JP2009058503A - 非接触で対象表面の座標を測定する測定方法および測定システム - Google Patents

非接触で対象表面の座標を測定する測定方法および測定システム Download PDF

Info

Publication number
JP2009058503A
JP2009058503A JP2008204958A JP2008204958A JP2009058503A JP 2009058503 A JP2009058503 A JP 2009058503A JP 2008204958 A JP2008204958 A JP 2008204958A JP 2008204958 A JP2008204958 A JP 2008204958A JP 2009058503 A JP2009058503 A JP 2009058503A
Authority
JP
Japan
Prior art keywords
dimensional image
measuring
target object
image recording
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008204958A
Other languages
English (en)
Other versions
JP5260175B2 (ja
Inventor
Bo Pettersson
ペータースン ボー
Knut Siercks
ズィールクス クヌート
Benedikt Zebhauser
ツェブハオザー ベネディクト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leica Geosystems AG
Original Assignee
Leica Geosystems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/837,341 external-priority patent/US8036452B2/en
Priority claimed from EP07114173.3A external-priority patent/EP2023077B1/de
Application filed by Leica Geosystems AG filed Critical Leica Geosystems AG
Publication of JP2009058503A publication Critical patent/JP2009058503A/ja
Application granted granted Critical
Publication of JP5260175B2 publication Critical patent/JP5260175B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

【課題】多数の基準マーキングを使用しないで、対象物体座標系における対象物体の対象表面を非接触で正確かつ迅速に座標測定することが可能な方法および装置を提供する。
【解決手段】対象物体座標系Oにおいて測定される対象物体1の対象表面2を非接触で座標測定するための測定方法および測定システムに関する。対象表面2の第1の区域S1の第1の3次元画像P1は、第1の位置x1, y1, z1と第1の方向ψ111で、電子的に測定され、その第1の3次元画像P1のデータは、深さの成分の情報を含む多数の第1の画素i1から構成される。3次元画像記録装置3の画像座標系Bにおける第1の3次元画像座標のデータは、第1の画素i1に割り当てられる。対象物体座標系Oにおける3次元画像記録装置の第1の位置x1, y1, z1と第1の方向ψ111は、 対象物体座標系Oに結合された測定装置4a,4bにより測定される。
【選択図】図1

Description

本発明は、請求項1および13に示すように、対象物体座標系で測定される対象物体の対象表面を非接触で座標の測定をする測定方法および測定システムとに関する。
近接範囲内の対象物体の表面を非接触で写真測量によって座標測定をするために、画像データを対象物体座標系に変換することにより、様々な視野図から対象物体を再現する画像を用いて対象物体の寸法が導かれる。この目的のために、画像データが、データ処理装置で処理される。座標計算の基になるのは、関連する画像のカメラ方向の測定である。
先行技術から知られるように、単一のカメラによって、異なる視野から異なる時間で測定された対象物体の区域を測定し、いわゆる3次元画像を与えるように、画像処理システムによってそれぞれ2次元画像データを処理することができる。いずれの場合も、深さの情報を3次元画像の画素に含ませ、それにより、カメラとその視野から決定される画像座標系での3次元画像の座標が、検討されるそれぞれの画素、特に全ての画素に割り当てられる。異なる視野からの同じ画面を示す複数の2次元画像から3次元画像を生成するための異なる画像処理が、従来技術に開示されている。
同様に従来技術から知られるように、一つのカメラによる異なる時間での異なる視野からの区域を測定する代わりに、複数のカメラで、実質的に同時の測定を実行することが可能である。これには、区域の3次元の測定がカメラを移動させることなく可能であり、複数のカメラが互いに相対的に固定された方向と距離を有することができ、それぞれのカメラの方向の測定をしないで済ませる両方の利点がある。
先行技術は、それぞれ異なるが固定された相対視野からの画面を測定するための、共通のハウジング内にある、距離を離れて設けられた2つあるいは3つのカメラで構成された、別々の3次元画像記録装置を開示している。測定区域は、その画像を電子的に処理することができるような特有の画像の特徴を有しているので、その区域にマーキングを適用することができる。3次元画像記録装置からその区域上に投影する立体照明ビーム、特に、レーザービームによって、これらのマーキングが生成され、このビームは、光学的スクリーンあるいは光学的十字マークを投影するよう構成されている。通常、このような3次元画像記録装置は、事実上同時に測定された異なる視野からの複数の画像から3次元の画像を導く画像処理装置を備える。
このような3次元画像記録装置は、例えば、Optigo(商標)およびOptiCell(商標)で知られており、正三角形に配置された3つのカメラを備えている、CogniTens(商標)の画像記録システムがあり、並べて配置された2つの高解像度CCDカメラと、測定される区域へ立体照明光を投影するプロジェクタとを備えるActiCM(商標)のシステムAdvent(商標)がある。
測定され記録された画像要素の座標の決定は、その画像内の基準マーキングによる方法として有効であり、そのマーキングから、実際の三次元座標の測定が実行される。ここで、測定された3次元画像に関連し、3次元画像記録装置に基づく画像座標系は、対象物体が存在し、例えば、対象物体のCADモデルに基づく対象物体座標系に変換される。ここでは、0.5ミリメートル未満の精度が、従来技術から公知の3次元画像記録装置で達成される。
特に、区域内の深さスキャニングを実行し、点群を生成する3次元レーザースキャナの形での3次元スキャニングシステムは、もっと知られている。ここでは、レーザービームが一本ずつ区域をスキャンするシリアルシステムと、走査線がその区域全体を覆う並列システムと、区域内の多数の点を同時にスキャンし、その区域の深さの測定を実行するいわゆるRIMsまたは範囲イメージングシステムとの間に区別がある。方法として、これらのシステムのすべてに共通するのは、その区域全体を移動する、少なくとも1つの距離測定のレーザービームによって、深さのスキャニングが有効であることである。特に、このようなシリアルシステムは、たとえば、ライカHDS6000、ライカScanStation2、トリンブルGX3 3Dスキャナ、ゾラー+フローリッヒIMAGER5003、 ゾラー+フレーリッヒIMAGER5006の製品名称で、広く使われ、市販されている。
すべての3次元画像記録装置の一つの問題は、必要とされる分解能で画像測定できる測定範囲が、設計から制限されることである。比較的大きな対象物体の3次元測定の場合、3次元画像記録装置の異なる位置と方向からの複数の個々の3次元測定をすることが避けられない。より大きな3次元の全画像を生成するために、測定区域内のマーキングの支援により、画像領域を重ねて、合わせることによって、多数のより小さな画像が組み合わせられる。この目的を達成するさまざまな方法が、従来例に開示されている。これらの方法の一般的な問題は、より大きな画像を得るために結合される個々の3次元画像が重複領域を有する必要があることである。少なくとも一つの基準点を有する第1の区域から、その第1の区域から距離が離れ、そして基準点を有しない第2の区域への、3次元画像記録装置の位置の不連続な変化は、たとえ二つの区域に結合された画像が測定されているとしても、画像処理装置によって対応することができない。したがって、測定し、結合した画像の処理をすることができるよう、離れた二つの区域を光学的に結合することが必要とされる。直接の測定内容を有しない多数の3次元画像を測定することによって、全体の測定法は遅くなり、メモリや計算リソースが消費されてしまう。また、小さな測定誤差と必然的に係る画像測定の座標測定は、多数の画像の結合、特にリモート基準点の場合での測定精度に非常に大きな影響を及ぼす。
さらに、3次元画像記録装置が工業用ロボットのヘッドあるいは門形座標測定装置によって支持され、調整可能である測定システムおよび測定方法は、従来例より知られている。高品質で高解像度の3次元画像記録装置はときに10Kgを超えるため、画像測定の精度に適合した必要とされる精度を有する3次元画像記録装置の位置を正確に規定することは、不可能であり、これは、操作装置の安定構造を必要とし、3次元画像記録装置の使用範囲が固定システムに制限するからである。そのため、たとえば、車両の内部での使用は、複雑であるか、あるいは、不可能である。正確な3次元画像記録装置よりも非常に低い精度の測定のため、産業用ロボットは、外部基準として適していない。門形の座標測定装置は、重い負荷を支持するようには設計されておらず、高い機械的負荷の下では、基準に使用することができるような測定結果を得ることができない。この理由により、操作装置により得られ、3次元画像記録装置の絶対的および/または相対位置についての情報を与える任意の測定位置の値は、画像測定、特に、異なる、結合していない区域の複数の3次元画像の測定の基準のために使用することができない。
本発明の目的は、したがって、避けられない測定すべき多数の基準マーキングを使用することなしに、対象物体座標系で測定される対象物体の対象表面を、非接触で、正確かつ迅速に座標測定することが可能な方法および装置を提供することである。
この目的は、本発明の独立した請求項の特徴を実現することにより達成される。本発明の代替やさらに展開した特徴が従属の請求項に記載されている。
本発明によるこの方法は、対象表面の区域の3次元画像を電子的に測定するために、公知の3次元画像記録装置を使用して実行される。この3次元画像記録装置は、3次元画像を測定するための、カメラ、レンズ、電子部品および/または距離測定器の要素を備える単一の装置である。特に、これらすべての要素は、3次元画像記録装置の単一のハウジング内に納められている。この3次元画像は、それぞれ深さ情報の成分が連結された多数の画素で構成されている。これらの画素は、使用される光学的測定素子、例えばCCDセンサの、垂直および水平分解能で生じる。このような3次元画像記録装置は、従来例から知られており、例えば、ブランド名Optigo(商標)とOptiCell(商標)で販売されて、単一のハウジングに正三角形に配列された3つのカメラを備えるCogniTens(商標)という画像記録装置や、同様に、並べて配置された二つの高解像度CCDカメラと、測定される区域に立体照明光を投影するプロジェクタとを備えたActiCM(商標)のシステムAdvent(商標)がある。このため、より詳しい説明を、ここでは省略する。
カメラは、 3次元画像記録装置の単一のハウジング内に互いに連結し固定し、このカメラが相対的な光学的な方向、すなわち互いに固定された相対的視野と距離とを有することが好ましい。
この3次元画像記録装置は、第1の位置と方向に配置され、そこで測定される対象表面の第一の区域の第1の3次元画像が電子的に測定される。この3次元画像が、3次元画像記録装置によって、複数のカメラによって測定され、異なる視野からの第1の区域のマップを生成する複数の個々の画像から生成される。第1の3次元画像は、深さ情報の成分が、それぞれ連結している多数の画素から構成される。
ステレオスコープを基にした複数のカメラを使用する代わりに、第1の3次元画像を測定するための3次元画像記録装置として、3次元スキャニングシステム、例えば、適切な3次元レーザースキャナを使用することが可能である。この3次元レーザースキャナは、上述のように、対応するシステムを用い、可動レーザービームによって第1の位置と方向から、区域をシリアルまたはパラレルか、または完全にパラレルにスキャンする。このレーザースキャニングシステムに加えるに、 3次元レーザースキャナが、2次元画像を測定するために、画像カメラ、例えばCCDカメラを備えてもよい。カメラによって測定された画素の深さ情報は、レーザー距離測定器により得られる。3次元レーザースキャナは、第1の3次元画像を測定する全ての要素、特に、レーザー距離計、アクチュエータ、角度検出器、および光学カメラを、好ましくは1つのハウジング内に備える単一の装置である。
第1の3次元画像が測定され、位置あるいは方向の避けられない変化なしに、単一の第1の位置と方向から生成される。3次元画像記録装置および測定された区域に関連する画像座標系における3次元画像座標は、3次元画像にある画素に割り当てられ、第1の区域を測定するために調べられる。たとえば、その座標は、その3次元画像内の画素の水平および垂直位置と、3次元画像録装置の測定面からの距離とで構成される。この割り当ては、例えば、3次元画像記録装置またはデータが伝送される外部のデータ処理装置によって実施される。
区域が測定され、および、測定される対象物体が固定された対象物体座標系内での3次元画像記録装置の第1の位置と方向は、測定装置による第1の3次元画像を測定する時刻で測定される。この測定装置は、対象物体座標系に結合されている。これは、測定されるその対象物体と、位置と方向の測定を実行する測定装置のベースが、測定プロセスの過程で、互いに結合され、3次元画像記録装置が、自身の可動性のために、そのベースと対象物体とに関して、結合されないことを意味している。表現を簡単にすると、測定装置のベースと対象物体が関連する共通の座標系は、たとえ対象物体が他の座標系、例えば、CADモデルで定義された座標系で測定されたとしても、対象物体座標系として扱われる。しかし、測定装置と対象物体の異なる座標系が、固定された共通の基準を有することが可能で、そのために結合され、あるいは、互いに結合することができる。
次のステップとして、対象物体座標系における第1の3次元対象物体の座標は、3次元画像座標および、3次元画像記録装置の第1の位置と方向の情報からそれぞれの画素に割り当てられる。この割り当ては、従来技術から知られた座標変換によって実行される。このように、3次元画像の座標は、外部の座標系、すなわち対象物体座標系に関連する。
本発明の利点は、3次元画像記録装置の位置と方向を測定する外部の測定システムのかたちで、対象物体座標に対する3次元画像座標の関係によって、画像の測定内の多数の基準点の使用を避けることが可能となることである。3次元画像記録装置が、第2の区域を測定し記録するために、第2の位置と方向に移動したとき、測定システムにより測定された第2の位置と方向で、第2の3次元画像を基準にする。画像処理によって先に測定された画像を基準にし、そこに現在のものをマーキングすることを省略することが可能となる。
第1の区域に第2の区域をリンクした中間の測定を作成しないで、対象物体の対象表面の二つ以上の非結合の区域を順に測定することができる。その結果、この測定方法はより迅速でかつ正確に実行することができる。データ処理装置によって、互いに重複し測定した複数の3次元画像をリンクさせ、それらを結合し、結合画面を与えることができる。各3次元画像の測定を外部の基準によることで、結合誤差無く、高精度な方法で実行することができる。
本発明のさらなる展開において、この測定装置は、3次元画像記録装置を保持している間に作用する保持力から実質的に切り離されている。これは、測定装置が、3次元画像記録装置を保持するためのいかなる保持力を受けない、したがって、3次元画像記録装置の重さによるねじれや曲げ力が測定装置に作用することがないことを意味する。その結果、3次元画像記録装置の位置と方向を規定している間の測定精度は非常に増大し、3次元画像記録装置の高い光学的測定精度に対応する。さらに、測定装置をコンパクトで可搬型に設計することが可能となる。特に、これは、不充分なアクセス可能空間内、例えば、自動車の車体内での測定に、3次元画像記録装置を使用するのに、利点となる。
この3次元画像記録装置は、画像の測定中、例えば、保持力を緩衝する保持装置によって保持される。この保持装置は、例えば、測定装置から分離された関節型の保持アームによって構成される。あるいは、 3次元画像記録装置は、ハンドルにより、手で保持される。
本発明によると、測定装置は、調整可能な機械的関節型の3次元座標測定アームで構成することが可能である。このような関節型の3次元座標測定アームは、従来技術から知られている。同等のシステムが、多関節アームまたはポータブルCMM(商標)の名称で、Romer社からSigma(商標)、Flex(商標)あるいはOmega(商標)として利用可能で、CimCore(商標)のInfinite(商標)あるいはStinger(商標)が利用可能である。
関節式3次元座標測定アームは、大きな柔軟性、簡単な取扱、コンパクトなデザイン、低重量および可搬使用の可能性により特徴つけられる。関節式3次元座標測定アームに取り付けられた3次元画像記録装置によって、アクセスの悪い地域でも、曲げることができるので、関節式3次元座標測定アームのベースへ向かう線が直線にならずに、3次元画像の測定を行うことができる。したがって、外部座標系に高精度に関連付けることが、自動車の内部においても可能となる。
さらに代替の実施例では、測定装置は、対象物体座標装置、特にレーザー追跡装置に結合された光学レーザー測定装置として形成される。対象物体座標系内の3次元画像記録装置の位置と方向が、非接触方式で、レーザー測定装置によって、3次元画像記録装置の間接または直接の観察により、測定される。この目的に適したレーザー計測装置は、たとえば、ライカ・ジオシステムズ(商標)のレーザー追跡装置T-Cam(商標)である。この装置は、プローブホルダT-Probe(商標)の位置と方向を光学的に決定し、このプローブホルダにおいては、6自由度の全てに高精度に3次元画像記録装置を配置することができる。このレーザー追跡装置T-Cam(商標)は、対象物体座標系に基準を置き、3次元画像記録装置の位置と方向を正確に測定することができる。使用に際し、この測定装置も、3次元画像記録装置の保持力から分離されている。たとえば、3次元画像記録装置は、関節式保持アームあるいは手によって保持することが可能である。
対象物体座標系Oにおいて測定される対象物体1の対象表面2を非接触で座標測定するための、図1に図示された測定システムおよび測定方法は、3次元画像記録装置を備えている。この3次元画像記録装置は、対象表面2の第1の区域S1の第1の3次元画像P1を電子的に測定するように構成されている。3次元画像記録装置3は、3つの電子カメラ3a、3b、3c(図2参照)を備え、この3つの電子カメラは、3次元画像P1を生成するために、3つの異なった測定角度から第1の区域S1を測定する。この3つの電子カメラ3a、3b、3cは、3次元画像記録装置3の単一のハウジング内に固定され、互いに固定的に結合され、互いに相対的に固定された光学的な距離と方向を有する。このようなシステムには、例えば、CogniTens(商標)のシステムOptigo(商標)がある。三次元画像記録装置3を用いて、対象表面2の第1の区域S1の第1の3次元画像P1が、第1の位置x1, y1, z1と第1の方向ψ111について電子的に測定され、この第1の3次元画像P1はそれぞれ深さ情報成分を含む多数の第1の画素i1から構成されている。3次元画像記録装置3の画像座標系Bにおける第1の3次元画像座標u1i, v1i, w1iは、第1の画素i1に割り当てられる。3次元画像記録装置3は、これらの第1の3次元画像座標u1i, v1i, w1iを電子的に出力する。
対象物体座標系Oにおける3次元画像記録装置3の第1の位置x1, y1, z1と第1の方向ψ111は、この対象物体座標系Oに結合された測定装置4aによって測定される。この測定装置は、調整可能な機械的関節式3次元座標測定アーム4aで構成され、たとえば、Romer社の製品名Sigma、Flex、あるいはOmegaに対応する。この関節式3次元座標測定アーム4aは、対象物体座標系Oに固定された一端6および反対側の可動測定端7を有する。ピボットジョイント8により互いに旋回自由におよび/あるいは回転可能に結合された複数のアーム部9は、可動測定端7が第1の空間区域R1(図2)内で移動自在になるよう、端部6、7の間に配置される。さらに、このピボットジョイント8に設けられた角度センサ10は、それぞれのピボットジョイント8の角度位置αを測定するために備えられている。可動測定端7は、3次元画像記録装置3がこの測定端7に取り付けられるように、3次元画像記録装置3と結合される。対象物体座標系Oにおける3次元画像記録装置の第1の位置x1, y1, z1および第1の方向ψ111は、ピボットジョイント8の角度位置αおよびアーム部9の固定あるいは柔軟な長さの情報から決定される。3次元画像記録装置3に結合された可動測定端7は、6自由度で可動である。関節式3次元座標測定アーム4aは、3次元画像記録装置3の測定された第一の位置x1, y1, z1と第1の方向ψ111 を電子的に出力する。
3次元画像記録装置3の第1の3次元画像座標u1i, v1i, w1iおよび、3次元画像記録装置3の第1の位置x1, y1, z1と第1の方向ψ111は、関節式3次元座標測定アーム4aからデータ処理装置15に伝送される。
データ処理装置15は、第1の3次元画像座標u1i, v1i, w1iおよび3次元画像記録装置3の第1の位置x1, y1, z1と第1の方向ψ111の情報から、対象物体座標系Oにおける第1の3次元対象物体座標xli, yli, zliが第1の画素i1に割り当てられるように構成されている。データ処理装置15は、この第1の画素i1に割り当てられた第1の3次元対象物体座標xli, yli, zliを含む信号を出力する。この信号は、コンピュータによってさらに処理され、モニター上に画像として光学的に表示され、あるいは、それ以降のさらなる処理のために測定される。
この3次元画像記録装置3は、第1の位置x1, y1, z1と第1の方向ψ111から図1に破線で示すように、第1の空間R1内(図2)の別の位置x2, y2, z2と別の方向ψ222に運ばれる。3次元画像記録装置3が別の位置x2, y2, z2と別の方向ψ222にあるので、対象表面2の別の区域S1の別の3次元画像P2が、第1の位置と方向として電子的に測定される。対象物体座標系Oにおける3次元画像記録装置3の別の位置x2, y2, z2と別の方向ψ222また、いわゆる関節式3次元座標測定アーム4aである測定装置4aにより、測定される。対象物体座標Oにおける別の3次元対象物体座標x2i, y2i, z2iは、別の3次元画像P2の別の3次元画像座標u2i, v2i, w2iおよび3次元画像記録装置3の別の位置x2, y2, z2と別の方向ψ222の情報から第1の画像測定の場合として、別の3次元画像P2の罰の画素i2に割り当てられる。したがって、3次元画像P1とP2の両方を独立かつ高精度に外部基準にすることが実行される。
また、第1の画像を測定する場合も同様に、対応する信号がデータ処理装置15に送信され、このデータ処理装置15は、データの処理の後、第2の画素i2に割り当てられた第2の3次元対象物体座標x2i, y2i, z2iを含む信号を出力する。
図1に示すように、第1の区域S1と、対象表面2の別の区域S2は、部分的に互いに重なり合う。第1の3次元対象物体座標xli, yli, zliを有する第1の3次元画像P1と別の3次元対象物体座標x2i, y2i, z2iを有する別の3次元画像P2は、結合された3次元画像P1+2を与え、別の信号として出力するように、データ処理装置15によって電子的に結合される。
この3次元画像記録装置3は、それぞれの位置と方向で画像を測定している間、保持力を緩衝する保持装置11により保持されている。この保持装置11は、図1に示すように、3次元画像記録装置3上の保持部分で概略的にしめされている。保持装置11は、例えば、図示はされていない関節式保持アームで構成され、3次元画像記録装置3をその位置に保持する。他の方法として、保持装置11は、3次元画像記録装置3がその位置と方向に保持されるようなハンドルであってもよい。ここでは、比較的長い時間、位置と方向を一定に維持することはあまり重要ではなく、むしろ、画像を測定する時に、位置と方向が測定装置により高精度で測定されることである。
保持装置11を用いて、測定装置4a、すなわち、関節式3次元座標測定アーム4aが、3次元画像記録装置3を保持している間に作用する保持力から分離される。このように、3次元画像記録装置3から関節式3次元座標測定アーム4aに曲げやねじりの力が作用しないので、このアームで高精度に測定することが可能となる。
図2は、関節式3次元座標測定アーム4aの移動の自由範囲が3次元画像記録装置3の移動を許す範囲の空間区域R1で測定できない別の区域S2を測定するための、別の方法と、測定システムを図示している。したがって、関節式3次元座標測定アーム4aの位置の変更が必要となる。対象物体座標系Oに結合された一端6は、第1の位置x1, y1, z1と第1の方向ψ111が第1の空間区域R1内で測定された3時限画像記録装置3によって、第1の区域S1の第1の3次元画像P1を測定するための第1の位置A1に位置決めされている。この画像の測定は、図1に記載されているように、実行される。3次元画像記録装置3により別の区域S2の別の3次元画像P2を測定するため、結合する一端6を備える関節式3次元座標測定アーム4aは、第2の位置A2に位置決めされ、それにより、3次元画像記録装置3を、第2の空間区域R2内の別の位置x2, y2, z2と別の方向ψ222に運ぶことが可能となる。この別の位置と別の方向は、別の区域S2の測定を可能とする。この第2の画像の測定も、図1に記載されているように実行される。関節式座標測定アームをコンパクトで可搬型に設計することができるので、第1の位置A1から第2の位置A2への位置の変更が簡単な方法で可能である。
第1の位置A1は、対象物体座標系Oで基準とされ、結合される一端6が取り外し可能に固定される第1のグランドアンカー12によって規定される。また、第2の位置A2も、対象物体座標系Oで基準とされ、結合される一端6が取り外し可能に固定される第2のグランドアンカーによって規定される。このように、第1の位置x1, y1, z1と第1の方向ψ111を測定するための第1のグランドアンカー12により、そして、少なくともひとつの他の位置x2, y2, z2と他の方向ψ222を測定するための第2のグランドアンカー13により、関節式3次元座標測定アーム4aを対象物体座標系Oに結合することが可能となる。グランドアンカー12あるいは13は、通常、規定された機械的基準点、例えば機械的受け部および/あるいは光学的あるいは他の基準点、例えばマーキングあるいは磁場の基準点を意味するものとして理解される。
その代わりに、またはグランドアンカー12、13の使用に加えて、光学基準レーザー測定システム14が設けられる。第1の位置A1と第2の位置A2は、対象物体座標系Oで基準とされる光学基準レーザー測定システム14によって、光学的に測定される。関節式3次元座標測定アーム4aは、第1の位置x1, y1, z1と第1の方向ψ111を測定するため、そして、少なくともひとつの他の位置x2, y2, z2と他の方向ψ222を測定するための光学基準レーザー測定システム14によって、対象物体座標系Oに結合されている。関節式3次元座標測定アーム上の規定された点を測定し、結合された一端6の現在の位置を基準にするレーザー追跡装置は、基準レーザー測定システム14として使用することが可能である。このタイプとして適切なレーザー追跡装置が、従来技術から知られている。
図3は、図1の測定方法および測定システムの他の代替の実施例を示す。ここで、図1の関節式3次元座標測定システム4aの代替として、対象物体座標系Oに結合された光学レーザー測定装置4b、特にレーザー追跡装置が、測定装置として使用されている。対象物体座標系Oにおける3次元画像記録装置3の第1の位置x1, y1, z1と第1の方向ψ111および、他の位置x2, y2, z2と他の方向ψ222が、その3次元画像記録装置3を見ることによって、レーザー測定装置4bによる非接触方式で測定される。6自由度すべての測定に適しているレーザー計測装置は、例えば、ライカ・ジオシステムズのレーザー追跡システム“T-Cam"であり、それは、3次元画像記録装置3に結合され、6自由度全てに高精度に、受信機16”T-Probe"の位置と方向を光学的に測定する。レーザー測定装置4bを構成しているこのレーザー追跡装置“T-Cam"は、対象物体座標系Oにおいて基準とされ、3次元画像記録装置3の位置と方向を正確に測定することが可能である。この装置を使用するとき、測定装置4bは、3次元画像記録装置3の保持力から分離されている。この3次元画像記録装置3は、保持装置11、たとえば関節式保持アームあるいは手によって、保持される。
測定装置としての関節式3次元座標測定アームおよび3次元画像記録装置の第1の位置と方向、他の位置と方向を有する、本発明による測定システムと測定方法を示す概略図である。 第1と第2の位置に位置決めされた関節式3次元座標測定アームを有する、本発明による測定システムと測定方法を示す概略図である。 測定装置として光学レーザー測定装置および3次元画像記録装置の他の位置と他の方向とを有する測定システムと測定方法を示す概略図である。
符号の説明
1 対象物体
2 対象表面
3 3次元画像記録装置
4a,4b 測定装置

Claims (21)

  1. それぞれ深さ情報の成分を有する複数の第一の画素(i1)を含む第一の3次元画像(P1)を測定する素子を、単一のハウジング内に備える単一の装置である3次元画像記録装置(3)を使用して、対象物体(1)の対象表面(2)を対象物体座標系(O)について計測する、非接触による座標の測定方法であって、
    上記対象表面(2)の第一の区域(S1)の上記第一の3次元画像(P1)を、第一の位置(x1, y1, z1)と方向(ψ111)について、上記3次元画像記録装置(3)によって電子的に測定し、
    上記3次元画像記録装置(3)の画像座標系(B)における第一の3次元画像座標(u1i, v1i, w1i)のデータを、上記第一の画素(i1)に当てはめ、
    上記対象物体座標系(O)における上記3次元画像記録装置(3)の上記第一の位置(x1, y1, z1)と方向(ψ111)を、上記対象物体座標系(O)に関係付けられた測定装置(4a,4b)により測定し、
    上記対象物体座標系(O)における上記第一の3次元対象物体座標(xli, yli, zli)を、上記第一の3次元画像座標(u1i, v1i, w1i)および上記3次元画像記録装置(3)の上記第一の位置(x1, y1, z1)と方向(ψ111)のデータに基づいて、上記第一の画素(i1)に当てはめ、
    上記3次元画像記録装置(3)を、上記第一の位置(x1, y1, z1)と方向(ψ111)から、少なくとも一つの他の位置(x2, y2, z2)と方向(ψ222)に移動させ、
    上記対象表面(2)の少なくとも一つの他の区域(S2)の少なくとも一つの他の3次元画像(P2)を、上記他の位置(x2, y2, z2)と方向(ψ222)に置かれた上記3次元画像記録装置(3)によって電子的に測定し、
    上記対象物体座標系(O)における上記3次元画像記録装置(3)の上記他の位置(x2, y2, z2)と方向(ψ222)を、上記測定装置(4a,4b)により測定し、
    上記対象物体座標系(O)における他の3次元対象物体座標(x2i, y2i, z2i)を、上記他の3次元画像(P2)の上記他の3次元画像座標(u2i, v2i, w2i)および上記3次元画像記録装置(3)の上記他の位置(x2, y2, z2)と方向(ψ222)のデータに基づいて、上記他の3次元画像(P2)の他の画素(i2)に当てはめて、上記対象物体座標系(O)における対象物体(1)の対象表面(2)の座標を得るようにした
    ことを特徴とする非接触による座標の測定方法。
  2. 上記対象表面(2)の上記第一の区域(S1)および上記少なくとも一つの他の区域(S2)を、部分的に重ね、
    上記第一の3次元対象物体座標(xli, yli, zli)を有する上記第一の3次元画像(P1)と、上記他の3次元対象物体座標(x2i, y2i, z2i)を有する上記少なくとも一つの他の3次元画像(P2)とを、結合3次元画像(P1+2)を与えるように結び付ける
    ことを特徴する請求項1記載の測定方法。
  3. 上記測定装置(4a,4b)が、上記3次元画像記録装置(3)を保持する保持力から分離されていることを特徴とする請求項1あるいは2記載の測定方法。
  4. 上記3次元画像記録装置(3)が、画像を測定している間、上記保持力を緩衝する保持装置(11)により保持されていることを特徴とする請求項3記載の測定方法。
  5. 上記測定装置が、
    上記対象物体座標系(O)に関連付けらてる一端(6)と、上記一端(6)と反対側の可動測定端(7)と、上記一端(6)と上記可動測定端(7)との間に配置され、そして、上記可動測定端(7)が第1の空間部分(R1)内で移動自在になるように、複数のピボットジョイント(8)によって回転可能に互いに結合されている複数のアーム部(9)と、上記ピボットジョイント(8)のそれぞれの角度位置(α)を測定するため上記ピボットジョイント(8)に備えられた角度計測器(10)とを有し、上記可動測定端(7)を上記3次元記録装置(3)に規定されるように連結された、調整可能な機械関節式の3次元座標測定アーム(4a)を備え、
    上記対象物体座標系(O)における上記3次元画像記録装置(3)の上記第一の位置(x1, y1, z1)と方向(ψ111)および上記他の位置(x2, y2, z2)と方向(ψ222)を、上記ピボットジョイント(8)の上記角度位置(α)と上記アーム部(9)の長さ(a)の情報とから決定する
    ことを特徴とする請求項3あるいは4記載の測定方法。
  6. 上記3次元画像記録装置(3)に連結された上記可動測定端(7)が、6自由度で移動自在であることを特徴とする請求項5記載の測定方法。
  7. 上記対象物体座標系(O)における上記一端(6)を、
    上記第1の空間区域(R1)内で上記第一の位置(x1, y1, z1)と方向(ψ111)が測定されるような上記3次元画像記録装置(3)によって、上記第1の区域(S1)の上記第1の3次元画像(P1)を測定するために、第1の地点(A1)に位置決めをし、そして
    上記第2の空間区域(R2)内で上記少なくとも一つの他の位置(x2, y2, z2)と方向(ψ222)にある上記3次元画像記録装置(3)によって、上記少なくとも一つの他の区域(S2)の上記少なくとも一つの3次元画像(P2)を測定するために、第2の地点(A2)に位置決めをする
    ことを特徴とする請求項5あるいは6記載の測定方法。
  8. 上記第1の地点(A1)を、上記対象物体座標系(O)を基準にして、連結された上記一端(6)が固定された第1の基礎アンカー(12)により規定し、
    上記第2の地点(A2)を、上記対象物体座標系(O)を基準にして、連結された上記一端(6)が固定された第2の基礎アンカー(13)により規定し、
    関節連結された上記3次元座標測定アーム(4a)を、上記第1の位置(x1, y1, z1)と方向(ψ111)を規定する上記第1の基礎アンカー(12)と、上記少なくとも一つの他の位置(x2, y2, z2)と方向(ψ222)を規定する上記第2の基礎アンカー(13)とによって、上記対象物体座標系(O)に関連付ける
    ことを特徴とする請求項7記載の測定方法。
  9. 上記第1の地点(A1)および上記第2の地点(A2)を、上記対象物体座標系(O)を基準にした光学基準レーザー測定装置(14)によって光学的に測定し、
    上記第1の位置(x1, y1, z1)と方向(ψ111)を測定するため、そして、上記少なくとも一つの他の位置(x2, y2, z2)と方向(ψ222)を測定するため、上記光学基準レーザー測定装置(14)によって、関節連結された上記3次元座標測定アーム(4a)を上記対象物体座標系(O)に関連付ける
    ことを特徴とする請求項7記載の測定方法。
  10. 上記測定装置が、上記対象物体座標系(O)に関連付けられた光学レーザー装置(4b)、特にレーザー追跡装置で形成され、
    上記対象物体座標系(O)における3次元画像記録装置(3)の第1の位置(x1, y1, z1)と方向(ψ111)を、上記3次元画像記録装置(3)の間接あるいは直接の観測によって、上記レーザー測定装置(4b)により非接触で測定する
    ことを特徴とする請求項3あるいは4記載の方法。
  11. 上記3次元画像記録装置(3)が、3次元画像(P1)を生成するために、少なくとも二つの異なる測定角度からの第1の区域(S1)を測定する少なくとも二つの電子カメラ(3a,3b,3c)を備えていることを特徴とする請求項1から10記載のいずれか一項に記載の方法。
  12. 上記少なくとも二つの電子カメラ(3a,3b,3c)が、3次元画像記録装置(3)の単一のハウジング内に互いに連結されて固定され、互いに固定された相対的光学的方向と距離とを有していることを特徴とする請求項11記載の方法。
  13. 対象物体座標系(O)について測量される対象物体(1)の対象表面(2)を非接触で座標を計測するための測定システムであって、
    それぞれ深さ情報の成分を含む複数の第1の画素(i1)を有するよう構成され、そして、上記対象表面(2)の第1の区域(S1)にある第1の3次元画像(P1)を電子的に測定し、画像座標系(B)の上記第1の画素(i1)に対応する上記第1の3次元画像座標(u1i, v1i, w1i)を電子的に出力し、上記第1の3次元画像(P1)を測定する素子を備え、単一のハウジング内に納められた、単一の装置である3次元画像記録装置(3)と、
    上記対象物体座標系(O)に関連付けられ、上記対象物体座標系(O)について上記3次元画像記録装置(3)の第1の位置(x1, y1, z1)と方向(ψ111)を測定するよう構成された測定装置(4a,4b)と、
    上記第1の3次元画像座標(u1i, v1i, w1i)を上記3次元画像記録装置(3)から導出し、上記第1の位置(x1, y1, z1)と方向(ψ111)を上記測定装置(4a,4b)から導出し、上記対象物体座標系(O)における第1の3次元対象物体座標(xli, yli, zli)を、上記第1の3次元画像座標(u1i, v1i, w1i)および上記画像記録装置(3)の上記第1の位置(x1, y1, z1)と方向(ψ111)の情報から、第1の画素(i1)に当てはめるように構成し、上記第1の画素(i1)と関連付けられた上記3次元対象物体座標(xli, yli, zli)を含む信号を出力する、データ処理装置と、を備えている
    ことを特徴とする測定システム。
  14. 上記測定装置(4a,4b)が、上記3次元画像記録装置(3)を保持している間に作用する保持力から分離されていることを特徴とする請求項13記載の測定システム。
  15. 上記画像を測定中に上記3次元画像記録装置(3)を保持している間に作用する保持力を緩衝する保持装置(11)を備えていることを特徴とする請求項14記載の測定システム。
  16. 上記測定装置が、
    上記対象物体座標系(O)に連結された一端(6)と、上記一端(6)と反対側の可動測定端(7)と、上記一端(6)と上記可動測定端(7)との間に配置され、上記可動測定端(7)が第1の空間区域(R1)内で移動自在になるように、複数のピボットジョイント(8)によって回転可能に互いに結合された複数のアーム部材(9)と、上記ピボットジョイント(8)のそれぞれの角度位置(α)を測定するため上記ピボットジョイント(8)に設けられた角度計測器(10)と、を備えた、調整可能な機械関節式の3次元座標測定アーム(4a)により形成され、
    上記可動測定端(7)が、上記3次元画像記録装置(3)に関連付けられ、そして、
    上記機械関節式の上記3次元座標測定アーム(4b)が、上記対象物体座標系(O)における3次元画像記録装置(3)の上記第1の位置(x1, y1, z1)と方向(ψ111)を、上記ピボットジョイント(8)の上記角度位置(α)と上記アーム部(9)の長さ(a)の情報とから決定し、上記データ処理装置(15)に送信するように形成されている
    ことを特徴とする請求項13から15のいずれか一項に記載の測定システム。
  17. 上記3次元画像記録装置(3)に連結された上記可動測定端(7)が、6自由度で移動自在であるよう構成されていることを特徴とする請求項16記載の測定システム。
  18. 上記対象物体座標系(O)を基準にし、そして、機械関節式の上記3次元座標測定アーム(4a)を上記対象物体座標系(O)に関連付けるためのデータ処理装置(15)への信号リンクを有する光学基準レーザー測定装置(14)を備えていることを特徴とする請求項16あるいは17記載の測定システム。
  19. 上記測定装置が、レーザー追跡装置のような、上記対象物体座標系(O)に関連付けられた光学レーザー測定装置(4b)として構成されており、
    上記光学レーザー測定装置(4b)が、上記対象物体座標系(O)における上記3次元画像記録装置(3)の上記第1の位置(x1, y1, z1)と方向(ψ111)を、上記3次元画像記録装置(3)の間接あるいは直接の観測によって、非接触で測定し、データ処理装置(15)に送信するように構成されている
    ことを特徴とする請求項13から18のいずれか一項に記載の測定システム。
  20. 上記3次元画像記録装置(3)が、上記3次元画像(P1)を生成するために、少なくとも二つの異なる測定角度からの上記第1の区域(S1)を測定する少なくとも二つの電子カメラ(3a,3b,3c)を備えていることを特徴とする請求項13から19のいずれか一項に記載の測定システム。
  21. 上記少なくとも二つの電子カメラ(3a,3b,3c)が、上記3次元画像記録装置(3)の単一のハウジング内に互いに連結されて固定され、互いに固定された相対的な光学方向および距離を有していることを特徴とする請求項20記載の測定システム。
JP2008204958A 2007-08-10 2008-08-08 非接触で対象表面の座標を測定する測定方法および測定システム Expired - Fee Related JP5260175B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/837341 2007-08-10
EP07114173.3 2007-08-10
US11/837,341 US8036452B2 (en) 2007-08-10 2007-08-10 Method and measurement system for contactless coordinate measurement on an object surface
EP07114173.3A EP2023077B1 (de) 2007-08-10 2007-08-10 Verfahren und Vermessungssystem zur berührungslosen Koordinatenmessung an einer Objektoberfläche

Publications (2)

Publication Number Publication Date
JP2009058503A true JP2009058503A (ja) 2009-03-19
JP5260175B2 JP5260175B2 (ja) 2013-08-14

Family

ID=40554354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008204958A Expired - Fee Related JP5260175B2 (ja) 2007-08-10 2008-08-08 非接触で対象表面の座標を測定する測定方法および測定システム

Country Status (2)

Country Link
JP (1) JP5260175B2 (ja)
CN (1) CN103398656B (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017524944A (ja) * 2014-08-11 2017-08-31 ファロ テクノロジーズ インコーポレーテッド 拡張現実のための6自由度三角計測スキャナとカメラ
US10021379B2 (en) 2014-06-12 2018-07-10 Faro Technologies, Inc. Six degree-of-freedom triangulation scanner and camera for augmented reality
US10089789B2 (en) 2014-06-12 2018-10-02 Faro Technologies, Inc. Coordinate measuring device with a six degree-of-freedom handheld probe and integrated camera for augmented reality
US10176625B2 (en) 2014-09-25 2019-01-08 Faro Technologies, Inc. Augmented reality camera for use with 3D metrology equipment in forming 3D images from 2D camera images
US10244222B2 (en) 2014-12-16 2019-03-26 Faro Technologies, Inc. Triangulation scanner and camera for augmented reality
CN113029124A (zh) * 2021-03-03 2021-06-25 吉林大学 一种基于红外视觉引导和激光测距的三维姿态位置测量装置
WO2024047785A1 (ja) * 2022-08-31 2024-03-07 クオリカ株式会社 測量システムおよび測量方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713779A (zh) * 2013-12-31 2014-04-09 成都有尔科技有限公司 一种非接触式触控装置及其实现方法
CN108398694B (zh) * 2017-02-06 2024-03-15 苏州宝时得电动工具有限公司 激光测距仪及激光测距方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969108A (en) * 1988-04-08 1990-11-06 Cincinnati Milacron Inc. Vision seam tracking method and apparatus for a manipulator
JPH0312709A (ja) * 1989-06-12 1991-01-21 Hitachi Ltd マニピュレータの制御方法及び制御装置並びにマニピュレータ装置
JPH08261745A (ja) * 1995-03-03 1996-10-11 Faro Technol Inc 三次元座標測定装置
JPH08285587A (ja) * 1995-04-13 1996-11-01 Mitsui Constr Co Ltd 写真測量方法
US5805289A (en) * 1997-07-07 1998-09-08 General Electric Company Portable measurement system using image and point measurement devices
JP2000180137A (ja) * 1998-12-11 2000-06-30 Sony Corp 形状計測装置および形状表示方法
US20030048459A1 (en) * 2000-04-06 2003-03-13 Gooch Richard Michael Measurement system and method
JP2003254709A (ja) * 2002-03-01 2003-09-10 Univ Kinki 指示物体の座標情報を検出する座標検出装置
US20030202089A1 (en) * 2002-02-21 2003-10-30 Yodea System and a method of three-dimensional modeling and restitution of an object
JP2004191051A (ja) * 2002-12-06 2004-07-08 Teruaki Yogo 3次元形状測定方法及びその装置
JP2004333369A (ja) * 2003-05-09 2004-11-25 Pulstec Industrial Co Ltd 3次元形状測定装置および3次元形状測定方法
JP2007147422A (ja) * 2005-11-28 2007-06-14 Komatsu Engineering Corp 計測システム、画像処理装置及び方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1517116A1 (de) * 2003-09-22 2005-03-23 Leica Geosystems AG Verfahren und Vorrichtung zur Bestimmung der Aktualposition eines geodätischen Instrumentes
EP2105698A1 (en) * 2005-04-11 2009-09-30 Faro Technologies, Inc. Three-dimensional coordinate measuring device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969108A (en) * 1988-04-08 1990-11-06 Cincinnati Milacron Inc. Vision seam tracking method and apparatus for a manipulator
JPH0312709A (ja) * 1989-06-12 1991-01-21 Hitachi Ltd マニピュレータの制御方法及び制御装置並びにマニピュレータ装置
JPH08261745A (ja) * 1995-03-03 1996-10-11 Faro Technol Inc 三次元座標測定装置
JPH08285587A (ja) * 1995-04-13 1996-11-01 Mitsui Constr Co Ltd 写真測量方法
US5805289A (en) * 1997-07-07 1998-09-08 General Electric Company Portable measurement system using image and point measurement devices
JP2000180137A (ja) * 1998-12-11 2000-06-30 Sony Corp 形状計測装置および形状表示方法
US20030048459A1 (en) * 2000-04-06 2003-03-13 Gooch Richard Michael Measurement system and method
US20030202089A1 (en) * 2002-02-21 2003-10-30 Yodea System and a method of three-dimensional modeling and restitution of an object
JP2003254709A (ja) * 2002-03-01 2003-09-10 Univ Kinki 指示物体の座標情報を検出する座標検出装置
JP2004191051A (ja) * 2002-12-06 2004-07-08 Teruaki Yogo 3次元形状測定方法及びその装置
JP2004333369A (ja) * 2003-05-09 2004-11-25 Pulstec Industrial Co Ltd 3次元形状測定装置および3次元形状測定方法
JP2007147422A (ja) * 2005-11-28 2007-06-14 Komatsu Engineering Corp 計測システム、画像処理装置及び方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10021379B2 (en) 2014-06-12 2018-07-10 Faro Technologies, Inc. Six degree-of-freedom triangulation scanner and camera for augmented reality
US10089789B2 (en) 2014-06-12 2018-10-02 Faro Technologies, Inc. Coordinate measuring device with a six degree-of-freedom handheld probe and integrated camera for augmented reality
JP2017524944A (ja) * 2014-08-11 2017-08-31 ファロ テクノロジーズ インコーポレーテッド 拡張現実のための6自由度三角計測スキャナとカメラ
US10176625B2 (en) 2014-09-25 2019-01-08 Faro Technologies, Inc. Augmented reality camera for use with 3D metrology equipment in forming 3D images from 2D camera images
US10665012B2 (en) 2014-09-25 2020-05-26 Faro Technologies, Inc Augmented reality camera for use with 3D metrology equipment in forming 3D images from 2D camera images
US10244222B2 (en) 2014-12-16 2019-03-26 Faro Technologies, Inc. Triangulation scanner and camera for augmented reality
US10574963B2 (en) 2014-12-16 2020-02-25 Faro Technologies, Inc. Triangulation scanner and camera for augmented reality
CN113029124A (zh) * 2021-03-03 2021-06-25 吉林大学 一种基于红外视觉引导和激光测距的三维姿态位置测量装置
CN113029124B (zh) * 2021-03-03 2024-01-16 吉林大学 一种基于红外视觉引导和激光测距的三维姿态位置测量装置
WO2024047785A1 (ja) * 2022-08-31 2024-03-07 クオリカ株式会社 測量システムおよび測量方法

Also Published As

Publication number Publication date
CN103398656A (zh) 2013-11-20
JP5260175B2 (ja) 2013-08-14
CN103398656B (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
JP5260175B2 (ja) 非接触で対象表面の座標を測定する測定方法および測定システム
US8036452B2 (en) Method and measurement system for contactless coordinate measurement on an object surface
CN101363717B (zh) 用于在物体表面上进行非接触坐标测量的方法和勘测系统
US11408728B2 (en) Registration of three-dimensional coordinates measured on interior and exterior portions of an object
US9020240B2 (en) Method and surveying system for noncontact coordinate measurement on an object surface
US11022692B2 (en) Triangulation scanner having flat geometry and projecting uncoded spots
EP2132523B1 (en) Method and device for exact measurement of objects
EP2068280B1 (en) Image Distortion Correction
US9188430B2 (en) Compensation of a structured light scanner that is tracked in six degrees-of-freedom
JP3859574B2 (ja) 3次元視覚センサ
EP2564156B1 (en) Profile measuring apparatus
JP4540322B2 (ja) 画像間対応点検出装置および画像間対応点検出方法
US10200670B2 (en) Method and apparatus for determining the 3D coordinates of an object
US6674531B2 (en) Method and apparatus for testing objects
JPH09105613A (ja) 非接触型の三次元測定装置および測定方法
US20110317879A1 (en) Measurement of Positional Information for a Robot Arm
JP2003505682A (ja) 大きな物体の幾何学的形状を走査するシステム
JP2004138462A (ja) 3次元視覚センサ
JP6973233B2 (ja) 画像処理システム、画像処理装置および画像処理プログラム
JP2008014882A (ja) 三次元計測装置
JP3842988B2 (ja) 両眼立体視によって物体の3次元情報を計測する画像処理装置およびその方法又は計測のプログラムを記録した記録媒体
JP5285487B2 (ja) 画像記録システム及び画像記録方法
KR100395773B1 (ko) 두 장의 사진을 이용한 광 삼각법 삼차원 측정 장치
JP2010169634A (ja) 作業装置
JP2006064463A (ja) 形状測定装置および形状測定方法

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091021

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091021

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees