについての予防のためのDNAワクチンの調製を許容し、ゲノムへの変異が非常に迅速に導入され得る。同じ系がまた、他の本質的に細胞随伴性のヘルペスウイルス様水泡−帯状疱疹ウイルスについて使用され得る。
【0025】
本明細書中に提供されるような複製可能なウイルスゲノムの使用は部分または完全を含み、そして感染性マレク病ウイルス(MDV−1)ゲノムは、より有効な、生物学的に安全な、および安定なMDV−1ワクチンを生成するための多様な新規な可能性を開く。組換えMDV−1がクローン化されたDNAから回収されるという事実に起因して、DNAトランスフェクションから得られるウイルス子孫は、より良好に特徴付けられ得、およびワクチンウイルスの「過弱毒化」が回避される。たとえば、弱毒化と関連されるようである132bp反復(Maotaniら、1986)の数は正確に決定され得、および−必要である場合−ワクチン生成についての必要性または現場における情況にしたがって減少または拡張され得る(以下を参照のこと)。変異体MDV−1の生成は、非常に容易にされた。これまでのところ、MDV−1変異体は、困難なおよび時間の無駄づかいである、真核生物細胞における相同組換え、ならびに選択手順によって作製された。これらの選択手順は―他のヘルペスウイルスについて報告されるように−しばしばこれらの所望される以外のゲノムの変異を生じ得る。特に本質的にMDV−1の場合において、選択手順、そして変異体の回収および増殖がさらにより複雑にされ、無細胞ウイルスを得ることができないからである。対照的に、本発明は、プラスミドpGETrescに存在するrecE、recT、およびrecB/Cを抑制するλgam遺伝子(Narayananら、1999)を介する変異誘発に基づく、ウイルスゲノムを操作するための方法を提供する。系の利点は、(i)わずか30〜50bpの相同なアームが、検出されるべき特異的配列を標的するために必要とされること、すなわち、任意のオープンリーディングフレームの欠失が、組合せのカセットをクローン化する必要と伴わずに達成され得ること、(ii)方法は非常に早いこと、および(iii)変異誘発系を付与しそしてアンピシリン耐性を発現するpGETrecベクターが、アンピシリンの不在下で迅速に細菌細胞から喪失されることである。
【0026】
いわゆるE/Tクローン化手順を使用する強力な技術を使用して、Escherichia coliにおける1工程の変異および選択が可能である(Muyrersら、1999;Narayananら、1999;Zhangら、1998)。この技術はまた、細胞株を相補することを使用する必要性を伴わずに必須MDV−1遺伝子の欠失を可能とする。なぜなら、本明細書中で提供されるように変異されたMDV−1ゲノムの複製は欠失される必須遺伝子のトランス相補を必要としないからである。さらに、クローン化手順は完全に必要とされない。
【0027】
別の実施態様において、本発明は、MDV−1または他の(本質的に細胞随伴性のヘルペス)ウイルスBACを作製する方法を提供し、たとえば、Escherichia coli DH10Bを細胞をプラスミドpBADαβγ、pGETrec、またはrecE、recT、およびλgam遺伝子を誘導的におよび安定に発現する任意の他のプラスミドで形質転換する工程、続いてたとえばエキスビボで採取された溶菌的にまたは潜在的に感染された細胞から、または細胞培養物から、環状ウイルスDNAを調製する工程を包含する。平行なまたは別個の手順において、BACベクター配列およびウイルスDNAと、BACベクター配列との相同組換えを可能とする配列を保有する直鎖状DNAが提供される。この直鎖状DNAは、たとえば、PCRによってまたはプラスミドDNAを直鎖化することによって生成され得る。次いで、Escherichia coliにおけるrecE、recTおよびgam遺伝子の発現が提供され、そしてエレクトロコンピテントな細胞が提供される(たとえば、Sambrookら、1989)。次いで、ウイルスDNAはBACベクター配列を保有する直鎖状DNAとともに、コンピテントなEscherichia coliにエレクトロポレートされる。適切な抗生物質を含有する寒天上へのプレーティングは、採集されるべきコロニー(単数または複数)を提供し、そしてBAC DNAは、たとえば本明細書中の詳細な説明において記載されるように調製され得る。クローン化されたウイルスBAC DNAの感染力は、感受性細胞のトランスフェクションによって確認される。ここで、本発明は、真核生物細胞における(相同)組換えを行う必要性を伴わずに、宿主細胞または組織に由来する本質的に宿主細胞随伴性のヘルペスウイルスゲノムを遺伝子組換えするための方法を提供し、(必要とされる場合、ほとんど完全なまたは完全な)感染性ゲノムまたは現場の単離物または弱毒化された単離物に由来するヘルペスウイルス核酸を得ることを可能とする。
【0028】
本明細書中で提供されるような方法はまた、候補ワクチンMDV−1をさらに弱毒化すること、および他の重要なニワトリ病原体の遺伝子を保有するMDV−1変異体を作製することを可能とする。さらに、潜在的に異なるおよび変化する抗原性特性を有する現場のMDV−1単離物の出現は、クローン化MDV−1と現在の現場の単離物との間のそれぞれの変異された遺伝子の交換に基づくワクチンを提供することによって反撃される。これらの変化は―上記されるような−同じE/Tクローン化技術を用いて行われ得、したがって、現場におけるMDV−1の変化に対して非常に迅速に反応する可能性を提供する。しかし本明細書中に記載されるような感染性MDV−1の回収の魅力的な利点は、DNAワクチンとしての本明細書中で提供されるようなゲノムの使用である。これまでのところ、マレク病は感染性細胞調製物の適用によって制御される。
【0029】
これらの調製物は、DMSOを含有する培地中で懸濁される生存細胞および全体の多様な細胞性抗原を含むのみでなく、これらはまた液体窒素中で保存されなくてはならない。したがって、ワクチン調製からワクチン使用者までの、および投与されるまでの冷却回路が維持されるべきである。さらに、一旦溶解されると、ワクチンは非常に短期間内に投与されなくてはならず、およびすべてのトリに注入されなくてはならない。本明細書中で提供されるようなMDV−1ゲノムを用い、「ワクチン」(DNA)の精製は容易に実現可能であり、および再現可能である。DNAは極めて安定であり、冷却回路の維持は必要とされず、および感染性DNAはいくつかの経路(筋肉内、皮内、卵内、経口的に、呼吸経路によってなど)によって、および異なる処方物(キャリアを伴うおよび伴わない)中で投与され得る。さらに、母性抗体の存在は、免疫原の一次注入を妨害しない。
【0030】
したがって、本明細書中で提供されるようなMDV−1ゲノムは、腫瘍化のおよび経済的に重要な疾患に対する非常に効果的なおよび生物学的に完全なワクチンを生成するおよび操作する可能性を最初に可能とする。したがって本発明は概して、本質的に細胞随伴性のヘルペスウイルスでの感染によって引起される疾患を獲得することまたは充分に出現することに対する個体の危険性を制限するための方法を提供し、本発明のワクチンまたは本発明のゲノムを該個体に投与する工程を包含する。
【0031】
発明の詳細な説明
マレク病ウイルス(MDV)は、ヘルペスウイルスのアルファヘルペスウイルスサブファミリーのメンバーである(van Regenmortelら、1999)。ニワトリについての病原性およびT細胞リンパ腫を誘導する能力および抗原性特性に基づいて、MDVは一般に、3つの血清型(MDV−1、MDV−2、MDV−3)に分類される(Payne、1985)。MDV−3は、シチメンチョウのヘルペスウイルス(HVT)を示し、これはMDV関連性疾患に対するワクチン接種のために広範に使用されてきた。最も最近の命名法にしたがって、MDV−1はgallidヘルペスウイルス2(GHV−2)として、MDV−2はGHV−3として、およびHVTは、meleagridヘルペスウイルスとして分類される。すべての3つのウイルスは、アルファヘルペスウイルスのうちの新規なマレク病様ウイルス属に属する。
【0032】
MDV−1感染の制御は、主にHVTでのワクチン接種によって達成されたが、ワクチン接種の失敗およびいわゆる「非常に毒性の」MDV−1の記載(Witter、1989)の記載後、MDV−2株、そして後には弱毒化されたMDV−1(例えは、株CVI988 Rispens)がワクチン処方物中で使用されてきた(Witterら、1985)。
【0033】
近年のおよび米国における最初の報告において、さらにより病原性のMDV−1、「非常に病原性+」(vv+)、MDV−1改変体が出現し、そしてワクチン接種された集団においてであっても、高い死亡率を引起こした(Witter、1997)。これらのvv+株のうちの1つの、584Aは、ニワトリ胚線維芽細胞(CRF)において連続して継代され、そしてニワトリについての病原性を喪失した(Witterら、1997)。vv+ MDV−1の増加される病原性についての、および同様に病原性の喪失についての細胞基準は、MDV−1の分子解析を実施することが困難であるので充分には理解されていない。
【0034】
一方、感染性ウイルス子孫は培養細胞中に放出されず、他方MDV−1組換え体の生成は困難であり、およびインビトロでの因子の高度な細胞随伴性の性質に起因して、ウイルス組換え体の複数回の精製が必要とされる(Cantelloら、1991;Sakaguchiら、1998;Parcellsら、1994、1995;Schatら、1998;Andersonら、1998)。さらに、一次細胞は、MDV−1の増殖のために使用されなくてはならず(Payne)、トランスで相補する細胞株が何ら作製され得ないので本質的にMDV−1遺伝子の解析はほとんど不可能であるという事実を生じる。
【0035】
マウスおよびヒトサイトメガロウイルス(MCMVおよびMCMV;Messerleら、1997;Borstら、1999)、単純ヘルペスウイルス1型(HSV−1;Suterら、1998)、シュードモナスウイルス(PrV;Smithら、1999、2000)、およびエプスタインバールウイルス(EBV;Delecluseら、1998)のゲノムは、この技術を使用して感染性BACとしてクローン化された。
【0036】
本研究の目的は、Escherichia coliにおける完全な180kbpゲノムのクローニングによる、MDV−1組換え体の速いおよび効果的な生成のための基準を提供することであった。感染性MDV−1は、CEF細胞を使用してクローン化されたMDV−1 BAC DNAのトランスフェクション後に容易に回収され、およびMDV−1 BACは、数回の細菌増殖またはCEF細胞における連続増殖後に安定であった。
【0037】
最後に、Escherichia coliにおける本質的MDV−1遺伝子の1工程の欠失が可能になったので、系は本質的なおよび非本質的なMDV−1遺伝子のさらなる解析を容易にするための大きな可能性を有し得、そして生物学的に安全に改変された生ウイルスおよび/またはDNAワクチンの生成のための道具として作用し得る。
【0038】
材料および方法
ウイルスおよび細胞。一次および二次ニワトリ胚線維芽細胞(CEF)またはウズラ筋肉(QM7)細胞は、5〜10%胎児ウシ血清(FCS)が補充されたダルベッコ改変必須培地(DMEM)中で維持された。MDV−1株584Ap80Cは、Richard Witter博士、ADOL、East Lansing Michigan、U.S.A.によって快く提供された。584Ap80C株は、vv+株584Aの非病原性細胞培養物の継代された子孫を示し(Witter、1997)、および以前に記載される(Osterrieder、1999)ように一次または二次CEF細胞上で増殖された。QM7細胞は、これらがMDV−1の増殖のために使用された前に、PCRおよびゲノムの異なる領域を標的化するサザンブロットハイブリダイゼーションによってMDV−1配列の不在について試験された(ZelnikおよびOsterrieder、未発表)。ウイルスの増殖曲線は、わずかな改変を伴って記載されるように行われた(Parcellsら、1994)。簡潔には、100プラーク形成単位(p.f.u.)が、2×10個の新鮮に播種されたCEF細胞を感染するために使用された。感染後の種々の時点(0、12、24、48、72、96、120時間)で、感染された細胞がトリプシン処理され、そして新鮮なCEF細胞に対して力価測定された。プラークの数が測定され、そして結果は1つの独立した実験の平均を示す。
【0039】
構成的にMDV−1 gBを発現するQM7細胞株が、10μgのpcMgBでの1×10個のQM7細胞のトランスフェクションによって得られ(図1)、これはpcDNA3(Invitrogen)に基づき、およびヒトサイトメガロウイルス即時型初期プロモーターの制御下で株Rispens CVI988からのMDV−1gB遺伝子を含む。pcMgBを含有するQM7細胞が、1mg/ml G418の存在下で選択され、そしてgBを発現するクローンが、抗gBモノクローナル抗体(mab)2K11(Jean−Francois博士 Vautherot、INRA、Tours、Franceによって快く提供された)を使用して同定された。得られるMDV−1 gBを発現する細胞株をMgB1と呼んだ。
【0040】
MDV−1 BACの構築。MDV−1 DNAは、以前に記載されるように(Morganら、1990)、ドデシル硫酸ナトリウム―プロテイナーゼK抽出によって感染された細胞から精製された。プラスミドpDS−pHA1は以下のように構築された。MDV−1 Us2遺伝子のいずれかの側における2.1および3.1kbフラグメントは、適切な制限酵素部位を含有する標準的なプライマー(表1)を使用してポリメラーゼ連鎖反応(PCR)によって増幅され、そして両方のフラグメントはpTZ18R(Pharmachia−Amersham)にクローン化された。HCMV即時型初期プロモーターの制御下でEco−gpt遺伝子を含有するBACベクターは、プラスミドpHA1(M.Messerle博士、LMU Munich、Germanyから提供された;Messerleら、1997)から放出され、そしてプラスミドpDSに在する両方の2.1および3.1kbpフラグメントに導入されたPacI部位に挿入された(図1)。
【0041】
一次CEF細胞は、2μgの584Ap80C DNAおよび10μgのpDS−pHA1で同時トランスフェクトされた。トランスフェクション後5日目に、細胞は、250μg/mlミコフェノール酸(MPA)、50μg/mlキサンチン、および100μg/mlヒポキサンチンの存在下、一次CEF細胞上にプレートされた。MPA/キサンチン/ヒポキサンチン選択は、合計4回反復された。完全な細胞変性効果(cpe)は、4回目の選択後に生じ、ウイルスDNAが感染された細胞から調製され、そして1μgの感染された細胞DNAがDHB10 Escherichia coli細胞にエレクトポレートされた。コロニーが、80μg/mlクロラムフェニコールを含有する寒天培地(Sambrookら、1989)上でのトランスフェクション16時間後から検出された。単一のコロニーがつつかれ、そしてBAC DNAが標準的なアルカリ溶解プロトコル(Sambrookら、1989)後に、Escherichia coliから調製された。BAC DNAの大規模調製が、市販のキット(Qiagen、Macherey & Nagel)を使用するシリカベースのアフィニティークロマトグラフィーによって行われた。3つのMDV−1 584Ap80C BACクローン(BAC19、BAC20、BAC24)がさらなる解析のために選択された。
【0042】
MDV−1 BACの変異誘発。Escherichia coliにおけるクローン化されたMDV−1 DNAの変異誘発のために、E/Tクローニングと呼ばれる、直鎖状DNAフラグメント間の相同組換えを促進するrecE触媒化反応が行われた(Zhangら、1998;Narayananら、1999)。recE、recT、およびバクテリオファージ1 gam遺伝子を保有するプラスミドpGETrec(Panos Ioannou、Murdoch Institute、Melbourne、Australiaによって快く提供された)が、BAC20を含有するDH10B細胞に形質転換された(Narayananら、1999)。0.2%アラビノースの添加によるrecE、recT、およびgamの誘導後、本質的には記載されるように(Narayanan)、エレクトロコンピテントな細胞が調製された。BAC20においてgB遺伝子を欠失するために、プラスミドpEGFP−N1(Clontech)のカナマイシン耐性遺伝子(kan)がPCRによって増幅された。設計されたプライマーは、gB内に所望される欠失を保有する50ヌクレオチド相同アーム、およびkanの増幅のための20ヌクレオチドをを含んだ(表1)。得られる1.6kbpフラグメントをアガロースゲル(Qiagen)から精製し、そしてpGETrecを含有するBAC20細胞中にエレクトロポレ―トした。camおよびkan遺伝子を保有するコロニーが、両方の抗生物質を含有するプレート(Narayananら、1999)上で同定された。
【0043】
DNA解析。BACまたはウイルス584Ap80C DNAが、EcoRI、BamHI、BglII、またはStuIで切断され、そして0.8%アガロースゲル上で分離された。DNAフラグメントは、正に荷電されたナイロンメンブレン(Pharmacia−Amersham)にトランスファーされ、そしてサザンブロットハイブリダイゼーションが、ジゴキシゲニンで標識されたBAC19 DNAまたはMDV−1株GAの個々のBamHIフラグメント(Fukuchiら、1991;Osterrieder、1999)を使用して行われた。
【0044】
さらに、プラスミドpcgBからのgB−特異的プローブ、およびkan遺伝子を保有するプローブが、gB−ネガティブなMDV−1 BACの解析のために調製された。CSPD(商標)を使用するDNAハイブリッドの化学発光検出が、製造業者(Roche Biochemicals)の指示にしたがって行われた。
【0045】
間接的な免疫蛍光。間接的な免疫蛍光解析(IIF)のために、細胞は6−もしくは24−ウェルプレート(Greiner)、またはカバーガラス上で増殖され、そして続いて示される場所で感染された。細胞は、感染またはトランスフェクション後の種々の時点で90%アセトンで固定化され、そしてIIFが記載されるように(MeindlおよびOsterrieder、1999)正確に行われた。サンプルは蛍光顕微鏡または共焦点レーザー走査顕微鏡(CLSM)によって解析された。使用された抗体は、抗gB mab 2K11、抗pp38 mab H19(Lucy Lee、ADOL、EAST Lansing、MIによって快く提供された)またはMDV−1で感染されたニワトリからの回復期血清(MDSI)であった。
【0046】
結果:
完全なMDV−1ゲノムを保有するBACの構築および解析。100万個の一次CEFが1×10p.f.u.のMDV−1株で感染され、すわわち、感染された細胞は未感染の細胞と混合された。完全な細胞変性効果が発生した後、DNAが感染された細胞から調製され、そして2μgウイルスDNAが1×10個の一次CEF細胞に、10μgのpDS−pHA1プラスミドDNAと共にトランスフェクトされた。トランスフェクションの5日後、細胞は新鮮なCEFと共に同時播種され、そして選択培地で重層された。
【0047】
この手順は合計4回反復された。最後に、MPA/キサンチン/ヒポキサンチンの存在下で増殖し得た組換えMDV−1からのDNAが単離され、そして標識化pHA1をプローブとして用いるサザンブロット解析に供された。ウイルスDNAの部分が挿入されたFプラスミド配列を含んだことが実証され得た(データ示されず)。1μgのこのウイルスDNAが、Escherichia coli DH10B細胞を形質転換するために使用された。形質転換された細菌は、30μg/mlクロラムフェニコールを含有する寒天上にプレートされ、そして単一のコロニーがつつかれた。細菌コロニーのDNAが標準的なプラスミド調製手順(Sambrookら、1989)によって抽出され、そして0.8アガロースゲル上で泳動された。
【0048】
細菌コロニーのいくつかは、高い分子量の染色体外DNAを含むことが示され、コロニーのうちの3つ(BAC19、BAC20、およびBAC24)がさらなる解析のために選択された(図2)。単離されたBACクローンをさらに特徴づけするために、プローブとして標識されたBAC19DNAを用いる、BamHIまたはEcoRIでの切断後の584Ap80CおよびBAC DNAのサザンブロット解析が行われた。親の584Ap80Cの制限酵素フラグメントパターンに比較される場合、BAC19、BAC20、およびBAC24のDNAがほとんど同一の制限酵素フラグメントパターンを示したことが実証され得た(図3A、およびB)。しかし、2つの顕著な例外が容易に認識された。584Ap80Cに存在する20kbp BamHI−Aフラグメントは、すべての解析されたBACクローンに不在であった。その代わりに、16および10kbpの大きさのフラグメントが、BAC19、BAC20、およびBAC24のDNAにおいて検出された(図3B)。これらの2つのバンドは、伸長されたBamHI−Aフラグメントを示し、Fプラスミドの挿入およびUs2配列の欠失のために、さらなるBamHI部位が導入された(図1)。
【0049】
EcoRI消化されたBAC DNAにおいて、Us2遺伝子の欠失によって生じた5.8kbp(BAC配列)の1つのさらなるバンドおよびフラグメントの大きさの少数の変化が、観察された(図1および3B)。種々のクローンにおけるBAC配列の正確な挿入が、プラスミドpDSまたはpHA1の標識化インサートをプローブとして用いるサザンブロットハイブリダイゼーションによってさらに解析され、そしてBamHI−またはEcoRI−消化DNAにおいて予測される制限パターンが観察された。BamHI消化されたBAC DNAにおいて、16および10kbpのBamHIフラグメントは、pDSプローブと共に特異的に反応されたが、10kbpフラグメントのみがプラスミドpHA1に由来するプローブと反応性であった(図1;図3CおよびD)。
【0050】
EcoRI消化されたBAC19、BAC20、またはBAC24のDNA。4.3、2.8、および1.7kbpのフラグメントは、pDSプローブと特異的に反応され、一方5.8および1.7kbpフラグメントはpHA1プローブと特異的にハイブリダイズされた(図1、図3CおよびD)。これらのフラグメントは、pHA1配列の挿入後に予測されるフラグメントに正確に対応し(図1)、そしてFプラスミド配列が、解析された全てのMDV−1 BACにおいてUs2 ORFの代わりに正確に挿入されたことが結論された。さらに、BAC19、BAC20、およびBAC24の結合パターンにおけるいくつかの変化、たとえば、BamHI消化されたBAC19 DNAにおける約6.2kbpのさらなるバンド、またはBAC20およびBAC24のEcoRI消化されたDNAにおけるさらなるバンドが、BamHIまたはEcoRI消化されたDNAのいずれかにおいて注目された(図2、3AおよびB)。個々の制限酵素フラグメントの観察されたサイズ変化の問題を取組むために、標識化BamHI−Dフラグメントでのハイブリダイゼーションが行われた。なぜなら独特の長い領域における末端および内部反復(TRLおよびIRL)におけるサイズ変化は一般的であるからである。
【0051】
サザンブロッティングによって、BAC19、BAC20、またはBAC24のBamHI−またはEcoRIで消化されたDNAのいずれかにおいて観察されたさらなるフラグメントは、実際TRLおよびIRLにおける変化から生じたことが示された。一方、BamHI−Dプローブを用いて、2つの広範なスメアが、BamHIで消化されたウイルス584Ap80C DNAにおいて検出され、これは約9〜15kbp、および4〜8kbp(それぞれ、病原性MDV−1のBamHI−Dおよび−Hフラグメントに対応する、図1)に及んだが、明らかに区別される異なるバンドが解析されたすべてのBACクローンにおいて観察された(図4)。異なるBACクローンのすべての他の制限酵素フラグメントは、ウイルス584Ap80C DNAの制限酵素フラグメントと同一であるようであった。これは、BamHI−A、−B、−C、およびIフラグメントを含む、いくつかの他の標識化BamHIフラグメントをプローブとして使用することによって確認された(BamHI−Cプローブについてのデータは図4において例示的に示される)。
【0052】
クローン化されたDNAからの感染性MDV−1の再構築。BAC19、BAC20、またはBAC24のDNAは、一次CEFにトランスフェクトされた。トランスフェクション後3〜7日目にてMDV−1特異的ウイルスプラークが、抗MDV−1 gB mabを使用するIIFによって実証されるように出現した。種々のBACのトランスフェクション後に救出されたMDV−1は次いで、新鮮なCEFとともに同時播種され、そしてプラークの大きさが親の584Ap80Cによって誘導されるプラークの大きさに比較された。2日目p.i.で染色されるプラークについて例示的に示されるように、組換え体と親ウイルスとの間にプラークの大きさにおける明らかな差異はなんら検出されなかった(図5A)。
【0053】
BACトランスフェクション後に回収されたMDV−1の生物学的特性をさらに特徴付けるために、これらのウイルスの増殖動力学が、親の584Ap80Cの増殖動力学に比較された。BACの場合において、トランスフェクション後5日目で回収されたウイルスが、6ウェルプレート上で播種される新鮮なCEFを感染するために使用された(50p.f.u.のウイルスが1×10細胞を含有する1つのウェルを感染するために使用された)。同様に、584Ap80Cの50p.f.u.が、同じ方法において新鮮なCEFを感染するために使用された。種々の時点p.i.で、ウイルスは採集され、そして10倍ウイルス希釈物を新鮮なCEF細胞とともに同時播種することによって力価測定した。これらの実験の結果は、図5Bにおいてまとめられる。
【0054】
試験されたすべてのMDV−1 BACが、親の584Ap80Cの増殖特性にほとんど同一であった増殖特性を示したことが実証され得た(図5B)。最大の力価は、72時間p.i.にて達成され、そして120時間p.i.での観察期間の終わりまで実質的に一定のままであった。プラークの大きさおよび増殖特性から、本発明者らは、インビトロでのMDV−1 BACの生物学的特性が、親株の生物学的特性から実質的に区別できなかったことを結論した。
【0055】
BAC由来のウイルスの安定性を評価するために、BAC19およびBAC20のBACトランスフェクションの子孫が4回継代され、そしてウイルスDNAが調製された。ウイルスDNAはBamHIまたはEcoRIで切断され、0.8%アガロースゲル電気泳動によって分離され、そしてナイロンメンブレンにトランスファーされた。ハイブリダイゼーションが、pDSまたはpHA1プローブを使用して行われた。上記のように類似するDNAフラグメントが観察され、そして結合パターンは、2つのプローブを用いて解析されたようにトランスフェクションの連続継代物と変化しなかった(図6)。これらの結果から、本発明者らは、Fプラスミド由来の配列が、CEF細胞における連続継代後であっても、個々のMDV−1 BACクローンから回収された584Ap80Cゲノム内に安定に挿入されたままであったことを結論した。
【0056】
しかし、BamHI−DフラグメントでのハイブリダイゼーションおよびPCR解析によって示されるように、132bp反復配列の可変性が回復され、そして反応バンドの拡散スメアが、最初のウイルス継代後既に、トランスフェクション子孫のBamHI−またはEcoRI−切断されたDNAにおいて観察された(データ示されず)。
【0057】
BAC20の変異誘発およびgBをコードする配列の欠失。次の実験において、BACの変異誘発のために近年開発された方法が、BAC20からの2.8kbp gB遺伝子の2.3kbpを取り出すために適用された(図7)。BAC20を含有するDH10BへのプラスミドpGETrec(Narayanan)の形質転換後、kan遺伝子が、MDV−1 gB配列との相同組換えを許容したプライマーを用いて増幅され(表1;図8)、そしてBAC20−pGETrec細胞にエレクトロポレートされた。細菌は、クロラムフェニコールおよびカナマイシンを含有するLB寒天上にプレートされ、そして二重耐性コロニーがつつかれた。個々のコロニーのDNA単離後、gB遺伝子内に欠失を保有する組換えBAC20(20DgB)のサザンブロット解析が行われた。BamHI、EcoRI、BglII、またはStuIでの切断後に、kanおよびgB特異的プローブは20DgBのフラグメントを検出し、これはgBをコードする配列へのkan耐性遺伝子の導入後に算定されるフラグメントに完全な一致にあった(図9)。−以前に報告されるように―アンピシリン耐性を付与するpGETrecは、抗生物質の不在下で増殖されたEscherichia coli細胞から容易に喪失された(図9)。これらの結果から、本発明者らは、gBオープンリーディングフレームが20DgBからほとんど完全に除去されたことを結論した。
【0058】
20DgBから再構築されたgBネガティブなMDV−1の解析。gBは今日までに解析されたすべてのヘルペスウイルスの増殖に必須であるので(Pereiraにおいて概説される)、HCMV即時型初期プロモーターの制御下でMDV−1 gBを発現したQM7細胞株が作製された。間接的な免疫蛍光解析は、細胞株MgB1の実質的にすべての細胞が、mab2K11または回復期のニワトリ血清(MDSI)を使用して実証されるように、MDV−1 gBを構成的に発現した(図10)。種々の細胞株におけるBAC20および20DgBの増殖を解析するために、DNAが調製され、そしてCEF、QM7、またはMgB1細胞をトランスフェクトするために使用された。トランスフェクション後3〜5日目で、ウイルスプラークがBAC20で形質転換されたすべての細胞において観察された(図10)。
【0059】
しかし、20DgB DNAのトランスフェクション後、プラークはgBを発言するMgB1細胞のみにおいて観察された(図11)。20DgBでトランスフェクトされたCEFおよびQM7細胞において、単一の細胞が、mabH19(Leeら)との反応性によって実証されるように、初期PP38遺伝子を発現したが、プラーク形成は阻害された(図11)。インビトロでのMDV−1細胞間伝播に必須であるgBのこれらの結果は、20DgBで感染されたMgB1細胞を、CEF、QM7、または新鮮なMgB1細胞と共に同時播種することによって確認された。一次トランスフェクション後に示されるように、プラーク形成はgBを発現する細胞との同時播種後にのみ観察された(表2)。これらの結果から本発明者らは、MDV−1 gBが、培養細胞においてMDV−1の細胞間伝播に必須に必要とされることを結論した。
【0060】
マレク病ウイルスは感染された動物においてT細胞腫瘍および高い死亡率を引起すニワトリの重要な病原体であるが、感染の溶菌期、潜伏期、または腫瘍期における個々の遺伝子および遺伝子産物の機能についてはほとんど知られていない。MDV−1遺伝子および遺伝子産物の解析は、2つの主要な理由のために非常に障害されてきた。第1に、MDV−1で感染された培養細胞は遊離の感染性ウイルスを生じず、そして第2に、培養細胞におけるMDV−1の効果的な増殖は一次または二次ニワトリ胚線維芽細胞に制限される。
【0061】
したがって、他のAlphaherpesvirinaeを変異誘発するための従来の相同組換えを使用する変異誘発は、困難であり、時間の無駄づかいであり、および一次細胞の一定の供給を必要とする。HSVおよびPrVの変異誘発は、BAC技術を使用することによって確かに容易にされたが、真核生物細胞における相同組換えに依存する従来の変異誘発は、これらの2つのウイルスについての標準的な技術を示し、および多くの変異体ウイルスが作製された。対照的に、MDV−1 BACの変異誘発について、クローニングおよび変異誘発は主要な利点である。一旦MDV−1ゲノムはBACとしてクローン化され、Escherichia coliにおいて安定に維持され得ると、必須遺伝子の変異体の作製および解析は比較的容易であるべきである。事実、感染性BACとして、株584Ap80Cの完全なゲノムをクローン化することが可能であった。株584Ap80Cは、CEF細胞における80回の連続継代後の、非常に病原性+(vv+)MDV−1株584Aの子孫である(Witter、1997)。BAC19、BAC20、およびBAC24に存在するクローン化されたMDV−1ゲノムの解析は、制限酵素パーターンの変化が明白であったことを実証した。
【0062】
このヘテロ原性は、BamHI−Dおよび−Hフラグメントにおける変化に起因され得た。種々の数の132bpタンデム反復が、種々のMDV−1株に存在すること、および反復の数は、培養細胞において連続継代後に増加することが知られる(Maotani、Silva、Fukuchi)。さらに、これらの単位の一定の数のが病原性株において実証されたので(Fukuchiら、1985;Bradleyら、1989)、タンデムな132bp反復の数は、発ガン性の喪失と関連されたが、広範に使用されるRispens CVI 988ワクチン株に対する近年の研究は、少数の132bp反復および病原性の直接的な相関は何もないかもしれないということを実証した。MDV−1株584Ap80Cの場合において、BamHI−Dフラグメントを用いる、制限酵素で消化されたウイルスDNAのハイブリダイゼーションは、拡散バンドパターンを生じ、ウイルス集団に存在する反復の可変性の数を示す。対照的に、単一の強力に反応性のハンドが、同じプローブを用いて、BACクローンのそれぞれにおいて同定された。しかし、BamHIまたはEcoRIでの切断後の反応性バンドの大きさは、BAC19と、BAC20と、BAC24との間で変化し、132bp反復の異なる数を含むゲノムがクローン化されたことを示す。この解釈は、132bp反復を標的化するPCR解析によって実証された。584Ap80C(Beckerら、1993)のDNAを用いて、PCR産物の典型的なラダー様出現が得られたが、異なるバンドが、BAC19、BAC20、およびBAC24の場合においてクローン化されたウイルスDNAから増幅された。
【0063】
それゆえ、異なるBACクローンの可変性の制限酵素パターンが、個々のクローンに存在する種々の数の132bp反復から生じ、これは感染性ウイルスは異なるBACクローンのそれぞれから単離されたDNAのトランスフェクション後に取り出されたので、クローン化されたDNAの感染力を影響しなかった。
【0064】
完全なMDV−1ゲノムのクローニングおよびクローン化されたMDV−1 DNAの感染力の証明の後、直鎖状DNAフラグメントが細菌耐性DNAに再構成され、そしてrecE(Narayanan、muyrers)によって触媒される近年開発された変異誘発系が、BAC20のgBをコードする配列を欠失するために使用された。変異誘発は、プラスミドpGETrec上に存在するrecE、recT、およびrecB/Cを抑制するλgam遺伝子に基づく(Narayananら、1999)。
【0065】
ウイルスゲノムを操作するために最初に使用された系の大きな利点は、(i)わずか30〜50bpの相同なアームが、検出されるべき特異的配列を標的するために必要とされる、すなわち、任意のオープンリーディングフレームの欠失が、組合せのカセットをクローン化する必要を伴わずに達成され得ること、(ii)方法は非常に早いこと、および(iii)変異誘発系を付与しそしてアンピシリン耐性を発現するpGETrecベクターが、アンピシリンの不在下で迅速に細菌細胞から喪失されることである。pGERrecを含有するBAC20細胞へのgBノックアウトPCR産物のエレクトロポレーション後、10と30との間のcamおよびKam二重耐性コロニーが得られた。コロニーのうちの1つは、20DgB−1と呼ばれ、そしてこれがクロラムフェニコールおよびカナマイシンを含有する寒天上へのプレーティング後即座にpGETrecを喪失したのでさらなる解析のために選択された。
【0066】
サザンブロット解析は、20DgB−1におけるgB遺伝子の首尾よい欠失およびKan遺伝子の挿入を実証した。20DgB−1でのCEF細胞のトランスフェクション後に回収されたMDV−1は、感染された細胞から隣接の細胞に伝播し得ず、MDV−1 gBは、他のヘルペスウイルスにおけるその対応物のように、完成力の細胞間伝播に必須であることを示す。MDV−1は、培養細胞において非常に細胞随伴性であり、および培養培地に感染性ウイルスを放出しないので、本発明者らは、ウイルス入場におけるMDV−1 gBの潜在的な役割を調査し得なかった。作製されたgB変異体は、必須遺伝子の欠失を伴うMDV−1の第1の例を示し、およびMDV−1の場合において特に有用であるBACクローニングおよび変異誘発の能力を実証する。MDV−1 BACおよびMDV−1増殖を許容し、および−ウズラ線維芽QT35細胞株とは異なり、MDV−1配列を保有しない永久細胞株QM7(Zelnikら、未発表)を使用することは、必須のMDV−1遺伝子を徹底的に解析するための優れた組合せを示す。さらに、種々のアルファヘルペスウイルスの遺伝子機能に対する比較解析は今やMDV−1を含み、そして1つのウイルスファミリーのVZVまたはBHV−4のような非常に離れて関連されるメンバーに対する研究を可能とする。
【0067】
本明細書中で提供されるようなクローン化されたゲノムを手近に用いて、溶菌、潜伏、腫瘍を誘導する遺伝子の詳述されるさらなる評価が、使用される遺伝子操作が非常に制限されたウイルスについて提供された。
【0068】
【表1】
Figure 2004505993
【0069】
Figure 2004505993
【0070】
Figure 2004505993
【0071】
Figure 2004505993
【0072】
Figure 2004505993
【0073】
Figure 2004505993

【図面の簡単な説明】
【図1】
完全なMDV−1ゲノムを保有するBACを作製するためのクローニング手順の模式的な説明。示されるのは、約180kbp MDV−1ゲノムの機構(A)、およびFukuchiら(11)に従うBamHI制限地図(B)である。独特の短い領域(Us)およびUs上に位置されるORFが示される(CおよびD)。Us2遺伝子を保有する2.1および3.1kbpフラグメント(灰色の囲み)は、PCRによって増幅され、そしてプラスミドpTZ18Rにクローン化されて、組換えプラスミドpDSを生じた。組換えプラスミドpHA1(15)から放出された7.2kbp BACベクターは、pDSに挿入されて、プラスミドpDS−pHA1を与えた(E)。(2)に従う制限酵素部位は略記される:B=BamHI、E=EcoRI、P=PstI、Pa=PacI、S=SalI。
【図2】
エチジュームブロミド染色された0.8%アガロースゲルのデジタル走査化画像。Escherichia coli DH10BクローンのBAC19、BAC20、およびBAC24から単離されたDNAは、BamHIまたはEcoRIで切断され、そして分離された。制限酵素消化は、1kbラダー(Gibco−BRL)によって隣接される。アステリスクは、BACクローン間の個々のフラグメントのさらなるバンドまたは大きさの変化を示す。
【図3】
BamHIまたはEcoRIで切断され、0.8%アガロースゲル電気泳動によって分離され、そしてエチジュームブロミドで染色された(左側パネル)、584Ap80C(V)、BAC19、BAC20、およびBAC24のDNAのデジタル走査化画像。ナイロンメンブレンへのDNAフラグメントのサザントランスファー後、プラスミドpDSまたはpHA1から放出されたジゴキシゲニン標識化フラグメントでのハイブリダイゼーションが行われた。サイズマーカー(1kbラダー、Gibco−BRL)および反応性バンドの大きさが与えられる。
【図4】
BAC19、BAC20、およびBAC24 DNAにおける大きさの変化を解析するためのサザンブロットのデジタル走査化画像。584Ap80C(V)および個々のBACのウイルスDNAは、BamHIまたはEcoRIで処理され、そしてナイロンメンブレンにトランスファーされた。シートは、ジゴキシゲニン標識化BAC19 DNAまたは標識化BamHI−C、またはBamHI−Dフラグメントとともにインキュベートされた。サイズマーカー(1kbラダー、Gibco−BRL)が与えられた。584Ap80C DNAの場合において、BamHI−D配列とハイブリダイズされた場合のバンドのスメア様出現が、括弧によって示される。
【図5】
(A)BAC19、BAC20、またはBAC24 DNAののトランスフェクション後のMDV−1プラークのIIF解析。感染後5日目で、感染された細胞は固定化され、そして抗gB mab 2K11を使用する間接的な免疫蛍光に供された。結合された抗体の検出は、抗マウスAlexa(商標)488(Molecular probes)を用いて行われ、そして核はヨウ化プロピジウムを用いて対比染色された。拡大率=400×
(B)MDV−1株584Aおよび種々のBACの増殖曲線。100p.f.u.の584Ap80CまたはBAC19、BAC20、またはBAC24のトランスフェクション子孫でのCEF細胞の感染後、ウイルス力価が、新鮮なCEF細胞を同時播種することによって、示された時間(p.i.)にて測定された。プラークは、mab 2K11での免疫蛍光染色後に計数された。
【図6】
BAC19およびBAC20のトランスフェクション後に回収されたウイルスにおけるBACベクターの安定性を解析するためのサザンブロットのデジタル走査化画像。トランスフェクション子孫を、4回継代し、そして各継代後、ウイルスDNAが単離された。ウイルスDNAはBamHIまたはEcoRIで切断され、0.8%アガロースゲル電気泳動によって分離され、そしてナイロンメンブレンにトランスファーされた。サザンブロットハイブリダイゼーションが、プラスミドpDSまたはpHA1のジゴキシゲニン標識化フラグメントを使用して行われた。略語:V=584Ap80C、19=BAC19、20=BAC20。BAC19 DNAのトランスフェクション後の継代1〜4は、番号1〜4によって示される。BAC20 DNAのトランスフェクション後の継代4は、それぞれ、最後のレーンにロードされ、そして4aによって示される。反応性フラグメントの大きさが与えられる。アステリスクは、1.6kbバンドのマーカーを示す(1kbラダー、Gibco−BRL)。
【図7】
(A)gBをコードする配列を取り出すためのBAC20の変異誘発の模式的な説明。L−アラビノース誘導性recE、recT、およびgam遺伝子をコードする組換えプラスミドpGETrecが、BAC20を含有するDH10B細胞に形質転換された。gB欠失を保有する50ヌクレオチド相同アームをまた含んだプライマーを用いたプラスミドpEGFP−N1(Clontech)のkan遺伝子のPCR増幅後、1.6kbp PCR増幅物が、BAC20およびpGETrecを保有するDH10B細胞にエレクトロポレートされた。細菌配列は、30μg/mlカナマイシンおよび30μg/mlクロラムフェニコールを含有する寒天上にプレートされた。二重耐性コロニーがつつかれ、そしてさらなる解析に供された。
(B)MDV−1におけるgB遺伝子の位置およびBAC 20DgBに存在する欠失の模式的な説明。
【図8】
BamHI、EcoRI、BglI、またはStuIで切断され、0.8%アガロースゲル電気泳動によって分離された(左側パネル)、BAC20および20DgB DNAを含有する、エチジュームブロミドで染色された、0.8%アガロースゲルの走査化画像。DNAフラグメントは、ナイロンメンブレンにトランスファーされ、そしてジゴキシゲニン標識化kan−またはgB特異的プローブでハイブリダイズされた。反応性DNAフラグメントの大きさが示される。略語:B=BamHI、E=EcoRI、Bg=BglI、S=StuI。
【図9】
MDV−1 gBを構成的に発現するMgB1細胞の共焦点レーザー走査解析。MgB1またはQM7細胞が、カバーガラス上に播種され、そして、抗gB mab 2K11または回復期のニワトリ血清MDSIと共にインキュベートされた。二次抗体は、抗マウスまたは抗ニワトリIgG Alexa(商標)488結合体(Molecular probes)であった。核をヨウ化プロピジュームで対比染色された。バーは10μmを示す。
【図10】
BAC20(上部パネル)または20DgB(下部パネル)でのトランスフェクション後のMgB1、QM7、またはCEF細胞のIIF解析。トランスフェクション後5日目にて、細胞はアセトンで固定化され、そして抗pp38 mab H19と共にインキュベーションされた。二次抗体は、抗マウスIgG Alexa(商標)488(Molecular Probe)であった。BAC20 DNAのトランスフェクション後、MDV−1プラークはすべての細胞株において観察されたのに対して、20DgBでのトランスフェクション後、ウイルスプラークはMgB1細胞においてのみ観察された。単一の感染された細胞のみが、QM7およびCEF細胞(矢頭)において観察された。拡大率=400×。

Claims (16)

  1. 本質的に宿主細胞随伴性のヘルペスウイルスによって引起こされる感染に対して指向されるワクチンにおいて、該ヘルペスウイルスに由来する組換えゲノムを含み、該ゲノムは、該宿主細胞が本質的にない組換えを可能とすることを特徴とするワクチン。
  2. 請求項1に記載のワクチンであって、前記ゲノムは宿主細胞における前記ヘルペスウイルスの複製および/または宿主細胞からの該ヘルペスウイルスの伝播のために必須の遺伝子における機能的な欠失を含むことを特徴とする請求項1に記載のワクチン。
  3. 前記ゲノムが少なくとも、前記ヘルペスウイルスでの個体の感染に対する免疫応答を誘発し得る抗原性物質をコードする核酸を含むことを特徴とする、請求項1または2に記載のワクチン。
  4. 前記ゲノムが、前記ワクチンでワクチン接種された個体と、前記本質的に細胞随伴性のヘルペスウイルスで感染された個体との間での区別を可能とする、前記ヘルペスウイルスに特異的なマーカー免疫応答を誘発するために必須の遺伝子における機能的な欠失を含むことを特徴とする、請求項1〜3のいずれかに記載のワクチン。
  5. 前記ゲノムが少なくとも、前記ヘルペスウイルスでの個体の感染に対する免疫応答を誘発し得る抗原性物質をコードする核酸の転写および/または翻訳を調節し得るタンパク質分解性物質をコードする核酸を含むことを特徴とする、請求項1〜4のいずれかに記載のワクチン。
  6. 前記ゲノムが前記ヘルペスウイルスに由来する本質的に完全長のコピーを含むことを特徴とする、請求項1〜5のいずれかに記載のワクチン。
  7. さらなる病原体の抗原性物質を少なくともコードする核酸をさらに含むことを特徴とする、請求項1〜6のいずれかに記載のワクチン。
  8. 前記ヘルペスウイルスがマレク病ウイルスを含むことを特徴とする、請求項1〜7のいずれかに記載のワクチン。
  9. 前記マレク病ウイルスが血清型1を含むことを特徴とする、請求項8に記載のワクチン。
  10. 前記マレク病ウイルスが、病原性の、非常に病原性の、または非常に病原性および現場のウイルスに由来することを特徴とする、請求項8または9に記載のワクチン。
  11. 本質的に宿主細胞随伴性であるヘルペスウイルスに由来する組換えウイルスゲノムであって、該ゲノムは該宿主細胞が本質的にない組換えを可能とすることを特徴とする、組換えウイルスゲノム。
  12. 少なくとも複製ミニゲノムを含むことを特徴とする、請求項11に記載のゲノム。
  13. 該ゲノムが前記ヘルペスウイルスに由来する本質的に完全長のコピーを含むことを特徴とする、請求項11に記載のゲノム。
  14. 本質的に宿主細胞随伴性のヘルペスウイルスでの感染によって引起こされる疾患に対して指向されるワクチンの調製のための、請求項11〜13のいずれかに記載のゲノムの使用。
  15. 本質的に宿主細胞随伴性のヘルペスウイルスでの感染によって引起こされる疾患を獲得するおよび充分に発現することに対する個体の危険性を制限するための方法であって、請求項1〜10のいずれかに記載のワクチンまたは請求項11〜13のいずれかに記載のゲノムを該個体に投与する工程を含むことを特徴とする方法。
  16. 前記個体がトリであることを特徴とする、請求項15に記載の方法。
JP2002518259A 2000-08-03 2001-08-01 宿主細胞随伴性のヘルペスウイルスに対するワクチン接種 Expired - Lifetime JP4313036B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP00202757A EP1178111A1 (en) 2000-08-03 2000-08-03 Vaccination against host cell-associated herpesviruses
PCT/EP2001/008893 WO2002012288A2 (en) 2000-08-03 2001-08-01 Vaccination against host cell-associated herpesviruses

Publications (3)

Publication Number Publication Date
JP2004505993A true JP2004505993A (ja) 2004-02-26
JP2004505993A5 JP2004505993A5 (ja) 2005-03-03
JP4313036B2 JP4313036B2 (ja) 2009-08-12

Family

ID=8171884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002518259A Expired - Lifetime JP4313036B2 (ja) 2000-08-03 2001-08-01 宿主細胞随伴性のヘルペスウイルスに対するワクチン接種

Country Status (24)

Country Link
US (1) US9073979B2 (ja)
EP (2) EP1178111A1 (ja)
JP (1) JP4313036B2 (ja)
KR (1) KR100633180B1 (ja)
CN (2) CN102151333A (ja)
AT (1) ATE412055T1 (ja)
AU (2) AU2001291716B2 (ja)
BR (1) BRPI0112989B1 (ja)
CA (1) CA2417923C (ja)
CZ (1) CZ303904B6 (ja)
DE (1) DE60136278D1 (ja)
EA (1) EA010721B1 (ja)
ES (1) ES2315306T3 (ja)
HR (1) HRP20030147B1 (ja)
HU (1) HU228262B1 (ja)
IL (2) IL154250A0 (ja)
MX (1) MXPA03001027A (ja)
NO (1) NO332621B1 (ja)
NZ (1) NZ524066A (ja)
PL (1) PL207958B1 (ja)
PT (1) PT1307565E (ja)
UA (1) UA84667C2 (ja)
WO (1) WO2002012288A2 (ja)
ZA (1) ZA200300842B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085445A1 (ja) * 2004-03-05 2005-09-15 The Research Foundation For Microbial Diseases Of Osaka University 組換え水痘帯状疱疹ウイルス

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178111A1 (en) 2000-08-03 2002-02-06 Lohmann Animal Health GmbH & Co. KG Vaccination against host cell-associated herpesviruses
US9273326B2 (en) 2004-04-30 2016-03-01 The Brigham And Women's Hospital, Inc. Tetracycline-regulated gene expression in HSV-1 vectors
US20080226677A1 (en) * 2004-05-06 2008-09-18 Yasuko Mori Recombinant virus vector for gene transfer into lymphoid cells
EP3756684A1 (en) 2009-05-22 2020-12-30 Genocea Biosciences, Inc. Vaccines against herpes simplex virus type 2: compositions and methods for eliciting an immune response
US8809047B2 (en) 2009-12-21 2014-08-19 The Brigham And Women's Hospital, Inc. Herpes simplex virus vaccines
US9782474B2 (en) * 2010-11-24 2017-10-10 Genocea Biosciences, Inc. Vaccines against herpes simplex virus type 2: compositions and methods for eliciting an immune response
ES2700243T3 (es) * 2011-10-21 2019-02-14 Intervet Int Bv Construcciones del virus de la enfermedad de Marek recombinantes no patógenas que codifican antígenos del virus de la laringotraqueitis infecciosa y del virus de la enfermedad de Newcastle
EP2782597B1 (en) * 2011-11-23 2022-04-13 Genocea Biosciences, Inc. Nucleic acid vaccines against herpes simplex virus type 2: compositions and methods for eliciting an immune response
CN105597095A (zh) * 2015-12-30 2016-05-25 暨南大学 一种应用微载体培养Vero细胞制备基因缺失减毒疫苗的方法
CN105561303B (zh) * 2015-12-30 2019-04-05 暨南大学 单纯疱疹病毒i型ul5基因缺失的dna疫苗的制备方法
CN105641692A (zh) * 2015-12-30 2016-06-08 暨南大学 单纯疱疹病毒ⅰ型基因重组减毒活疫苗及其制备方法
JP2019537555A (ja) 2016-09-28 2019-12-26 ジェノセア バイオサイエンシーズ, インコーポレイテッド ヘルペスを処置するための方法および組成物
US11174322B2 (en) * 2017-07-24 2021-11-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies and peptides to treat HCMV related diseases
BR112020012162A2 (pt) * 2017-12-20 2020-11-24 Intervet International B.V. diluente aprimorado para vacina contra alfa-herpesvírus associado à célula
WO2019152821A1 (en) 2018-02-05 2019-08-08 The Brigham And Women's Hospital, Inc. Recombinant herpes simplex virus-2 expressing glycoprotein b and d antigens

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959466A (en) * 1974-04-15 1976-05-25 The Wistar Institute Highly attenuated cytomegalovirus vaccine and production thereof
GB8821441D0 (en) 1988-09-13 1988-10-12 Animal Health Inst Viral vectors
EP0486106A3 (en) 1990-11-16 1992-12-23 Akzo N.V. Marek's disease virus vaccine
AU657144B2 (en) * 1991-07-09 1995-03-02 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Recombinant Marek's disease virus, process for preparing the same and vaccine containing the same
JP3675569B2 (ja) 1995-04-28 2005-07-27 日本ゼオン株式会社 組み換えウイルス及びそれよりなるワクチン
KR19990028766A (ko) 1995-07-07 1999-04-15 나카노 가쓰히꼬 마렉 질환 바이러스 유전자 및 마렉 질환 예방용 백신에서그의 용도
US6306387B1 (en) * 1997-05-29 2001-10-23 The Research Foundation Of State University Of New York Antigen delivery system
DE19733364A1 (de) * 1997-08-01 1999-02-04 Koszinowski Ulrich H Prof Verfahren zur Klonierung eines großen Virusgenoms
AUPP684998A0 (en) * 1998-10-30 1998-11-26 Murdoch Institute for Research into Birth Defects Limited, The A method of recombination and agents useful for same
EP1038952A3 (en) 1998-12-09 2001-06-27 Pfizer Products Inc. Processes for preparation of Marek's Disease Virus using continuous avian cell lines
US6410222B1 (en) * 1998-12-14 2002-06-25 Juridical Foundation The Chemosero-Therapeutic Research Institute In ovo vaccination of marek's disease type I virus
US6299882B1 (en) 1999-04-09 2001-10-09 Schering Corporation UL54.5 of Marek's disease virus (MDV)
EP1178111A1 (en) 2000-08-03 2002-02-06 Lohmann Animal Health GmbH & Co. KG Vaccination against host cell-associated herpesviruses

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085445A1 (ja) * 2004-03-05 2005-09-15 The Research Foundation For Microbial Diseases Of Osaka University 組換え水痘帯状疱疹ウイルス
JPWO2005085445A1 (ja) * 2004-03-05 2007-12-13 財団法人阪大微生物病研究会 組換え水痘帯状疱疹ウイルス
JP2012061005A (ja) * 2004-03-05 2012-03-29 Research Foundation For Microbial Diseases Of Osaka Univ 組換え水痘帯状疱疹ウイルス
JP2014166182A (ja) * 2004-03-05 2014-09-11 Research Foundation For Microbial Diseases Of Osaka Univ 組換え水痘帯状疱疹ウイルス

Also Published As

Publication number Publication date
ZA200300842B (en) 2004-04-30
EP1307565A2 (en) 2003-05-07
HUP0302664A2 (hu) 2003-11-28
AU2001291716B8 (en) 2002-02-18
MXPA03001027A (es) 2004-02-26
IL154250A (en) 2013-07-31
KR100633180B1 (ko) 2006-10-11
HUP0302664A3 (en) 2004-10-28
ES2315306T3 (es) 2009-04-01
NO20030524L (no) 2003-04-03
DE60136278D1 (de) 2008-12-04
ATE412055T1 (de) 2008-11-15
HU228262B1 (en) 2013-02-28
NO332621B1 (no) 2012-11-19
AU9171601A (en) 2002-02-18
US9073979B2 (en) 2015-07-07
EP1178111A1 (en) 2002-02-06
BRPI0112989B1 (pt) 2015-09-08
HRP20030147B1 (en) 2011-10-31
IL154250A0 (en) 2003-09-17
EA010721B1 (ru) 2008-10-30
HRP20030147A2 (en) 2005-04-30
NO20030524D0 (no) 2003-02-03
PL207958B1 (pl) 2011-02-28
WO2002012288A2 (en) 2002-02-14
CN102151333A (zh) 2011-08-17
EA200300215A1 (ru) 2003-08-28
CA2417923C (en) 2010-06-29
JP4313036B2 (ja) 2009-08-12
PT1307565E (pt) 2009-01-28
EP1307565B1 (en) 2008-10-22
CN1503843A (zh) 2004-06-09
CA2417923A1 (en) 2002-02-14
CZ2003324A3 (cs) 2003-06-18
BR0112989A (pt) 2003-09-09
NZ524066A (en) 2004-11-26
KR20030036657A (ko) 2003-05-09
CZ303904B6 (cs) 2013-06-19
US20030165537A1 (en) 2003-09-04
UA84667C2 (ru) 2008-11-25
AU2001291716B2 (en) 2007-06-07
PL365190A1 (en) 2004-12-27
WO2002012288A3 (en) 2002-04-11

Similar Documents

Publication Publication Date Title
US11730807B2 (en) Multivalent recombinant avian herpes viruses and vaccines for immunizing avian species
Schumacher et al. Reconstitution of Marek's disease virus serotype 1 (MDV-1) from DNA cloned as a bacterial artificial chromosome and characterization of a glycoprotein B-negative MDV-1 mutant
US6764684B2 (en) Avian herpesvirus-based recombinant infectious bursal disease vaccine
EP3391903B1 (en) Recombinant gallid herpesvirus 3 vaccines encoding heterologous avian pathogen antigens
JP4313036B2 (ja) 宿主細胞随伴性のヘルペスウイルスに対するワクチン接種
AU2001291716A1 (en) Vaccination against host cell-associated herpesviruses
JPH11192093A (ja) 鳥類感染型ヘルペス属ウイルスの組み換え体、およびこれを利用した組み換えワクチン
US20040185056A1 (en) Vaccines containing bovine herpesvirus 1 attenuated by mutation in latency-related gene
JP3964458B2 (ja) 組換え型伝染性喉頭気管炎ウイルスおよびその使用
JP2002356441A (ja) 組換え伝染性喉頭気管炎ウイルスワクチン
Amortegui Sequence comparison of a bacterial artificial chromosome (BAC)-based infectious clone of the CVI988 (Rispens) strain of Marek's disease virus (CVI988-699-2) to a back-passaged isolate that has reverted to virulence (CVI988-699-2 RV)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070514

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070521

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070612

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070621

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070712

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080422

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080430

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080528

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4313036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term