JP2004333369A - 3次元形状測定装置および3次元形状測定方法 - Google Patents

3次元形状測定装置および3次元形状測定方法 Download PDF

Info

Publication number
JP2004333369A
JP2004333369A JP2003131624A JP2003131624A JP2004333369A JP 2004333369 A JP2004333369 A JP 2004333369A JP 2003131624 A JP2003131624 A JP 2003131624A JP 2003131624 A JP2003131624 A JP 2003131624A JP 2004333369 A JP2004333369 A JP 2004333369A
Authority
JP
Japan
Prior art keywords
laser light
dimensional shape
measurement
shape measuring
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003131624A
Other languages
English (en)
Other versions
JP4375710B2 (ja
Inventor
Satoshi Suzuki
敏 鈴木
Masaki Takabayashi
正樹 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pulstec Industrial Co Ltd
Original Assignee
Pulstec Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pulstec Industrial Co Ltd filed Critical Pulstec Industrial Co Ltd
Priority to JP2003131624A priority Critical patent/JP4375710B2/ja
Publication of JP2004333369A publication Critical patent/JP2004333369A/ja
Application granted granted Critical
Publication of JP4375710B2 publication Critical patent/JP4375710B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】3次元形状測定装置において、対象物の形状を問わず、対象物の適切な測定位置を簡単に見つけることができるようにする。
【解決手段】レーザ光源32からの測定用レーザ光は、ガルバノミラー34によって反射されて対象物OBの表面に照射スポットを形成する。照射スポットは、ガルバノミラー34の回転により、対象物OBの表面を直線状に走査する。照射スポットからの反射光はラインセンサ36に導かれ、3角測量の原理を用いて対象物OBの表面形状が測定される。ラインセンサ36に入る反射光が結像レンズ35の光軸上になる位置にて測定用レーザ光と交差するように出射された参照用レーザ光は、シリンドリカルレンズ39により直線状に変換されて、対象物OBの表面に直線状の照射跡を形成する。前記走査線と照射跡が重なるように3次元形状測定装置30の測定位置を定める。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、対象物表面に測定用レーザ光を走査しながら照射し、対象物表面にて反射した測定用レーザ光を受光して、対象物表面の3次元形状を測定する3次元形状測定装置および3次元形状測定方法に関する。
【0002】
【従来の技術】
従来から、図5(A)の斜視図、図5(B)の側面図および図5(C)の平面図に示すように、3次元形状測定装置10のハウジング11内に設けたレーザ光源12及びコリメートレンズ13からなる測定用レーザ光照射器からの測定用レーザ光を対象物OBに照射して同対象物OBの表面に照射スポットを形成するとともに、同照射スポットを対象物OBの表面で走査し、対象物OBから反射される測定用レーザ光を結像レンズ14およびCCDを直線的に配列したラインセンサ15からなる受光器にて受光し、この受光した反射光を用いて3角測量の原理に基づいて対象物の3次元形状を測定する3次元形状測定装置10はよく知られている(例えば、下記特許文献1参照)。
【0003】
また、この3次元形状測定装置10においては、対象物OBからの反射光を結像レンズ14の光軸に一致させる測定用レーザ光の対象物OBの表面における反射位置、言い換えれば、ラインセンサ15に形成される光スポットを最小にする測定用レーザ光の対象物OBの表面における反射位置(以降、この反射位置を基準位置Pという)から、測定用レーザ光の反射位置がずれるほどラインセンサ15に形成されるスポットの形状が円形から楕円に変形される。従って、測定用レーザ光照射器によって対象物OBの表面に形成される照射スポットを左右方向に走査する場合、図5(C)の平面図において、基準位置Pを中心としたドットを付した領域が測定可能領域となるとともに、同領域内であっても基準位置Pに近いほど高精度の測定が可能となる。
【0004】
このような測定領域の制限および測定精度の問題により、測定しようとする対象物OBの部分の中心位置に基準位置Pを合わせることが望まれる。この要望のために、次のようにすることも知られている。すなわち、3次元形状測定装置10のハウジング11内に、測定用レーザ光照射器とは独立にレーザ光源16および集光レンズ17からなる参照用レーザ光出射器を設け、測定用レーザ光と基準位置Pにて交差する光路上に参照用レーザ光が出射されるようにしておく。そして、対象物OBの表面形状の測定前に、測定用レーザ光照射器からのレーザ光による照射スポットを対象物OBの表面上で走査させておき、図5(B)の側面図に示すように、参照用レーザ光による照射スポットQが測定用照射スポットの走査線R上に重なる位置(好ましくは、走査線R上の中心位置)まで、3次元形状測定装置10または対象物OBを前後(図5における左右方向)に移動させ、その後に対象物OBの表面形状の測定に移るようにする。
【0005】
【特許文献1】
特開平9−218020号公報
【0006】
【発明が解決しようとする課題】
しかし、上記従来の参照用レーザ光出射器を用いた方法でも、図6に示すように、測定用レーザ光および参照用レーザ光の照射方向に鋭角的形状をもつ対象物に対しては、参照用レーザ光によって対象物OBの表面上に形成される照射スポットQが見難くなる。したがって、この照射スポットQを測定用レーザ光による走査線R上に合わせることは難しく、対象物OBの表面形状を測定するための3次元形状測定装置10の測定位置を適切な位置に定めることができない。
【0007】
【発明の概要】
本発明は、上記問題に対処するためになされたもので、その目的は、測定しようとする対象物の形状を問わず、3次元形状測定装置の対象物に対する適切な測定位置を簡単に見つけることができる3次元形状測定装置および3次元形状測定方法を提供することにある。
【0008】
上記目的を達成するために、本発明の構成上の特徴は、受光位置に形成される光スポットを最小にする測定用レーザ光の対象物表面における反射位置で同測定用レーザ光と交差する光路上に、レーザ光の照射跡が線状になる参照用レーザ光を出射するようにしたことにある。この場合、線状の参照用レーザ光の延設方向を測定用レーザ光の走査方向と同じにしたことにある。また、この線状の参照用レーザ光を、シリンドリカルレンズを用いて形成するとよい。
【0009】
これによれば、参照用レーザ光によって対象物OBの表面上に形成される照射跡は線状になるので、図4に示すように、測定用レーザ光および参照用レーザ光の照射方向に鋭角的形状をもつ対象物に対しても、照射跡Sは鋭角の部分に跨って形成される。したがって、本発明によれば、照射跡Sを測定用レーザ光による走査線R上に簡単に合わせることができるようになり、3次元形状測定装置の対象物に対する適切な測定位置を簡単に定めることができる。
【0010】
【実施の形態】
以下、本発明の一実施形態について図面を用いて説明すると、図1は同実施形態に係る3次元形状測定装置30を含む3次元形状測定システムを概略的に示している。
【0011】
この3次元形状測定システムは、基台50上に固定して先端部を測定対象空間内を自由に変位させる支持機構60を備えている。支持機構60は、固定ポール61、回転ロッド62、第1アーム63、第2アーム64および第3アーム65からなる。第3アーム65の先端部に、3次元形状測定装置30が組み付けられる。
【0012】
固定ポール61は、円筒状に形成され、その下端にて基台50上に垂直に立設固定されている。回転ロッド62は、円柱状に形成され、その下端部にて固定ポール61に軸線回りに回転可能に支持されて、固定ポール61から上方に突出している。第1アーム63は、その基端に設けた連結部63aにて、回転ロッド62の先端に設けた連結部62aに、回転ロッド62の軸線方向に直交する軸線回りに回転可能に組み付けられている。第2アーム64は、その基端に設けた連結部64aにて、第1アーム63の先端に設けた連結部63bに、第1アーム63の軸線方向に直交する軸線回りに回転可能に組み付けられている。第3アーム65は、その基端に設けた連結部65aにて、第2アーム64の先端に設けた連結部64bに、第2アーム64の軸線方向に直交する軸線回りに回転可能に組み付けられている。
【0013】
3次元形状測定装置30は、そのハウジング31に固定した連結器31aにより、第3アーム65の先端部に第3アーム65の軸線回りに回転可能に取り付けられる。
【0014】
また、支持機構60内には、回転角センサ66a,66b,66c,66d,66eが設けられている。回転角センサ66aは、固定ポール61内に組み込まれて、固定ポール61に対する回転ロッド62の軸線回りの回転角を検出する。回転角センサ66bは、第1アーム63の連結部63a内に組み込まれて、回転ロッド62の連結部62aに対する第1アーム63の連結部63aにおける一軸線回りの回転角を検出する。回転角センサ66cは、第2アーム64の連結部64a内に組み込まれて、第1アーム63の連結部63bに対する第2アーム64の連結部64aにおける一軸線回りの回転角を検出する。回転角センサ66dは、第3アーム65の連結部65a内に組み込まれて、第2アーム64の連結部64bに対する第3アーム65の連結部65aにおける一軸線回りの回転角を検出する。回転角センサ66eは、第3アーム65の先端部内に組み込まれて、第3アーム65に対する3次元形状測定装置30の第3アーム65における一軸線回りの回転角、すなわち3次元形状測定装置30の第3アーム65の先端部に対する回転角を検出する。
【0015】
3次元形状測定装置30は、図2に示すように、そのハウジング31内に、レーザ光源32、コリメートレンズ33、ガルバノミラー34、結像レンズ35、ラインセンサ36、レーザ光源37、コリメートレンズ38およびシリンドリカルレンズ39を収容している。
【0016】
レーザ光源32は、半導体レーザなどで構成されており、測定用レーザ光をコリメートレンズ33に向けて出射する。コリメートレンズ33は、レーザ光源32からの出射レーザ光を平行光にする。これらのレーザ光源32およびコリメートレンズ33が測定用レーザ光照射器を構成する。
【0017】
ガルバノミラー34は、コリメートレンズ33によって平行光にされた測定用レーザ光の進路を変更して対象物OBへ出射するとともに、対象物OBの表面にて反射されたレーザ光の進路を変更して結像レンズ35に導く。また、このガルバノミラー34は、対象物OBの表面を照射スポットで走査するために、電動モータ41により駆動されて、紙面上下方向の軸線回りに所定角度だけ回転する。この電動モータ41には、同電動モータ41の回転角すなわちガルバノミラー34の回転角を検出する回転角センサ42が組み付けられている。
【0018】
結像レンズ35は、対象物OBからの反射光をラインセンサ36上に結像する。ラインセンサ36は、CCDなどの複数の受光素子を一列に配置して長尺状に構成されており、レーザ光源32から対象物OBの照射スポットまでの距離を、複数の受光素子のうちで対象物OBからの反射光を受光した受光素子の位置により検出するものである。
【0019】
レーザ光源37は、半導体レーザなどで構成されており、コリメートレンズ38を介して参照用レーザ光をシリンドリカルレンズ39に向けて出射する。コリメートレンズ38は、レーザ光源37からの参照用レーザ光を平行光にする。シリンドリカルレンズ39は、レーザ光源37からコリメートレンズ38を介して入射した円形ビームである参照用レーザ光を直線状ビームに変換して対象物OBに向けて出射する。この参照用レーザ光は、対象物OBからの反射光を結像レンズ35の光軸に一致させる測定用レーザ光の対象物OBの表面における反射位置(言い換えれば、ラインセンサ15に形成される光スポットを最小にする測定用レーザ光の対象物OBの表面における反射位置)で、測定用レーザ光と交差する光路上に出射される。また、直線状の参照レーザ光(すなわち直線状ビーム)の延設方向は、測定用レーザ光の対象物OB上における走査方向と同じである。これらのレーザ光源37、コリメートレンズ38およびシリンドリカルレンズ39が、参照用レーザ光出射器を構成する。なお、この図2および後述する図3において、シリンドリカルレンズ39は光軸回りに90度回転して示している。
【0020】
また、3次元形状測定装置30は、電気制御装置43も備えている。この電気制御装置43は、外部からの指示によりレーザ光源32,37および電動モータ41の作動を制御する。また、この電気制御装置43は、ラインセンサ36からの検出信号を入力し、3角測量の原理に基づいて、前記入力した検出信号を用いて3次元形状測定装置30内の基準点(例えば、ガルバノミラー34における測定用レーザ光の反射位置)から対象物OBの照射スポットまでの距離を計算する。以下、この距離をZ方向距離という。さらに、電気制御装置43は、回転角センサ42からの検出信号を入力し、前記基準点から延設された基準方向に対する測定用レーザ光の照射方向の傾き角を計算する。以下、この傾き角をX方向傾き角という。そして、電気制御装置43は、照射スポットごとに、Z方向距離およびX方向傾き角を対にして対象物OBの表面形状情報として出力する。なお、X,Y,Z方向は、図2に示す座標軸に対応している。
【0021】
ふたたび、図1の説明に戻ると、3次元形状測定装置30には、コントローラ71および画像処理装置72が接続されている。コントローラ71は、複数の操作子を含むキーボードなどからなる入力装置73からの指示にしたがって、3次元形状測定装置30の作動を制御する。また、コントローラ71は、入力装置73からの指示にしたがって画像処理装置72の作動を制御するとともに、同入力装置73にて入力されたデータを画像処理装置72に供給する。
【0022】
画像処理装置72は、コンピュータ装置によって構成されていて、図示しないプログラムの実行により、3次元形状測定装置30からのZ方向距離およびX方向傾き角を対にした対象物OBの表面形状情報および回転角センサ66a〜66eからの検出回転角を用いて対象物OBの表面形状を表す3次元画像データを生成する機能を有する。この3次元画像データの生成においては、回転角センサ66a〜66eから検出回転角を入力するとともに、3次元形状測定装置30からZ方向距離およびX方向傾き角を対にした対象物OBの表面形状情報を入力する。そして、画像処理装置72は、照射スポットごとに前記入力した対象物OBの表面形状情報を用いて、3次元形状測定装置30の座標系における対象物OBの3次元画像データを計算する。次に、この計算した3次元画像データを、予め記憶されている固定ポール61および回転ロッド62の高さ、第1〜第3アーム63〜65の長さおよび前記入力した検出回転角を用いて、基準座標(例えば、基台50の予め決めた特定位置を基準にした座標)系における3次元画像データに座標変換する。
【0023】
この画像処理装置72には、表示装置74も接続されている。表示装置74は、液晶ディスプレイ、プラズマディスプレイ、CRTディスプレイなどを備えており、画像処理装置72から3次元画像データに基づいて対象物OBの3次元画像を表示する。
【0024】
次に、上記のように構成した実施形態の動作を説明する。まず、対象物OBを基台50上に置き、3次元形状測定装置30の適切な測定位置を定める。なお、対象物OBを基台50上に必ずしも置く必要はない。作業者は、この状態で入力装置73を操作することにより、3次元形状測定システムを測定位置モードに設定する。この測定位置モードの設定操作に関しては、3次元形状測定装置30に同モードを指定する操作スイッチを設けておけば、作業者が3次元形状測定装置30を手で持ったままで、同操作スイッチを操作することにより、測定位置モードに設定することも可能である。
【0025】
次に、作業者が、3次元形状測定装置30を手で持って対象物OBの測定させたい部分に向け、入力装置73または3次元形状測定装置30に設けた操作スイッチの操作により、3次元形状測定装置30を動作させる。これにより、レーザ光源32は測定用レーザ光を出射し、同出射された測定用レーザ光はコリメートレンズ33およびガルバノミラー34を介して対象物OBの表面に照射スポットを形成する。この場合、電動モータ41も作動してガルバノミラー34は所定角度だけ回転しては往復動するので、図3に示すように、対象物OBの表面に形成された測定用レーザ光による走査線Rが視覚的に観察される。
【0026】
一方、この状態では、レーザ光源37も作動しており、レーザ光源37から出射されたレーザ光は、コリメートレンズ38を介してシリンドリカルレンズ39に入射し、シリンドリカルレンズ39によって直線状のレーザ光に変換されて、対象物OBの表面に参照レーザ光による照射跡Sを形成する。この参照用レーザ光は、対象物OBからの反射光を結像レンズ35の光軸に一致させる測定用レーザ光の対象物OBの表面における反射位置(言い換えれば、ラインセンサ15に形成される光スポットを最小にする測定用レーザ光の対象物OBの表面における反射位置)で、測定用レーザ光と交差する光路上に出射されるとともに、参照レーザ光(すなわち直線状ビーム)の延設方向は、測定用レーザ光の対象物OB上における走査方向と同じである。したがって、図3にて前記反射位置がZ軸方向のZ0位置にあるとすれば、3次元形状測定装置30が適切な位置にあれば、照射跡Sは走査線Rに重なる。一方、3次元形状測定装置30が対象物OBの表面に近過ぎれば、照射跡Sと走査線Rは図示破線のようにずれる。一方、3次元形状測定装置30が対象物OBの表面から遠過ぎれば、照射跡Sと走査線Rは図示一点鎖線のようにずれる。
【0027】
したがって、作業者は、3次元形状測定装置30を前後に動かすことにより照射跡Sと走査線Rを重ねるようにすればよいので、3次元形状測定装置30を適切な測定位置に簡単に配置させることできる。また、対象物OBの鋭角的部分を測定する場合でも、図4に示すように、参照用レーザ光による照射跡Sは鋭角の部分に跨った形成される。したがって、この場合も、照射跡Sを測定用レーザ光による走査線R上に簡単に合わせることができるようになり、3次元形状測定装置30の測定位置を適切な位置に簡単に定めることができる。
【0028】
このような測定位置の設定後、入力装置73または3次元形状測定装置30に設けた操作スイッチを操作することにより、3次元形状測定システムを測定モードに設定する。この測定モードでも、ひきつづきレーザ光源32が作動して測定用レーザ光を出射するとともに、ガルバノミラー34も電動モータ41によって往復動されて、対象物OBの表面には測定レーザ光による走査線Rが形成、すなわち対象物OBの表面が測定用レーザ光による照射スポットで走査される。
【0029】
そして、作業者は、3次元形状測定装置30を参照用レーザ光による照射跡Sが走査線Rと重なる位置に保っていれば、画像処理装置42には、測定レーザ光の走査線方向の対象物OBの表面形状を表すZ方向距離およびX方向傾き角を対にした表面形状情報が3次元形状測定装置30から順次供給される。そして、画像処理装置42は、前記表面形状情報に加えて、回転角センサ66a〜66eからの検出回転角により対象物OBの表面形状を表す3次元画像データを生成して表示装置74に供給する。したがって、表示装置74は、測定用レーザ光の走査線に沿った対象物OBの表面形状を表示する。
【0030】
また、作業者が、Z軸方向の前記測定位置に3次元形状測定装置30を保ったまま、3次元形状測定装置30をY軸方向に移動させれば、対象物OBにおける異なるY軸方向位置の測定用レーザ光の走査線に沿った表面形状情報も画像処理装置72に入力される。したがって、これによれば、対象物OBの所定面積の表面形状が表示装置74に表示される。
【0031】
以上、本発明の一実施形態について説明したが、本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変形も可能である。
【0032】
例えば、上記実施形態では、ガルバノミラー34を回転させることにより、対象物OBの表面を測定用レーザ光でX軸方向に走査するようにしたが、これに代えて、レーザ光源32のレーザ光の出射方向を回転させるようにしてもよい。
【0033】
また、X軸方向走査に加えて、対象物OBの表面を測定用レーザ光でY軸方向にも走査することにより、対象物OBの表面をX軸およびY軸両方向すなわちマトリクス状に走査するようにして、3次元形状測定装置30をY軸方向に動かすことなく、対象物OBのX軸およびY軸両方向の3次元表面形状を自動的に測定できるようにしてもよい。この場合、レーザ光源32、コリメートレンズ33、ガルバノミラー34、結像レンズ35、ラインセンサ36、レーザ光源37、コリメートレンズ38およびシリンドリカルレンズ39からなる光学系全体をハウジング31内に可動可能に組み付けたケースに組み込んで、同ケース全体をハウジング31に対してY軸方向に電動モータなどで回転させるようにするとよい。
【0034】
また、上記実施形態では、3次元形状測定装置30を対象物OBに対して移動させて測定位置を定めるようにしたが、逆に、対象物OBを移動させて3次元形状測定装置30の測定位置を定めるようにしてもよい。また、3次元形状測定装置30を手動で動かさなくても、移動装置に組み付けておいて、同移動装置によって3次元形状測定装置30を移動させてもよい。
【0035】
さらに、上記実施形態では、シリンドリカルレンズ39を用いて参照レーザ光による照射跡を直線状にするようにしたが、これに代えて、測定用レーザ光の場合と同様に、電動モータによって回転するガルバノミラーにレーザ光源からのレーザ光を反射させて、視覚的に参照レーザ光による照射跡が直線状になるようにしてもよい。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る3次元形状測定装置を含む3次元形状測定システムの全体概略図である。
【図2】図1の3次元形状測定装置の構成を示す概略図である。
【図3】図1の3次元形状測定装置の測定用レーザ光による走査線と参照用レーザ光による照射跡を説明するための説明図である。
【図4】前記走査線および照射跡が鋭角的形状部分に形成された状態を示す状態図である。
【図5】(A)〜(C)は、従来の3次元形状測定装置による測定用レーザ光および参照用レーザ光を対象物に照射した状態を説明するための説明図である。
【図6】前記従来の測定用レーザ光による走査線および参照用レーザ光による照射跡が鋭角的形状部分に形成された状態を示す状態図である。
【符号の説明】
OB…対象物、30…3次元形状測定装置、32…レーザ光源、33,38…コリメートレンズ、34…ガルバノミラー、35…結像レンズ、36…ラインセンサ、37…レーザ光源、39…シリンドリカルレンズ、41…電動モータ。

Claims (6)

  1. 対象物表面に測定用レーザ光を走査しながら照射する測定用レーザ光照射器と、対象物表面にて反射した測定用レーザ光を受光する受光器とを備え、前記受光した測定用レーザ光により対象物表面の3次元形状を測定する3次元形状測定装置において、
    前記受光器に形成される光スポットを最小にする前記測定用レーザ光の対象物表面における反射位置で同測定用レーザ光と交差する光路上に、レーザ光の照射跡が線状になる参照用レーザ光を出射する参照用レーザ光出射器を設けたことを特徴とする3次元形状測定装置。
  2. 前記線状の参照用レーザ光の延設方向を前記測定用レーザ光の走査方向と同じにした請求項1に記載の3次元形状測定装置。
  3. 前記参照用レーザ光照射器を、レーザ光を出射するレーザ光源と、同レーザ光源から出射されたレーザ光を線状のレーザ光に変換するシリンドリカルレンズとで構成した請求項1または請求項2に記載の3次元形状測定装置。
  4. 対象物表面に測定用レーザ光を走査しながら照射し、対象物表面にて反射した測定用レーザ光を受光して、同受光した測定用レーザ光により対象物表面の3次元形状を測定する3次元形状測定方法において、
    受光位置に形成される光スポットを最小にする前記測定用レーザ光の対象物表面における反射位置で同測定用レーザ光と交差する光路上に、レーザ光の照射跡が線状になる参照用レーザ光を出射するようにしたことを特徴とする3次元形状測定方法。
  5. 前記線状の参照用レーザ光の延設方向を前記測定用レーザ光の走査方向と同じにした請求項4に記載の3次元形状測定方法。
  6. 前記線状の参照用レーザ光を、シリンドリカルレンズを用いて形成する請求項4または5に記載の3次元形状測定方法。
JP2003131624A 2003-05-09 2003-05-09 3次元形状測定装置および3次元形状測定方法 Expired - Lifetime JP4375710B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131624A JP4375710B2 (ja) 2003-05-09 2003-05-09 3次元形状測定装置および3次元形状測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131624A JP4375710B2 (ja) 2003-05-09 2003-05-09 3次元形状測定装置および3次元形状測定方法

Publications (2)

Publication Number Publication Date
JP2004333369A true JP2004333369A (ja) 2004-11-25
JP4375710B2 JP4375710B2 (ja) 2009-12-02

Family

ID=33506750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131624A Expired - Lifetime JP4375710B2 (ja) 2003-05-09 2003-05-09 3次元形状測定装置および3次元形状測定方法

Country Status (1)

Country Link
JP (1) JP4375710B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010405A (ja) * 2005-06-29 2007-01-18 Yokohama Rubber Co Ltd:The タイヤ動的接地形状測定方法及び装置
JP2009058503A (ja) * 2007-08-10 2009-03-19 Leica Geosystems Ag 非接触で対象表面の座標を測定する測定方法および測定システム
WO2009049939A1 (en) * 2007-10-18 2009-04-23 Leica Geosystems Ag Shape measuring instrument with light source control
JP2012007897A (ja) * 2010-06-22 2012-01-12 Pulstec Industrial Co Ltd 3次元形状測定装置
US9020240B2 (en) 2007-08-10 2015-04-28 Leica Geosystems Ag Method and surveying system for noncontact coordinate measurement on an object surface
CN108340071A (zh) * 2017-01-24 2018-07-31 株式会社迪思科 光斑形状检测装置
CN110645907A (zh) * 2018-06-26 2020-01-03 精工爱普生株式会社 三维计测装置、控制装置及机器人系统
US11235469B2 (en) 2018-06-26 2022-02-01 Seiko Epson Corporation Robot controller and robot system
US11506839B2 (en) 2018-02-14 2022-11-22 Tokyo Institute Of Technology Beam deflection device
US11548160B2 (en) 2018-06-26 2023-01-10 Seiko Epson Corporation Three-dimensional measuring device, controller, and robot system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044060A (ja) 2012-08-24 2014-03-13 Canon Inc 形状測定装置、および形状測定方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735079B2 (ja) * 2005-06-29 2011-07-27 横浜ゴム株式会社 タイヤ動的接地形状測定方法
JP2007010405A (ja) * 2005-06-29 2007-01-18 Yokohama Rubber Co Ltd:The タイヤ動的接地形状測定方法及び装置
US9020240B2 (en) 2007-08-10 2015-04-28 Leica Geosystems Ag Method and surveying system for noncontact coordinate measurement on an object surface
JP2009058503A (ja) * 2007-08-10 2009-03-19 Leica Geosystems Ag 非接触で対象表面の座標を測定する測定方法および測定システム
WO2009049939A1 (en) * 2007-10-18 2009-04-23 Leica Geosystems Ag Shape measuring instrument with light source control
US8174682B2 (en) 2007-10-18 2012-05-08 Leica Geosystems Ag Shape measuring instrument with light source control
JP2012007897A (ja) * 2010-06-22 2012-01-12 Pulstec Industrial Co Ltd 3次元形状測定装置
CN108340071A (zh) * 2017-01-24 2018-07-31 株式会社迪思科 光斑形状检测装置
CN108340071B (zh) * 2017-01-24 2021-06-08 株式会社迪思科 光斑形状检测装置
US11506839B2 (en) 2018-02-14 2022-11-22 Tokyo Institute Of Technology Beam deflection device
CN110645907A (zh) * 2018-06-26 2020-01-03 精工爱普生株式会社 三维计测装置、控制装置及机器人系统
US10837759B2 (en) 2018-06-26 2020-11-17 Seiko Epson Corporation Three-dimensional measuring device, controller, and robot system
US11235469B2 (en) 2018-06-26 2022-02-01 Seiko Epson Corporation Robot controller and robot system
US11548160B2 (en) 2018-06-26 2023-01-10 Seiko Epson Corporation Three-dimensional measuring device, controller, and robot system

Also Published As

Publication number Publication date
JP4375710B2 (ja) 2009-12-02

Similar Documents

Publication Publication Date Title
JP7039388B2 (ja) 測量装置
JP3612068B2 (ja) ワークにおける座標測定法
US8699036B2 (en) Device for optically scanning and measuring an environment
JP6560596B2 (ja) 測量装置
US11402207B2 (en) Surveying instrument
JP7073532B2 (ja) 三次元再構成システムおよび三次元再構成方法
JP5695578B2 (ja) ロボットアーム用位置情報測定装置及び方法
JP2019039795A (ja) 測量システム
JP2004257927A (ja) 3次元形状測定システムおよび3次元形状測定方法
JP2014232113A (ja) レーザトラッカによる寸法データの自動計測方法
JP2016505839A (ja) 目標物の位置座標を決定するための方法及び装置
JP7191643B2 (ja) 測量装置
JP4375710B2 (ja) 3次元形状測定装置および3次元形状測定方法
JP6680628B2 (ja) レーザスキャナ
JP7032846B2 (ja) 測量装置
EP4012333A1 (en) Stable mobile platform for coordinate measurement
JP7448397B2 (ja) 測量装置及び測量システム
JP2013152224A (ja) 光学システム
EP3696499A1 (en) Surveying system having a rotating mirror
JP4571256B2 (ja) 逐次2点法による形状精度測定装置および逐次2点法による形状精度測定用レーザ変位計間隔測定方法
JP2022055525A (ja) 墨出しシステム、墨出し方法
JP3950433B2 (ja) 3次元形状測定装置および3次元形状測定方法
JP7289252B2 (ja) スキャナシステムおよびスキャン方法
JP7289239B2 (ja) 測量システム
JP2020125981A (ja) 測定装置及び測定装置の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090904

R150 Certificate of patent or registration of utility model

Ref document number: 4375710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term