WO2024047785A1 - 測量システムおよび測量方法 - Google Patents

測量システムおよび測量方法 Download PDF

Info

Publication number
WO2024047785A1
WO2024047785A1 PCT/JP2022/032750 JP2022032750W WO2024047785A1 WO 2024047785 A1 WO2024047785 A1 WO 2024047785A1 JP 2022032750 W JP2022032750 W JP 2022032750W WO 2024047785 A1 WO2024047785 A1 WO 2024047785A1
Authority
WO
WIPO (PCT)
Prior art keywords
marker
coordinate
coordinate system
surveying
dimensional
Prior art date
Application number
PCT/JP2022/032750
Other languages
English (en)
French (fr)
Inventor
博義 山口
裕一 江口
邦彦 岡
Original Assignee
クオリカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クオリカ株式会社 filed Critical クオリカ株式会社
Priority to PCT/JP2022/032750 priority Critical patent/WO2024047785A1/ja
Publication of WO2024047785A1 publication Critical patent/WO2024047785A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C7/00Tracing profiles
    • G01C7/06Tracing profiles of cavities, e.g. tunnels

Definitions

  • the present invention relates to a surveying system and a surveying method for surveying the shape of an object at a work site, and relates to a technique suitable for measuring the three-dimensional shape of a face in tunnel excavation or mining, for example.
  • construction is carried out by tracking and measuring the distance between two prisms attached to a construction machine using two light wave range finders installed approximately 50 to 100 meters behind the working position.
  • the position and direction of the aircraft are visualized in real time.
  • the position of the chisel tip of the hydraulic breaker can be determined by using information from inclinometers installed on the construction machine's body, arm, and various parts of the hydraulic breaker.
  • the data comparing the above information with the design cross section is displayed on the screen on the monitor installed in the control section of the construction machine, and by checking this data, the operator can check the impact of the rock the chisel tip has touched and the status of over-excavation. can be confirmed.
  • the operator can operate the hydraulic breaker while looking at the monitor screen.
  • Non-Patent Document 2 a high-speed 3D scanner mounted on the roof of the upper revolving body of a construction machine equipped with a breaker measures the excavation shape of the face after blasting. By comparing the point cloud data of the excavation shape with the design cross section and displaying a heat map of the hit points remaining on the inner side of the design cross section line on the monitor inside the heavy equipment cabin, construction equipment operators can easily identify the hit points. You can check the location.
  • Non-Patent Document 1 only the portion of the face that is touched by the chisel tip of the breaker of the construction machine is measured. It may take a long time to understand the three-dimensional shape of the entire face.
  • a high-speed 3D scanner mounted on the upper revolving body measures the shape of the face. Because the high-speed 3D scanner is separated from the face by a distance equal to or longer than the length of the construction machine's boom and arm, the measurement accuracy of the face shape may be low. Additionally, since the boom and arm interfere with measurements using a high-speed 3D scanner, it may be difficult to grasp the three-dimensional shape of the entire face, or it may take a long time.
  • One purpose of the present invention is to provide a new technique for collecting shape data by measuring the three-dimensional shape of an object at a work site, such as a face, as safely, quickly, and accurately as possible. It is in.
  • a surveying system is a surveying system for surveying a three-dimensional shape of an object at a site, and includes at least one marker placed at at least one location near the object at the site; a first device attached to and carried by a mobile machine; a second device wirelessly communicating with the first device and handled by a worker at a location remote from the first device; 1 device includes a position and angle sensor that measures physical quantities related to the position, rotation angle, or orientation of the first device, a camera, and a three-dimensional position measuring device that measures the three-dimensional position of a point group around the first device. and the second device includes a display device that receives and displays an image taken by the camera, and an input device that allows the worker to specify the position of the marker within the displayed image.
  • the surveying system includes means for acquiring coordinate values of the marker in a fixed coordinate system in which the position of the marker is uniquely determined, and a means for acquiring coordinate values of the marker in a device coordinate system whose origin is the position of the first device.
  • the surveying system can generate three-dimensional coordinate data of the point group in the fixed coordinate system by sequentially performing the following steps (1) to (4) for the marker.
  • (1) adjusting the position of the mobile machine and photographing the marker with the first device; (2) Displaying the photographed image of the marker on the second device, and the operator designating one position in the image as the marker position; (3) While moving the mobile machine to move the first device along a path that allows photographing the object from the position of the marker, photographing the object with the first device and creating the point cloud.
  • measuring three-dimensional coordinate data in the device coordinate system (4) The one position specified by the worker as the position of the marker, the coordinate values of the marker in the fixed coordinate system, and the three-dimensional coordinate data of the point group in the device coordinate system. to generate the three-dimensional coordinate data of the point group in the fixed coordinate system.
  • It may further include a surveying device that surveys the coordinate values of the marker in the fixed coordinate system.
  • It may include means for displaying on the display device of the second device so that the surveyed area and the unsurveyed area of the target object can be distinguished.
  • a plurality of the markers may be provided, and the second device may include means for displaying a survey range corresponding to each marker on the display device of the second device.
  • the display device of the second device may include means for displaying the movement route of the first device.
  • the method may include means for calculating coordinate values of the marker in the device coordinate system by the worker specifying the position of the marker displayed on the second device.
  • the apparatus may include means for automatically recognizing the marker in the display image through image processing and specifying the coordinate value of the marker in the device coordinate system.
  • the surveying device is a total station, and the total station emits a laser beam, uses a portion of the laser beam that hits the wall surface of the site as an optical marker, and measures the coordinate values of the marker in the fixed coordinate system.
  • the device photographs the optical marker and displays it on the display device of the second device, the operator specifies the position of the optical marker, and the three-dimensional position measuring device measures the optical marker in the device coordinate system. may be configured to measure the coordinate values of.
  • the site may be a tunnel excavation site, and the target object may be a face.
  • the mobile machine may be a construction machine used at the site.
  • the apparatus may include means for estimating an optimal travel route for the first device and displaying the estimated travel route on the display device of the second device.
  • a surveying method is a surveying method using a surveying system that surveys a three-dimensional shape of a target object at a site, the surveying system being arranged at at least one location near the target object at the site. at least one marker, a first device carried on a mobile machine within the job site, and wirelessly communicating with the first device, the first device being handled by a worker at a location remote from the first device. a second device; the first device includes a position and angle sensor that measures physical quantities related to the position, rotation angle, or orientation of the first device; a camera; and a three-dimensional point group around the first device.
  • the second device includes a three-dimensional position measuring device that measures a position
  • the second device includes a display device that receives and displays an image taken by the camera, and a display device that allows the worker to locate the marker in the displayed image.
  • the first device can be remotely operated by having an input device for specifying a position.
  • the surveying method includes acquiring coordinate values of the marker in a fixed coordinate system in which the position of the marker is uniquely determined, and operating the first device from the second device to determine the position of the marker in the first device. obtain coordinate values in a device coordinate system with the origin as the origin, obtain movement data regarding the first device using the position and angle sensor, and use the three-dimensional position measuring device to obtain coordinate values of the device in the point group.
  • Acquire three-dimensional coordinate data in a coordinate system and use the movement data, the relationship between the coordinate value of the marker in the fixed coordinate system, and the coordinate value of the marker in the device coordinate system to calculate the point group.
  • the surveying method can generate three-dimensional coordinate data of the point group in the fixed coordinate system by sequentially performing the following steps (1) to (4) for the marker.
  • (1) adjusting the position of the mobile machine and photographing the marker with the first device; (2) Displaying the photographed image of the marker on the second device, and the operator designating one position in the image as the marker position; (3) While moving the mobile machine to move the first device along a path that allows photographing the object from the position of the marker, photographing the object with the first device and creating the point cloud.
  • measuring three-dimensional coordinate data in the device coordinate system (4) The one position specified by the worker as the position of the marker, the coordinate values of the marker in the fixed coordinate system, and the three-dimensional coordinate data of the point group in the device coordinate system. to generate the three-dimensional coordinate data of the point group in the fixed coordinate system.
  • the present invention can provide a new technique for collecting shape data by surveying the three-dimensional shape of an object at a work site, such as a face, as safely, quickly, and accurately as possible.
  • FIG. 1 is a diagram showing the configuration of a surveying system at a tunnel excavation site according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing the configuration of main parts of the first device. It is a figure showing the composition of the main part of a 2nd device. It is a flowchart of work performed by a worker.
  • FIG. 3 is an explanatory diagram of a route along which a worker moves the first device. It is a figure which shows the example of a display of the measurement area of a face displayed on a display screen. 7 shows a flowchart of a remote control program for the second device. It is a figure which shows an example of remote-controlling a 1st device by a 2nd device.
  • FIG. 3 is a diagram showing the configuration of main parts of the first device. It is a figure showing the composition of the main part of a 2nd device. It is a flowchart of work performed by a worker.
  • FIG. 3 is an explanatory diagram of a route along which
  • FIG. 7 is a diagram illustrating another example in which the first device is remotely controlled by the second device. It is a flowchart of the surveying program of a 1st apparatus. It is a flowchart of control at the time of starting measurement in a surveying program. It is a flowchart of control during measurement in a surveying program. It is a flowchart of the control at the time of the end of measurement in a surveying program. It is an explanatory view about a modification of a marker.
  • FIG. 1 is a diagram showing the configuration of a surveying system at a tunnel excavation site according to an embodiment of the present invention.
  • the tunnel T is excavated by repeating the following steps. 1) Dig the face K to a depth of about 1 m along the excavation direction by blasting. 2) Remove the hit of face K after blasting (the part that protrudes inward of the tunnel (tunnel or shaft) T from the tunnel design cross section) with construction machinery (for example, a backhoe with a breaker attached to the end of the arm to crush rocks). Then, the face K is shaped by filling in the excess excavation (the part excavated more than the tunnel design cross section) with concrete. 3) Fit the shoring H (for example, an arch-shaped H-shaped steel member that supports the tunnel wall) into the shaped face.
  • shoring H for example, an arch-shaped H-shaped steel member that supports the tunnel wall
  • the surveying system 1 of this embodiment acquires three-dimensional shape data of the face K after blasting in order to perform the blasting in step 1) with high precision and to perform the shaping in step 2) with high precision.
  • This is a system used for The surveying system 1 includes a construction machine 10, a plurality of markers 20, a surveying device 30, a first device 40, and a second device 50.
  • the construction machine 10 is, for example, a backhoe, and includes a traveling body 11, a revolving body 12 rotatably provided on the traveling body 11, and a working machine 13 attached to the revolving body 12.
  • the working machine 13, which is a mobile machine includes a boom 14 rotatably attached to the revolving body 12, an arm 15 rotatably attached to the tip of the boom 14, and a boom 15 attached to the tip of the arm 15.
  • a head portion 16 is provided.
  • the head portion 16 is a so-called attachment, and the attachment is, for example, a breaker.
  • the revolving body 12 is provided with a driver's cab 17 in which a worker OP1 of the construction machine 10 rides.
  • a plurality of markers 20 are attached to the shoring H at predetermined positions.
  • five markers 20 are provided (see FIG. 5), function as a reflector, and are attached to the shoring H using magnets or the like.
  • the surveying device 30 is, for example, a total station. Operator OP2 operates surveying device 30 to survey the position of each marker 20 and obtains its coordinates.
  • the coordinate values obtained by the surveying device 30 are coordinate values (for example, latitude, longitude, and altitude) in a fixed coordinate system (geodetic coordinate system) in which the position of each marker 20 is uniquely determined.
  • the surveying device 30 measures the coordinate values of each marker 20, the coordinates of each marker 20 are measured based on a plurality of reference coordinate points P1 and P2 whose coordinate values within the tunnel T are known.
  • the surveying device 30 has a communication device, and transmits the coordinate values of each surveyed marker 20 (for example, marker No. 1 (X1, Y1, Z1)) to the first device 40 via a wireless communication channel C. Send to.
  • FIG. 2 is a diagram showing the configuration of main parts of the first device 40.
  • the first device 40 is a mobile terminal device such as a smartphone, and includes a CPU (Central Processing Unit) 41, a communication device 42, a position/angle sensor 43, a three-dimensional position measuring device 44, a storage 45, a camera 46, and the like. , and a display screen 47.
  • the first device 40 is attached to the head portion 16 of the working machine 13 of the construction machine 10.
  • the construction machinery 10 which is an existing resource at the site, can be used, the introduction of additional machinery can be minimized, and dangerous spaces such as directly below the face K can be easily entered.
  • the working machine 13 of the construction machine 10 has a large variable range of movement and angle, it is suitable for surveying the entire face K.
  • the CPU 41 is a central processing unit that controls the entire first device 40.
  • the communication device 42 transmits a GUI (Graphical User Interface) to the second device 50 via the wireless communication channel C, and receives an input signal from the second device 50.
  • the communication device 42 receives the coordinates of each marker 20 surveyed from the surveying device 30.
  • the position and angle sensor 43 includes an IMU (Inertial Measurement Unit) and a geomagnetic sensor.
  • the IMU has, for example, a 3-axis acceleration sensor and a 3-axis gyro sensor.
  • the IMU accurately measures movements of the first device 40, such as movement distance (position) and posture (rotation angle), in three dimensions.
  • the geomagnetic sensor measures the orientation of the first device 40 by detecting geomagnetism.
  • the three-dimensional position measuring device 44 is, for example, a LiDAR (Light Detection and Ranging), which irradiates the surrounding area with laser light and generates point cloud data by receiving reflected light of the irradiated laser light.
  • the "point group data" includes position data and time data of each measurement point on the object surface that is returned when the surface of the object is irradiated with laser light.
  • the time data is data indicating the time when the position data was generated (the reflected light was received).
  • the position data is three-dimensional coordinate data indicating the position (coordinates) of a measurement point, and is indicated by three-dimensional coordinates (x coordinate, y coordinate, z coordinate) or polar coordinates (yaw angle, pitch angle, and depth).
  • the coordinates of each measurement point are coordinates whose origin is the position of the first device 40 at the time of measurement. That is, the coordinates of each measurement point obtained by the three-dimensional position measuring device 44 are coordinate values in the device coordinate system whose origin is the position of the first device 40 at the time of measurement.
  • the point group data may include reflection intensity data indicating the intensity of the received reflected light.
  • the storage 45 stores computer programs executed by the CPU 41, data processed by the CPU 41, and the like.
  • the storage 45 includes, for example, flash memory, RAM, and ROM.
  • the storage 45 stores a survey program 45A, a marker coordinate list 45B, and three-dimensional point group coordinate data 45C.
  • the surveying program 45A is a program for acquiring three-dimensional shape data of a face K, which will be described later.
  • the marker coordinate list 45B is a list of the coordinates of each marker 20 surveyed by the surveying device 30. The identification number of each marker 20 and its coordinates are stored in association with each other.
  • the three-dimensional point group coordinate data 45C includes the coordinate values of the marker 20 measured by the three-dimensional position measuring device 44 in the device coordinate system and point group data (the coordinate values of the point group in the device coordinate system and the measurement time). , the amount of movement of the first device 40 between each measurement point from the start to the end of measurement obtained by the position and angle sensor 43 (for example, the amount of displacement along three orthogonal coordinate axes of the device coordinate system, and the amount of displacement around the three orthogonal coordinate axes)
  • the coordinate values of the position data of the point cloud data are calculated using the movement data and the coordinate values in the fixed coordinate system of the marker 20 in the marker coordinate list 45B. ) into coordinate values of a fixed coordinate system.
  • the display screen 47 which is a display device, displays images taken by the camera 46 and images based on processing by the surveying program 45A.
  • FIG. 3 is a diagram showing the configuration of the main parts of the second device 50.
  • the second device 50 is a mobile terminal device such as a smartphone, and includes a CPU (Central Processing Unit) 51, a communication device 52, a storage 53, an input device 54, and a display screen 55.
  • the second device 50 is owned and operated by the operator OP1 of the construction machine 10.
  • the CPU 51 is a central processing unit that controls the entire second device 50.
  • the communication device 52 receives the GUI from the first device 40 and transmits an operation signal to the first device 40 .
  • the storage 53 stores computer programs executed by the CPU 51, data processed by the CPU 51, and the like.
  • the storage 53 includes, for example, flash memory, RAM, and ROM.
  • the storage 53 stores a remote control program 53A for remotely controlling the first device 40.
  • the input device 54 is an input device for inputting instructions for remotely controlling the first device 40.
  • the display screen 55 which is a display device, displays the video displayed on the display screen 47 of the first device 40.
  • a wireless input device 56 may be provided separately from the main body, and the operation signal may be transmitted from the wireless input device 56 to the first device 40.
  • the storage 53 does not need to store the remote control program 53A, but only needs to store a monitoring program that displays the video displayed on the display screen 47 of the first device 40.
  • FIG. 4 shows a flowchart of the work performed by the operator OP1 of the construction machine 10.
  • the operator OP1 remotely controls the first device 40 from the second device 50 and starts the surveying program 45A of the first device 40 (S100).
  • the operator OP1 selects the marker to be photographed first from the plurality of markers 20 (S102).
  • the worker OP1 operates the construction machine 10 and places the first device 40 at a position where the selected marker 20 can be photographed (S104).
  • the operator OP1 remotely controls the first device 40 and specifies the position and identification number of the selected marker 20 displayed on the display screen 47 (S106).
  • the operator OP1 determines whether the selected marker 20 is the last marker 20 (S108). If the selected marker 20 is not the last marker 20 (S108: NO), the worker OP1 operates the construction machine 10 to thoroughly measure the area of the face K around the selected marker 20, and The device 40 is moved to the vicinity of the next marker 20 (S110). For example, as shown in FIG. 5, when the lower left marker 20 is selected first, the first device 40 is moved along the path L1. Note that when the operator OP1 performs the process of step S110 in the subsequent flow, the first device 40 is moved along the routes L2, L3, and L4, for example.
  • the worker OP1 determines whether the measurement around the selected marker 20 has been completed (S112), and if it is determined that the measurement has not been completed (S112: NO), the worker OP1 continues the measurement. (S110). If it is determined that the measurement has been completed (S112: YES), the operator OP1 selects the next marker 20 (S114), and repeats the process from step S104. Then, in step S108, if the selected marker 20 is the last marker 20 (S108: YES), the worker OP1 remotely controls the first device 40 from the second device 50 to perform the surveying of the first device 40. The program 45A is ended (S116).
  • FIG. 6 is a diagram showing a display example of the measurement area of the face K displayed on the display screen 47 (display screen 55).
  • the entire area of the face K is divided into a grid pattern.
  • the worker OP1 selects the lower left marker 20 in step S110 of FIG. (Survey range) is surrounded by a broken line DL.
  • the area for which measurement has been completed by the first device 40 may be displayed in a colored (shaded) manner for each pixel. That is, the surveyed area and the unsurveyed area of the face K may be displayed so as to be distinguishable.
  • the machine information of the head section 16, the installation position of the first device 40, the installation position of the marker 20, etc. it is possible to measure the entire area of the face K without passing through and in the shortest time. Then, the optimal movement route for the first device 40 (a route that allows the entire area of the face K to be scanned comprehensively and efficiently in a short time) is estimated (for example, it can be estimated by prior simulation). Then, it may be displayed on the display screen 47 (display screen 55).
  • FIG. 7 is a flowchart of the remote control program for the second device 50.
  • the CPU 51 of the second device 50 starts the first device 40 when the remote control program is started (S200).
  • the CPU 51 displays the GUI displayed on the display screen 47 of the first device 40 (S202).
  • the CPU 51 remotely operates the first device 40 in response to the input from the operator OP1 (S204).
  • the CPU 51 determines whether an instruction to terminate the remote control program has been given (S206).
  • the CPU 51 ends the remote control program if an instruction to end the remote control program is given (S206: YES), and returns to step S202 if the instruction to end the remote control program is not given (S206: NO).
  • FIG. 8 is a diagram showing an example of remotely controlling the first device 40 by the second device 50.
  • the first device 40 transmits the GUI to the second device 50
  • the operator OP1 transmits the GUI to the second device 50 based on the GUI displayed on the display screen 55 of the second device 50.
  • the input device 54 of the user is operated to send an operation signal from the second device 50 to the first device 40 to remotely control the first device 40.
  • FIG. 9 is a diagram showing another example in which the first device 40 is remotely controlled by the second device 50.
  • the first device 40 transmits the GUI to the second device 50
  • the operator OP1 transmits the GUI to the second device 50 based on the GUI displayed on the display screen 55 of the second device 50.
  • the wireless input device 56 may be operated to send an operation signal from the wireless input device 56 to the first device 40 to remotely control the first device 40.
  • the main body of the second device 50 functions only as a monitor that displays the GUI of the first device 40.
  • FIG. 10 is a flowchart of the surveying program 45A of the first device 40.
  • the CPU 41 of the first device 40 starts photographing with the camera 46, creating point cloud data with the three-dimensional position measuring device 44, and measuring the position etc. with the position angle sensor 43. (S300).
  • the CPU 41 determines whether the worker OP1 operates the construction machine 10 and the first marker 20 is designated by the first device 40 through the process of step S106 in FIG. 4 (S302). If the first marker 20 has not been designated (S302: NO), the CPU 41 repeats the process of step S302. On the other hand, if the first marker 20 is designated (S302: YES), the CPU 41 executes control at the time of starting measurement (S310).
  • FIG. 11 is a flowchart of control at the start of measurement in the surveying program 45A of the first device 40.
  • the CPU 41 sets the marker 20 most recently specified in step 106 of FIG. 4 as the first marker m1 (S311).
  • the CPU 41 calculates the coordinate value of the first marker m1 in the device coordinate system based on the position of the marker 20 specified by the worker OP1 in step S106 and the position data obtained by the three-dimensional position measuring device 44 (step S312).
  • the CPU 41 determines whether or not the identification number corresponding to the identification number specified by the worker OP1 in step S106 is in the marker coordinate list 45B (S313). That is, it is determined whether the identification number corresponding to the identification number of the marker 20 designated as the first marker m1 is in the marker coordinate list 45B.
  • the CPU 41 processes the coordinate values of the fixed coordinate system of the marker 20 specified as the first marker m1. request to the user OP1 (S314). For example, the CPU 41 displays on the display screen 47 of the first device 40 that coordinate values are requested.
  • the requested worker OP1 requests the worker OP2 of the surveying device 30 to survey the coordinate values of the fixed coordinate system of the marker 20 designated as the first marker m1 and send it to the first device 40. do.
  • the CPU 41 determines whether or not the requested coordinate values and identification number have been received (S315). If coordinate values, etc. have not been received (S315: NO), the CPU 41 returns to step S314. When the coordinate values etc. are received (S315: YES), the CPU 41 registers the received coordinate values etc. in the marker coordinate list 45B (S316). Thereby, even in the middle of measurement, unregistered markers 20 can be registered without interrupting measurement.
  • the CPU 41 ends the control at the start of measurement and starts the control during measurement. (S317).
  • FIG. 12 is a flowchart of control during measurement in the surveying program 45A of the first device 40.
  • the CPU 41 determines whether a measurement time tk, which periodically arrives, has arrived (S321).
  • the measurement time tk preferably arrives at such short intervals that it can be considered that measurement is substantially continuous, and is preferably synchronized with each frame photographed by the camera 46. For example, when the frame rate of the camera 46 is 30 fps, it can be determined that the measurement time tk has arrived when the time to photograph one frame (1/30 second) has arrived. If the time to photograph one frame has not arrived, the CPU 41 repeats the process of step S321.
  • the CPU 41 creates point cloud data using the three-dimensional position measuring device 44, measures the position etc. using the position angle sensor 43, and The coordinate values (three-dimensional coordinate values) of each measurement point of the position data of the data in the device coordinate system are calculated and stored in the three-dimensional point group coordinate data 45C (S322).
  • the measured area is displayed on the GUI (S323), and which area of the camera image (face K image) was measured is displayed.
  • the CPU 41 determines whether the next marker 20 selected in step S114 in FIG. 4 has been designated by the worker OP1 in step S106 (S324). If it is determined that the next marker 20 has not been designated (S324: NO), the CPU 41 returns to step S321 and repeats the processing of steps S321 to S323. On the other hand, if it is determined that the next marker 20 has been designated (S324: YES), the CPU 41 starts control at the end of measurement (S325).
  • FIG. 13 is a flowchart of control at the end of measurement in the surveying program 45A of the first device 40.
  • the CPU 41 sets the marker 20 specified in step 106 of FIG. 4 after the first marker m1 as the second marker m2 (S331).
  • the CPU 41 calculates the coordinate value of the second marker m2 in the device coordinate system based on the position of the marker 20 specified by the worker OP1 in step S106 and the position data obtained by the three-dimensional position measuring device 44 (step S332).
  • the CPU 41 determines whether or not the identification number corresponding to the identification number specified by the worker OP1 in step S106 is in the marker coordinate list 45B (S333). That is, it is determined whether the identification number corresponding to the identification number of the marker 20 designated as the second marker m2 is in the marker coordinate list 45B.
  • the CPU 41 works on the coordinate values of the fixed coordinate system of the marker 20 specified as the second marker m2. request to the user OP1 (S334). For example, the CPU 41 displays on the display screen 47 of the first device 40 that coordinate values are requested.
  • the requested worker OP1 requests the worker OP2 of the surveying device 30 to survey the coordinate values of the fixed coordinate system of the marker 20 designated as the second marker m2 and send it to the first device 40. do.
  • the CPU 41 determines whether or not the requested coordinate values and identification number have been received (S335). If coordinate values etc. have not been received (S335: NO), the CPU 41 returns to step S314. If the coordinate values, etc. are received (S335: YES), the CPU 41 registers the received coordinate values, etc. in the marker coordinate list 45B (S336), and proceeds to step 337. Thereby, even in the middle of measurement, unregistered markers 20 can be registered without interrupting measurement.
  • the CPU 41 calculates the position obtained at each measurement time tk from the start of measurement to the end of measurement. Using the movement data of the angle sensor 43 and the relationship between the coordinate values of the first and second markers m1 and m2 in the device coordinate system and the coordinate values in the fixed coordinate system, the point group at each measurement time is calculated in the device coordinate system.
  • the coordinate values (position data, three-dimensional coordinate data) of are converted into the coordinate values (position data, three-dimensional coordinate data) of the fixed coordinate system of the point group at each measurement time and are stored (S337).
  • the reason for using the coordinate values of the two markers 20 is to prevent a decrease in surveying accuracy due to errors in the position and angle sensor 43. Therefore, if the accuracy of the position and angle sensor 43 is sufficiently high, this coordinate transformation may be performed using only the coordinate values of one marker 20.
  • the CPU 41 asks the operator OP1 whether or not to end the surveying program 45A, as shown in FIG. 10 (S304). If there is no instruction to end (S304: NO), the CPU 41 returns to step S310. On the other hand, if there is an instruction to end (S304), the CPU 41 ends the surveying program 45A.
  • the surveying system 1 of the embodiment described above is handled by a first device 40 that is attached to a working machine 13 of a construction machine 10 in a tunnel T and is transported, and a worker OP1 located at a location away from the first device 40.
  • a second device 50 that wirelessly communicates with the first device 40, and the second device 50 has a display screen 55 that receives and displays an image taken by the camera 46, and a display screen 55 that displays an image that is displayed to the worker OP1.
  • the second device 50 is configured to have an input device 54 (wireless input device 56) for specifying the position of the marker 20 in the captured image, and is configured to be able to remotely operate the first device 40.
  • the dimensional coordinate data is converted into three-dimensional coordinate data (three-dimensional shape data) of the point group in the fixed coordinate system.
  • an object marker is used as the marker 20, but as shown in FIG. Good too.
  • the first device 40 photographs the optical marker 21, the operator OP1 specifies the position of the optical marker 21, and the three-dimensional position measuring device 44 measures the coordinate value of the optical marker 21 in the device coordinate system. Good too.
  • the surveying device 30 is a total station, but it may also be a GNSS surveying device.
  • the object at the site was the face K of the tunnel T, it may also be used for other objects at sites such as mining.
  • the moving machine is the working machine 13 of the construction machine 10, it may be another type of machine, for example, a machine that moves by remote control or automatic control.
  • the first device 40 is remotely operated to determine the position of the marker 20, but image processing automatically recognizes the marker 20 in the displayed image and coordinates the marker 20 in the device coordinate system. The value may be specified.

Abstract

切羽のような作業現場の対象物の3次元形状を、できるだけ安全に、速やかに、かつ精度よく測量して形状データを収集するための新規な技術を提供する。 測量システム1は、トンネルT内の建設機械10の作業機械13に取り付けられて運搬される第1装置40と、第1装置40から離れた場所にいる作業者OP1により扱われる、第1装置40と無線で通信する第2装置50と、を備え、第2装置50は、カメラ46により撮影された画像を受信して表示する表示スクリーン55と、作業者OP1に、表示された画像内でマーカ20の位置を指定させる入力装置54(無線入力装置56)とを有して、第2装置50は第1装置40を遠隔から操作できるように構成されている。第1装置40の移動に関する移動データと、マーカ20の固定座標系での座標値とマーカ20の装置座標系での座標値との関係を用いて、点群の装置座標系での3次元座標データを、点群の前記固定座標系での3次元座標データに変換する。

Description

測量システムおよび測量方法
 本発明は、作業現場の対象物の形状を測量する測量システムと測量方法に関し、例えばトンネル掘削や鉱山採掘における切羽の3次元形状の測量に好適な技術に関する。
 トンネル掘削現場では、発破を精度良く行えるようにし、発破の整形を精度良く行うために、発破後の切羽の3次元形状を測量して、精度の良い切羽形状データを収集し活用することが望まれている。しかし、発破後の切羽は崩落の恐れがあり危険である。作業員が切羽に立ち入ることなく切羽の形状を把握するための技術が、非特許文献1と2に開示されている。
 非特許文献1の開示によれば、建機に取り付けた2個のプリズムを、作業位置の後方約50から100メートル地点に設置した光波測距儀2基で追尾し測距することで、建機の位置・方向がリアルタイムに可視化される。建機の本体やアーム部、油圧ブレーカの各部に搭載した傾斜計の情報も活用することで、油圧ブレーカのノミ先位置が導き出される。
 上記の情報を設計断面と比較したデータは、建機の操作部に備えられたモニター上の画面に表示され、オペレーターはこれらをチェックすることで、ノミ先が触れた岩盤のアタリと余掘り状況を確かめられる。オペレーターはモニター画面を見ながら油圧ブレーカを操縦できる。
 非特許文献2の開示によれば、発破後の切羽で、ブレーカを付けた建機の上部旋回体の屋根上に搭載された高速3Dスキャナーが、切羽の掘削形状を計測する。掘削形状の点群データと設計断面を比較し、設計断面線よりも内空側に残ったアタリの箇所を重機キャビン内のモニターにヒートマップ表示させることで、建機のオペレーターが容易にアタリの個所を確かめられる。
“大成建設らがアタリを見える化するシステムを開発、除去作業で50%の省人化を実現”、[online]、2021年3月31日、BUILT、[令和4年8月22日検索]、インターネット<URL:https://built.itmedia.co.jp/bt/articles/2103/30/news037.html> “「切羽掘削形状モニタリングシステム」を現場試行、掘削の余掘りと余吹きを20%低減”、[online]、2020年9月15日、BUILT、[令和4年8月22日検索]、インターネット<URL:https://built.itmedia.co.jp/bt/articles/2009/15/news015.html>
 非特許文献1に記載の技術によれば、建機のブレーカのノミ先が触れた切羽の箇所だけが計測される。切羽全体の3次元形状を把握するには、長い時間がかかる可能性がある。
 非特許文献2に記載の技術によれば、上部旋回体上に搭載された高速3Dスキャナーが切羽の形状を測定する。建機のブームとアームの長さ分以上の距離だけ、切羽から高速3Dスキャナーが離れているため、切羽形状の測定精度が低い可能性がある。また、ブームとアームが高速3Dスキャナーによる測定の邪魔になるため、切羽全体の3次元形状を把握することが難しい、または、それに長い時間がかかる可能性がある。
 本発明の一つの目的は、切羽のような作業現場の対象物の3次元形状を、できるだけ安全に、速やかに、かつ精度よく測量して形状データを収集するための新規な技術を提供することにある。
 一実施形態に従う測量システムは、現場の対象物の3次元形状を測量する測量システムにおいて、前記現場内の前記対象物の近傍の少なくとも1つの場所に配置された少なくとも1つのマーカと、前記現場内の移動機械に取り付けられて運搬される第1装置と、前記第1装置から離れた場所にいる作業者により扱われる、前記第1装置と無線で通信する第2装置と、を備え、前記第1装置は、前記第1装置の位置と回転角度又は方位に関する物理量を計測する位置角度センサと、カメラと、前記第1装置の周囲の点群の3次元位置を測る3次元位置計測装置とを有し、前記第2装置は、前記カメラにより撮影された画像を受信して表示する表示装置と、前記作業者に、表示された画像内で前記マーカの位置を指定させる入力装置とを有して、前記第1装置を遠隔から操作できる。前記測量システムは、前記マーカの、その位置が一意に定まる固定座標系での座標値を取得する手段と、前記マーカの、前記第1装置の位置を原点とする装置座標系での座標値を取得する手段と、前記位置角度センサを用いて、前記第1装置の移動に関する移動データを取得する手段と、前記3次元位置計測装置を用いて、前記点群の前記装置座標系での3次元座標データを取得する手段と、前記移動データと、前記マーカの前記固定座標系での座標値と前記マーカの前記装置座標系での座標値との関係を用いて、前記点群の前記装置座標系での3次元座標データを、前記点群の前記固定座標系での3次元座標データに変換する手段と、を備える。
 前記測量システムは、前記マーカについて以下のステップ(1)~(4)を順に行うことにより、前記点群の前記固定座標系での3次元座標データを生成することができる。
 (1)前記移動機械の位置を調節して、前記第1装置で前記マーカの撮影を行い、
 (2)撮影された前記マーカの映像を前記第2装置に表示し、前記作業者が映像内の一つの位置をマーカの位置として指定し、
 (3)前記移動機械を移動させることで前記第1装置を前記マーカの位置から前記対象物を撮影できる経路に沿って移動させながら、前記第1装置で前記対象物を撮影して前記点群の前記装置座標系での3次元座標データを計測し、
 (4)前記マーカの位置として前記作業者に指定された前記一つの位置と、前記マーカの前記固定座標系での座標値と、前記点群の前記装置座標系での3次元座標データとを用いて、前記点群の前記固定座標系での前記3次元座標データを生成する。
 前記マーカの前記固定座標系での座標値を測量する測量装置をさらに備えてよい。
 前記対象物の測量済みの領域と未測量の領域を区別できるように前記第2装置の前記表示装置に表示する手段を備えてよい。
 前記マーカは複数設けられ、前記第2装置は、各マーカに対応する測量範囲を前記第2装置の前記表示装置に表示する手段を備えてよい。
 前記第2装置の前記表示装置に、前記第1装置の移動経路を表示する手段を備えてよい。
 前記第2装置に表示された前記マーカの位置を、前記作業員が指定することで、前記マーカの前記装置座標系の座標値を計算する手段を備えてよい。
 画像処理で自動的に表示画像内の前記マーカを認識して前記マーカの前記装置座標系の座標値を特定する手段を備えてよい。
 前記測量装置は、トータルステーションであり、前記トータルステーションは、レーザービームを出して、前記レーザービームの前記現場の壁面に当たる部分を光マーカとして前記マーカの前記固定座標系の座標値を測量し、前記第1装置により前記光マーカを撮影して前記第2装置の前記表示装置に表示し、前記作業者が前記光マーカの位置を指定し、前記3次元位置計測装置により前記光マーカの前記装置座標系での座標値を計測するように構成されてよい。
 前記現場はトンネルの掘削現場であり、前記対象物は切羽であってよい。
 前記移動機械は、前記現場で使用される建設機械の作業機械であってよい。
 前記第1装置の最適な移動経路を推定し、前記第2装置の前記表示装置に推定した前記移動経路を表示する手段を備えてよい。
 一実施形態に従う測量方法は、現場の対象物の3次元形状を測量する測量システムによる測量方法であって、前記測量システムは、前記現場内の前記対象物の近傍の少なくとも1つの場所に配置された少なくとも1つのマーカと、前記現場内の移動機械に取り付けられて運搬される第1装置と、前記第1装置から離れた場所にいる作業者により扱われる、前記第1装置と無線で通信する第2装置と、を備え、前記第1装置は、前記第1装置の位置と回転角度又は方位に関する物理量を計測する位置角度センサと、カメラと、前記第1装置の周囲の点群の3次元位置を測る3次元位置計測装置とを有し、前記第2装置は、前記カメラにより撮影された画像を受信して表示する表示装置と、前記作業者に、表示された画像内で前記マーカの位置を指定させる入力装置とを有して、前記第1装置を遠隔から操作できる。前記測量方法は、前記マーカの、その位置が一意に定まる固定座標系での座標値を取得し、前記第2装置から前記第1装置を操作して、前記マーカの、前記第1装置の位置を原点とする装置座標系での座標値を取得し、前記位置角度センサを用いて、前記第1装置に関する移動データを取得し、前記3次元位置計測装置を用いて、前記点群の前記装置座標系での3次元座標データを取得し、前記移動データと、前記マーカの前記固定座標系での座標値と前記マーカの前記装置座標系での座標値との関係を用いて、前記点群の前記装置座標系での3次元座標データを、前記点群の前記固定座標系での3次元座標データに変換する。
 前記測量方法は、前記マーカについて以下のステップ(1)~(4)を順に行うことにより、前記点群の前記固定座標系での3次元座標データを生成することができる。
 (1)前記移動機械の位置を調節して、前記第1装置で前記マーカの撮影を行い、
 (2)撮影された前記マーカの映像を前記第2装置に表示し、前記作業者が映像内の一つの位置をマーカの位置として指定し、
 (3)前記移動機械を移動させることで前記第1装置を前記マーカの位置から前記対象物を撮影できる経路に沿って移動させながら、前記第1装置で前記対象物を撮影して前記点群の前記装置座標系での3次元座標データを計測し、
 (4)前記マーカの位置として前記作業者に指定された前記一つの位置と、前記マーカの前記固定座標系での座標値と、前記点群の前記装置座標系での3次元座標データとを用いて、前記点群の前記固定座標系での前記3次元座標データを生成する。
 本発明は、切羽のような作業現場の対象物の3次元形状を、できるだけ安全に、速やかに、かつ精度よく測量して形状データを収集するための新規な技術を提供することができる。
本発明の一実施形態に係るトンネル掘削現場における測量システムの構成を示す図である。 第1装置の要部の構成を示す図である。 第2装置の要部の構成を示す図である。 作業者が実行する作業のフローチャートである。 作業者が第1装置を移動させる経路の説明図である。 表示スクリーンに表示される切羽の計測領域の表示例を示す図である。 第2装置の遠隔操作プログラムのフローチャートを示している。 第2装置により第1装置を遠隔操作する一例を示す図である。 第2装置により第1装置を遠隔操作する他の例を示す図である。 第1装置の測量プログラムのフローチャートである。 測量プログラムにおける計測開始時の制御のフローチャートである。 測量プログラムにおける計測中の制御のフローチャートである。 測量プログラムにおける計測終了時の制御のフローチャートである。 マーカの変形例についての説明図である。
 以下、本発明の実施形態について、図面を参照して説明する。なお、以下に説明する実施形態は請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明されている諸要素及びその組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、本発明の一実施形態に係るトンネル掘削現場における測量システムの構成を示す図である。
 トンネル掘削現場では、例えば、次のようなステップを繰り返すことによりトンネルTが掘進される。
 1)発破により切羽Kを掘進方向に沿って1m程度の深さ分掘る。
 2)発破後の切羽Kのアタリ(トンネル設計断面よりトンネル(隧道又は坑道)Tの内方へ出っ張った部分)を建設機械(例えば、岩を砕くブレーカがアーム先端についたバックホウ)で除去したり、余堀り(トンネル設計断面より余計に掘られた部分)をコンクリートで埋めたりして、切羽Kを整形する。
 3)整形後の切羽に、支保工H(トンネル壁を支える、例えばアーチ状のH型鋼材)をはめ込む。
 本実施形態の測量システム1は、ステップ1)の発破を精度よく行えるようにしたり、ステップ2)の整形を精度よく行えるようにするために、発破後の切羽Kの3次元形状データを取得するために用いられるシステムである。測量システム1は、建設機械10と、複数のマーカ20と、測量装置30と、第1装置40と、第2装置50とを備える。
 建設機械10は、例えばバックホウであって、走行体11と、走行体11上に回転可能に設けられた旋回体12と、旋回体12に取付けられた作業機械13とを備えている。移動機械である作業機械13は、旋回体12に回動可能に取り付けられたブーム14と、ブーム14の先端部に回動可能に取り付けられたアーム15と、アーム15の先端部に取り付けられたヘッド部16とを備えている。ヘッド部16は、いわゆるアタッチメントであって、アタッチメントは例えばブレーカである。旋回体12には、建設機械10の作業者OP1が搭乗する運転室17が設けられる。
 複数のマーカ20は、支保工Hの所定の位置に取付けられている。例えば、複数のマーカ20は、5つ設けられており(図5参照)、反射板として機能し、マグネット等により支保工Hに取付けられている。
 測量装置30は、例えばトータルステーションである。作業者OP2が測量装置30を操作して、各マーカ20の位置を測量し、その座標を取得する。ここで、測量装置30により得られる座標値は、各マーカ20の位置が一意に定まるような固定座標系(測地座標系)での座標値(例えば、緯度、経度、高度)である。なお、測量装置30により各マーカ20の座標値を測量する際には、トンネルT内の座標値が既知の複数の参照座標点P1、P2に基づいて、各マーカ20の座標は測量される。測量装置30は、通信装置を有しており、測量した各マーカ20の座標値(例えば、マーカNo.1(X1、Y1、Z1))を、無線通信チャンネルCを介して、第1装置40に送信する。
 図2は、第1装置40の要部の構成を示す図である。
 第1装置40は、スマートフォン等の携帯端末装置であり、CPU(Central Processing Unit)41と、通信装置42と、位置角度センサ43と、3次元位置計測装置44と、ストレージ45と、カメラ46と、表示スクリーン47とを有する。第1装置40は、建設機械10の作業機械13のヘッド部16に取付けられている。これにより、現場の既存資源である建設機械10を使えて追加機械の導入を最小化でき、切羽K直下のような危険空間への進入が容易になる。さらに、建設機械10の作業機械13は移動と角度の可変レンジが大きいので、切羽Kの全体の測量に適している。
 CPU41は、第1装置40の全体の制御を行う中央演算処理装置である。通信装置42は、無線通信チャンネルCを介して、第2装置50へGUI(Graphical User Interface)を送信し、第2装置50から入力信号を受信する。通信装置42は、測量装置30から測量した各マーカ20の座標を受信する。位置角度センサ43は、IMU(Inertial Measurement Unit)および地磁気センサを備える。IMUは、例えば、3軸加速度センサおよび3軸ジャイロセンサを有する。IMUは、移動距離(位置)および姿勢(回転角度)等の第1装置40の動きを3次元で正確に計測する。地磁気センサは、地磁気を検出することにより、第1装置40の向いている方位を測定する。
 3次元位置計測装置44は、例えば、ライダー(LiDAR:Light Detection and Ranging)であり、周囲にレーザ光を照射し、照射したレーザ光の反射光を受光することにより点群データを作成する。「点群データ」とは、レーザ光が対象物表面に照射されたときに戻ってくる該対象物表面の各計測点の位置データおよび時刻データを含む。時刻データは、位置データを生成した(反射光を受光した)時刻を示すデータである。位置データは、計測点の位置(座標)を示す3次元座標データであり、3次元座標(x座標、y座標、z座標)または極座標(ヨー角、ピッチ角、及び深度)で示される。各計測点の座標は、計測時の第1装置40の位置を原点とする座標である。すなわち、3次元位置計測装置44により得られる各計測点の座標は、計測時の第1装置40の位置を原点とする装置座標系での座標値である。なお、点群データは、受光した反射光の強度を示す反射強度データを含んでもよい。
 ストレージ45は、CPU41が実行するコンピュータプログラムや、CPU41が処理するデータ等を記憶する。ストレージ45は、例えば、フラッシュメモリ、RAMやROMを含む。ストレージ45は、測量プログラム45A、マーカ座標リスト45B、および3次元点群座標データ45Cを記憶する。測量プログラム45Aは、後述の切羽Kの3次元形状データを取得するためのプログラムである。マーカ座標リスト45Bは、測量装置30により測量された各マーカ20の座標のリストである。各マーカ20の識別番号と、座標とを対応付けて保存している。3次元点群座標データ45Cは、3次元位置計測装置44により計測されたマーカ20の装置座標系での座標値と点群データ(点群の装置座標系での座標値とその計測時刻)と、位置角度センサ43により得られた計測開始から終了までの第1装置40の各計測時点間の移動量(例えば、装置座標系の3本の直交座標軸に沿った変位量と、同3座標軸回りの回転量など)を表す移動データと、移動データおよびマーカ座標リスト45Bのマーカ20の固定座標系での座標値を用いて、点群データの位置データの座標値(装置座標系での座標値)を固定座標系の座標値に変換した変換座標データとを含む。
 表示装置である表示スクリーン47は、カメラ46で撮影した映像を表示し、測量プログラム45Aによる処理に基づく画像等を表示する。
 図3は、第2装置50の要部の構成を示す図である。
 第2装置50は、スマートフォン等の携帯端末装置であり、CPU(Central Processing Unit)51と、通信装置52と、ストレージ53と、入力装置54と、表示スクリーン55とを有する。第2装置50は、建設機械10の作業者OP1が所持して操作する。
 CPU51は、第2装置50の全体の制御を行う中央演算処理装置である。通信装置52は、第1装置40からGUIを受信し、第1装置40へ操作信号を送信する。ストレージ53は、CPU51が実行するコンピュータプログラムや、CPU51が処理するデータ等を記憶する。ストレージ53は、例えば、フラッシュメモリ、RAMやROMを含む。ストレージ53は、第1装置40を遠隔操作するための遠隔操作プログラム53Aを記憶する。入力装置54は、第1装置40を遠隔操作するための指示を入力するための入力装置である。表示装置である表示スクリーン55は、第1装置40の表示スクリーン47に表示されている映像を表示する。なお、第2装置50に入力装置54を設けずに、本体とは別体として無線入力装置56を設けて、無線入力装置56から第1装置40へ操作信号を送信するようにしてもよい。この場合には、ストレージ53は、遠隔操作プログラム53Aを記憶していなくてもよく、第1装置40の表示スクリーン47に表示されている映像を表示するモニタリングプログラムを記憶しておけばよい。
 次に、建設機械10の作業者OP1の作業フローについて説明する。
 図4は、建設機械10の作業者OP1が行う作業のフローチャートを示している。
 作業者OP1は、第2装置50から第1装置40を遠隔操作して、第1装置40の測量プログラム45Aを起動する(S100)。作業者OP1は、複数のマーカ20から最初に撮影するマーカを選択する(S102)。作業者OP1は、建設機械10を操作して、第1装置40を、選んだマーカ20を撮影可能な位置に配置する(S104)。作業者OP1は、第1装置40を遠隔操作して、表示スクリーン47に表示されている選んだマーカ20の位置および識別番号を指定する(S106)。
 作業者OP1は、選んだマーカ20が最後のマーカ20であるか否か判断する(S108)。選んだマーカ20が最後のマーカ20でない場合(S108:NO)、作業者OP1は、建設機械10を操作して、選んだマーカ20の周辺の切羽Kの領域をくまなく計測して、第1装置40を次のマーカ20付近まで移動させる(S110)。例えば、図5に示すように、初めに左下のマーカ20を選択した場合には、経路L1のように第1装置40を移動させる。なお、作業者OP1が後のフローにおいてステップS110の処理を行う際には、例えば、経路L2、L3、L4のように第1装置40を移動させる。
 作業者OP1は、選んだマーカ20の周辺の計測が完了したか否かを判断し(S112)、計測が完了していないと判断した場合(S112:NO)、作業者OP1は計測を継続する(S110)。計測が完了したと判断した場合(S112:YES)、作業者OP1は、次のマーカ20を選択し(S114)、ステップS104からの処理を繰り返す。そして、ステップS108において、選んだマーカ20が最後のマーカ20である場合(S108:YES)、作業者OP1は、第2装置50から第1装置40を遠隔操作して、第1装置40の測量プログラム45Aを終了する(S116)。
 図6は、表示スクリーン47(表示スクリーン55)に表示される切羽Kの計測領域の表示例を示す図である。
 図6では、切羽Kの全領域が格子状に区画されている。図5のステップS110で作業者OP1が左下のマーカ20を選択した場合には、第1装置40の測量プログラム45Aにより、図6に示すように、選択したマーカ20に対応して計測すべき領域(測量範囲)を破線DLにより囲むようにする。第1装置40で計測が完了した領域をピクセルごとに色付け(網掛け)して表示するようにしてもよい。すなわち、切羽Kの測量済みの領域と未測量の領域を区別できるように表示してもよい。また、使用する建設機械10、ヘッド部16の機械情報、第1装置40の取付位置、およびマーカ20の設置位置等に基づき、切羽Kの全領域を抜けなく、かつ最短の時間で計測できるように、第1装置40の最適な移動経路(切羽Kの全領域を漏れなく網羅的に且つ効率的に短時間でスキャンできる経路)を推定(例えば、事前のシミュレーションによって推定することができる。)して、表示スクリーン47(表示スクリーン55)に表示するようにしてもよい。
 次に、第2装置50の遠隔操作プログラムの制御フローについて説明する。
 図7は、第2装置50の遠隔操作プログラムのフローチャートである。
 第2装置50のCPU51は、遠隔操作プログラムが起動されると、第1装置40を起動する(S200)。CPU51は、第1装置40の表示スクリーン47に表示されたGUIを表示する(S202)。CPU51は、作業者OP1の入力に応じて第1装置40を遠隔操作する(S204)。CPU51は、遠隔操作プログラムを終了する指示がなされたか否かを判断する(S206)。CPU51は、遠隔操作プログラムを終了する指示がなされた場合(S206:YES)、遠隔操作プログラムを終了し、遠隔操作プログラムを終了する指示がなされていない場合(S206:NO)、ステップS202に戻る。
 図8は、第2装置50により第1装置40を遠隔操作する一例を示す図である。
 図8に示すように、第1装置40は、第2装置50に対しGUIを送信して、作業者OP1は、第2装置50の表示スクリーン55に表示されたGUIに基づき、第2装置50の入力装置54を操作して、第2装置50から第1装置40へ操作信号を送って第1装置40を遠隔操作している。
 図9は、第2装置50により第1装置40を遠隔操作する他の例を示す図である。
 図9に示すように、第1装置40は、第2装置50に対しGUIを送信して、作業者OP1は、第2装置50の表示スクリーン55に表示されたGUIに基づき、第2装置50の無線入力装置56を操作して、無線入力装置56から第1装置40へ操作信号を送って第1装置40を遠隔操作してもよい。この場合には、第2装置50の本体は、第1装置40のGUIを表示するモニタとしてのみ機能する。
 次に、第1装置40の測量プログラム45Aの制御フローについて説明する。
 図10は、第1装置40の測量プログラム45Aのフローチャートである。
 第1装置40のCPU41は、測量プログラム45Aが起動されると、カメラ46による撮影と、3次元位置計測装置44による点群データの作成と、位置角度センサ43による位置等の計測とを開始する(S300)。CPU41は、作業者OP1が建設機械10を操作して、図4のステップS106の処理により、第1装置40により最初のマーカ20が指定されたか否かを判断する(S302)。最初のマーカ20が指定されていない場合(S302:NO)、CPU41は、ステップS302の処理を繰り返す。一方、最初のマーカ20が指定された場合(S302:YES)、CPU41は、計測開始時の制御(S310)を実行する。
 図11は、第1装置40の測量プログラム45Aにおける計測開始時の制御のフローチャートである。
 計測開始時の制御では、CPU41は、直近に図4のステップ106で指定されたマーカ20を第1マーカm1とする(S311)。CPU41は、ステップS106において作業者OP1が指定したマーカ20の位置および3次元位置計測装置44による位置データに基づき、第1マーカm1の装置座標系での座標値を計算する(ステップS312)。CPU41は、ステップS106において作業者OP1が指定した識別番号に対応する識別番号が、マーカ座標リスト45Bにあるか否かを判断する(S313)。すなわち、第1マーカm1として指定されたマーカ20の識別番号に対応する識別番号が、マーカ座標リスト45Bにあるか否かを判断する。
 指定されたマーカ20の識別番号に対応する識別番号が、マーカ座標リスト45Bにない場合(S313:NO)、CPU41は、第1マーカm1として指定されたマーカ20の固定座標系の座標値を作業者OP1に要求する(S314)。例えば、CPU41は、座標値を要求する旨を第1装置40の表示スクリーン47に表示する。要求された作業者OP1は、測量装置30の作業者OP2に対し、第1マーカm1として指定されたマーカ20の固定座標系の座標値を測量して、第1装置40に送信するように要求する。
 CPU41は、要求した座標値および識別番号を受信したか否か判断する(S315)。座標値等を受信していない場合(S315:NO)、CPU41は、ステップS314に戻る。座標値等を受信した場合(S315:YES)、CPU41は、受信した座標値等をマーカ座標リスト45Bに登録する(S316)。これにより、計測途中であっても、計測を中断することなく未登録のマーカ20を登録することができる。
 一方、指定されたマーカ20の識別番号に対応する識別番号が、マーカ座標リスト45Bにある場合(S313:YES)、CPU41は、計測開始時の制御を終了して、計測中の制御を開始する(S317)。
 図12は、第1装置40の測量プログラム45Aにおける計測中の制御のフローチャートである。
 計測中の制御では、CPU41は、周期的に到来する計測時tkが到来したか否かを判断する(S321)。計測時tkは、実質的に継続的な計測が行われるとみなし得るような短い周期で到来することが好ましく、また、カメラ46による各フレーム撮影に同期していることが好ましい。例えば、カメラ46のフレームレートが30fpsである場合に、1フレームを撮影する時間(1/30秒)が到来した時、計測時tkが到来したと判断することができる。1フレームを撮影する時間が到来していない場合、CPU41は、ステップS321の処理を繰り返す。一方、1フレームを撮影する時間が到来した場合(S321:YES)、CPU41は、3次元位置計測装置44による点群データの作成と、位置角度センサ43による位置等の計測とを行い、点群データの位置データの各計測点の装置座標系での座標値(3次元座標値)を計算し、3次元点群座標データ45Cに保存する(S322)。計測した領域をGUIに表示し(S323)、カメラ画像(切羽K画像)のどの領域が測定されたのかを表示する。
 CPU41は、図4のステップS114で選択された次のマーカ20がステップS106で作業者OP1により指定されたか否かを判断する(S324)。次のマーカ20が指定されていないと判断した場合(S324:NO)、CPU41は、ステップS321に戻り、ステップS321~S323の処理を繰り返す。一方、次のマーカ20が指定されたと判断した場合(S324:YES)、CPU41は、計測終了時の制御を開始する(S325)。
 図13は、第1装置40の測量プログラム45Aにおける計測終了時の制御のフローチャートである。
 計測終了時の制御では、CPU41は、第1マーカm1の次に図4のステップ106で指定されたマーカ20を第2マーカm2とする(S331)。CPU41は、ステップS106において作業者OP1が指定したマーカ20の位置および3次元位置計測装置44による位置データに基づき、第2マーカm2の装置座標系での座標値を計算する(ステップS332)。CPU41は、ステップS106において作業者OP1が指定した識別番号に対応する識別番号が、マーカ座標リスト45Bにあるか否かを判断する(S333)。すなわち、第2マーカm2として指定されたマーカ20の識別番号に対応する識別番号が、マーカ座標リスト45Bにあるか否かを判断する。
 指定されたマーカ20の識別番号に対応する識別番号が、マーカ座標リスト45Bにない場合(S333:NO)、CPU41は、第2マーカm2として指定されたマーカ20の固定座標系の座標値を作業者OP1に要求する(S334)。例えば、CPU41は、座標値を要求する旨を第1装置40の表示スクリーン47に表示する。要求された作業者OP1は、測量装置30の作業者OP2に対し、第2マーカm2として指定されたマーカ20の固定座標系の座標値を測量して、第1装置40に送信するように要求する。
 CPU41は、要求した座標値および識別番号を受信したか否か判断する(S335)。座標値等を受信していない場合(S335:NO)、CPU41は、ステップS314に戻る。座標値等を受信した場合(S335:YES)、CPU41は、受信した座標値等をマーカ座標リスト45Bに登録し(S336)、ステップ337へ進む。これにより、計測途中であっても、計測を中断することなく未登録のマーカ20を登録することができる。
 一方、指定されたマーカ20の識別番号に対応する識別番号が、マーカ座標リスト45Bにある場合(S333:YES)、CPU41は、計測開始時から終了時までの各計測時tkで得られた位置角度センサ43の移動データと、第1、2マーカm1、m2の装置座標系での座標値と固定座標系での座標値との関係を用いて、各計測時における点群の装置座標系での座標値(位置データ、3次元座標データ)を、各計測時における点群の固定座標系の座標値(位置データ、3次元座標データ)に変換し、保存する(S337)。なお、2箇所のマーカ20の座標値を用いる理由は、位置角度センサ43の誤差に起因する測量精度の低下を防ぐためである。ゆえに、位置角度センサ43の精度が十分に高ければ、1箇所のマーカ20の座標値だけを用いて、この座標変換を行ってもよい。
 計測終了時の制御が終了した後、CPU41は、図10に示すように、測量プログラム45Aを終了する否かを作業者OP1に質問する(S304)。終了の指示がない場合(S304:NO)、CPU41は、ステップS310に戻る。一方、終了の指示があった場合(S304)、CPU41は、測量プログラム45Aを終了する。
 上記の実施形態の測量システム1は、トンネルT内の建設機械10の作業機械13に取り付けられて運搬される第1装置40と、第1装置40から離れた場所にいる作業者OP1により扱われる、第1装置40と無線で通信する第2装置50と、を備え、第2装置50は、カメラ46により撮影された画像を受信して表示する表示スクリーン55と、作業者OP1に、表示された画像内でマーカ20の位置を指定させる入力装置54(無線入力装置56)とを有して、第2装置50は第1装置40を遠隔から操作できるように構成されている。そして、第1装置40の移動に関する移動データと、マーカ20の固定座標系での座標値とマーカ20の装置座標系での座標値との関係を用いて、点群の装置座標系での3次元座標データを、点群の前記固定座標系での3次元座標データ(3次元形状データ)に変換する。これにより、切羽Kのような作業現場の対象物の3次元形状を、できるだけ安全に、速やかに、かつ精度よく測量することができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 上記の実施形態では、マーカ20として物体マーカを用いたが、図14に示すように、測量装置30であるトータルステーションから出射されるレーザービームLBのトンネルTの壁面に当たる部分を光マーカ21として用いてもよい。そして、第1装置40により光マーカ21を撮影して、作業者OP1が光マーカ21の位置を指定し、3次元位置計測装置44により光マーカ21の装置座標系での座標値を計測してもよい。これにより、予めマーカ20を支保工Hに設ける必要もなく、物体マーカが発破等により破壊されてしまっても、光マーカを用いて測量を行うことができる。また、上記の実施形態では、測量装置30はトータルステーションであったが、GNSS測量機であってもよい。現場の対象物はトンネルTの切羽Kであったが、鉱山採掘等の他の現場での対象物に利用してもよい。移動機械は、建設機械10の作業機械13であったが、それ以外の種類の機械、例えば遠隔操作や自動操縦により移動する機械であってもよい。マーカ20を指定する際に、第1装置40を遠隔操作して、マーカ20の位置をしたが、画像処理で自動的に表示画像内のマーカ20を認識してマーカ20の装置座標系の座標値を特定してもよい。
1:測量システム、 10:建設機械、 13:作業機械、 20:マーカ、 30:測量装置、 40:第1装置、 43:位置角度センサ、 44:3次元位置計測装置、 46:カメラ、 50:第2装置、 54:入力装置、 55:表示スクリーン装置、 56:無線入力装置、 T:トンネル K:切羽、 C:無線通信チャンネル

 

Claims (14)

  1.  現場の対象物の3次元形状を測量する測量システムにおいて、
     前記現場内の前記対象物の近傍の少なくとも1つの場所に配置された少なくとも1つのマーカと、 
     前記現場内の移動機械に取り付けられて運搬される第1装置と、
     前記第1装置から離れた場所にいる作業者により扱われる、前記第1装置と無線で通信する第2装置と、を備え、
     前記第1装置は、前記第1装置の位置と回転角度又は方位に関する物理量を計測する位置角度センサと、カメラと、前記第1装置の周囲の点群の3次元位置を測る3次元位置計測装置とを有し、
     前記第2装置は、前記カメラにより撮影された画像を受信して表示する表示装置と、前記作業者に、表示された画像内で前記マーカの位置を指定させる入力装置とを有して、前記第1装置を遠隔から操作でき、
     前記測量システムは、
     前記マーカの、その位置が一意に定まる固定座標系での座標値を取得する手段と、
     前記マーカの、前記第1装置の位置を原点とする装置座標系での座標値を取得する手段と、
     前記位置角度センサを用いて、前記第1装置の移動に関する移動データを取得する手段と、
     前記3次元位置計測装置を用いて、前記点群の前記装置座標系での3次元座標データを取得する手段と、
     前記移動データと、前記マーカの前記固定座標系での座標値と前記マーカの前記装置座標系での座標値との関係を用いて、前記点群の前記装置座標系での3次元座標データを、前記点群の前記固定座標系での3次元座標データに変換する手段と、を備える測量システム。
  2.  前記測量システムは、前記マーカについて以下のステップ(1)~(4)を順に行うことにより、前記点群の前記固定座標系での3次元座標データを生成する、請求項1に記載の測量システム。
     (1)前記移動機械の位置を調節して、前記第1装置で前記マーカの撮影を行い、
     (2)撮影された前記マーカの映像を前記第2装置に表示し、前記作業者が映像内の一つの位置をマーカの位置として指定し、
     (3)前記移動機械を移動させることで前記第1装置を前記マーカの位置から前記対象物を撮影できる経路に沿って移動させながら、前記第1装置で前記対象物を撮影して前記点群の前記装置座標系での3次元座標データを計測し、
     (4)前記マーカの位置として前記作業者に指定された前記一つの位置と、前記マーカの前記固定座標系での座標値と、前記点群の前記装置座標系での3次元座標データとを用いて、前記点群の前記固定座標系での前記3次元座標データを生成する。
  3.  前記マーカの前記固定座標系での座標値を測量する測量装置をさらに備える、請求項1または請求項2に記載の測量システム。
  4.  前記対象物の測量済みの領域と未測量の領域を区別できるように前記第2装置の前記表示装置に表示する手段を備える、請求項1または請求項2に記載の測量システム。
  5.  前記マーカは複数設けられ、前記第2装置は、各マーカに対応する測量範囲を前記第2装置の前記表示装置に表示する手段を備える、請求項4に記載の測量システム。
  6.  前記第2装置の前記表示装置に、前記第1装置の移動経路を表示する手段を備える、請求項1または請求項2に記載の測量システム。
  7.  前記第2装置に表示された前記マーカの位置を、前記作業員が指定することで、前記マーカの前記装置座標系の座標値を計算する手段を備える、請求項1または請求項2に記載の測量システム。
  8.  画像処理で自動的に表示画像内の前記マーカを認識して前記マーカの前記装置座標系の座標値を特定する手段を備える、請求項1または請求項2に記載の測量システム。
  9.  前記測量装置は、トータルステーションであり、
     前記トータルステーションは、レーザービームを出して、前記レーザービームの前記現場の壁面に当たる部分を光マーカとして前記マーカの前記固定座標系の座標値を測量し、
     前記第1装置により前記光マーカを撮影して前記第2装置の前記表示装置に表示し、前記作業者が前記光マーカの位置を指定し、前記3次元位置計測装置により前記光マーカの前記装置座標系での座標値を計測するように構成された、請求項1または請求項2に記載の測量システム。
  10.  前記現場はトンネルの掘削現場であり、前記対象物は切羽である、請求項1または請求項2に記載の測量システム。
  11.  前記移動機械は、前記現場で使用される建設機械の作業機械である、請求項1または請求項2に記載の測量システム。
  12.  前記第1装置の最適な移動経路を推定し、前記第2装置の前記表示装置に推定した前記移動経路を表示する手段を備える、請求項1または請求項2に記載の測量システム。
  13.  現場の対象物の3次元形状を測量する測量システムによる測量方法であって、
     前記測量システムは、
      前記現場内の前記対象物の近傍の少なくとも1つの場所に配置された少なくとも1つのマーカと、 
      前記現場内の移動機械に取り付けられて運搬される第1装置と、
      前記第1装置から離れた場所にいる作業者により扱われる、前記第1装置と無線で通信する第2装置と、を備え、
      前記第1装置は、前記第1装置の位置と回転角度又は方位に関する物理量を計測する位置角度センサと、カメラと、前記第1装置の周囲の点群の3次元位置を測る3次元位置計測装置とを有し、
      前記第2装置は、前記カメラにより撮影された画像を受信して表示する表示装置と、前記作業者に、表示された画像内で前記マーカの位置を指定させる入力装置とを有して、前記第1装置を遠隔から操作でき、
     前記測量方法は、
      前記マーカの、その位置が一意に定まる固定座標系での座標値を取得し、
      前記第2装置から前記第1装置を操作して、前記マーカの、前記第1装置の位置を原点とする装置座標系での座標値を取得し、
      前記位置角度センサを用いて、前記第1装置の移動に関する移動データを取得し、
      前記3次元位置計測装置を用いて、前記点群の前記装置座標系での3次元座標データを取得し、
      前記移動データと、前記マーカの前記固定座標系での座標値と前記マーカの前記装置座標系での座標値との関係を用いて、前記点群の前記装置座標系での3次元座標データを、前記点群の前記固定座標系での3次元座標データに変換する、測量方法。
  14.  前記測量方法は、前記マーカについて以下のステップ(1)~(4)を順に行うことにより、前記点群の前記固定座標系での3次元座標データを生成する、請求項13に記載の測量方法。
     (1)前記移動機械の位置を調節して、前記第1装置で前記マーカの撮影を行い、
     (2)撮影された前記マーカの映像を前記第2装置に表示し、前記作業者が映像内の一つの位置をマーカの位置として指定し、
     (3)前記移動機械を移動させることで前記第1装置を前記マーカの位置から前記対象物を撮影できる経路に沿って移動させながら、前記第1装置で前記対象物を撮影して前記点群の前記装置座標系での3次元座標データを計測し、
     (4)前記マーカの位置として前記作業者に指定された前記一つの位置と、前記マーカの前記固定座標系での座標値と、前記点群の前記装置座標系での3次元座標データとを用いて、前記点群の前記固定座標系での前記3次元座標データを生成する。

     
PCT/JP2022/032750 2022-08-31 2022-08-31 測量システムおよび測量方法 WO2024047785A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032750 WO2024047785A1 (ja) 2022-08-31 2022-08-31 測量システムおよび測量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032750 WO2024047785A1 (ja) 2022-08-31 2022-08-31 測量システムおよび測量方法

Publications (1)

Publication Number Publication Date
WO2024047785A1 true WO2024047785A1 (ja) 2024-03-07

Family

ID=90098946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032750 WO2024047785A1 (ja) 2022-08-31 2022-08-31 測量システムおよび測量方法

Country Status (1)

Country Link
WO (1) WO2024047785A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058503A (ja) * 2007-08-10 2009-03-19 Leica Geosystems Ag 非接触で対象表面の座標を測定する測定方法および測定システム
JP2017106749A (ja) * 2015-12-07 2017-06-15 株式会社Hielero 点群データ取得システム及びその方法
JP2018163063A (ja) * 2017-03-27 2018-10-18 西松建設株式会社 トンネル内空変位計測方法
US20200309515A1 (en) * 2019-03-28 2020-10-01 Leica Geosystems Ag Surveying systems
JP6973726B1 (ja) * 2021-07-27 2021-12-01 株式会社マプリィ 計測システム及び計測方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058503A (ja) * 2007-08-10 2009-03-19 Leica Geosystems Ag 非接触で対象表面の座標を測定する測定方法および測定システム
JP2017106749A (ja) * 2015-12-07 2017-06-15 株式会社Hielero 点群データ取得システム及びその方法
JP2018163063A (ja) * 2017-03-27 2018-10-18 西松建設株式会社 トンネル内空変位計測方法
US20200309515A1 (en) * 2019-03-28 2020-10-01 Leica Geosystems Ag Surveying systems
JP6973726B1 (ja) * 2021-07-27 2021-12-01 株式会社マプリィ 計測システム及び計測方法

Similar Documents

Publication Publication Date Title
WO2017061518A1 (ja) 施工管理システム、施工管理方法、及び管理装置
EP1176393B1 (en) Self-contained mapping and positioning system utilizing point cloud data
US11585490B2 (en) Management system
JP2020509272A (ja) 材料移動機械のための拡張現実ディスプレイ
EP2972084B1 (en) System and method for positioning a tool in a work space
JP6322612B2 (ja) 施工管理システム及び形状計測方法
US11873948B2 (en) Management system
WO2015106799A1 (en) Mine vehicle, mine control system and mapping method
JP2012233353A (ja) 油圧ショベルの較正システム及び油圧ショベルの較正方法
JP6585697B2 (ja) 施工管理システム
US20220245856A1 (en) Position identification system for construction machinery
AU2019292457B2 (en) Display control device, display control system, and display control method
KR101144727B1 (ko) 스테레오 비전 기술을 이용한 굴삭작업 지원 시스템
JP7215742B2 (ja) 建設機械管理システム、建設機械管理プログラム、建設機械管理方法、建設機械および建設機械の外部管理装置
EP3094807B1 (en) Mine control system
KR101944816B1 (ko) 굴삭 작업 검측 자동화 시스템
JP7386592B2 (ja) 建設機械の操作補助システム
AU2021201940A1 (en) Construction method, work machine control system, and work machine
US20230029071A1 (en) Excavation level detection device
JP6606230B2 (ja) 形状計測システム
KR20170119066A (ko) Gps 및 경사센서를 활용한 토공량 산출시스템
WO2020121933A1 (ja) 建設機械管理システム、建設機械管理プログラム、建設機械管理方法、建設機械および建設機械の外部管理装置
JP6815462B2 (ja) 形状計測システム及び形状計測方法
WO2024047785A1 (ja) 測量システムおよび測量方法
CN113227928A (zh) 用于确定采矿和/或建筑机械的位置的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957384

Country of ref document: EP

Kind code of ref document: A1