JP2004354509A - 電気光学装置及びその製造方法並びに基板装置の製造方法 - Google Patents

電気光学装置及びその製造方法並びに基板装置の製造方法 Download PDF

Info

Publication number
JP2004354509A
JP2004354509A JP2003149651A JP2003149651A JP2004354509A JP 2004354509 A JP2004354509 A JP 2004354509A JP 2003149651 A JP2003149651 A JP 2003149651A JP 2003149651 A JP2003149651 A JP 2003149651A JP 2004354509 A JP2004354509 A JP 2004354509A
Authority
JP
Japan
Prior art keywords
insulating film
interlayer insulating
electro
region
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003149651A
Other languages
English (en)
Other versions
JP4075691B2 (ja
Inventor
Yoshikazu Eguchi
芳和 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003149651A priority Critical patent/JP4075691B2/ja
Priority to US10/846,536 priority patent/US7342638B2/en
Publication of JP2004354509A publication Critical patent/JP2004354509A/ja
Application granted granted Critical
Publication of JP4075691B2 publication Critical patent/JP4075691B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】液晶装置等の電気光学装置において、CMP処理等の平坦化処理を好適に実施することにより、積層構造の最表面においてより優れた平坦性を実現する。
【解決手段】画像表示領域(10a)の周辺に位置する周辺領域に配置された、データ線(6a)及び走査線(11a)を駆動する駆動回路を構成するTFT(202)と、データ線、走査線、TFT(30)、駆動回路の上に形成された層間絶縁膜(43)とを備えてなり、前記周辺領域に形成された前記層間絶縁膜のうち、少なくとも前記駆動回路の形成領域に対応する部分についてエッチング(工程(b))が施された後、当該周辺領域及び前記画像表示領域にCMP処理(工程(c))が実施されている。
【選択図】 図8

Description

【0001】
【発明の属する技術分野】
本発明は、例えばアクティブマトリクス駆動の液晶装置、電子ペーパなどの電気泳動装置、EL(Electro−Luminescence)表示装置等の電気光学装置及びその製造方法の技術分野に属する。また、本発明は、このような電気光学装置を具備してなる電子機器の技術分野にも属する。さらに、本発明は、より一般的に、基板装置の製造方法の技術分野にも属する。
【0002】
【背景技術】
従来、基板上に、マトリクス状に配列された画素電極及び該電極の各々に接続された薄膜トランジスタ(Thin Film Transistor;以下適宜、「TFT」という。)、該TFTの各々に接続され、行及び列方向それぞれに平行に設けられたデータ線及び走査線等を備えることで、いわゆるアクティブマトリクス駆動が可能な電気光学装置が知られている。
【0003】
このような電気光学装置では、上記に加えて、前記基板に対向配置される対向基板を備えるとともに、該対向基板上に、画素電極に対向する対向電極等を備え、更には、画素電極及び対向電極間に挟持される液晶層等を備えることで、画像表示が可能となる。すなわち、液晶層内の液晶分子は、画素電極及び対向電極間に設定された所定の電位差によって、その配向状態が適当に変更され、これにより、当該液晶層を透過する光の透過率が変化することによって画像の表示が可能になるのである。
【0004】
ところで、かかる電気光学装置においては、前述のTFT、データ線、走査線及び画素電極等は、前記基板上において積層構造をなして形成されるのが通常である。具体的には、基板の表面に最も近い層に前記TFTが、該TFT上に層間絶縁膜を挟んでデータ線が、該データ線上に別の層間絶縁膜を挟んで画素電極が、などというように、各種の要素と層間絶縁膜が交互に配置されて積層構造が構築されることになる。この場合、TFT、走査線及びデータ線等々は、それぞれ固有の「高さ」を有するため、この固有の高さが当該積層構造の上層に上層にといわば伝播することによって、当該積層構造の最表面には一般に段差が生じることになる。このような段差が生じると、例えば配向膜に対するラビング処理が不均一に行われるおそれがあるなどの不具合が生じるおそれがある。
【0005】
そこで、従来においては、前記積層構造の最表面に対して、CMP(Chemical Mechanical Polishing)処理等の平坦化処理が実施されていた。これによると、前記の段差を全体的に均し、平坦面を現出することが可能となるため、前述したような不具合を被らなくて済む。また、CMP処理を実施することにより、画像のコントラスト比を向上させることも可能となる。このようなCMP処理を利用する例としては、例えば特許文献1に掲げるようなものが挙げられる。
【0006】
【特許文献1】
特開平2000−340567号公報
【0007】
【発明が解決しようとする課題】
しかしながら、前記のようなCMP処理を実施するにあたっては、以下のような問題点が生じていた。すなわち、基板上においては、前述のように、TFT、走査線、データ線及び画素電極等々のほかに、走査線及びデータ線を駆動するための走査線駆動回路及びデータ線駆動回路(以下、まとめて「駆動回路」と呼称することがある。)が形成される。これら走査線駆動回路及びデータ線駆動回路はそれぞれ、走査線に走査信号を、及び、データ線に画像信号を、タイミングよく供給するためのものであり、具体的には、スイッチング素子たるTFT(前述までの「TFT」とは異なる。以下では、駆動回路を構成するTFTと、前述までの「TFT」を区別するため、後者を特に、「画素スイッチング用TFT」という。)や各種の回路素子・配線等々からなる。
【0008】
ここで、画素スイッチング用TFT、走査線、データ線及び画素電極が形成される基板上の領域を画像表示領域と呼ぶと、前記駆動回路は、該画像表示領域の周辺に位置する周辺領域上、とりわけ画像表示領域に隣接する部分の上に形成されるのが一般的である。また、この駆動回路を構成する回路素子・配線等々は、前記の画素スイッチング用TFT、走査線、データ線及び画素電極等に比べて、より密に配置されることが多い。というのも、画像表示領域では、光透過域を確保しなければならないから、必然的に、画素スイッチング用TFT等を疎に配置する必要があるためである。また、前述のような構成を備えた電気光学装置は、更なる小型化が要求されており、これに伴って、前記基板の面積も縮小化傾向にあるのに対し、画像表示領域の大きさは、より大型化が目指されているためでもある。つまり、装置全体としては小型化が、画像の大きさ(即ち、画像表示領域の大きさ)としては大型化が目指されているのである。このような傾向からすると、一般的に、画像表示領域における画素スイッチング素子等の形成密度は、より疎に、該画像表示領域の周辺に位置する周辺領域における素子等の形成密度は、より密にならざるを得ないのである。
【0009】
そして、このような密度差が画像表示領域及び周辺領域間で存在する場合に、両領域の双方の上に形成された層間絶縁膜に対して前述したCMP処理を実施すると、両者間で、積層構造の高さの相違をもたらすおそれがあったのである。これは、より低密度に回路素子等が形成されている画像表示領域の方が、より高密度に回路素子等が形成されている周辺領域よりも、より研磨されやすいということが一般的な原因として考えられる。本願発明者らの実験によると、かかる段差の大きさ(高低差)は、100〜200〔nm〕にも及ぶことが確認されている。
【0010】
ここで、このような段差は、前記の駆動回路の形成領域に対応して形成されることになるから、該段差は、一般に、画像表示領域の周囲を巡るように、言い換えると画像表示領域を縁取るように形成されることになる。そうすると、当該段差において光の干渉が生じる結果、表示すべき画像の周囲に、本来表示されるべきでない色むらを発生させることになっていたのである。
【0011】
本発明は、上記問題点に鑑みてなされたものであり、CMP処理等の平坦化処理を好適に実施することにより、積層構造の最表面において、より優れた平坦性が実現された電気光学装置及びその製造方法並びに基板装置の製造方法を提供することを課題とする。
【0012】
【課題を解決するための手段】
本発明の電気光学装置は、上記課題を解決するため、基板上に、一定の方向に延びるデータ線及び該データ線に交差する方向に延びる走査線と、前記走査線により走査信号が供給されるスイッチング素子と、前記データ線により前記スイッチング素子を介して画像信号が供給される画素電極と、前記スイッチング素子及び前記画素電極の形成領域として規定される画像表示領域の周辺に位置する周辺領域に配置された、前記データ線及び前記走査線を駆動する駆動回路と、前記データ線、前記走査線、前記スイッチング素子、前記駆動回路の上方に形成された層間絶縁膜とを備えてなり、前記周辺領域に形成された前記層間絶縁膜のうち、少なくとも前記駆動回路の形成領域に対応する部分について、エッチングが施された後、当該周辺領域及び前記画像表示領域双方の前記層間絶縁膜に平坦化処理が実施されている。
【0013】
本発明の電気光学装置によれば、スイッチング素子の一例たる薄膜トランジスタに対し走査線を通じて走査信号が供給されることで、そのON・OFFが制御される。他方、画素電極に対しては、データ線を通じて画像信号が供給されることで、前記薄膜トランジスタのON・OFFに応じて、画素電極に当該画像信号の印加・非印加が行われる。これにより、本発明に係る電気光学装置は、いわゆるアクティブマトリクス駆動が可能とされている。
【0014】
また、本発明においては、前記のスイッチング素子、走査線及びデータ線等々の上方に、層間絶縁膜が形成されることにより、これら各種の要素の積層構造物を構築することが可能となっている。さらに、前記の各種の要素が形成される画像表示領域の周辺に位置する周辺領域には、走査線駆動回路及びデータ線駆動回路等の駆動回路が形成されるが、該駆動回路は、通常、回路素子及び配線等々からなり、該回路素子及び該配線等々についても積層構造が構築され得ることになる。
【0015】
そして、本発明では特に、前記基板は、画像表示領域及び周辺領域を有し、このうち周辺領域の上に形成された前記層間絶縁膜のうち、少なくとも前記駆動回路の形成領域に対応する部分についてエッチングが施された後、当該周辺領域及び前記画像表示領域双方の層間絶縁膜に平坦化処理が実施されている。このような処理が施されて製造されている電気光学装置においては、積層構造の最表面において、より優れた平坦性が実現されることになる。以下、この事情を詳しく説明する。
【0016】
まず、前記の駆動回路を構成する回路素子及び配線の基板を平面視した場合における形成密度は、通常、前記のスイッチング素子及び画素電極の形成密度(即ち、画像表示領域における各種の要素の形成密度)よりも、大きくなる。これは、背景技術の項で述べたように、画像表示領域では、光透過域を確保しなければならず、必然的にスイッチング用素子等を疎に配置する必要があるため、更には、装置全体としては小型化が、画像の大きさとしては大型化が目指されているなどのためである。そして、このような密度差が画像表示領域及び周辺領域間で存在する場合に、両領域の双方の上に形成された層間絶縁膜に対してCMP処理等の平坦化処理を実施すると、両者間で、積層構造の高さの相違をもたらすおそれがあった。こうなると、CMP処理等の平坦化処理を施しているにもかかわらず、駆動回路の形成領域に対応した段差が形成(ないしは残存)されることになり、表示すべき画像の周囲に色むらを生じさせることとなってしまっていた。
【0017】
しかるに、本発明では、CMP処理等の平坦化処理を実施する前に、周辺領域に形成された層間絶縁膜のうち、少なくとも前記駆動回路の形成領域に対応して形成された部分にエッチングを実施するのである。これによれば、当該走査線駆動回路及びデータ線駆動回路の形成領域に対応して、画像表示領域から見て、積層構造の最表面に凹部が形成されることになる。そして、本発明ではこれに続いて、前述のような凹部を含む周辺領域と、画像表示領域とに、ともにCMP処理等の平坦化処理が施されるのである。
【0018】
これによると、駆動回路の形成領域に対応する層間絶縁膜は予め凹んでいるため、CMP処理等の平坦化処理を実施すると、ちょうど、画像表示領域との釣り合いを保つことが可能となるのである。すなわち、本発明によれば、画像表示領域及び周辺領域の双方にわたって、極めて優れた平坦性を有する平面を現出させることができるのである。
【0019】
以上のように、本発明によれば、CMP処理等の平坦化処理を好適に実施することにより、積層構造の最表面において、より優れた平坦性が実現されることになる。
【0020】
なお、本発明において「エッチング」とは、適当なエッチャントを利用したウェットエッチング、及び、エッチャントを利用しない、反応性イオンエッチング、反応性イオンビームエッチング等のドライエッチングの双方を含む。
【0021】
本発明の電気光学装置の一態様では、前記駆動回路は、回路素子及び配線からなり、前記回路素子及び前記配線の前記基板を平面視した場合における第1形成密度は、前記データ線、前記走査線、前記スイッチング素子及び前記画素電極の第2形成密度よりも大きい。
【0022】
この態様によれば、前述したことから明らかなように、本発明の作用効果が最大限生かされることになる。
【0023】
本発明の電気光学装置の他の態様では、前記平坦化処理は、CMP(Chemical Mechanical Polishing)処理を含む。
【0024】
この態様によれば、平坦化処理がCMP処理を含むことから、本発明の作用効果が最も効果的に享受されることになる。というのも、平坦化処理としてCMP処理を採用する場合が、前記の段差をもっとも発生させやすいからである。ちなみに、CMP処理とは、一般に、被処理基板と研磨布(パッド)の両者を回転等させながら、それぞれの表面同士を当接させるとともに、該当接部位にシリカ粒等を含んだ研磨液(スラリー)を供給することによって、被処理基板表面を、機械的作用と化学作用の兼ね合いにより研磨することで、当該表面を平坦化する技術である。
【0025】
本発明の電子機器は、上記課題を解決するために、前述の本発明の電気光学装置(但し、その各種態様を含む。)を具備してなる。
【0026】
本発明の電子機器によれば、前述の本発明の電気光学装置を具備してなるから、例えば、素子基板の最表面が極めて優れた平坦性を有しており、これにより、例えば配向膜に対するラビング処理が不均一に行われるおそれがあるなどの不具合を被るおそれがなく、また、画像のコントラスト比を向上させることができるから、より高品質な画像を表示することの可能な、投射型表示装置(液晶プロジェクタ)、液晶テレビ、携帯電話、電子手帳、ワードプロセッサ、ビューファインダ型又はモニタ直視型のビデオテープレコーダ、ワークステーション、テレビ電話、POS端末、タッチパネル等の各種電子機器を実現することができる。
【0027】
本発明の電気光学装置の製造方法は、上記課題を解決するために、基板上の画像表示領域に、一定の方向に延びるデータ線及び該データ線に交差する方向に延びる走査線を形成する工程と、前記走査線により走査信号が供給されるスイッチング素子を形成する工程と、前記データ線により前記スイッチング素子を介して画像信号が供給される画素電極を形成する工程と、前記画像表示領域の周辺に位置する周辺領域に、前記データ線及び前記走査線を駆動する駆動回路を形成する工程と、前記データ線、前記走査線、前記スイッチング素子及び前記駆動回路の上に層間絶縁膜を形成する工程と、前記周辺領域に形成された層間絶縁膜のうち、少なくとも前記駆動回路の形成領域に対応して形成された部分にエッチングを実施する工程と、該エッチングを実施する工程の後に、前記周辺領域及び前記画像表示領域双方の層間絶縁膜に平坦化処理を実施する工程とを含む。
【0028】
本発明の電気光学装置の製造方法によれば、データ線、走査線、スイッチング素子及び画素電極等々の各種の要素と、これらの間に配置される層間絶縁膜とからなる積層構造を構築することが可能である。また、前記の各種の要素が形成される画像表示領域の周辺に位置する周辺領域には、走査線駆動回路及びデータ線駆動回路等の駆動回路が形成されるが、該駆動回路は、通常、回路素子及び配線等々からなり、該回路素子及び該配線等々についても積層構造が構築され得ることになる。
【0029】
そして、本発明では特に、周辺領域に形成された層間絶縁膜のうち、少なくとも前記駆動回路の形成領域に対応して形成された部分にエッチングを実施する工程と、該エッチングを実施する工程の後に、前記周辺領域及び前記画像表示領域ともに平坦化処理を実施する工程が実施される。これによると、前記積層構造の最表面は、極めて優れた平坦性を有することになる。以下、この事情を詳しく説明する。
【0030】
まず、前記の駆動回路を構成する回路素子及び配線の基板を平面視した場合における形成密度は、通常、前記のスイッチング素子及び画素電極の形成密度(即ち、画像表示領域における各種の要素の形成密度)よりも、大きくなる。これは、背景技術の項で述べたように、画像表示領域では、光透過域を確保しなければならず、必然的にスイッチング用素子等を疎に配置する必要があるため、更には、装置全体としては小型化が画像の大きさとしては大型化が目指されているなどのためである。そして、このような密度差が画像表示領域及び周辺領域間で存在する場合に、両領域の上に形成された層間絶縁膜に対してCMP処理等の平坦化処理を実施すると、両者間で、積層構造の高さの相違をもたらすおそれがあった。こうなると、CMP処理等の平坦化処理を施しているにもかかわらず、駆動回路の形成領域に対応した段差が形成(ないしは残存)されることになり、表示すべき画像の周囲に色むらを生じさせることとなってしまっていた。
【0031】
しかるに、本発明では、CMP処理等の平坦化処理を実施する前に、周辺領域に形成された層間絶縁膜のうち、少なくとも前記駆動回路の形成領域に対応して形成された部分にエッチングを実施するのである。これによれば、当該走査線駆動回路及びデータ線駆動回路の形成領域に対応して、画像表示領域から見て、積層構造の最表面に凹部が形成されることになる。そして、本発明ではこれに続いて、前述のような凹部を含む周辺領域と、画像表示領域とに、ともにCMP処理等の平坦化処理が施されるのである。
【0032】
これによると、駆動回路の形成領域に対応する層間絶縁膜は予め凹んでいるため、CMP処理等の平坦化処理を実施すると、ちょうど、画像表示領域との釣り合いを保つことが可能となるのである。すなわち、本発明によれば、画像表示領域及び周辺領域の双方にわたって、極めて優れた平坦性を有する平面を現出させることができるのである。
【0033】
以上のように、本発明によれば、CMP処理等の平坦化処理を好適に実施することにより、積層構造の最表面において、より優れた平坦性が実現されることになる。ちなみに、このCMP処理により、走査線、データ線及びスイッチング素子の「高さ」に起因して(或いは、いわば伝播して)積層構造の最表面に形成される段差もまた平坦化されることは言うまでもない。
【0034】
なお、本発明において「エッチング」とは、適当なエッチャントを利用したウェットエッチング、及び、エッチャントを利用しない、反応性イオンエッチング、反応性イオンビームエッチング等のドライエッチングの双方を含む。
【0035】
また、本発明においては、前述したスイッチング素子、データ線、走査線及び画素電極の他にも、スイッチング素子及び画素電極に電気的に接続されて該画素電極の電位保持特性を向上させる蓄積容量その他の要素を形成する工程を適宜含ませてよい。この場合、基板上に構築される要素の数が増えれば増えるほど、積層構造の最表面に伝播される段差の程度はより大きくなるということがいえるから、本発明に係る平坦化処理を実施することの意義は、より高まるということが言える。
【0036】
本発明の電気光学装置の製造方法の一態様では、前記駆動回路は、回路素子及び配線を含んでなり、前記駆動回路を形成する工程は、前記回路素子及び前記配線を形成する工程を含み、前記回路素子及び前記配線の前記基板を平面視した場合における第1形成密度は、前記スイッチング素子及び前記画素電極の第2形成密度よりも大きい。
【0037】
この態様によれば、前述したことから明らかなように、本発明の作用効果が最大限生かされることになる。
【0038】
本発明の電気光学装置の製造方法の他の態様では、前記第2形成密度は、隣接しあう前記画素電極間のピッチが15〔μm〕以上として規定される。
【0039】
この態様によれば、本発明の作用効果を、より効果的に享受できる。すなわち、駆動回路の形成領域に対応した段差が生じるか否かは、上述のように、当該駆動回路を構成する回路素子及び配線の第1形成密度と、画像表示領域におけるスイッチング素子等の第2形成密度の差に大きく依存するところ、本願発明者らの研究によると、隣接しあう画素電極間のピッチが15〔μm〕以上である場合には、前記の第2形成密度は、第1形成密度に比べてより疎となり、前記段差の発生する可能性が大きくなることが確認されている。したがって、かかる場合に、本発明におけるエッチング後の平坦化処理という方法を採用して電気光学装置を製造することによれば、前記の作用効果がより効果的に享受されることになるのである。
【0040】
ちなみに、前記に対して、画素電極間のピッチが、15〔μm〕を下回る場合、例えば14〔μm〕程度以下となる場合(即ち、第2形成密度がより密となる場合)には、前記の段差の問題は顕著には生じないことが確認されている。他方、段差の問題が顕著に生じる場合は、画素電極間のピッチが20〔μm〕以上となる場合であることも確認されている。したがって、本態様においては、15〔μm〕以上という条件に代えて、20〔μm〕以上という条件が満たされることがより好ましい。
【0041】
本発明の電気光学装置の製造方法の他の態様では、前記画像表示領域のサイズは、1.0〔inch〕以上である。
【0042】
この態様によれば、本発明の作用効果を、より効果的に享受できる。すなわち、駆動回路の形成領域に対応した段差が生じるか否かは、上述のように、当該駆動回路を構成する回路素子及び配線の第1形成密度と、画像表示領域におけるスイッチング素子等の第2形成密度の差に大きく依存するところ、これら第1形成密度及び第2形成密度間の差は、基板ないしは画像表示領域の大きさにも依存する。一般的には、画像表示領域のサイズが大きくなればなる程、第1形成密度及び第2形成密度間の差は大きくなる傾向がある。なぜなら、周辺領域の大きさは、画像表示領域のサイズがどのようであろうとも、概ね一定であると考えることができるのに対して、画像表示領域の大きさは、当該電気光学装置の仕様等に伴ってその大小が変化するからである。
【0043】
そして、本願発明者らの研究によると、画像表示領域のサイズが1.0〔inch〕以上となると、画像表示領域における第2形成密度と、周辺領域における第1形成密度の差に、前記段差を顕著に生じさせるという意味における有意差が生じることが確認されている。したがって、かかる場合に、本発明におけるエッチング後の平坦化処理という方法を採用して電気光学装置を製造することによれば、前記の作用効果がより効果的に享受されることになるのである。
【0044】
本発明の電気光学装置の製造方法の他の態様では、前記平坦化処理は、CMP(Chemical Mechanical Polishing)処理を含む。
【0045】
この態様によれば、平坦化処理がCMP処理を含むことから、本発明の作用効果が最も効果的に享受されることになる。というのも、平坦化処理としてCMP処理を採用する場合が、前記の段差をもっとも発生させやすいからである。ちなみに、CMP処理とは、一般に、被処理基板と研磨布(パッド)の両者を回転等させながら、それぞれの表面同士を当接させるとともに、該当接部位にシリカ粒等を含んだ研磨液(スラリー)を供給することによって、被処理基板表面を、機械的作用と化学作用の兼ね合いにより研磨することで、当該表面を平坦化する技術である。
【0046】
本発明の電気光学装置の製造方法の他の態様では、前記CMP処理は、押し付け圧力が500〔hPa〕以上である。
【0047】
この態様によれば、CMP処理における押し付け圧力が、500〔hPa〕以上と比較的大きく設定されているから、電気光学装置の製造を、より迅速に完了させることができる。ちなみに、ここにいう「押し付け圧力」とは、前述の被処理基板と研磨布との間にかけられる圧力をいう。
【0048】
なお、押し付け圧力が500〔hPa〕を下回る場合には、前記の段差はいわばソフトに研磨されることとなって、画像表示領域における研磨と並行して、当該段差の研磨をも実現することが不可能ではない(つまり、画像表示領域及び周辺領域双方にわたる相当程度の平坦化を実現することができる。)。しかしながら、押し付け圧力が500〔hPa〕を下回る場合、製造プロセスは極端に遅滞化する。具体的には、押し付け圧力が200〔hPa〕である場合には、押し付け圧力が550〔hPa〕である場合に比べて、4倍程度の時間が必要となってしまうのである。
【0049】
このように、本態様にかかる「500〔hPa〕以上」という条件は、製造プロセスの迅速化という観点のみならず、前記の段差は前記「エッチング」によって除去するという技術的思想との兼ね合いとも相俟って、最も好ましい値としての意味をも有するものである。
【0050】
本発明の電気光学装置の製造方法の他の態様では、前記画素電極は平面視してマトリクス状に形成されており、前記エッチングを実施する工程の前に、前記画素電極の最外縁を結んだ形状に対応するマスクを形成する工程を更に含む。
【0051】
この態様によれば、画像表示領域の大きさにほぼ一致する、画素電極の最外縁を結んだ形状に対応するマスクが形成されることにより、前記エッチングを実施する工程をより好適に実施することができる。
【0052】
本発明の電気光学装置の製造方法の他の態様では、前記画素電極を形成する工程の前に、前記層間絶縁膜を形成する工程として、第1の層間絶縁膜を形成する工程と、前記周辺領域に形成された前記第1の層間絶縁膜のうち、少なくとも前記駆動回路の形成領域に対応して形成された部分にエッチングを実施する第1エッチング工程と、該第1エッチング工程の後に、前記周辺領域及び前記画像表示領域双方の前記第1の層間絶縁膜に平坦化処理を実施する第1平坦化工程と、前記第1の層間絶縁膜の上に、前記層間絶縁膜を形成する工程として、第2の層間絶縁膜を形成する工程と、前記周辺領域に形成された前記第2の層間絶縁膜のうち、少なくとも前記駆動回路の形成領域に対応して形成された部分にエッチングを実施する第2エッチング工程と、該第2エッチング工程の後に、前記周辺領域及び前記画像表示領域双方の前記第2の層間絶縁膜に平坦化処理を実施する第2平坦化工程とを実施し、前記画素電極は、前記第2の層間絶縁膜の上に形成する。
【0053】
この態様によれば、平坦化工程が複数回実施されるのに応じて、エッチング工程も複数回実施されることにより、本発明の作用効果が、より効果的に享受されることになる。
【0054】
なお、本態様においては、第1の層間絶縁膜を形成する工程の前や、第1平坦化工程の後第2の層間絶縁膜を形成する工程の前等においては、例えば、前記データ線、或いは前記走査線を形成する工程、前記スイッチング素子を形成する工程を実施するなど、前記各種の要素の形成工程が含まれることは勿論である。
【0055】
本発明の基板装置の製造方法は、上記課題を解決するために、基板上に回路素子及び配線の少なくとも一方が積層構造をなす基板装置の製造方法であって、前記回路素子及び前記配線の少なくとも一方が、前記基板を平面視した場合に、より低密度及びより高密度にそれぞれ形成された低密度領域及び高密度領域を形成する工程と、前記低密度領域及び前記高密度領域に層間絶縁膜を形成する工程と、前記積層構造の最表面における前記低密度領域に対応する部分にマスクを形成する工程と、該マスクを形成する工程の後に、前記層間絶縁膜にエッチングを実施する工程と、該エッチングを実施する工程の後、前記マスクを除去して前記層間絶縁膜に平坦化処理を実施する工程とを含む。
【0056】
本発明の基板装置の製造方法によれば、まず、エッチングする工程によって高密度領域のみが浸食を受けることにより、該工程の後、該高密度領域における積層構造の最表面は、低密度領域におけるそれから見て、凹まされることになる。そして、本発明ではこれに続いて、前述のように凹まされた高密度領域と低密度領域との双方の層間絶縁膜に、CMP処理等の平坦化処理が施されるのである。これによると、高密度領域に対応する層間絶縁膜は予め凹んでいるため、CMP処理等の平坦化処理を実施すると、ちょうど、低密度領域との釣り合いを保つことが可能となる。すなわち、本発明によれば、低密度領域及び高密度領域の双方にわたって、極めて優れた平坦性を有する平面を現出させることができるのである。
【0057】
本発明のこのような作用及び他の利得は次に説明する実施の形態から明らかにされる。
【0058】
【発明の実施の形態】
以下では、本発明の実施の形態について図を参照しつつ説明する。以下の実施形態は、本発明の電気光学装置を液晶装置に適用したものである。
【0059】
〔電気光学装置の全体構成〕
まず、本発明の電気光学装置に係る実施形態の全体構成について、図1及び図2を参照して説明する。ここに、図1は、TFTアレイ基板をその上に形成された各構成要素と共に対向基板の側から見た電気光学装置の平面図であり、図2は、図1のH−H’断面図である。ここでは、電気光学装置の一例である駆動回路内蔵型のTFTアクティブマトリクス駆動方式の液晶装置を例にとる。
【0060】
図1及び図2において、本実施形態に係る電気光学装置では、TFTアレイ基板10と対向基板20とが対向配置されている。TFTアレイ基板10と対向基板20との間に液晶層50が封入されており、TFTアレイ基板10と対向基板20とは、画像表示領域10aの周囲に位置するシール領域に設けられたシール材52により相互に接着されている。
【0061】
シール材52は、両基板を貼り合わせるための、例えば紫外線硬化樹脂、熱硬化樹脂等からなり、製造プロセスにおいてTFTアレイ基板10上に塗布された後、紫外線照射、加熱等により硬化させられたものである。また、シール材52中には、TFTアレイ基板10と対向基板20との間隔(基板間ギャップ)を所定値とするためのグラスファイバ或いはガラスビーズ等のギャップ材が散布されている。即ち、本実施形態の電気光学装置は、プロジェクタのライトバルブ用として小型で拡大表示を行うのに適している。
【0062】
シール材52が配置されたシール領域の内側に並行して、画像表示領域10aの額縁領域を規定する遮光性の額縁遮光膜53が、対向基板20側に設けられている。但し、このような額縁遮光膜53の一部又は全部は、TFTアレイ基板10側に内蔵遮光膜として設けられてもよい。なお、本実施形態においては、前記の画像表示領域10aの周辺に位置する周辺領域が存在する。言い換えれば、本実施形態においては特に、TFTアレイ基板10の中心から見て、この額縁遮光膜53より以遠が周辺領域として規定されている。
【0063】
周辺領域のうち、シール材52が配置されたシール領域の外側に位置する領域には、データ線駆動回路101及び外部回路接続端子102がTFTアレイ基板10の一辺に沿って設けられている。また、走査線駆動回路104は、この一辺に隣接する2辺に沿い、且つ、前記額縁遮光膜53に覆われるようにして設けられている。更に、このように画像表示領域10aの両側に設けられた二つの走査線駆動回路104間をつなぐため、TFTアレイ基板10の残る一辺に沿い、且つ、前記額縁遮光膜53に覆われるようにして複数の配線105が設けられている。
【0064】
また、対向基板20の4つのコーナー部には、両基板間の上下導通端子として機能する上下導通材106が配置されている。他方、TFTアレイ基板10にはこれらのコーナー部に対向する領域において上下導通端子が設けられている。これらにより、TFTアレイ基板10と対向基板20との間で電気的な導通をとることができる。
【0065】
図2において、TFTアレイ基板10上には、画素スイッチング用のTFTや走査線、データ線等の配線が形成された後の画素電極9a上に、配向膜が形成されている。他方、対向基板20上には、対向電極21の他、格子状又はストライプ状の遮光膜23、更には最上層部分に配向膜が形成されている。また、液晶層50は、例えば一種又は数種類のネマティック液晶を混合した液晶からなり、これら一対の配向膜間で、所定の配向状態をとる。
【0066】
なお、図1及び図2に示したTFTアレイ基板10上には、これらのデータ線駆動回路101、走査線駆動回路104等に加えて、画像信号線上の画像信号をサンプリングしてデータ線に供給するサンプリング回路、複数のデータ線に所定電圧レベルのプリチャージ信号を画像信号に先行して各々供給するプリチャージ回路、製造途中や出荷時の当該電気光学装置の品質、欠陥等を検査するための検査回路等を形成してもよい。
【0067】
〔画素部における構成〕
以下では、本発明の本実施形態における電気光学装置の画素部における構成について、図3から図6を参照して説明する。ここに図3は、電気光学装置の画像表示領域を構成するマトリクス状に形成された複数の画素における各種素子、配線等の等価回路であり、図4及び図5は、データ線、走査線、画素電極等が形成されたTFTアレイ基板の相隣接する複数の画素群の平面図である。なお、図4及び図5は、それぞれ、後述する積層構造のうち下層部分(図4)と上層部分(図5)とを分かって図示している。
【0068】
また、図6は、図4及び図5を重ね合わせた場合のA−A´断面図である。なお、図6においては、各層・各部材を図面上で認識可能な程度の大きさとするため、該各層・各部材ごとに縮尺を異ならしめてある。
【0069】
(画素部の回路構成)
図3において、本実施形態における電気光学装置の画像表示領域を構成するマトリクス状に形成された複数の画素には、それぞれ、画素電極9aと当該画素電極9aをスイッチング制御するためのTFT30とが形成されており、画像信号が供給されるデータ線6aが当該TFT30のソースに電気的に接続されている。データ線6aに書き込む画像信号S1、S2、…、Snは、この順に線順次に供給しても構わないし、相隣接する複数のデータ線6a同士に対して、グループ毎に供給するようにしてもよい。
【0070】
また、TFT30のゲートにゲート電極3aが電気的に接続されており、所定のタイミングで、走査線11a及びゲート電極3aにパルス的に走査信号G1、G2、…、Gmを、この順に線順次で印加するように構成されている。画素電極9aは、TFT30のドレインに電気的に接続されており、スイッチング素子であるTFT30を一定期間だけそのスイッチを閉じることにより、データ線6aから供給される画像信号S1、S2、…、Snを所定のタイミングで書き込む。
【0071】
画素電極9aを介して電気光学物質の一例としての液晶に書き込まれた所定レベルの画像信号S1、S2、…、Snは、対向基板に形成された対向電極との間で一定期間保持される。液晶は、印加される電圧レベルにより分子集合の配向や秩序が変化することにより、光を変調し、階調表示を可能とする。ノーマリーホワイトモードであれば、各画素の単位で印加された電圧に応じて入射光に対する透過率が減少し、ノーマリーブラックモードであれば、各画素の単位で印加された電圧に応じて入射光に対する透過率が増加され、全体として電気光学装置からは画像信号に応じたコントラストをもつ光が出射する。
【0072】
ここで保持された画像信号がリークするのを防ぐために、画素電極9aと対向電極との間に形成される液晶容量と並列に蓄積容量70を付加する。この蓄積容量70は、走査線11aに並んで設けられ、固定電位側容量電極を含むとともに定電位に固定された容量電極300を含んでいる。
【0073】
〔画素部の具体的構成〕
以下では、上記データ線6a、走査線11a及びゲート電極3a、TFT30等による、上述のような回路動作が実現される電気光学装置の、具体的の構成について、図4乃至図6を参照して説明する。
【0074】
まず、図5において、画素電極9aは、TFTアレイ基板10上に、マトリクス状に複数設けられており(点線部により輪郭が示されている)、画素電極9aの縦横の境界に各々沿ってデータ線6a及び走査線11aが設けられている。データ線6aは、後述するようにアルミニウム膜等を含む積層構造からなり、走査線11aは、例えば導電性のポリシリコン膜等からなる。また、走査線11aは、半導体層1aのうち図中右上がりの斜線領域で示したチャネル領域1a´に対向するゲート電極3aにコンタクトホール12cvを介して電気的に接続されており、該ゲート電極3aは該走査線11aに含まれる形となっている。すなわち、ゲート電極3aとデータ線6aとの交差する箇所にはそれぞれ、チャネル領域1a´に、走査線11aに含まれるゲート電極3aが対向配置された画素スイッチング用のTFT30が設けられている。これによりTFT30(ゲート電極を除く。)は、ゲート電極3aと走査線11aとの間に存在するような形態となっている。
【0075】
次に、電気光学装置は、図4及び図5のA−A´線断面図たる図6に示すように、例えば、石英基板、ガラス基板、シリコン基板からなるTFTアレイ基板10と、これに対向配置される、例えばガラス基板や石英基板からなる対向基板20とを備えている。
【0076】
TFTアレイ基板10の側には、図6に示すように、前記の画素電極9aが設けられており、その上側には、ラビング処理等の所定の配向処理が施された配向膜16が設けられている。画素電極9aは、例えばITO膜等の透明導電性膜からなる。他方、対向基板20の側には、その全面に渡って対向電極21が設けられており、その下側には、ラビング処理等の所定の配向処理が施された配向膜22が設けられている。対向電極21は、上述の画素電極9aと同様に、例えばITO膜等の透明導電性膜からなる。
【0077】
このように対向配置されたTFTアレイ基板10及び対向基板20間には、前述のシール材52(図1及び図2参照)により囲まれた空間に液晶等の電気光学物質が封入され、液晶層50が形成される。液晶層50は、画素電極9aからの電界が印加されていない状態で配向膜16及び22により所定の配向状態をとる。
【0078】
一方、TFTアレイ基板10上には、前記の画素電極9a及び配向膜16の他、これらを含む各種の構成が積層構造をなして備えられている。この積層構造は、図6に示すように、下から順に、走査線11aを含む第1層、ゲート電極3aを含むTFT30等を含む第2層、蓄積容量70を含む第3層、データ線6a等を含む第4層、容量配線400等を含む第5層、前記の画素電極9a及び配向膜16等を含む第6層(最上層)からなる。また、第1層及び第2層間には下地絶縁膜12が、第2層及び第3層間には第1層間絶縁膜41が、第3層及び第4層間には第2層間絶縁膜42が、第4層及び第5層間には第3層間絶縁膜43が、第5層及び第6層間には第4層間絶縁膜44が、それぞれ設けられており、前述の各要素間が短絡することを防止している。また、これら各種の絶縁膜12、41、42、43及び44には、例えば、TFT30の半導体層1a中の高濃度ソース領域1dとデータ線6aとを電気的に接続するコンタクトホール等もまた設けられている。以下では、これらの各要素について、下から順に説明を行う。なお、前述のうち第1層から第3層までが、下層部分として図4に図示されており、第4層から第6層までが上層部分として図5に図示されている。
【0079】
(積層構造・第1層の構成―走査線等―)
まず、第1層には、例えば、Ti、Cr、W、Ta、Mo等の高融点金属のうちの少なくとも一つを含む、金属単体、合金、金属シリサイド、ポリシリサイド、これらを積層したもの、或いは導電性ポリシリコン等からなる走査線11aが設けられている。この走査線11aは、平面的にみて、図4のX方向に沿うように、ストライプ状にパターニングされている。より詳しく見ると、ストライプ状の走査線11aは、図4のX方向に沿うように延びる本線部と、データ線6a或いは容量配線400が延在する図4のY方向に延びる突出部とを備えている。なお、隣接する走査線11aから延びる突出部は相互に接続されることはなく、したがって、該走査線11aは1本1本分断された形となっている。
【0080】
(積層構造・第2層の構成―TFT等―)
次に、第2層として、ゲート電極3aを含むTFT30が設けられている。TFT30は、図6に示すように、LDD(Lightly Doped Drain)構造を有しており、その構成要素としては、上述したゲート電極3a、例えばポリシリコン膜からなりゲート電極3aからの電界によりチャネルが形成される半導体層1aのチャネル領域1a´、ゲート電極3aと半導体層1aとを絶縁するゲート絶縁膜を含む絶縁膜2、半導体層1aにおける低濃度ソース領域1b及び低濃度ドレイン領域1c並びに高濃度ソース領域1d及び高濃度ドレイン領域1eを備えている。
【0081】
また、本実施形態では、この第2層に、上述のゲート電極3aと同一膜として中継電極719が形成されている。この中継電極719は、平面的に見て、図4に示すように、各画素電極9aのX方向に延びる一辺の略中央に位置するように、島状に形成されている。中継電極719とゲート電極3aとは同一膜として形成されているから、後者が例えば導電性ポリシリコン膜等からなる場合においては、前者もまた、導電性ポリシリコン膜等からなる。
【0082】
なお、上述のTFT30は、好ましくは図6に示したようにLDD構造をもつが、低濃度ソース領域1b及び低濃度ドレイン領域1cに不純物の打ち込みを行わないオフセット構造をもってよいし、ゲート電極3aをマスクとして高濃度で不純物を打ち込み、自己整合的に高濃度ソース領域及び高濃度ドレイン領域を形成するセルフアライン型のTFTであってもよい。
【0083】
(積層構造・第1層及び第2層間の構成―下地絶縁膜―)
以上説明した走査線11aの上、かつ、TFT30の下には、例えばシリコン酸化膜等からなる下地絶縁膜12が設けられている。下地絶縁膜12は、走査線11aからTFT30を層間絶縁する機能のほか、TFTアレイ基板10の全面に形成されることにより、TFTアレイ基板10の表面研磨時における荒れや、洗浄後に残る汚れ等で画素スイッチング用のTFT30の特性変化を防止する機能を有する。
【0084】
この下地絶縁膜12には、平面的にみて半導体層1aの両脇に、後述するデータ線6aに沿って延びる半導体層1aのチャネル長の方向に沿った溝状のコンタクトホール12cvが掘られており、このコンタクトホール12cvに対応して、その上方に積層されるゲート電極3aは下側に凹状に形成された部分を含んでいる。また、このコンタクトホール12cv全体を埋めるようにして、ゲート電極3aが形成されていることにより、該ゲート電極3aには、これと一体的に形成された側壁部3bが延設されるようになっている。これにより、TFT30の半導体層1aは、図4によく示されているように、平面的にみて側方から覆われるようになっており、少なくともこの部分からの光の入射が抑制されるようになっている。
【0085】
また、この側壁部3bは、前記のコンタクトホール12cvを埋めるように形成されているとともに、その下端が前記の走査線11aと接するようにされている。ここで走査線11aは、上述のようにストライプ状に形成されていることから、ある行に存在するゲート電極3a及び走査線11aは、当該行に着目する限り、常に同電位となる。
【0086】
(積層構造・第3層の構成―蓄積容量等―)
さて、前述の第2層に続けて第3層には、蓄積容量70が設けられている。蓄積容量70は、TFT30の高濃度ドレイン領域1e及び画素電極9aに接続された画素電位側容量電極としての下部電極71と、固定電位側容量電極としての容量電極300とが、誘電体膜75を介して対向配置されることにより形成されている。この蓄積容量70によれば、画素電極9aにおける電位保持特性を顕著に高めることが可能となる。また、本実施形態に係る蓄積容量70は、図4の平面図を見るとわかるように、画素電極9aの形成領域にほぼ対応する光透過領域には至らないように形成されているため(換言すれば、遮光領域内に収まるように形成されているため)、電気光学装置全体の画素開口率は比較的大きく維持され、これにより、より明るい画像を表示することが可能となる。
【0087】
より詳細には、下部電極71は、例えば導電性のポリシリコン膜からなり画素電位側容量電極として機能する。ただし、下部電極71は、金属又は合金を含む単一層膜又は多層膜から構成してもよい。また、この下部電極71は、画素電位側容量電極としての機能のほか、画素電極9aとTFT30の高濃度ドレイン領域1eとを中継接続する機能をもつ。ちなみに、ここにいう中継接続は、前記の中継電極719を介して行われている。
【0088】
容量電極300は、蓄積容量70の固定電位側容量電極として機能する。本実施形態において、容量電極300を固定電位とするためには、固定電位とされた容量配線400(後述する。)と電気的接続が図られることによりなされている。また、容量電極300は、Ti、Cr、W、Ta、Mo等の高融点金属のうちの少なくとも一つを含む、金属単体、合金、金属シリサイド、ポリシリサイド、これらを積層したもの、或いは好ましくはタングステンシリサイドからなる。これにより、容量電極300は、TFT30に上側から入射しようとする光を遮る機能を有している。
【0089】
誘電体膜75は、図6に示すように、例えば膜厚5〜200nm程度の比較的薄いHTO(High Temperature Oxide)膜、LTO(Low Temperature Oxide)膜等の酸化シリコン膜、あるいは窒化シリコン膜等から構成される。蓄積容量70を増大させる観点からは、膜の信頼性が十分に得られる限りにおいて、誘電体膜75は薄いほどよい。
【0090】
本実施形態において、この誘電体膜75は、図6に示すように、下層に酸化シリコン膜75a、上層に窒化シリコン膜75bというように二層構造を有するものとなっている。上層の窒化シリコン膜75bは画素電位側容量電極の下部電極71より少し大きなサイズにパターニングされ、遮光領域(非開口領域)内で収まるように形成されている。
【0091】
なお、本実施形態では、誘電体膜75は、二層構造を有するものとなっているが、場合によっては、例えば酸化シリコン膜、窒化シリコン膜及び酸化シリコン膜等というような三層構造や、あるいはそれ以上の積層構造を有するように構成してもよい。むろん単層構造としてもよい。
【0092】
(積層構造、第2層及び第3層間の構成―第1層間絶縁膜―)
以上説明したTFT30ないしゲート電極3a及び中継電極719の上、かつ、蓄積容量70の下には、例えば、NSG(ノンシリケートガラス)、PSG(リンシリケートガラス)、BSG(ボロンシリケートガラス)、BPSG(ボロンリンシリケートガラス)等のシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等、あるいは好ましくはNSGからなる第1層間絶縁膜41が形成されている。
【0093】
そして、この第1層間絶縁膜41には、TFT30の高濃度ソース領域1dと後述するデータ線6aとを電気的に接続するコンタクトホール81が、後記第2層間絶縁膜42を貫通しつつ開孔されている。また、第1層間絶縁膜41には、TFT30の高濃度ドレイン領域1eと蓄積容量70を構成する下部電極71とを電気的に接続するコンタクトホール83が開孔されている。さらに、この第1層間絶縁膜41には、蓄積容量70を構成する画素電位側容量電極としての下部電極71と中継電極719とを電気的に接続するためのコンタクトホール881が開孔されている。更に加えて、第1層間絶縁膜41には、中継電極719と後述する第2中継電極6a2とを電気的に接続するためのコンタクトホール882が、後記第2層間絶縁膜を貫通しつつ開孔されている。
【0094】
(積層構造・第4層の構成―データ線等―)
さて、前述の第3層に続けて第4層には、データ線6aが設けられている。このデータ線6aは、図6に示すように、下層より順に、アルミニウムからなる層(図6における符号41A参照)、窒化チタンからなる層(図6における符号41TN参照)、窒化シリコン膜からなる層(図6における符号401参照)の三層構造を有する膜として形成されている。窒化シリコン膜は、その下層のアルミニウム層と窒化チタン層を覆うように少し大きなサイズにパターニングされている。
【0095】
また、この第4層には、データ線6aと同一膜として、容量配線用中継層6a1及び第2中継電極6a2が形成されている。これらは、図5に示すように、平面的に見ると、データ線6aと連続した平面形状を有するように形成されているのではなく、各者間はパターニング上分断されるように形成されている。例えば図5中最左方に位置するデータ線6aに着目すると、その直右方に略四辺形状を有する容量配線用中継層6a1、更にその右方に容量配線用中継層6a1よりも若干大きめの面積をもつ略四辺形状を有する第2中継電極6a2が形成されている。
【0096】
ちなみに、これら容量配線用中継層6a1及び第2中継電極6a2は、データ線6aと同一膜として形成されていることから、下層より順に、アルミニウムからなる層、窒化チタンからなる層、プラズマ窒化膜からなる層の三層構造を有する。
【0097】
(積層構造・第3層及び第4層間の構成―第2層間絶縁膜―)
以上説明した蓄積容量70の上、かつ、データ線6aの下には、例えばNSG、PSG,BSG、BPSG等のシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等、あるいは好ましくはTEOSガスを用いたプラズマCVD法によって形成された第2層間絶縁膜42が形成されている。この第2層間絶縁膜42には、TFT30の高濃度ソース領域1dとデータ線6aとを電気的に接続する、前記のコンタクトホール81が開孔されているとともに、前記容量配線用中継層6a1と蓄積容量70の上部電極たる容量電極300とを電気的に接続するコンタクトホール801が開孔されている。さらに、第2層間絶縁膜42には、第2中継電極6a2と中継電極719とを電気的に接続するための、前記のコンタクトホール882が形成されている。
【0098】
(積層構造・第5層の構成―容量配線等―)
さて、前述の第4層に続けて第5層には、容量配線400が形成されている。この容量配線400は、平面的にみると、図5に示すように、図中X方向及びY方向それぞれに延在するように、格子状に形成されている。該容量配線400のうち図中Y方向に延在する部分については特に、データ線6aを覆うように、且つ、該データ線6aよりも幅広に形成されている。また、図中X方向に延在する部分については、後述の第3中継電極402を形成する領域を確保するために、各画素電極9aの一辺の中央付近に切り欠き部を有している。
【0099】
さらには、図5中、XY方向それぞれに延在する容量配線400の交差部分の隅部においては、該隅部を埋めるようにして、略三角形状の部分が設けられている。容量配線400に、この略三角形状の部分が設けられていることにより、TFT30の半導体層1aに対する光の遮蔽を効果的に行うことができる。すなわち、半導体層1aに対して、斜め上から進入しようとする光は、この三角形状の部分で反射又は吸収されることになり半導体層1aには至らないことになる。したがって、光リーク電流の発生を抑制し、フリッカ等のない高品質な画像を表示することが可能となる。この容量配線400は、画素電極9aが配置された画像表示領域10aからその周囲に延設され、定電位源と電気的に接続されることで、固定電位とされている。
【0100】
また、第4層には、このような容量配線400と同一膜として、第3中継電極402が形成されている。この第3中継電極402は、後述のコンタクトホール804及び89を介して、第2中継電極6a2及び画素電極9a間の電気的接続を中継する機能を有する。なお、これら容量配線400及び第3中継電極402間は、平面形状的に連続して形成されているのではなく、両者間はパターニング上分断されるように形成されている。
【0101】
他方、上述の容量配線400及び第3中継電極402は、下層にアルミニウムからなる層、上層に窒化チタンからなる層の二層構造を有している。
【0102】
(積層構造・第4層及び第5層間の構成―第3層間絶縁膜―)
以上説明した前述のデータ線6aの上、かつ、容量配線400の下には、NSG、PSG、BSG、BPSG等のシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等、あるいは好ましくは、TEOSガスを用いたプラズマCVD法で形成された第3層間絶縁膜43が形成されている。この第3層間絶縁膜43には、前記の容量配線400と容量配線用中継層6a1とを電気的に接続するためのコンタクトホール803、及び、第3中継電極402と第2中継電極6a2とを電気的に接続するためのコンタクトホール804がそれぞれ開孔されている。
【0103】
(積層構造・第6層並びに第5層及び第6層間の構成―画素電極等―)
最後に、第6層には、上述したように画素電極9aがマトリクス状に形成され、該画素電極9a上に配向膜16が形成されている。そして、この画素電極9a下には、NSG、PSG、BSG、BPSG等のシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等、あるいは好ましくはNSGからなる第4層間絶縁膜44が形成されている。この第4層間絶縁膜44には、画素電極9a及び前記の第3中継電極402間を電気的に接続するためのコンタクトホール89が開孔されている。画素電極9aとTFT30との間は、このコンタクトホール89及び第3中継層402並びに前述したコンタクトホール804、第2中継層6a2、コンタクトホール882、中継電極719、コンタクトホール881、下部電極71及びコンタクトホール83を介して、電気的に接続されることとなる。
【0104】
(積層構造・周辺領域上の構成―CMOS型TFT等―)
以上説明したような画素部における構成は、図4及び図5に示すように、各画素部において共通である。図1及び図2を参照して説明した画像表示領域10aには、かかる画素部における構成が周期的に形成されていることになる。他方、このような電気光学装置では、画像表示領域10aの周囲に位置する周辺領域に、図1及び図2を参照して説明したように、走査線駆動回路104及びデータ線駆動回路101等の駆動回路が形成されている。そして、これら走査線駆動回路104及びデータ線駆動回路101は、例えば図7に示されるような複数のスイッチング素子としてのTFTや配線等々から構成されている。ここに図7は、周辺領域上に形成されるスイッチング素子の一例たるCMOS型のTFT202の実際的な構造を示す断面図である。
【0105】
この図7において、CMOS型TFT202は、p型TFT202pとn型TFT202nを含み、これらそれぞれは、半導体層202a、絶縁膜2、ゲート電極膜202b、半導体層202aのドレイン及びソースに接続される各種電極210a乃至210d並びに配線220からなる。そして、図7においては、符号12、41、42、43及び44等が示されていることかわかるように、当該CMOS型のTFT202及びその上層の構築物は、図6に示した画素部における構成と同一の機会に形成されているものである(後述の図8乃至図9を参照する製造方法の説明参照。)。すなわち、半導体層202aは、TFT30の半導体層1aと同一の機会に形成されており、ゲート電極膜202bは、ゲート電極3aと同一の機会に形成されている、などというようである。なお、図6において蓄積容量70を構成していた下部電極71及び容量電極300についても、図7において、これらと同一の機会に形成された配線膜711及び712が、各種電極210a乃至210dを構成している。また、図6においてデータ線6aを構成していた三層の膜(アルミニウムからなる膜41A、窒化チタンからなる膜41TN及び窒化シリコンからなる膜4401)についても、図7において、これらと同一の機会に形成された配線膜221乃至223が、配線220を構成している。なお、図7においては図示されていないが、図6における容量配線400と同一の機会に薄膜を形成し、これをもCMOS型TFT202の構成の一部として(例えば、配線として利用する等)よいことは言うまでもない。
【0106】
このように、画素部における構成と周辺領域におけるCMOS型TFT202等の各種の回路素子及び配線等々を同一の機会に形成する構成によれば、これらを別々に形成する態様に比べて、その製造工程の簡略化、或いは省略化等を達成することができる。
【0107】
そして、本実施形態においては特に、このような周辺領域上のCMOS型TFT202等を含む周辺領域上の積層構造と、前述の画像表示領域10a上の積層構造(図6参照)との最表面は、極めて優れた平坦性を有する平面となっていることに特徴がある。これは、以下に述べるように、本実施形態において特徴的な製造方法が採用されることによっている。以下では、この点について、項を改めて説明することとする。
【0108】
〔電気光学装置の製造方法〕
以下では、上述した実施形態の電気光学装置の製造プロセスについて、図8乃至図10を参照して説明する。ここに図8乃至図10は、製造プロセスの各工程における電気光学装置の積層構造を、図6の断面図及び図7のCMOS型のTFT202の断面図に関して、順を追って示す工程図である(前者は図中右方、後者は図中左方に示されている。)。また、図10は、本実施形態に係る電気光学装置が、比較的大きさサイズのガラス基板上で一挙に複数形成されることを説明するための説明図である。なお、以下においては、本実施形態において特徴的な第3層間絶縁膜43以降の製造工程について特に詳しく説明することとし、それ以前の走査線11a、半導体層1a、ゲート電極3a、蓄積容量70及びデータ線6a等々の製造工程の説明に関しては省略することとする。
【0109】
まず、図8及び図9の製造工程の説明に入る前に、その前提として、本実施形態に係る電気光学装置は、図10に示すような比較的大きなサイズのガラス基板Sの上において、一挙に複数形成される形態がとられる。すなわち、ガラス基板Sの上において、図1に示した電気光学装置が縦横それぞれにマトリクス状に配列されるように形成され、各電気光学装置においては、それぞれ、図6及び図7に示したような各種の要素(TFT30、蓄積容量70、CMOS型TFT202、これを含む走査線駆動回路104、或いはデータ線駆動回路101等々)を含む積層構造が構築されることになるのである。ちなみに、図10において示されるガラス基板Sは、図6及び図7に示されるTFTアレイ基板「10」に該当する。また、図10では、TFTアレイ基板10の側が形成されるガラス基板Sのみについて図示されているが、これとは別に、他の図示しないガラス基板の上に、対向電極21、配向膜22等が形成されて対向基板20が複数形成されるるとともに、最終的には、前記ガラス基板Sと前記図示しないガラス基板とを対向させて貼り合わせその間に液晶を封入し、更には、TFTアレイ基板10及び対向基板20の各別に応じて裁断することによって、図1乃至図7に示したような各個別の電気光学装置が製造されることになる。
【0110】
さて、以上の前提の下、本実施形態にかかる電気光学装置は、図10に示すガラス基板S上で、図8の工程(a)から工程(d)、図9の工程(e)から工程(g)に示すように順次製造されることになる。
【0111】
まず、図8の工程(a)においては、第3層間絶縁膜43の前駆膜431が形成された時点における断面図が示されている。この前駆膜431は、例えば、TEOS(テトラ・エチル・オルソ・シリケート)ガス、TEB(テトラ・エチル・ボートレート)ガス、TMOP(テトラ・メチル・オキシ・フォスレート)ガス等を用いた常圧又は減圧CVD法等により形成することができる。この場合、該第3層間絶縁膜43は、NSG(ノンシリケートガラス)、PSG(リンシリケートガラス)、BSG(ボロンシリケートガラス)、BPSG(ボロンリンシリケートガラス)等のシリケートガラス膜、窒化シリコン膜や酸化シリコン膜からなる。
【0112】
そして、この前駆膜431においては、図8の工程(a)に示すように、下層に位置するデータ線6a、容量配線用中継電極6a1及び第2中継電極6a2が固有に有する高さ、或いは、その更に下層に位置するゲート電極3a及び中継電極719等々が固有に有する高さに起因した段差が形成されている。このように、下層に位置する各種の要素が固有に有する高さが上層に上層にいわば伝播することによって、積層構造の最表層(現時点では、前駆膜431の表面)において、不均一な段差を生じさせることになる。殊に、本実施形態のように、前述した要素のほか、蓄積容量70や各種のコンタクトホールが形成される構造では、前記の段差は極めて複雑な様相を呈する可能性もある。そこで、本実施形態においては特に、この段差を消滅させるために、後述するように、当該前駆膜431に対してCMP処理を施す(図8の工程(c))。
【0113】
ところで、図8の工程(a)の右方に示す画素部における構成(換言すれば、画像表示領域10aにおける構成)と、同図中左方に示す周辺領域上の構成とでは、それらのガラス基板S上における形成密度に相違が存在する。より詳しくは、走査線駆動回路104、或いはデータ線駆動回路101を構成するCMOS型TFT202等の回路素子及び配線のガラス基板Sを平面視した場合における形成密度は、画像表示領域10aにおけるTFT30及び画素電極9a等の形成密度よりも大きくなる。これは、画像表示領域10aでは、光透過域を確保しなければならないことから、必然的に、各種の要素を疎に配置する必要があるためである(図4及び図5参照)。また、装置全体としては小型化が、画像の大きさとしては大型化が目指されているためでもある。本実施形態において、より具体的には、画像表示領域10aにおける隣接しあう画素電極9a間のピッチDD(図5参照)は、20〔μm〕以上とされており、これと対比すると、周辺領域上のCMOS型TFT202等の回路素子・配線等々の形成密度は、より密な状況にあることになる。
【0114】
そして、このような密度差が画像表示領域10aと、周辺領域、とりわけ該周辺領域のうち前記の走査線駆動回路104、或いはデータ線駆動回路101の形成領域との間で存在する場合に、両領域の上に形成された層間絶縁膜に対してCMP処理等の平坦化処理を実施すると、両者間で、積層構造の高さの相違をもたらすおそれがある。
【0115】
具体的には例えば、本願発明者らの実験により、概略図11に示されるようなグラフが採取されている。この図11は、最終的に完成した電気光学装置のTFTアレイ基板10において、その積層構造の最表面の表面粗さを、図10のG−G´線に沿って計測した結果を示すグラフ(表面プロファイル)である。この図11によれば、走査線駆動回路104が形成されている領域に対応して、周囲に比べて一際目立つ段差が形成されていることがわかる。この段差の高さは、具体的には100〜200〔nm〕程度になることが確認されている。これは、より低密度にTFT30等が形成されている画像表示領域10aの方が、より高密度にCMOS型TFT202等が形成されている周辺領域よりも、より研磨されやすいということが一般的な原因として考えられる。ちなみに、このような段差は、データ線駆動回路101の形成領域に対応しても形成されることになり、その結果として、当該段差は、画像表示領域10aの周囲を囲むように形成ないしは残存させられることになる(図1参照)。
【0116】
このようになると、CMP処理等の平坦化処理を施しているにもかかわらず、走査線駆動回路104、或いはデータ線駆動回路101の形成領域に対応した段差が形成ないしは残存されることになり、表示すべき画像の周囲に色むらを生じさせることとなってしまうことになる。
【0117】
そこで、本実施形態においては、この段差を消滅させるべく、前駆膜431に対してCMP処理(図8の工程(c))を実施する前に、以下に記すような各工程を実施する。
【0118】
まず、図8の工程(b)においては、画素部における構成に関してのみ、前駆膜431の上にマスクM1を形成する。このマスクM1の形成領域は、マトリクス状に形成された画素電極9aの最外縁を結んだ形状に対応する。要するに、マスクM1の平面形状は、画像表示領域10aのそれに略等しい。そして、かかる前駆膜431に対するエッチング処理を施す。このエッチング処理は、例えば、HF(フッ化水素)を用いたウェットエッチング等を採用することができる。ただし、反応性イオンエッチング、反応性イオンビームエッチング等のドライエッチングを実施してもよい。
【0119】
このエッチング処理によると、前記のように画素部における構成に関してはマスクM1が形成されていることにより、前駆膜431の全面が侵食されるのではなく、CMOS型TFT202等が形成された周辺領域の部分のみ侵食が進行することになる(図8の工程(b)中の破線参照)。そして、これによると、走査線駆動回路104、或いはデータ線駆動回路101の形成領域に対応して、画像表示領域10aから見て、積層構造の最表面に凹部が形成されることになる。ちなみに、この凹部の深さG1は、概ね、0.4〔μm〕程度としておけばよい。ただし、この凹部の深さG1をどの程度とするか(換言すると、エッチング処理の諸条件(例えばエッチング時間)をどの程度とするか)は、基本的には設計事項であり、実際に問題となりうる前記の段差(図11参照)の大きさがどの程度か、積層構造の具体的構成(例えば、何層構造か、或いは各層の厚さはどの程度か)、更には、後に実施するCMP処理における押し付け圧力をどの程度とするか等の諸条件の変更に伴って、自由に変更され得るものである。
【0120】
かようにして、周辺領域における前駆膜431のみがエッチングされたら、次に、マスクM1を除去した後、前述のような凹部を含む周辺領域と画像表示領域10aとの双方に、図8の工程(c)に示すように、CMP処理を実施する。このCMP処理とは、図8の工程(b)に示す前駆膜431までが形成されたもの(但し、マスクM1を除く。)を被処理基板として、これと研磨布(パッド)との両者を回転等させながら、それぞれの表面同士を当接させるとともに、該当接部位にシリカ粒等を含んだ研磨液(スラリー)を供給することによって、被処理基板表面を、機械的作用と化学作用の兼ね合いにより研磨する処理である。ここで本実施形態においては特に、被処理基板と研磨布との間にかける押し付け圧力を500〔hPa〕以上とすると好ましい。これにより、研磨時間の短縮化が図れるからである。
【0121】
このようなCMP処理を実施することにより、前駆膜431は、第3層間絶縁膜43となるが、この際、前述した、データ線6a、容量配線用中継電極6a1及び第2中継電極6a2、或いはゲート電極3a及び中継電極719、更にはCMOS型TFT202を構成する半導体層202a、配線220の高さに起因する段差は、積層構造の最表面(現時点においては第3層間絶縁膜43の表面)に関し全面的に均されることになり、該最表面において極めて優れた平坦性を実現することができる(図8の工程(c)参照)。
【0122】
また、本実施形態に係るCMP処理では特に、前記のように周辺領域上の前駆膜431が予めエッチング処理によって凹まされているため、画像表示領域10aとの釣り合いをちょうど保つことが可能となり、従前のように、該周辺領域上に段差(図11参照)を残存させるということがない(図8の工程(c)参照)。すなわち、本発明によれば、画像表示領域10a及び周辺領域の双方にわたって、極めて優れた平坦性を有する平面を現出させることができるのである。
【0123】
以上のようにCMP処理が完了したら、図8の工程(d)に示すように、第3層間絶縁膜43にコンタクトホール803及び804を開孔した後、該第3層間絶縁膜43の上に、容量配線400及び第3中継電極402を形成する。このうち、コンタクトホール803及び804は、例えば反応性イオンエッチング、反応性イオンビームエッチング等のドライエッチングにより開孔することができる。また、容量配線400及び第3中継電極402は、まず、その下層たるアルミニウムからなる前駆膜をスパッタリング法により成膜した後、該前駆膜をフォトリソグラフィ及びエッチング工程によってパターニングし、次に、その上層たる窒化チタンからなる膜を、前記のアルミニウムからなる膜と同様にして成膜・パターニングすること等によって製造することができる。
【0124】
次に、本実施形態においては、図9の工程(e)に示すように、前記の容量配線400及び第3中継電極402の上に、第4層間絶縁膜44の前駆膜441を成膜する。この前駆膜441の成膜は、前記の前駆膜431の成膜と同様に行えばよい。そして、該前駆膜441に対して、前記の前駆膜431と同様にして、マスクM2の成膜処理及びエッチング処理(図9の工程(f)参照)並びにCMP処理(図9の工程(g)参照)を実施する。なお、図9の工程(f)のエッチング処理によって形成される凹部の深さG2は0.1〔μm〕程度とすることが好ましいが、これについても、前述の凹部の深さG1と同様、基本的には、種々の要因によって適宜変更されうる設計的事項である。
【0125】
これら一連の工程によっても、前記の前駆膜431及び第3層間絶縁膜43に関して述べたのと全く同様な作用効果が得られる。すなわち、周辺領域が予め凹まされた後、CMP処理が実施されることから、周辺領域上に段差を残存させるということがなく、該周辺領域及び画像表示領域10a双方にわたって極めて優れた平坦性を現出させることができる。また、CMP処理を実施することそれ自体によって、前記容量配線400及び容量電極402が固有に有する高さに起因する段差も消滅せられ、この点からも、優れた平坦性を実現することができる。
【0126】
そして、このようにCMP処理の実施の回数に応じて、エッチング処理を実施するようにすれば、本実施形態の作用効果が、より効果的に享受されることになるのが明白である。
【0127】
以上までの工程が完了したら、後は、第4層間絶縁膜44にコンタクトホール89を開孔した後、画素電極9a及び配向膜16を成膜すれば、TFTアレイ基板10側の電気光学装置の製造が完了する。そして、これに引き続き、或いは並行して、前述のように、ガラス基板Sとは別のガラス基板上に、対向電極21、配向膜22等を形成して対向基板20を製造するとともに、前記ガラス基板S及び前記別のガラス基板間にシール材52を介在させて貼り合わせ、液晶層50を封入することによって、電気光学装置の製造が完了する。
【0128】
なお、上記の実施形態においては、図8の工程(b)及び図9の工程(f)に二回にわたってエッチング処理が実施されていたが、本発明は、このような形態に限定されない。例えば、CMP処理については、前述と同様、図8の工程(c)及び図9の工程(g)の二回実施するが、エッチング処理は、図8の工程(b)又は図9の工程(f)においてのみ実施するようにしてもよい。さらに、より広くいえば、エッチング処理は、図8の工程(b)及び図9の工程(f)のタイミングで実施されなければならないわけではない。すなわち、CMP処理を実施する段にあたって、周辺領域が、画像表示領域10aからみて凹まされていれば、両領域の双方にわたる平坦性を実現することが可能であるから、エッチング処理を実施する時点は、そのような観点から定められればよいのである。極端に言えば、図8の工程(a)以前、例えば第1層間絶縁膜41(或いは、第2層間絶縁膜42)の形成が完了した時点において周辺領域のみのエッチング処理を実施し、該周辺領域が画像表示領域からみて凹んでいる状態を予め作っておくようにしてもよい。要するに、CMP処理の前に、エッチング処理が実施されるようになっていれば、本発明の目指す基本的な目的は達成し得る。
【0129】
また、上記の実施形態では、周辺領域上にCMOS型TFT202が形成される場合についてもっぱら説明したが、本発明は、このような形態に限定されるものでないことは言うまでもない。走査線駆動回路104及びデータ線駆動回路101には、前記のCMOS型TFT202以外にも、これに代えて又は加えて、単なるp型又はn型のTFT、更には各種の配線や、これらTFTに光が侵入することを防止する遮光膜等々が、その一部を構成するものとして形成され得る。そして、このような各種の要素は、やはり、画像表示領域10aにおけるTFT30及び画素電極9a等に比べて、より密に形成されることが一般的に推定されるから、本実施形態に係る作用効果を前述と同様に享受することが可能である。
【0130】
さらに、前記において、画像表示領域10aの大きさ(図10参照)について特に言及しなかったが、本実施形態に係る作用効果をより効果的に享受することができるのは、該画像表示領域10aの大きさが、1.0〔inch〕以上である場合である。このように画像表示領域10aが、比較的大きくなると、該画像表示領域10内に形成されるTFT30、画素電極9a等の形成密度はより疎になり、周辺領域上のCMOS型TFT202等の形成密度がより密になるという関係が生じるからである。
【0131】
(電子機器)
次に、以上詳細に説明した電気光学装置をライトバルブとして用いた電子機器の一例たる投射型カラー表示装置の実施形態について、その全体構成、特に光学的な構成について説明する。ここに、図12は、投射型カラー表示装置の図式的断面図である。
【0132】
図12において、本実施形態における投射型カラー表示装置の一例たる液晶プロジェクタ1100は、駆動回路がTFTアレイ基板上に搭載された液晶装置を含む液晶モジュールを3個用意し、それぞれRGB用のライトバルブ100R、100G及び100Bとして用いたプロジェクタとして構成されている。液晶プロジェクタ1100では、メタルハライドランプ等の白色光源のランプユニット1102から投射光が発せられると、3枚のミラー1106及び2枚のダイクロックミラー1108によって、RGBの三原色に対応する光成分R、G及びBに分けられ、各色に対応するライトバルブ100R、100G及び100Bにそれぞれ導かれる。この際特に、B光は、長い光路による光損失を防ぐために、入射レンズ1122、リレーレンズ1123及び出射レンズ1124からなるリレーレンズ系1121を介して導かれる。そして、ライトバルブ100R、100G及び100Bによりそれぞれ変調された三原色に対応する光成分は、ダイクロックプリズム1112により再度合成された後、投射レンズ1114を介してスクリーン1120にカラー画像として投射される。
【0133】
本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨、あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う電気光学装置及びその製造方法並びに電子機器もまた、本発明の技術的範囲に含まれるものである。
【図面の簡単な説明】
【図1】TFTアレイ基板をその上に形成された各構成要素と共に対向基板の側から見た電気光学装置の平面図である。
【図2】図1のH−H’断面図である。
【図3】電気光学装置の画像表示領域を構成するマトリクス状に形成された複数の画素における各種素子、配線等の等価回路である。
【図4】データ線、走査線、画素電極等が形成されたTFTアレイ基板の相隣接する複数の画素群の平面図であって、下層部分(図6における符号70(蓄積容量)までの下層の部分)に係る構成のみを示すものである。
【図5】データ線、走査線、画素電極等が形成されたTFTアレイ基板の相隣接する複数の画素群の平面図であって、上層部分(図6における符号70(蓄積容量)を越えて上層の部分)に係る構成のみを示すものである。
【図6】図4及び図5を重ね合わせた場合のA−A´断面図である。
【図7】周辺領域上のCMOS型TFTの構成を示す断面図である。
【図8】本実施形態に係る電気光学装置の製造方法を、順を追って示す製造工程断面図(その1)である。
【図9】本実施形態に係る電気光学装置の製造方法を、順を追って示す製造工程断面図(その2)である。
【図10】本実施形態に係る電気光学装置が、1枚のガラス基板上において一挙に複数形成されることを説明するための説明図である。
【図11】最終的に完成した電気光学装置のTFTアレイ基板において、その積層構造の最表面の表面粗さを、図10のG−G´線に沿って計測した結果を示すグラフ(表面プロファイル)である。
【図12】本発明の電子機器の実施形態である投射型カラー表示装置の一例たるカラー液晶プロジェクタを示す図式的断面図である。
【符号の説明】
10…TFTアレイ基板、10a…画像表示領域、11a…走査線
6a…データ線、30…TFT
104…走査線駆動回路、101…データ線駆動回路、202…CMOS型TFT
43…第3層間絶縁膜、44…第4層間絶縁膜

Claims (13)

  1. 基板上に、
    一定の方向に延びるデータ線及び該データ線に交差する方向に延びる走査線と、
    前記走査線により走査信号が供給されるスイッチング素子と、
    前記データ線により前記スイッチング素子を介して画像信号が供給される画素電極と、
    前記スイッチング素子及び前記画素電極の形成領域として規定される画像表示領域の周辺に位置する周辺領域に配置された、前記データ線及び前記走査線を駆動する駆動回路と、
    前記データ線、前記走査線、前記スイッチング素子、前記駆動回路の上方に形成された層間絶縁膜と、
    を備えてなり、
    前記周辺領域に形成された前記層間絶縁膜のうち、少なくとも前記駆動回路の形成領域に対応する部分について、エッチングが施された後、当該周辺領域及び前記画像表示領域双方の前記層間絶縁膜に平坦化処理が実施されていることを特徴とする電気光学装置。
  2. 前記駆動回路は、回路素子及び配線からなり、
    前記回路素子及び前記配線の前記基板を平面視した場合における第1形成密度は、
    前記データ線、前記走査線、前記スイッチング素子及び前記画素電極の第2形成密度よりも大きいことを特徴とする請求項1に記載の電気光学装置。
  3. 前記平坦化処理は、CMP(Chemical Mechanical Polishing)処理を含むことを特徴とする請求項1又は2に記載の電気光学装置。
  4. 請求項1乃至3のいずれか一項に記載の電気光学装置を具備してなることを特徴とする電子機器。
  5. 基板上の画像表示領域に、
    一定の方向に延びるデータ線及び該データ線に交差する方向に延びる走査線を形成する工程と、
    前記走査線により走査信号が供給されるスイッチング素子を形成する工程と、
    前記データ線により前記スイッチング素子を介して画像信号が供給される画素電極を形成する工程と、
    前記画像表示領域の周辺に位置する周辺領域に、前記データ線及び前記走査線を駆動する駆動回路を形成する工程と、
    前記データ線、前記走査線、前記スイッチング素子及び前記駆動回路の上に層間絶縁膜を形成する工程と、
    前記周辺領域に形成された層間絶縁膜のうち、少なくとも前記駆動回路の形成領域に対応して形成された部分にエッチングを実施する工程と、
    該エッチングを実施する工程の後に、前記周辺領域及び前記画像表示領域双方の層間絶縁膜に平坦化処理を実施する工程と、
    を含むことを特徴とする電気光学装置の製造方法。
  6. 前記駆動回路は、回路素子及び配線を含んでなり、
    前記駆動回路を形成する工程は、前記回路素子及び前記配線を形成する工程を含み、
    前記回路素子及び前記配線の前記基板を平面視した場合における第1形成密度は、前記スイッチング素子及び前記画素電極の第2形成密度よりも大きいことを特徴とする請求項5に記載の電気光学装置の製造方法。
  7. 前記第2形成密度は、隣接しあう前記画素電極間のピッチが15〔μm〕以上として規定されることを特徴とする請求項6に記載の電気光学装置の製造方法。
  8. 前記画像表示領域のサイズは、1.0〔inch〕以上であることを特徴とする請求項5乃至7のいずれか一項に記載の電気光学装置の製造方法。
  9. 前記平坦化処理は、CMP(Chemical Mechanical Polishing)処理を含むことを特徴とする請求項5乃至8のいずれか一項に記載の電気光学装置の製造方法。
  10. 前記CMP処理は、押し付け圧力が500〔hPa〕以上であることを特徴とする請求項9に記載の電気光学装置の製造方法。
  11. 前記画素電極は平面視してマトリクス状に配列されており、
    前記エッチングを実施する工程の前に、
    前記画素電極の最外縁を結んだ形状に対応するマスクを形成する工程を更に含むことを特徴とする請求項5乃至10のいずれか一項に記載の電気光学装置の製造方法。
  12. 前記画素電極を形成する工程の前に、
    前記層間絶縁膜を形成する工程として、第1の層間絶縁膜を形成する工程と、
    前記周辺領域に形成された前記第1の層間絶縁膜のうち、少なくとも前記駆動回路の形成領域に対応して形成された部分にエッチングを実施する第1エッチング工程と、
    該第1エッチング工程の後に、前記周辺領域及び前記画像表示領域双方の前記第1の層間絶縁膜に平坦化処理を実施する第1平坦化工程と、
    前記第1の層間絶縁膜の上に、前記層間絶縁膜を形成する工程として、第2の層間絶縁膜を形成する工程と、
    前記周辺領域に形成された前記第2の層間絶縁膜のうち、少なくとも前記駆動回路の形成領域に対応して形成された部分にエッチングを実施する第2エッチング工程と、
    該第2エッチング工程の後に、前記周辺領域及び前記画像表示領域双方の前記第2の層間絶縁膜に平坦化処理を実施する第2平坦化工程と
    を実施し、
    前記画素電極は、前記第2の層間絶縁膜の上に形成することを特徴とする請求項5乃至11のいずれか一項に記載の電気光学装置の製造方法。
  13. 基板上に回路素子及び配線の少なくとも一方が積層構造をなす基板装置の製造方法であって、
    前記回路素子及び前記配線の少なくとも一方が、前記基板を平面視した場合に、より低密度及びより高密度にそれぞれ形成された低密度領域及び高密度領域を形成する工程と、
    前記低密度領域及び前記高密度領域に層間絶縁膜を形成する工程と、
    前記積層構造の最表面における前記低密度領域に対応する部分にマスクを形成する工程と、
    該マスクを形成する工程の後に、前記層間絶縁間にエッチングを実施する工程と、
    該エッチングを実施する工程の後、前記マスクを除去して前記層間絶縁膜に平坦化処理を実施する工程と
    を含むことを特徴とする基板装置の製造方法。
JP2003149651A 2003-05-27 2003-05-27 電気光学装置の製造方法並びに基板装置の製造方法 Expired - Fee Related JP4075691B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003149651A JP4075691B2 (ja) 2003-05-27 2003-05-27 電気光学装置の製造方法並びに基板装置の製造方法
US10/846,536 US7342638B2 (en) 2003-05-27 2004-05-17 Electro-optical device, method of manufacturing the same, and method of manufacturing substrate device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003149651A JP4075691B2 (ja) 2003-05-27 2003-05-27 電気光学装置の製造方法並びに基板装置の製造方法

Publications (2)

Publication Number Publication Date
JP2004354509A true JP2004354509A (ja) 2004-12-16
JP4075691B2 JP4075691B2 (ja) 2008-04-16

Family

ID=33562158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003149651A Expired - Fee Related JP4075691B2 (ja) 2003-05-27 2003-05-27 電気光学装置の製造方法並びに基板装置の製造方法

Country Status (2)

Country Link
US (1) US7342638B2 (ja)
JP (1) JP4075691B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710739B2 (en) 2005-04-28 2010-05-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
JP2008300755A (ja) * 2007-06-04 2008-12-11 Ips Alpha Technology Ltd 表示装置
JP5724531B2 (ja) * 2010-04-12 2015-05-27 セイコーエプソン株式会社 電気光学装置及び電子機器
JP5786600B2 (ja) * 2011-09-28 2015-09-30 セイコーエプソン株式会社 電気光学装置およびその製造方法、並びに電子機器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3249077B2 (ja) * 1996-10-18 2002-01-21 キヤノン株式会社 マトリクス基板と液晶装置
JP3767154B2 (ja) * 1997-06-17 2006-04-19 セイコーエプソン株式会社 電気光学装置用基板、電気光学装置、電子機器及び投写型表示装置
TW583433B (en) * 1998-02-09 2004-04-11 Seiko Epson Corp An electro-optical apparatus and a projection type apparatus
JP3513410B2 (ja) 1998-12-24 2004-03-31 キヤノン株式会社 画像表示装置
JP3663978B2 (ja) 1999-05-31 2005-06-22 セイコーエプソン株式会社 半導体装置の製造方法
JP3767305B2 (ja) * 2000-03-01 2006-04-19 ソニー株式会社 表示装置およびその製造方法
JP3675797B2 (ja) * 2000-11-08 2005-07-27 シチズン時計株式会社 液晶表示装置
US20030162398A1 (en) * 2002-02-11 2003-08-28 Small Robert J. Catalytic composition for chemical-mechanical polishing, method of using same, and substrate treated with same

Also Published As

Publication number Publication date
US7342638B2 (en) 2008-03-11
US20050007356A1 (en) 2005-01-13
JP4075691B2 (ja) 2008-04-16

Similar Documents

Publication Publication Date Title
KR100746060B1 (ko) 전기광학장치 및 전자기기, 그리고 전기광학장치의제조방법
JP4095518B2 (ja) 電気光学装置及び電子機器
JP2004354969A (ja) 電気光学装置及び電子機器
JP3938112B2 (ja) 電気光学装置並びに電子機器
JP3791517B2 (ja) 電気光学装置及び電子機器
JP4650153B2 (ja) 電気光学装置、電子機器及び電気光学装置の製造方法
JP4186767B2 (ja) 電気光学装置及び電子機器
JP4016955B2 (ja) 電気光学装置及びその製造方法並びに電子機器
JP4069906B2 (ja) 電気光学装置及びその製造方法並びに電子機器
JP2004347838A (ja) 電気光学装置並びに電子機器及び投射型表示装置
JP4329445B2 (ja) 電気光学装置並びに電子機器
JP4506133B2 (ja) 電気光学装置及び電子機器
JP2007187921A (ja) 電気光学装置及びその製造方法、並びに電子機器
KR100611861B1 (ko) 전기 광학 장치 및 전자기기
JP2008233149A (ja) 電気光学装置及び電子機器、並びに電気光学装置の製造方法
JP2003280020A (ja) 電気光学装置及びその製造方法並びに電子機器
JP3925549B2 (ja) 電気光学装置及び電子機器
JP4075691B2 (ja) 電気光学装置の製造方法並びに基板装置の製造方法
JP2007057847A (ja) 電気光学装置及びその製造方法、並びに電子機器及び接続構造
JP4862936B2 (ja) 電気光学装置及び電子機器
JP3767607B2 (ja) 電気光学装置及び電子機器
JP2007057846A (ja) 電気光学装置用基板の製造方法、電気光学装置及び電子機器
JP4003724B2 (ja) 電気光学装置及び電子機器
JP2006228921A (ja) 電気光学装置及びその製造方法、並びに電子機器
JP2006065356A (ja) 電気光学装置及び電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060501

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Ref document number: 4075691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees