JP2004320627A - 対応関係定義データ作成用格子点決定システム、対応関係定義データ作成用格子点要求クライアント、対応関係定義データ作成用格子点決定サーバおよびその方法並びにプログラム - Google Patents

対応関係定義データ作成用格子点決定システム、対応関係定義データ作成用格子点要求クライアント、対応関係定義データ作成用格子点決定サーバおよびその方法並びにプログラム Download PDF

Info

Publication number
JP2004320627A
JP2004320627A JP2003114422A JP2003114422A JP2004320627A JP 2004320627 A JP2004320627 A JP 2004320627A JP 2003114422 A JP2003114422 A JP 2003114422A JP 2003114422 A JP2003114422 A JP 2003114422A JP 2004320627 A JP2004320627 A JP 2004320627A
Authority
JP
Japan
Prior art keywords
color
definition data
correspondence
grid
correspondence definition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003114422A
Other languages
English (en)
Inventor
Takashi Ito
隆志 伊藤
Yoshifumi Arai
佳文 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003114422A priority Critical patent/JP2004320627A/ja
Priority to US10/826,434 priority patent/US7471415B2/en
Publication of JP2004320627A publication Critical patent/JP2004320627A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6058Reduction of colour to a range of reproducible colours, e.g. to ink- reproducible colour gamut

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Image Communication Systems (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color, Gradation (AREA)

Abstract

【課題】従来の格子点決定方法では、ユーザーレベルで高精度に色変換可能なプロファイルを作成する要請に対応することができなかった。
【解決手段】低次元色空間内における低次元色格子点と印刷装置のインク量格子点との対応関係を予め規定した第1対応関係定義データをクライアントからサーバに送信し、サーバにおいて第1対応関係定義データを参照して上記低次元色格子点と機器非依存色空間内の格子点との対応関係を取得し、当該機器非依存色空間内の格子点の配置の平滑程度を評価する関数であって上記低次元色空間の格子点位置情報を変数とした平滑程度評価関数を規定し、当該格子点位置情報を変動させながら上記平滑程度評価関数の評価を向上させることによって上記機器非依存色空間内の格子点配置を最適化し、対応関係定義データ作成用格子点を決定する。
【選択図】 図4

Description

【0001】
【発明の属する技術分野】
本発明は、対応関係定義データ作成用格子点決定システム、対応関係定義データ作成用格子点要求クライアント、対応関係定義データ作成用格子点決定サーバおよびその方法並びにプログラムに関する。
【0002】
【従来の技術】
ディスプレイやプリンタ等の画像機器は、通常各画素の色を特定の色成分で階調表現したカラー画像データを使用している。例えば、R(レッド),G(グリーン),B(ブルー)の3色を使用したRGB色空間やC(シアン),M(マゼンタ),Y(イエロー)系統の色を使用したCMY系色空間(lc:ライトシアン,lm:ライトマゼンタ,DY:ダークイエロー,K:ブラックを含む)等種々の色空間で色を規定して画像データとしている。これらの色は一般に画像機器固有の機器依存色であるので、種々の画像機器間で同じ画像を同じ色で出力可能にするためにICC規格に準拠したプロファイル等によって色変換が行われている。
【0003】
当該ICCプロファイルにおいては、入力画像データの色を機器非依存色空間における色に変換するプロファイルと機器非依存色空間における色を出力画像機器での色に変換するプロファイルと出力画像機器での色を各種インクの使用規則に従ったインク量に変換するプロファイルとを利用して色変換を行っている。出力画像機器での色を各種インクの使用規則に従ったインク量に変換するプロファイルとしてはCMYデータと等価なRGBデータをCMYKlclmデータ等の多次元のデータに変換するプロファイル等が挙げられ、このプロファイルを作成する際には、従来から分版処理等が行われている。
【0004】
この分版処理においては、例えば、CMY空間に立方格子点を規定し、特定の変換規則に従って各格子点におけるCMYの3色をCMYKlclmの6色に変換するなどしてインク色を成分とする格子点を決定するなどしている。このようにして決定したCMYとインク色成分との対応関係では上記変換規則に従っているが、色空間中での格子点配置の平滑程度を考慮していないので、分版処理後の格子点を参照して色変換する際の補間演算時に局所的に精度の悪い部分が生じてしまう。そこで、分版処理後の格子点配置を平滑化するようにして格子点を決定し、平滑化した格子点を利用して色補正LUTを作成する(例えば、特許文献1)。
【0005】
【特許文献1】
特願2002−303137号公報
【0006】
【発明が解決しようとする課題】
上述した従来の格子点決定方法は、ユーザーレベルで高精度に色変換可能なプロファイルを作成する要請に対応することができなかった。すなわち、上述の各プロファイルや分版後のプロファイルは、プリンタの製造メーカー等が予め作成し、プリンタドライバのインストール時にユーザーのPCに転送するのが一般的であり、ユーザーが容易にプロファイルの更新をすることができなかった。さらに、ICCプロファイルの作成ソフトウェアが市販されているものの、このソフトウェアは出力画像機器での色を各種インクの使用規則に従ったインク量に変換するプロファイルを参照して機器非依存色空間における色を出力画像機器での色に変換するプロファイルを作成するものであった。従って、出力画像機器での色を各種インクの使用規則に従ったインク量に変換するプロファイルを更新することができず、高精度に色変換可能なプロファイルを作成することは困難であった。
本発明は、上記課題にかんがみてなされたもので、高精度に色変換可能なプロファイルをユーザーレベルで簡易に使用可能にすることができる対応関係定義データ作成用格子点決定システム、対応関係定義データ作成用格子点要求クライアント、対応関係定義データ作成用格子点決定サーバおよびその方法並びにプログラムの提供を目的とする。
【0007】
【課題を解決するための手段および発明の効果】
上記目的を達成するため、本発明では、対応関係定義データ作成用格子点の作成に必要な情報を双方向通信によってクライアントからサーバに送信する。そして、当該サーバにて対応関係定義データ作成用格子点を決定する。このために、クライアントは第1対応関係定義データを送信する。サーバは機器非依存色空間内の格子点の配置の平滑程度を評価する関数であって上記低次元色空間の格子点位置情報を変数とした平滑程度評価関数を規定し、当該評価関数での評価を向上させることで格子点の配置を最適化する。得られた格子点の配置は機器非依存色空間内での平滑程度が高くなっている。
【0008】
一般に、各色空間で整然と並んでいる格子点の方がその間に位置する色を補間演算によって算出する際に空間の局所的位置によって補間精度を大きく変動させることなく補間を行うことができる。従って、本発明によって格子点位置を最適化することで、対応関係定義データ作成時に実施される補間の精度を高くすることができる。すなわち、本発明によれば、高精度に補間演算を実施可能な対応関係定義データ作成用格子点を容易に決定することができる。この対応関係定義データ作成用格子点を利用してクライアントやサーバ等で対応関係定義データを作成し、クライアントにおいて当該対応関係定義データを参照した色変換を行えば、高精度に色変換を実施し、高画質の印刷物を得ることができる。
【0009】
また、本発明において、格子点配置を平滑化する対象は機器非依存色空間であり、変数は低次元色空間の格子点位置情報であって、格子点配置を平滑化して最適化する際に第1対応関係定義データで定義されたインク量を直接的に変動させることはない。すなわち、格子点位置情報を更新した後に当該格子点位置情報で指定される格子点に対応したインク量を算出し、上記第1対応関係定義データに規定された低次元色空間内の格子点に対応づけるものの、このインク量の算出に際して上記第1対応関係定義データに規定されたインク量自体を直接的に変更するものではない。従って、低次元色空間の格子点位置情報を更新して機器非依存色空間内の格子点を移動させるに際して、分版の規則に大きく影響されることなく高い自由度で低次元色空間の格子点位置情報および機器非依存色空間内の格子点を変更し、格子点配置を平滑化することができる。
【0010】
尚、格子点配置を平滑化する際に上記第1対応関係定義データに規定されたインク量を直接的に変動させることはないが、格子点配置の平滑化に際して上記分版時の規則は実質的に考慮されている。すなわち、上述の分版によれば各色のインク数より少ない色成分で規定される低次元色空間内における低次元色格子点と上記各色のインク量を成分としたインク量空間内におけるインク量格子点とを対応づけることができ、この対応関係を第1対応関係定義データとしている。クライアントにおいて印刷を実行可能に構成し、色変換にICCプロファイルを利用する場合など、この第1対応関係定義データがクライアントにインストール済みである場合が多いので、インストール済みである場合には本発明における第1対応関係定義データとして利用することができる。
【0011】
平滑程度評価関数を決定する際には、第1対応関係定義データを参照して上記低次元色格子点と機器非依存色空間内の格子点との対応関係を取得する。これにより、低次元色空間の格子点位置情報を変数として機器非依存色空間内の格子点配置の平滑程度を評価する平滑程度評価関数を決定することができる。従って、平滑程度評価関数では、上述のインク量を変動させないが第1対応関係定義データに規定された対応関係は反映している。このため、平滑程度評価関数での評価向上により、機器非依存色空間内での格子点配置の平滑化と分版時の規則の充足とを同時に満たすことができる。
【0012】
対応関係定義データは印刷装置と他の表色系における色成分値との対応関係を定義するデータであればよく、例えば、LUTであってもよいし、色の関係を規定したマトリックス等を含むいわゆるプロファイルであってもよい。上記他の表色系としてはLab色空間(通常はLのように*を付して示すが本明細書では簡単のため*を省略して示す。以下同じ。)やXYZ色空間等の機器非依存色空間であっても良いし、ディスプレイ等で使用するRGB値やCMY値等によって形成される色空間であっても良い。また、本発明にかかる印刷装置では3色より多数色のインク、すなわち、CMYKの4色やCMYKlclmの6色インクあるいはそれ以上の色数のインクを使用可能である。むろん、インクとしてはこれらに限らずCMYKRVの6色インクを使用する構成も採用可能である。
【0013】
一方、第1対応関係定義データでは印刷装置で使用する各色インク数より少ない色成分で色を規定した低次元色空間の格子点と各色のインク量を成分としたインク量空間内におけるインク量格子点との対応関係を規定することができればよい。低次元色空間としては例えば、RGB色空間やCMY色空間を採用することができる。ここで、第1対応関係定義データにおいては各格子点で規定する色の対応関係を厳密に規定しておく必要がないので、この第1対応関係定義データを予め作成する際に自由に分版の規則を考慮することができる。
【0014】
また、RGBの各色はCMYの各色といわゆる補色関係にあり、各色について0〜255の256階調の表現をした場合、色の厳密な一致を考慮しなければ’’C=255−R,M=255−G,Y=255−B’’と考えることができる。従って、低次元色空間としてRGB色空間,CMY色空間のいずれを採用しても実質的には等価である。第1対応関係定義データを予め作成する際に考慮する規則としては種々の規則を採用可能であり、例えば、CMYの各色組み合わせを一定の比率でCMYKlclmインクのいずれかに振り分けるための規則や印刷用紙に打ち込み可能なインク量の制限や粒状感発生防止のためのKインク使用制限等を考慮することができる。
【0015】
クライアントやサーバにおける通信手段としては双方向通信を介して互いにデータを授受することができれば良く、種々の態様を採用可能である。むろん、接続形態や規格は特に限定されず、有線でも無線でも良い。また、一般のユーザーに対してサービスの提供を実施するためにはインターネット網を利用するのが好ましいが、むろん、LAN内でクライアントとサーバを構築しても良い。さらに、サービスの提供に対してサービス提供を受けるユーザーをパスワードやIDによって制限したり、サービスの提供を受けたユーザーに対して課金を行ったりすることも可能である。
【0016】
平滑程度評価関数では、機器非依存色空間内の格子点配置の平滑程度を評価することができればよい。ここで、配置の平滑程度とは、空間中に各格子点が並んでいるときの歪みの程度である。例えば、機器非依存色空間に格子点が立方格子状に並んでいる場合には歪みがないが、各格子点が立方格子点位置からずれると格子としては歪みが大きくなる。また、機器非依存色空間内に格子点が均等に並んでいるほど平滑程度が高いと言えるし、機器非依存色空間内で隣り合う格子点を結ぶ曲線であって当該機器非依存色空間に形成される色域の一方の境界から他方の境界に向けて引かれる曲線を考えたときに、この曲線が高次関数で記述されるほど平滑程度が低いと言える。
【0017】
平滑程度評価関数においてはその値によって配置の平滑程度を示すことができれば良く、その値を理想値に近づけるようにすることによって評価を向上させる。例えば、格子点配置の平滑程度が高くなるほど値が小さくなる関数とすれば、当該関数の極小を与える低次元色空間の格子点位置情報を探索することによって格子点配置を最適化することができる。この探索に際しては、種々の手法を採用可能である。例えば、準ニュートン法や共益勾配法等種々のアルゴリズムを採用することができる。
【0018】
さらに、平滑程度評価関数においては、平滑程度を評価する項、例えば平滑程度が低下すると値が大きくなる項のみを含むことが必須となるわけではなく、平滑程度を評価する項に加えて各種の条件を示す項を付加することができる。例えば、格子点配置を色域内で全く均等にすることが理想であるとするのではなく、特定の部位で格子点が密になっているような状態を許容したり、格子点間隔が不均等となっている状態を許容するための項を付加しても良い。かかる構成は、特定の部位で格子点が密になっているときに値が小さくなる項や、格子点間隔が不均等となっているときに値が小さくなる項を付加することによって実現可能である。
【0019】
上記第1対応関係定義データからは、上記低次元色格子点と機器非依存色空間内の格子点との対応関係が取得できればよく、当該第1対応関係定義データに規定された上記低次元色格子点とインク量格子点との対応関係は種々の手法によって取得することができる。例えば、低次元色格子点に対応するインク量格子点が示す各色インク量で印刷を実施し、印刷結果のそれぞれを測色することによって機器非依存色空間内の格子点に対応する色成分値を取得しても良い。
【0020】
また、第1対応関係定義データでは実際の色の対応関係を厳密に規定していないし、第1対応関係定義データに規定された低次元色格子点の総て(通常は1000個程度)について印刷を行って測色するのは煩雑であるところ、近似式を利用して簡易的に演算しても良い。但し、近似式を利用すると言っても本発明では機器非依存色空間内の格子点配置を平滑化するので、物理的根拠に基づいた近似式によって低次元色格子点と機器非依存色空間内の格子点との対応関係を規定する。すなわち、近似式によって得られた機器非依存色空間内の格子点を平滑化した状態で実際の格子点も充分に平滑化されるようにする。
【0021】
近似式を利用する例としては、少数(本発明では各色インク毎16個程度で充分)の測色と演算を組み合わせる構成を採用可能である。より具体的には、測色数を抑えるために各色のインクを単色で印刷した複数のパッチを測色し当該測色値を参照して近似計算により上記機器非依存色空間の色成分値を算出する。近似式としてはインクの濃度測色値をRGB輝度の成分値に変換する式等を利用することができる。この演算により各パッチを印刷する際に使用した各色毎のインク量とRGB輝度との対応関係を取得することができる。
【0022】
この状態では各色毎のインク量とRGB輝度とが対応づけられているので、この対応関係によれば各色インクの組み合わせに対応したRGB輝度を算出することができる。例えば、各色インクを組み合わせた場合のRGB輝度は各色インク毎のRGB輝度をRGB成分毎に乗じたものであると仮定すれば、上記対応関係によって任意のインク量の組み合わせについてRGB輝度を算出することができる。
【0023】
従って、この段階で補間演算によって上記第1対応関係定義データに規定されたインク量の組み合わせをRGB輝度の成分値に変換可能になる。RGB輝度の成分値はマトリクス演算等によって近似的に機器非依存色空間の格子点に変換することができる(例えば、sRGB値をLab値に変換する公知の式等)。このようにして上記第1対応関係定義データに規定されたインク量の組み合わせを機器非依存色空間内の格子点に対応づけることにより、結局、低次元色空間の格子点と機器非依存色空間の格子点とを対応づけたことになる。すなわち、評価関数を規定する際に、一旦上記第1対応関係定義データを参照することにより、当該第1対応関係定義データ作成時に考慮した分版の規則を加味しつつ低次元色空間の格子点位置情報を変数とした平滑程度評価関数を作成することができる。
【0024】
平滑程度評価関数は、機器非依存色空間内の格子点の配置の平滑程度を評価する関数であって上記低次元色空間の格子点位置情報を変数とした関数であればよいが、最適化対象の格子点の総てについて共通の関数としなくても良い。例えば、最適化対象の格子点が属する色域の部位毎に異なる関数形としても良い。すなわち、最適化対象の格子点位置により、その移動の自由度を制限すべき位置と制限すべきでない位置とが存在しうるので、最適化対象の格子点位置によって異なった関数形の平滑程度評価関数とすることによって位置毎の自由度に的確に応じた状態で格子点を移動させる平滑程度評価関数にすることができる。ここで、格子点位置情報は低次元色空間内の格子点の位置を特定する情報であれば良く、種々の構成を採用可能である。例えば、低次元色空間の各格子点について色成分値が小さいものから順に番号を付し、この番号が小数点以下であるときに元の格子点の間の色成分値を指定することとする構成を採用可能であるし、むろん、RGBデータによって格子点の位置を特定する構成を採用しても良い。
【0025】
さらに、平滑程度を評価する手法としては種々の構成を採用しうるが、簡易な構成の一例として最適化対象の格子点に隣接する隣接格子点へ向けたベクトルであって互いに略逆向きのベクトルの和の絶対値を含む関数を採用可能である。すなわち、隣接格子点へ向けたベクトルであって互いに略逆向きのベクトルの和は、両ベクトルの大きさが等しく、向きが正反対である時に’’0’’となる。従って、平滑程度評価関数がこの和の絶対値を含む関数であれば、その値を極小化することによって最適化対象の格子点とその隣接格子点との距離を均等に近づけることができるし、最適化対象の格子点を隣接格子点同士を結ぶ直線上に近づけることができる。この構成において、複数の最適化対象の格子点について最適化処理を行うことによってこれら複数の格子点について配置の平滑程度を高くすることができる。
【0026】
また、最適化対象の格子点を最適化する際に色域境界上に存在する格子点を自由に移動させると、色域の外側あるいは内側に格子点が移動する。色域の外側に格子点が移動した場合、その色は出力不可能であるため意味がない(後述するガマットマッピング等によって再び色域内に戻される)。色域の内側に格子点が移動した場合、印刷装置で本来表現可能な色の範囲を狭めてしまい、印刷の階調表現能力を低下させてしまう。そこで、最適化対象の格子点が属する色域の部位毎に異なる関数形とする構成例として、最適化対象の格子点が色域境界上の稜線に属する場合に、当該稜線上に存在するとともに当該最適化対象の格子点を挟んで互いに逆側に存在する格子点を隣接格子点とする構成を採用可能である。
【0027】
かかる構成によれば、平滑程度の比較対象が稜線上の隣接格子点のみになるので、平滑程度評価関数の値を効果的に変動させるための最適化対象格子点の移動方向は当該稜線に沿った方向となり、最適化対象の格子点を稜線に沿って移動させやすくなる。従って、容易に色域の大きさを維持することができる。むろん、最適化対象の格子点が稜線上のみを移動するように構成することも可能である。すなわち、RGB表色系やCMY表色系のように色成分値によって各色の輝度や濃度を表現する表色系では、色域の境界において各色成分値のいずれか少なくとも一つが最小値あるいは最大値になっている。従って、色域境界の稜線上では色成分値の二つが最小値あるいは最大値であり、他の一つが可変である。そこで、平滑程度評価関数の変数としての格子点位置情報に所定の束縛条件を課し、色成分値のいずれか一つを可変とし、他の色成分値を固定すれば、格子点を稜線上で移動させることができる。
【0028】
さらに、最適化対象の格子点が属する色域の部位毎に異なる関数形とする構成例として、最適化対象の格子点が色域境界上の外面に属する場合に、当該外面上に存在するとともに当該最適化対象の格子点を挟んで互いに逆側に存在する格子点を隣接格子点とする構成を採用可能である。かかる構成によれば、平滑程度の比較対象が外面上の隣接格子点のみになるので、平滑程度評価関数の値を効果的に変動させるための最適化対象格子点の移動方向は当該外面に沿った方向となり、最適化対象の格子点を色域外面に沿って移動させやすくなる。従って、容易に色域の大きさを維持することができる。
【0029】
尚、隣接格子点としては、最適化対象の格子点を挟んで互いに逆側に存在する2つの格子点を組とし、2組計4個の隣接格子点を採用すれば最適化対象の格子点を色域の外面に沿って移動させることができるが、むろん、3組計6個以上の隣接格子点を採用しても良い。また、ここでも最適化対象の格子点が外面上のみを移動するように構成することも可能である。すなわち、RGB表色系やCMY表色系のように色成分値によって各色の輝度や濃度を表現する表色系では、色域の境界の外面上で各色成分値のいずれか一つが最小値あるいは最大値になっている。そこで、平滑程度評価関数の変数としての格子点位置情報に所定の束縛条件を課し、色成分値のいずれか二つを可変とし、他の色成分値を固定すれば、格子点を外面上で移動させることができる。
【0030】
さらに、最適化対象の格子点が属する色域の部位毎に異なる関数形とする構成例として、最適化対象の格子点が色域境界より内側に属する場合に、色域内に属するとともに当該最適化対象の格子点を挟んで互いに逆側に存在する格子点を隣接格子点とする構成を採用可能である。かかる構成によれば、平滑程度の比較対象が最適化対象の周囲で隣接する隣接格子点になる。ここで、隣接格子点としては、最適化対象の格子点を挟んで互いに逆側に存在する2つの格子点を組とし、3組計6個の隣接格子点を採用すれば最適化対象の格子点を色域の内側で3次元的に移動させることができるが、むろん、3組計6個以上の隣接格子点を採用しても良い。尚、ここで最適化対象の格子点としては色域の内側、すなわち、色域の境界を除いて色域の内側に存在する格子点であるが、隣接格子点としては色域内に属していればよく、色域の境界上の格子点を当該隣接格子点としても良い。
【0031】
本発明によって対応関係定義データ作成用格子点を作成したら、当該対応関係定義データ作成用格子点に基づいて対応関係定義データを作成し、クライアントで利用できるようにする。この構成例として、クライアントにて双方向通信を介して対応関係定義データ作成用格子点を受信し、クライアントにて対応関係定義データを作成する構成を採用可能である。すなわち、クライアントにて対応関係定義データ作成用格子点を示すデータを受信し、この対応関係定義データ作成用格子点データにて規定されるインク量での印刷結果を所定の測色機によって測色する。尚、対応関係定義データ作成用格子点では低次元色空間内の色成分とインク量とを対応づけているので、上記各インク量での印刷結果を測色することと対応関係定義データ作成用格子点に規定された低次元色空間内の色成分値での印刷結果を測色することとは等価である。
【0032】
測色によれば、低次元色空間内の色成分あるいはインク量と機器非依存色空間での色成分値を対応づけることができる。従って、上述の他の表色系を上記低次元色空間として機器非依存色空間中の特定の色成分値と低次元色空間中の色成分値とを対応づけたプロファイルと低次元色空間中の色成分値と各色のインク量とを対応づけた上記対応関係定義データ作成用格子点とによってICCプロファイルを構成し、上記インク量と上記他の表色系における色成分値とを対応づけた対応関係定義データとすることができる。
【0033】
また、上記測色によってインク量と機器非依存色空間での色成分値を対応づけ、上述の他の表色系をsRGB等の入力画像の表色系とし、入力画像の表色系と機器非依存色空間での色成分値とを公知の式によって変換するなどして機器非依存色空間での色成分値と入力画像の表色系での色成分値を対応づけた対応関係定義データとすることができる。いずれにしても、対応関係定義データを作成してクライアントで保存しておけば、これ以後の印刷において高精度に色変換を実施可能になり、高画質の印刷物を得ることが可能になる。
【0034】
さらに、当該対応関係定義データ作成用格子点に基づいて対応関係定義データを作成し、クライアントで利用できるようにするための構成として、対応関係定義データをサーバにて作成する構成を採用することもできる。すなわち、サーバにおいて対応関係定義データ作成用格子点を作成後、ICCプロファイルによって上記インク量と上記他の表色系における色成分値とを対応づけた対応関係定義データあるいは機器非依存色空間での色成分値と入力画像の表色系での色成分値を対応づけた対応関係定義データを作成し、作成後の対応関係定義データを双方向通信によってクライアントに送信する。クライアントにおいて受信した対応関係定義データを保存しておけば、これ以後の印刷において高精度に色変換を実施可能になり、高画質の印刷物を得ることが可能になる。
【0035】
本発明においては、クライアントとは別体のサーバにおいてクライアントで使用する対応関係定義データ作成用格子点を作成することができれば良く、請求項4にかかる発明のように対応関係定義データ作成用格子点の作成要求とともに必要なデータを送信するクライアント単体であっても発明を構成する。同様にサーバにおいてはクライアントから送信されるデータを受信して対応関係定義データ作成用格子点を作成することができれば良く、請求項5にかかる発明のようにサーバ単体であっても発明を構成する。
【0036】
また、上記対応関係定義データ作成用格子点決定システムにおいては、所定の手順に従って処理を行うので、請求項6〜請求項8に記載した発明のように対応関係定義データ作成用格子点決定方法としても発明を構成する。また、このシステムを運用するためにコンピュータに所定の機能を行わせるという意味では請求項9〜請求項11に記載した発明のように対応関係定義データ作成用格子点決定プログラムとしても発明を構成する。むろん、請求項2,請求項3に記載された構成を請求項4〜請求項11にかかる発明に対応させることも可能である。
【0037】
また、本発明にかかる装置、方法は単独で実施される場合もあるし、ある機器に組み込まれた状態で他の装置、方法とともに実施されることもあるなど、発明の思想としてはこれに限らず、各種の態様を含むものであり、適宜、変更可能である。むろん、ソフトウェアを記録した記録媒体上においても当然に存在し、利用される。記録媒体は、磁気記録媒体であってもよいし光磁気記録媒体であってもよいし、今後開発されるいかなる記録媒体においても全く同様に考えることができる。また、一次複製品、二次複製品などの複製段階については全く問う余地無く同等である。
【0038】
その他、供給方法として通信回線を利用して行なう場合でも本発明が利用されていることにはかわりない。さらに、一部がソフトウェアであって、一部がハードウェアで実現されている場合においても発明の思想において全く異なるものではなく、一部を記録媒体上に記憶しておいて必要に応じて適宜読み込まれるような形態のものとしてあってもよい。また、必ずしも全部の機能を当該プログラム自身で実現するのではなく、外部のプログラムなどに実現させるようなものであっても良い。その場合であっても、各機能をコンピュータに実現させ得るものであればよいからである。
【0039】
【発明の実施の形態】
ここでは、下記の順序に従って本発明の実施の形態について説明する。
(1)色補正なしLUT作成サービスの概要:
(2)クライアントの構成:
(3)サーバの構成およびスムージング処理:
(4)評価関数による最適化:
(4−1)評価関数E
(4−2)評価関数E
(4−3)評価関数E
(5)他の実施形態:
【0040】
(1)色補正なしLUT作成サービスの概要:
本発明は、メディアプロファイルの精度向上を望むときにユーザーレベルでの実施が困難な作業を離れた場所にあるサーバで実施するサービスを提供するものであり、本実施形態ではサーバにおいて分版LUTを参照してスムージング処理を実施する。これらの工程は多くの演算処理を必要とするのでクライアントおよびサーバとしてコンピュータを利用し、また、実際に印刷を行うので、この印刷に際しては、作成後のメディアプロファイルを利用するプリンタで印刷を行うのが好ましく、後述するハーフトーン処理(HT)としても当該プリンタで採用しているハーフトーン処理と同じアルゴリズムであることが必要とされる。
【0041】
プリンタで印刷を実行する際には、sRGB値によって色を指定した画像データを取得し、当該sRGB値が示す色をインク量の組み合わせで色を表現したCMYKlclmデータに変換する。この色変換に際しては種々の構成を採用可能であるが、本実施形態においてはICCプロファイルを利用した色変換を想定している。すなわち、以下に示す第1の実施形態は、sRGB値を機器非依存色空間の格子点に変換するソースプロファイルと機器非依存色空間の格子点をRGB値に変換するメディアプロファイルと当該RGB値をCMYKlclmデータに変換する分版LUTとによって色変換を行う構成に対して本発明にかかるスムージングを適用した例である。
【0042】
メディアプロファイルとしては、プリンタの機種やメディア毎に異なるプロファイルが予め用意されるのが通常であり、プリンタドライバのインストール時にこの予め用意されたメディアプロファイルの総てがコンピュータのハードディスクに記録される。しかし、プリンタの経時変化や機体間の誤差が生じた場合や特に高精度の色変換が要求される環境での使用など、予め用意されたメディアプロファイルでの印刷よりさらに高精度の印刷を実行することを望む場合がある。メディアプロファイルの作成は公知のプログラム等で自動で行うことができ、高精度の印刷を望むユーザーはこのプログラム等を利用してメディアプロファイルを更新する作業を行う。
【0043】
ところが、メディアプロファイルの作成時には分版LUTが参照され、また、実際の印刷時にも分版LUTは参照されるので、真に高精度の印刷を実行するためには、分版LUT自体が高精度の色変換を実施可能に構成されている必要がある。そこで、本実施形態においては、ユーザーが使用するクライアント内にDLL(Dynamic Link Library)等として予め登録されている分版LUTをサーバに送信し、サーバでこの分版LUTを利用しつつスムージング処理を行って色補正なしLUTを生成し、再度クライアントに送信し直している。
【0044】
すなわち、サーバによるスムージング処理以降においては、分版LUTの代わりにスムージング処理が施された色補正なしLUTが参照される。この色補正なしLUTはRGBデータとCMYKlclmデータとを複数の参照点にて対応づけるテーブルであって両者が示す色が厳密に一致している訳ではないが、これらの参照点を利用した補間演算は色域の全域に渡って高精度に実行することができる。従って、高精度に色変換を実行可能なメディアプロファイルを作成することができるし、高精度な色変換を実施して印刷を実行することが可能になる。
【0045】
尚、本実施形態におけるスムージング後、プリンタにおいてはメディアプロファイルと色補正なしLUTとを参照して、インク量と機器非依存色空間中の格子点との変換を行うので、メディアプロファイルと色補正なしLUTとが上記対応関係定義データに相当する。また、スムージングの際には分版LUTを参照して色補正なしLUTが作成されるので、分版LUTが上記第1対応関係定義データに相当するし、色補正なしLUTは対応関係定義データ作成用格子点にも該当する。
【0046】
図1は、色補正なしLUTおよびメディアプロファイルを作成する際の流れを概略的に説明する説明図である。本実施形態において、ユーザが使用するクライアントには予め分版LUTが保存されている。この分版LUTは、3次元のRGBデータを複数の規則に従って6次元のCMYKlclmデータに変換し、得られた結果を対応づけて作成される。
【0047】
すなわち、CMYKlclmの6色を組み合わせれば同じ色を異なるCMYKlclm値の組み合わせで表現可能であり、RGBデータが示す色に対応するCMYKlclmデータを一義的に決定するのは煩雑であるので、特定の規則に従うこととしてRGBデータとCMYKlclmデータとの対応関係を定義したものである。特定の規則によってRGBデータをCMYKlclmデータに対応づけているため、分版LUTでは参照点のRGBデータが画像機器で使用されるデータであるとしたときにその色とCMYKlclmデータが示す色とが必ずしも一致しない。そこで、分版LUTを参照して印刷する場合にはメディアプロファイルによって機器非依存色空間中の格子点をRGB値に変換する際に、当該変換後のRGB値をさらに分版LUTで変換した後の色とメディアプロファイルによる変換前の色が一致するようにメディアプロファイルを作り込んでいる。
【0048】
尚、RGBデータおよびCMYKlclmデータの階調値域としては各画像機器で使用される階調値域(多くは0〜255)を採用する。また、RGBの各色はCMYの各色と補色関係にあることから、階調値によって色を厳密に規定しないのであればC=255−R,M=255−G,Y=255−Bとしてもよく、この意味で分版LUTにおけるRGBデータはCMYデータであっても良い。上述の特定の規則としては種々の規則を採用可能である。例えば、RGBデータをCMYデータとみたときにCMYの各階調値から等量の値aを減じるとともにC=M=Y=aをKの階調値bで代替させ、CおよびMの残りについて一定の比率でlcおよびlmで代替させることとする規則など、CMYの各階調値について等価と思われるCMYKlclm階調値で代替させる規則を採用可能である。
【0049】
さらに、CMYKlclmの各階調値は各色インクの使用量を特定するので、インクの使用制限、すなわち単位面積当たりに記録するインク重量を特定の重量以下に制限する条件およびインク発生制限、すなわち粒状感を与えにくくしたり光源による発色の差を低減したりするために特定のインクの使用量を制限する条件を加味してCMYKlclmの各階調値を決定する。また、CMYKlclmインクの組み合わせによって表現可能な色が多いほど画質向上の上で好ましいことから、色域をなるべく広くとるようにする。これらの規則は、最終的に作成されるメディアプロファイルを参照して印刷を実行する際に非常に重要であり、これらの規則を加味していないと印刷に支障を来したり、高画質の印刷が実現できないなどの不都合が生じる。
【0050】
一方、分版LUTではCMYKlclmデータの組み合わせで定義された色をLab色空間中の格子点で表現したときの格子点配置の平滑程度が低い。格子点配置の平滑程度が低いという状態は、Lab色空間中で隣り合う格子点を結ぶ曲線であってLab色空間中に形成される色域の一方の境界から他方の境界に向けて引かれる曲線を考えたときに、この曲線が高次関数で記述される状態であるといえる。メディアプロファイルを作成する際には後述するように補間演算を利用する。さらに、印刷時の色変換(メディアプロファイルおよび分版LUTを参照した色変換)に際しても補間演算を利用する。補間演算には線形補間やスプライン補間等種々の手法があるが、いずれにしても補間対象の格子点の周囲に存在する格子点から当該補間対象の格子点の色を計算する。従って、格子点配置の平滑程度が低いと(あるいは上述の曲線が高次関数であるほど)、補間演算の精度が低くなる。
【0051】
このように、補間演算の精度が低いと最終的な作成対象であるメディアプロファイルにて定義するRGBデータとCMYKlclmデータとの対応を高精度に定義できず、印刷時の色変換精度が悪くなる。しかも、上記分版LUTに規定されたCMYKlclmデータが示す格子点配置の平滑程度は全体として均一ではなく、Lab色空間の位置によって差異があり、補間精度も色空間中で差異が生じ、局所的に色変換精度に差異が生じる。この状況において印刷を実行すると、特にグラデーションなど色が連続して変化するような画像を印刷した場合に色が滑らかに変化せず、高画質の印刷が実行できない。
【0052】
そこで、本実施形態においては、クライアントに保存された分版LUTをサーバで取得し、サーバにおいては当該分版LUTに規定されたCMYKlclmデータのみを参照しつつ最適化後の格子点位置に対応するCMYKlclmデータを算出しつつ、格子点配置の平滑程度を高くするようにスムージング処理を行って色補正なしLUTを作成する。図2は色補正なしLUTを作成する際に実施されるスムージングを概略的に説明する説明図である。上記分版LUTは上述のようにRGBデータとCMYKlclmデータとの対応関係を定義しており、RGBデータについては、RGB各色のピッチを一定にすることにより、その格子点が直交3次元空間のRGB色空間で図2の左上に示すような立方格子点を形成するようにしてある。これらの立方格子点はその配置に歪みが無く平滑程度が高いといえる。
【0053】
一方、CMYKlclmデータによる色域はLab色空間中で歪んでいる。すなわち、図2の右上にはLab色空間中の当該色域を示しており、同図に示すようにLab色空間中で色域はいびつな形をしている。また、上記分版LUTにおいては互いに隣り合う格子点の配置を考慮せず、また、上記各種規則に従ってCMYKlclmデータを決定している。従って、CMYKlclmデータが示す色をLab色空間中に配置すると、いびつな色域内に秩序無く格子点が存在するかのごとく格子点が配置される。すなわち、格子点配置の平滑程度が低い。
【0054】
そこで、本実施形態のスムージング処理においては、分版LUTに定義されたCMYKlclmデータが示す色の格子点配置を仮想的なLab色空間中で平滑化して格子点配置の平滑程度が高いLUT(本明細書ではこのLUTを色補正なしLUTと呼ぶ。)を作成する。図2中央から下部では分版LUTから色補正なしLUTを作成する際の処理概要を示している。本実施形態では、分版LUTのRGB格子点位置を指定する位置情報(Pr,Pg,Pb)を変数として仮想的なLab色空間中の格子点をベクトルL=f(Pr,Pg,Pb)で表現し、当該位置情報(Pr,Pg,Pb)を逐次更新する。
【0055】
すなわち、位置情報(Pr,Pg,Pb)を逐次更新する再帰演算により、調整対象の格子点位置が周りの格子点位置との関係で平滑になるまでベクトルLが示す格子点位置を調整する。これにより、仮想的なLab色空間中で格子点の配置をスムージングしている。尚、本実施形態における位置情報は、0≦Pr≦R方向の格子点数−1,0≦Pg≦G方向の格子点数−1,0≦Pb≦B方向の格子点数−1であるが、この位置情報は格子点位置を指定することができれば良くRGBデータであっても良い。ただし、後述するように色補正LUTに規定されるRGBデータと分版LUTに規定されるRGBデータとは同値であるので、この場合であっても位置情報はCMYKlclmデータを更新するために使用され、分版LUTに規定されたRGBデータの値を更新するために使用される訳ではない。
【0056】
ここで、仮想的なLab色空間の格子点は、少数のカラーチャートの測色値から簡易的な演算によって取得した仮想RGB輝度をさらに所定の演算式によって変換して得られるLab値を成分としている。この演算は簡易的な演算であるが、演算式が物理的に無意味ということはなくこの格子点の配置を平滑化することで実際のLab色空間中でも充分に配置が平滑化した格子点が得られるようにしている。すなわち、上記簡易的な演算は後述するようにランベルト・ベールの法則(新編色彩科学ハンドブック第2版 東京大学出版会 222頁)をより簡略した演算であり、この演算によればCMYKlclmデータに対する実際のLab値を厳密ではないが近似した状態で算出することができる。そこで、本明細書ではこのLab値を仮想Lab値としている。
【0057】
この仮想的なLab色空間中で配置の平滑程度が高い格子点となるように位置情報(P’r,P’g,P’b)を決定することができれば、分版LUTを利用して位置情報(P’r,P’g,P’b)に対応するインク量を算出することで上述の色補正なしLUTを作成することができる。図2の拡大模式図ではスムージング前後のRGBデータと位置情報との関係を模式的に示している。この図において直線上の黒丸はRGB色空間中の格子点を示しており、各格子点におけるRGBデータはそれぞれR,G,BおよびR,G,Bである。
【0058】
RGBデータがR,G,Bとなっている格子点がスムージング対象であるとき、その位置情報は(Pr,Pg,Pb)であり、スムージング後に白丸に相当する格子点位置を示す位置情報(P’r,P’g,P’b)が得られたとする。このとき、この位置情報で特定される白丸の格子点の周りにある格子点においては上述の分版規則を満たすCMYKlclmデータが対応づけられているので、これらのデータを利用して補間演算を実施すれば、白丸で示す格子点に対応するデータClclmを算出することができる。そこで、スムージング対象の格子点についてのRGBデータ(R,G,B)に対して当該CMYKlclmデータ(Clclm)を対応づけることによって色補正なしLUTとする。
【0059】
以上のスムージング処理により、分版LUTで定義されたCMYKlclmデータのみを参照しつつ最適化後の格子点位置に対応するCMYKlclmデータを算出し、Lab色空間内の格子点配置の平滑程度が高い色補正なしLUTを作成することができる。すなわち、スムージング処理は仮想Lab色空間で実施され、その変数は位置情報であり、この位置情報を更新する構成を採用することによって再帰演算実施時に上述の分版の規則を考慮することなく仮想Lab格子点を自由に変動することができる。しかし、格子点を最適化した後には、分版LUTに定義されたCMYKlclmデータを参照し、最適化後の位置情報に相当するCMYKlclmデータを算出する。
【0060】
従って、分版LUTで定義され、上述の分版の規則を満たしたCMYKlclmデータのみから最適化後のCMYKlclmデータを取得することができる。すなわち、ある色に相当するCMYKlclmの組み合わせが多数存在する中で、分版の規則を満たすCMYKlclmデータを参照して補間演算を行うことにより、補間後のCMYKlclmデータにおいても上述の分版の規則を満たすことを担保することができる。尚、この補間演算としていわゆる線形補間を行えば、分版の規則を満たすCMYKlclmデータから逸脱することがなく好ましいが、むろん、非線形の補間演算を行ったとしても、分版の規則をほぼ満たしていると言える。この結果、分版LUTの作成時に考慮した各種規則は維持したままスムージングを行うことができ、当該各種規則と平滑程度の高い格子点配置という2点を同時に満たす色補正なしLUTを作成することができる。この色補正なしLUTに規定された色に相当する格子点の配置はLab色空間中で平滑程度が高いので、この色補正なしLUTに規定された色を参照して高精度に補間演算を実行することができる。
【0061】
以上のようにして作成した色補正なしLUTにおいては上記分版LUTを作成する際に考慮した各種の規則を満たし、かつ格子点配置が平滑になるような参照点を規定しているが、色補正なしLUTで規定するRGBデータを画像データの色成分値としたときの色(sRGBで規定される色)と対応するCMYKlclmデータで印刷を実行したときの色とでは色が一致するとは限らない。すなわち、この対応関係は上記分版LUTを作成する際に上述の規則に従ったのみであり、両者の色が一致するような担保はなされていない。
【0062】
そこで、ユーザーは、上記プロファイル作成プログラムを利用してメディアプロファイルを更新する作業を行う。すなわち、図1に示すようにまず色補正なしLUTに規定された各RGBデータによって複数のパッチを印刷してカラーチャートを取得する。この色補正なしLUTではRGBデータとCMYKlclmデータとが対応づけられているので、このRGBデータによる印刷は色補正なしLUTに規定されたCMYKlclmデータによる印刷と等価である。カラーチャートが得られれば、測色機によってチャート上のパッチを逐次測色することによって色補正なしLUTに規定された各RGBデータで印刷されるパッチのLab値を取得することができる。一方、メディアプロファイルに登録する参照点としてのLab値は予め決めておく(本実施形態ではこのLab値をターゲットと呼ぶ)。
【0063】
このLab値に対応した色が色補正なしLUTに規定されたRGB表色系でどのような値であるのか把握することができれば、メディアプロファイルを作成することができる。そこで、上記色補正なしLUTに規定された各RGBデータで印刷されるパッチのLab値を参照して補間演算を実施し、上記ターゲットのLab値に対応するRGBデータを取得する。得られたRGBデータとターゲットのLab値とを対応づけたものがメディアプロファイルである。尚、本実施形態においては、ターゲットのLab値と色補正なしLUTのRGBデータとを対応づける前にガマットマッピングを行っている。
【0064】
すなわち、メディアプロファイルによる変換対象としてのLab値は色空間内でプリンタの色域内に存在する必要があり、上記ソースプロファイルによる変換で得られるLab値はディスプレイの色域内に存在する。両色域は一般に異なっているので、プリンタの色域外に存在するLab値がメディアプロファイルの変換対象となった場合にプリンタの色域内の色に変換されるようにするため、ターゲットLabに対して色域圧縮を施し、プリンタの色域内に存在するLab値に変換した後に上記色補正なしLUTに規定された各RGBデータと対応づける。むろん、ここではガマットマッピング以外に種々の補正を行っても良い。例えば、人間は空や肌の色を実際の色より鮮やかに記憶している傾向にあるなど人間の記憶色と実際の色と異なるので、人間の記憶色に近くなるように色を補正しても良い。
【0065】
尚、本発明におけるスムージングをプロファイル作成プログラム起動前に実施する構成によれば、ユーザが実施困難な作業をサーバで実施可能である他、メディアプロファイルの変換精度としても利点が大きい。すなわち、本発明のスムージングは機器非依存色空間内で格子点配置の平滑程度を向上することを目的としているが、配置の平滑程度を向上することのみに着目すれば、上記図1に示すメディアプロファイル作成の各段階でもスムージングを実施し得る。しかし、上述の色補正なしLUTを作成する際にスムージングを行い、その後にプロファイル作成プログラムを実行しつつターゲットLab値と対応づけるための測色を行う構成にすることにより、ターゲットLab値と色補正なしLUTのRGBデータとを非常に高精度に一致させることができる。
【0066】
すなわち、分版LUTに規定されたRGBデータとCMYKlclmデータとに基づいてスムージング処理を行う前にカラーチャートを印刷して測色を行い、測色で得られるLab値等により機器非依存色空間内でスムージングをした場合であっても格子点配置の平滑程度は向上する。しかし、スムージング後のLab値と測色対象のCMYKlclmデータとでは色が異なっている。また、スムージング後のLab値に対応するCMYKlclmデータを補間によって算出しようとしても補間時に参照する周囲のLab値はスムージング前の格子点であるため、正確に補間演算をすることができない。
【0067】
従って、いずれにしてもスムージング後のLab値と分版LUTに規定されたCMYKlclmデータとで色がずれてしまう。この状況でスムージング後のLab値と上記ターゲットLab値とを対応づけてメディアプロファイルを作成したとしても、メディアプロファイルで定義するLab値と分版LUTのRGBデータとの対応を高精度に定義できず、印刷時の色変換精度が悪くなる。一方、本発明においては、機器非依存色空間内でスムージングを行い、最適化された位置情報に対応するCMYKlclmデータを分版LUTに規定されたCMYKlclmデータに基づく補間演算で取得して色補正なしLUTを作成し、その後に色補正なしLUTのRGBデータ(あるいはCMYKlclmデータ)とターゲットLab値と対応づけるための測色を行う。
【0068】
従って、測色値に対応する色とCMYKlclmデータが示す色とがずれることはないし、測色値とターゲットLab値とを対応づけるために補間演算を行うとしても、補間時に参照する周囲のLab値はスムージング後の格子点であるため正確に補間演算をすることができる。この結果、機器非依存色空間内で格子点配置をスムージングして高精度に色変換可能なメディアプロファイルを作成することが可能になる。
【0069】
(2)クライアントの構成:
次に、本発明にかかるスムージング処理後の色補正なしLUTを利用するクライアントの装置構成を説明する。図3はクライアント10にて実行されるプログラムを示すブロック図である。本実施形態にかかるクライアント10は汎用的なPCによって形成され、図示しないインタフェースによってプリンタ15および測色機17が接続される。当該プリンタ15においてはCMYKlclmの6色のインクを搭載し、各色毎にドットを印刷媒体に記録する。また、クライアント10は図示しないプログラム実行環境によってプロファイル作成プログラム20,プリンタドライバ30,その他各種プログラムを実行可能である。
【0070】
さらに、クライアント10はハードディスク12を備えており、同ハードディスク12には、ソースプロファイル41とメディアプロファイル42およびDLL40が記憶されている。DLL40は、プリンタドライバ30で印刷を実行する際に必要な各種モジュールおよびリソースを備えており、分版LUT43もその中に含まれている。画像の印刷時には、プリンタドライバ30が、画像のRGB空間に対応したソースプロファイル41と印刷メディアの種類に応じたメディアプロファイル42とを選択し、色変換を行った後、印刷するメディアに応じた分版LUT43を選択し印刷を実行する。本実施形態において、初期状態、すなわち、プリンタドライバ30をインストールした状態ではハードディスク12に予め記録されたソースプロファイル41と、当該プリンタドライバ30のインストール時に同時にインストールされるメディアプロファイル42と分版LUT43とを参照して色変換を行い、印刷を実施可能である。
【0071】
この状態での色変換精度をさらに向上したいユーザは、プロファイル作成プログラム20を実行し、サーバからスムージング処理後の色補正なしLUT44を取得する。色補正なしLUT44は分版LUT43を上書きするようにしてハードディスク12に記録される。この状態でさらにプロファイル作成プログラム20は、当該色補正なしLUT44で、所定のカラーチャートを印刷することをプリンタドライバ30に指令し、印刷されたカラーチャートを測色機17により測色する。プロファイル作成プログラム20は、メディアプロファイル作成モジュール22によって、この測色値と上記カラーチャートのRGBとの対応関係からメディアプロファイル42を作成し、ハードディスク12に上書きする。そして、プリンタドライバ30は、上記ソースプロファイル41と更新されたメディアプロファイル42を選択し、色変換を行った後、当該色補正なしLUT44を選択し印刷を実行する。このようにして印刷を実行することにより、高精度に色変換を行った印刷物を得ることができる。
【0072】
プリンタドライバ30においては、上記ソースプロファイル41,メディアプロファイル42,分版LUT43および色補正なしLUT44を参照して印刷を実行可能な各モジュール、すなわち、画像データ取得モジュール31と色結合処理部32と色補正モジュール33とハーフトーン処理モジュール34と印刷処理モジュール35とを備えている。画像データ取得モジュール31は、印刷対象画像を示す画像データを取得するモジュールである。画像データ取得モジュール31は、当該取得した画像データの画素数と印刷に必要な画素数が整合しない場合に両者を整合させるための解像度変換を実行する。
【0073】
色結合処理部32はソースプロファイル41とメディアプロファイル42とを参照して入力画像データのRGB値を分版LUT43に規定されたRGB表色系でのRGB値あるいは色補正なしLUT44に規定されたRGB表色系でのRGB値に変換するモジュールである。すなわち、ソースプロファイル41は入力画像データの表色系をLab表色系に変換するプロファイルであるので、色結合処理部32は当該ソースプロファイル41を参照して入力画像データの色をLab値で表現する。メディアプロファイル42はLab表色系を分版LUT43に規定されたRGB表色系でのRGB値あるいは色補正なしLUT44に規定されたRGB表色系でのRGB値に変換するプロファイルであるので、色結合処理部32は当該メディアプロファイル42を参照してLab値をRGB値に変換する。このRGB値は色補正モジュール33に入力される。
【0074】
色補正モジュール33は、LUTを参照して色変換を実施するモジュールであり、分版LUT43あるいは色補正なしLUT44を参照して上記入力されたRGB値をCMYKlclmデータに変換する。この結果得られたCMYKlclmデータは上記ハーフトーン処理モジュール34に受け渡される。ハーフトーン処理モジュール34は、各ドットのCMYKlclm階調値を変換してインク滴の記録密度で表現するためのハーフトーン処理を行うモジュールであり、変換後の記録密度でインクを付着させるためのヘッド駆動データを生成する。印刷処理モジュール35はかかるヘッド駆動データを受け取って、プリンタ15で使用される順番に並べ替える。
【0075】
すなわち、プリンタ15にはインク吐出デバイスとして図示しない吐出ノズル列が搭載されており、当該ノズル列では副走査方向に複数の吐出ノズルが並設されるため、副走査方向に数ドット分離れたデータが同時に使用される。そこで、主走査方向に並ぶデータのうち同時に使用されるべきものがプリンタ15にて同時にバッファリングされるように順番に並べ替えるラスタライズを行う。印刷処理モジュール35は、このラスタライズの後、画像の解像度などの所定の情報を付加して印刷データを生成し、プリンタ15に出力する。プリンタ15においては当該印刷データに基づいて上記画像データが示す画像を印刷する。
【0076】
本実施形態においては、画像データの印刷を制御する印刷制御装置として機能するクライアント10内にプロファイル作成プログラム20が備えられており、ユーザーが高精度の色変換を所望するときには当該プロファイル作成プログラム20を起動する。プロファイル作成プログラム20はターゲットLab値決定モジュール21とメディアプロファイル生成モジュール22と通信制御部23とを備えている。クライアント10は、通信I/F25を介してインターネット網に接続されており、通信制御部23は通信I/F25を制御して送受信を行う。
【0077】
図4の左側には当該プロファイル作成プログラム20の処理フローを示しており、当該通信制御部23は図示しないUI等によってスムージング対象の分版LUT43の指定を受け付け、当該スムージング対象の分版LUT43を示す情報とともにスムージング処理に必要なデータを送信する。また、スムージング処理後のデータを受信する。すなわち、DLL40には各印刷メディア毎に複数個用意された分版LUT43が含まれており、通信制御部23はまずステップS100にてスムージング対象を特定するために対象を指定するデータを取得する。また、ステップS110ではカラーチャートを印刷して測色値を取得する処理を行う。
【0078】
ここでは、まずCMYKlclmの各インク色について色毎に256階調のうち16〜32個程度の階調値を抜き出すとともに当該抜き出した階調値について各色単色でパッチを印刷させる画像データを生成し、ハーフトーン処理モジュール34に出力する。この結果、各色単色で16〜32個のパッチが印刷され、測色機17ではこのパッチおよびインク無記録の紙白を測色し、各色についてCMYの濃度値を取得する。通信制御部23はこの測色値データを取得する。ここで、各インク色の階調変化に対してCMY濃度値が単調増加あるいは単調減少でない場合には後述する最適化処理において最適解に収束せず、極値解に落ち込むことがあるので、CMY濃度値が各色で単調増加あるいは単調減少になるようにスムージングしておく。
【0079】
そして、通信制御部23はステップS120でDLL40のデータを取得し、ステップS130にてDLL40,測色値,スムージング対象を示すデータをサーバに送信する。サーバにおいてはこれらのデータに基づいてDLL40の分版LUT43を色補正なしLUT44に更新して更新後のDLL40をクライアント10に対して返信する。通信制御部23は当該色補正なしLUT44を含むDLL40をステップS140にて受信し、ハードディスク12に保存する。尚、スムージング対象を指定するデータは、スムージング対象を一義的に特定するデータであれば良く、サーバにおいて複数の機種のプリンタのLUTをスムージング可能にする場合にプリンタの機種を特定する情報等、種々の情報を含むことができる。
【0080】
ターゲットLab値決定モジュール21は上記ターゲットLabを決定するモジュールであり、メディアプロファイル生成モジュール22は上記図1に示す処理によって色補正なしLUT44からメディアプロファイル42を作成するための処理を行うモジュールである。上記更新されたDLL40を受信すると、ターゲットLab値決定モジュール21はステップS150にて上記ターゲットのLab値を決定し、メディアプロファイル生成モジュール22は、ステップS160にてカラーチャートの測色処理を行う。すなわち、メディアプロファイル作成モジュール22は、まず、上記色補正なしLUT44に規定された各RGBデータにてパッチの画像データを作成して色補正モジュール33に出力する。
【0081】
このとき、色補正モジュール33は、色補正なしLUT44を参照して各RGBデータに対応したCMYKlclmデータを取得し、当該CMYKlclmデータをハーフトーン処理モジュール34に受け渡す。ハーフトーン処理モジュール34および印刷処理モジュール35はこのCMYKlclmデータに基づいてパッチを印刷する。この結果、色補正なしLUT44に規定された各RGBデータによって印刷したカラーチャートが印刷される。このカラーチャートは測色機17によって測色され、そのLab値はメディアプロファイル生成モジュール22に入力される。
【0082】
また、メディアプロファイル生成モジュール22は、上記ターゲットLab値決定モジュール21が決定したターゲットLab値を取得する。そして、ステップS170にてガマットマッピング等の処理を行うとともに補間処理を行ってターゲットのLab値に対応するRGBデータ(色補正なしLUT44で使用するRGB表色系でのRGBデータ)を算出する。さらに、得られたRGBデータをターゲットLab値と対応づけることによってメディアプロファイル42を作成してハードディスク12に記録する。これ以後クライアント10では高精度の印刷が可能になる。
【0083】
(3)サーバの構成およびスムージング処理:
以上のように、スムージング処理はサーバにおいて実施しており、以下にてサーバの構成およびスムージング処理を詳細に説明する。図4の右側にはサーバにおける処理のゼネラルフローを示しており、図5はサーバの構成を示すブロック図であり、図6はスムージング処理のフローチャートである。本実施形態にかかるサーバ50は汎用的なコンピュータによって形成され、通信I/F52を介してインターネット網に接続されており、通信制御部54の制御により通信I/F52を介して種々のデータの送受信を行う。
【0084】
通信制御部54は、上記クライアント10がステップS130にて送信する各種データをステップS200にて受信すると、DLL40をハードディスク58に記録し、取得した測色値を測色値45としてハードディスク58に記録する。スムージング対象を示すデータはスムージング処理モジュール60に受け渡す。サーバ50は図示しないCPUやRAM56等からなるプログラム実行環境を備えており、スムージング処理モジュール60を実行可能である。スムージング処理モジュール60はステップS210において、スムージング対象の分版LUT43に対してスムージング処理を施し、得られた色補正なしLUT44によってDLL40を上書きし、ステップS220にて当該更新後のDLL40をクライアント10に対して送信する。
【0085】
以下においては、図5,図6に基づいてステップS210のスムージング処理を詳説する。スムージング処理モジュール60は、中間RGB輝度変換処理部62aと最適化対象抽出部62bと仮想Lab値算出部62cと演算対象抽出部62dと評価関数算出部62eと位置情報更新部62fとインク量算出部62gと色補正なしLUT生成部62hとを備えている。中間RGB輝度変換処理部62aは、上記測色値45を参照し、簡易的な演算によって中間RGB輝度に変換するモジュールである。当該中間RGB輝度変換処理部62aは、ステップS300にて測色値45を中間RGB輝度に変換し、変換結果を中間RGB輝度値56aとしてRAM56に記録する。
【0086】
より具体的には、中間RGB輝度変換処理部62aは、上記測色値45が示すCMY濃度階調を以下の式(1)に代入し、各インク色の各パッチ毎に中間RGB輝度を算出する。
【数1】
Figure 2004320627
尚、式(1)は濃度を輝度に変換する一般的な式であるが、本実施形態ではCMY濃度を色成分毎の独立変数とし、中間RGB輝度を求めるものとした。ここで、Tr,Tg,Tbを中間RGB輝度と呼んでおり、各インク単色の各パッチにおけるR輝度成分,G輝度成分,B輝度成分を示している。また、Dc,Dm,DyはC濃度成分,M濃度成分,Y濃度成分を示しており、iはインク色を区別するための符号である。
【0087】
以上の演算によれば、各インク単色のインク階調値で印刷を行った場合の中間RGB輝度が得られることになるので、この中間RGB輝度と各インク単色のインク階調値との対応関係を参照すれば、補間演算によってインク単色の任意の階調値に対応した中間RGB輝度を算出することができる。以上の処理によって、中間RGB輝度が取得され、この値が中間RGB輝度値56aとしてRAM56に記録され 本実施形態においては、上述のように仮想Lab値を算出し、仮想的なLab色空間内で分版LUTの格子点位置情報を変数として仮想Lab値を変更する。そこで、仮想Lab値算出部62cは、中間RGB輝度から分版LUT43のCMYKlclmデータに対応したRGB輝度を算出し、このRGB輝度からLab値を算出し、仮想Lab値56cとしてRAM56に記録する。尚、このRGB輝度は中間RGB輝度から簡易的な式によって算出されるので、本明細書ではこのRGB輝度を仮想RGB輝度と呼ぶ。
【0088】
具体的には、まず、ステップS305において最適化対象抽出部62bが分版LUT43に規定されたCMYKlclmデータをインク量データ56bとしてRAM56に記録する。ステップS310において、仮想Lab値算出部62cは、当該インク量データ56bについて、以下の式(2)によって各インク色を組み合わせた状態での色、すなわちCMYKlclmデータが示す色に対応した仮想RGB輝度を算出する。
【数2】
Figure 2004320627
以上のようにして、仮想RGB輝度が算出されると、算出された仮想RGB輝度を3×3のマトリクスによってXYZ表色系での値に変換し、このXYZ表色系の値をさらにLab表色系での値に変換する。変換された仮想Lab値が上記仮想Lab値56cであり、この段階では分版LUT43に規定されたCMYKlclmデータに対応する仮想Lab値がRAM56に記録されていることになる。
【0089】
以上の演算において、上記測色値45は各インク毎16〜32個程度という少数の測色パッチの測色値であり、このデータから簡易的な演算によって仮想RGB輝度および対応する仮想Lab値を算出している。ここで算出されるデータ数は分版LUT43に規定された総ての参照点と同数であるが、測色対象は16〜32個×インク数+紙白であって参照点数より非常に少ない数であり、総てを測色する場合と比較して非常に高速に処理を進めることができる。
【0090】
また、本実施形態におけるスムージング処理の後に上述のメディアプロファイル生成モジュール22が機器非依存色と色補正なしLUT44のRGB(ひいてはCMYKlclmデータ)との色を一致させる処理を行うので、ここでのスムージング処理では格子点が示す色が厳密に正しいことが重要ではない。すなわち、格子点配置の平滑程度が重要であり、格子点配置を平滑化するに当たり、仮想Lab値が実際のLab値と全く異なっていてはスムージングの意味がないが、本実施形態において上記式(1)(2)はランベルト・ベールの法則を簡略化したものであり、仮想Lab値が実際のLab値と全く異なることはない。本願出願人の実験によれば、本実施形態のような簡易的な演算で格子点配置を平滑化する効果は充分に発揮され、高精度に色変換可能なメディアプロファイルが作成できることが分かっている。
【0091】
尚、上述の演算は一例であり、実際のLab値に近く、スムージングの効果が充分に発揮される限りにおいて上記仮想Lab値は種々の演算によって算出することができるし、作業の手間を考えなければ実際に測色してもよい。また、16〜32個の階調を選び出すのも一例であり、それより少なくても多くても良いが、16〜32個であれば概ね良好な結果を得ることができる。さらに、階調の選び方も様々であり、均等に選んでも良いし、階調値が大きくなると濃度の変化度合が小さくなるインク特性を考慮して小さな階調値を多く選んでも良い。むろん、色毎に階調の選び方を変えても良い。測色で得られるCMY濃度階調を参照し、インク量に対応したCMY濃度を補間によって算出した後、中間RGB輝度を取得しても良い。
【0092】
本実施形態においては、以上の中間RGB輝度値56aとインク量データ56bと仮想Lab値56cとを利用して分版LUTのRGBデータにより再帰的に各格子点毎にスムージングを行う。最適化対象抽出部62bは、ステップS315においてインク量データ56bとして記録された複数のデータの中からスムージング処理が行われていないCMYKlclmデータを抽出して最適化対象として抽出する。仮想Lab値算出部62cは、ステップS320にてこのCMYKlclmデータに対応する仮想Lab値を算出する。すなわち、中間RGB輝度値56aとインク量データ56bから最適化対象のCMYKlclmデータに対応する仮想Lab値を算出する。
【0093】
スムージングは当該最適化対象のCMYKlclmデータに対応する仮想Lab値とその周辺の格子点に相当する仮想Lab値とを利用して行われる。そこで、演算対象抽出部62dは、ステップS325にて上記最適化対象のLab格子点の周囲に存在するとともに当該格子点に隣接する格子点に相当する仮想Lab値を抽出する。尚、ここで抽出される仮想Lab値は、最適化対象の仮想Lab格子点の空間的位置によって異なっており、詳細は後述する。
【0094】
評価関数算出部62eは、ステップS330にて上記抽出した最適化対象の格子点およびその隣接格子点を利用して評価関数を算出する。評価関数は、最適化対象の仮想Lab格子点の配置が平滑化されるほど値が小さくなる関数であり、その変数は分版LUT43のRGB格子点位置を特定する上記位置情報である。すなわち、位置情報を調整すれば最適化対象の仮想Lab値が変動し、最適化した位置情報(評価関数を極小化した位置情報)が得られる。尚、評価関数も最適化対象の仮想Lab格子点の空間的位置によってその関数形が異なっており、当該仮想Lab格子点の空間的位置によって適宜関数形を選択して評価関数を作成する。この詳細も後述する。
【0095】
さらに、評価関数算出部62eは、上記ステップS330にて算出した評価関数の値を算出し、ステップS335で所定の閾値以下になっているか否かを判別する。すなわち、評価関数の値が所定の閾値以下になっているときに仮想Lab格子点の位置が最適化(充分に平滑化)されたと判別する。ステップS335で仮想Lab格子点の位置が最適化されていないと判別されたとき、位置情報更新部62fはステップS340にて位置情報を上記最適化された位置情報に更新し、位置情報56dとしてRAM56に記録する。
【0096】
位置情報を更新したら、この位置情報で特定されるRGB格子点に対応したインク量によって最適化対象の仮想Lab値が最適化されているか否かを判断するため、再度評価関数の算出を行う。すなわち、インク量算出部62gは、ステップS345にて上記位置情報56dを参照し、上記更新された位置情報に相当するインク量(CMYKlclmデータ)を算出する。このとき、上記インク量データ56bを参照し、補間処理によって上記更新された位置情報に相当するインク量を算出する。
【0097】
このように、更新された位置情報に相当するインク量を算出することができれば、このインク量から更新後の仮想Lab値を算出することができるので、ステップS320以降の処理を繰り返すことによって評価関数の値を上記所定の閾値以下に収束させることができ、仮想Lab格子点の位置を最適化することができる。すなわち、評価関数によって位置情報を最適化(評価関数を極小化)し、これにより仮想Lab格子点が最適化(格子点配置の平滑化)されるまでステップS320以降の処理を繰り返すことによって格子点配置を最適な位置に収束させる。尚、最適化処理の具体的なアルゴリズムとしては準ニュートン法や共益勾配法等種々のアルゴリズムを採用することができる。
【0098】
一方、上記ステップS335にて仮想Lab格子点の位置が最適化されたと判別されたときには、ステップS350において当該最適化された時点での仮想Lab値に対応するインク量にて上記インク量データ56bを上書きし、ステップS355において上記インク量データ56bの総てについて最適化が終了したか否かを判別する。そして、ステップS355において上記インク量データ56bの総てについて最適化が終了したと判別されるまでステップS315以降の処理を繰り返す。
【0099】
さらに、ステップS360では予め決められた回数の補正が実行されたか否か判別し、所定回数の補正が実行されたと判別されるまでステップS315以降の処理を繰り返す。すなわち、所定回数の補正を実行することによって最適化処理の結果が真の解になることを担保している。むろん、ステップS360においては全体として充分に最適化されていることが担保されればよいので、総てのインク量について上記評価関数の値やその平均値が所定の閾値以下になっているか否かを判別しても良い。また、評価関数の値の平均値が(n−1)回目の補正とn回目の補正と略一定の場合に充分に最適化されたとしても良く種々の構成を採用可能である。
【0100】
以上のようにして充分に格子点配置が平滑化された後には、上記インク量データ56bを分版LUT43に規定されたRGBデータに対応づけることにより、当該RGBデータとLab色空間中で平滑化された色を示すインク量データとを対応づけることができる。そこで、色補正なしLUT生成部62hはステップS365で上記分版LUT43に規定されたCMYKlclmデータを上記インク量データ56bで上書きすることによって、格子点配置が平滑化された色補正なしLUT44を生成し、スムージング対象の分版LUT43を当該色補正なしLUT44で上書きするようにして上記ハードディスク58に記録する。
【0101】
このように、本実施形態においては、インク量すなわちCMYKlclmデータの各色成分を直接的に調整している訳ではない。CMYKlclmデータを調整するとすれば、上記分版LUT43を作成する際に考慮した規則を満たすように調整することが必要になるが、この規則を考慮するとCMYKlclmデータを調整する際の任意性が少なく、充分に格子点配置を平滑化されることが困難になることがある。しかし、本実施形態では、CMYKlclmデータを直接的に調整するのではなく、位置情報を変動させ、仮想Lab格子点を調整する。
【0102】
従って、この調整の際に上記分版LUT43作成時の規則を考慮する必要がなく、仮想Lab格子点を移動させる際の自由度が大きい。この結果、仮想Lab格子点の配置を容易に最適化することができる。一方、ステップS345において、上記更新された位置情報56dでの格子点に相当するインク量データは分版LUTに規定されたインク量あるいはスムージング後のインク量を参照することによって求めているので、分版LUTにおけるインク量の組み合わせを逸脱することなく、上記分版LUT43作成時の規則を反映している。従って、作成される色補正なしLUT44は分版LUT43作成時の規則を満たすとともに格子点配置も平滑化されている。
【0103】
(4)評価関数による最適化:
次に、ステップS320〜S340における評価関数による最適化処理について詳述する。図7は、Lab色空間中における上記プリンタ15の色域を示す模式図である。プリンタ15の色域は同図に示すようにLab色空間中でいびつな形をしている。また、上記仮想Lab値は上述のように実際のLab値に近いので、仮想Lab値が形成する色域も図7に示す立体と同様の形をしている。一方、画像の色を上記分版LUTのRGBデータの組み合わせで表現したとき、RGBの各色成分を直交3次元空間の軸として形成したRGB色空間内の色域は図2の左上に示すように立方体となる。
【0104】
上記Lab色空間中の色域はいびつな形であるが、その色域境界はRGB色空間中の色域境界と容易に対応づけることができる。すなわち、RGB色空間中の色域境界は立方体の外郭を形成する12本の稜線および6個の外面であるが、Lab色空間中の色域においても色域の境界は12本の稜線および6個の外面にて構成される。より具体的には、RGB色空間中の原点からB軸上の稜線に沿ってB成分のみを有限の値としてR,G成分を最小値に固定すると色がKからBに変化するが、これらの色に対応するLab色空間中の色は図7にてEと示した稜線上にある。
【0105】
同様に、図2の左上の立方体で一番上の面においてその頂点の色はそれぞれBWCM(Wは白)であり、この面上の色はB成分のみを最大値に固定し、他の成分を任意に変化させることによって表現することができ、この面上の色は図7に示す色域ではEと示した面上にある。従って、上記分版LUTのRGBデータのいずれか1つでも最大値あるいは最小値であればその色は色域境界上にあるといえる。この色域境界上の色について上記最適化の際に仮想Lab色空間内を自由に移動可能であるとすれば、充分に大きな色域の大きさを確保できなくなるおそれがある。そこで、本実施形態においては色域の大きさを維持するために、色域境界に形成される12本の稜線と6個の外面と色域内部とで関数形が異なる評価関数を取得する。
【0106】
(4−1)評価関数E
図8は、Lab色空間中で色域境界に形成される稜線上の格子点を最適化するための評価関数を説明する説明図である。同図において破線で示す曲線は色域境界に形成される稜線を示している。また、最適化対象の格子点は黒丸で示し、その周囲の格子点は白丸で示している。色域の大きさを維持するためには黒丸で示す最適化対象の格子点が破線で示す稜線上に存在する必要がある。そこで、本実施形態では最適化対象抽出部62bが最適化対象として図8に示すように破線の稜線上に存在する格子点を抽出したときに、演算対象抽出部62dでは当該最適化対象の格子点に隣接し、かつ破線で示す稜線上に存在する格子点を演算対象の格子点として抽出する。
【0107】
同図においては、最適化対象の格子点をベクトルLとして示しており、演算対象抽出部62dにて抽出される格子点をベクトルLa1,ベクトルLa2として示している。ここで、ベクトルLは以下に示す式(3)によって算出され、上記位置情報(Pr,Pg,Pb)を変数として表現される。本実施形態において位置情報は、仮想Lab値を一義的に特定できる変数であって分版LUTのRGB格子点位置を特定可能な値であればよい。
【数3】
Figure 2004320627
また、同式内のfは位置情報(Pr,Pg,Pb)から、仮想Labベクトルを求める関数であり、位置情報(Pr,Pg,Pb)に対応するインク量を算出する補間演算と当該算出後のインク量から上記式(2)および上記マトリクス等によってXYZ表色系を経由して仮想Lab値を演算する際の式を関数fとしている。
【0108】
評価関数はこのベクトルLおよびベクトルLa1,ベクトルLa2を利用し、以下に示す式(4)によって算出する。
【数4】
Figure 2004320627
すなわち、最適化対象の格子点とその両側で隣接する格子点との距離がそれぞれ等しく、向きが正反対であるときに値が最小になり、これらの距離で差異が大きく、向きが正反対からずれるほど関数の値が大きくなるようにしてある。
【0109】
格子点が均等に配置されると格子点配置が平滑化される傾向にあるので、式(4)に示すEを極小化することによって図8の右側に示すようにベクトルLの格子点位置を最適化したベクトルL’を取得することができる。また、ベクトルL,ベクトルLa1,ベクトルLa2は位置情報(Pr,Pg,Pb)によって表現されるが、評価関数EにおいてはベクトルLa1,ベクトルLa2を与える位置情報は固定であり、ベクトルLを与える位置情報(Pr,Pg,Pb)であって、そのうちいずれか一つのみを可変にするとともに他の二つを最小値あるいは最大値に固定している。例えば、図8に示す破線の稜線上の色はBとKの間に存在し、この色に相当するRGB格子点を特定する位置情報Pr,Pgは最小値であるとともに位置情報Pbは任意の値である。そこで、Lab色空間内の格子点をこの稜線上で移動させるためには、位置情報Pr,Pgを最小値に固定し、Pbを可変にすればよい。
【0110】
色域境界の他の稜線についても同様であり、最適化対象の格子点が色域境界上でKからRの稜線上に存在するときには、位置情報Pg,Pbを最小値に固定し、Prを可変にする。最適化対象の格子点が色域境界上でKからGの稜線上に存在するときには、位置情報Pr,Pbを最小値に固定し、Pgを可変にする。さらに、最適化対象の格子点が色域境界上でWからCの稜線上に存在するときには位置情報Pg,Pbを最大値に固定してPrを可変とし、最適化対象の格子点が色域境界上でWからMの稜線上に存在するときには位置情報Pr,Pbを最大値に固定してPgを可変とし、最適化対象の格子点が色域境界上でWからYの稜線上に存在するときには位置情報Pr,Pgを最大値に固定してPbを可変にする。
【0111】
さらに、最適化対象の格子点が色域境界上でMからRの稜線上に存在するときには位置情報Prを最大値,Pgを最小値に固定してPbを可変とし、最適化対象の格子点が色域境界上でMからBの稜線上に存在するときには位置情報Pbを最大値,Pgを最小値に固定してPrを可変とし、最適化対象の格子点が色域境界上でCからGの稜線上に存在するときには位置情報Pgを最大値,Prを最小値に固定してPbを可変とし、最適化対象の格子点が色域境界上でCからBの稜線上に存在するときには位置情報Pbを最大値,Prを最小値に固定してPgを可変とする。
【0112】
最適化対象の格子点が色域境界上でYからRの稜線上に存在するときには位置情報Prを最大値,Pbを最小値に固定してPgを可変とし、最適化対象の格子点が色域境界上でYからGの稜線上に存在するときには位置情報Pgを最大値,Pbを最小値に固定してPrを可変とする。以上のように、最適化対象の格子点の位置によって変動させる位置情報を適宜変化させて評価関数を極小化すると、その時点での評価関数Eを極小化させる位置情報が算出され、この処理を繰り返すことによって格子点位置を最適化したベクトルL’を取得することができる。
【0113】
(4−2)評価関数E
図9は、Lab色空間中で色域の境界に形成される外面上の格子点を最適化するための評価関数を説明する説明図である。同図において破線は格子点同士を結ぶ直線である。これらの格子点は色域境界の外面上に存在するので、紙面奥側あるいは手前側の一方のみに他の格子点が存在することになる。また、最適化対象の格子点は黒丸で示し、その周囲の格子点は白丸で示している。色域の大きさを維持するためには白丸および黒丸で示す格子点が存在する外面に対して最適化対象の格子点が垂直方向に大きく動くことは許されない。そこで、本実施形態では最適化対象抽出部62bが最適化対象として図9に黒丸で示す色域境界の外面上に存在する格子点を抽出したときに、演算対象抽出部62dでは当該最適化対象の格子点に対して4方で隣接し、かつ色域境界の外面上に存在する4個の格子点を演算対象の格子点として抽出する。
【0114】
同図においても最適化対象の格子点をベクトルLとして示しており、演算対象抽出部62dにて抽出される格子点をベクトルLa1〜ベクトルLa4として示している。ここで、ベクトルLは上記式(3)によって算出され、上記位置情報(Pr,Pg,Pb)を変数として表現される。色域境界の外面上に存在する格子点を最適化するための評価関数は、ベクトルLおよびベクトルLa1〜ベクトルLa4を利用し、以下に示す式(5)で表現される。
【数5】
Figure 2004320627
すなわち、最適化対象の格子点から互いに逆向きのベクトルの距離が等しく、方向が正反対に近いほど評価関数の値が小さくなるようにしてある。
【0115】
隣接する格子点を結ぶ線(図9ではベクトルLa1〜ベクトルL〜ベクトルLa2が示す格子点を通る線等)が直線に近く、また格子点が均等に配置されるほど格子点配置が平滑化される傾向にあるので、式(5)に示すEを極小化することによって図9の右側に示すようにベクトルLの格子点位置を最適化したベクトルL’を取得することができる。また、ベクトルL,ベクトルLa1〜ベクトルLa4は位置情報(Pr,Pg,Pb)によって表現されるが、評価関数EにおいてはベクトルLを与える位置情報(Pr,Pg,Pb)であって、そのうちいずれか二つのみを可変にするとともに他の一つを最小値あるいは最大値に固定している。例えば、図7に斜線で示す色域境界の外面WMBC上の色はB成分が最大でR成分とG成分を任意に変更した場合の色であり、この色に相当するRGB格子点の位置情報Pbは最大値であるとともに位置情報Pr,Pgは任意の値である。そこで、Lab色空間内の格子点を外面WMBC上で移動させるためには、位置情報Pbを最大値に固定し、Pr,Pgを可変にすればよい。
【0116】
色域境界の他の外面についても同様であり、色域境界の外面MRKB上の色はG成分が最小でR成分とB成分を任意に変更した場合の色であり、位置情報Pgを最小値に固定し、Pr,Pbを可変にすれば上記外面MRKB上で最適化対象の格子点を移動させることができる。色域境界の外面RYGK上の色はB成分が最小でR成分とG成分を任意に変更した場合の色であり、位置情報Pbを最小値に固定し、Pr,Pgを可変にすれば上記外面RYGK上で最適化対象の格子点を移動させることができる。
【0117】
さらに、色域境界の外面YWCG上の色はG成分が最大でR成分とB成分を任意に変更した場合の色であり、位置情報Pgを最大値に固定し、Pr,Pbを可変にすれば上記外面YWCG上で最適化対象の格子点を移動させることができる。色域境界の外面WYRM上の色はR成分が最大でG成分とB成分を任意に変更した場合の色であり、位置情報Prを最大値に固定し、Pg,Pbを可変にすれば上記外面WYRM上で最適化対象の格子点を移動させることができる。
【0118】
色域境界の外面CGKB上の色はR成分が最小でG成分とB成分を任意に変更した場合の色であり、位置情報Prを最小値に固定し、Pg,Pbを可変にすれば上記外面CGKB上で最適化対象の格子点を移動させることができる。以上のように、最適化対象の格子点の位置によって変動させる位置情報を選択して評価関数Eを極小化すると、その時点での評価関数を極小化させる位置情報が算出され、この処理を繰り返すことによって格子点位置を最適化したベクトルL’を取得することができる。
【0119】
(4−3)評価関数E
図10は、Lab色空間中で色域境界以外の内部に存在する格子点を最適化するための評価関数を説明する説明図である。同図における破線は色域を2方向に切断した場合に形成される面上に存在する複数個の格子点同士を結ぶ直線である。また、最適化対象の格子点は黒丸で示し、その周囲の格子点は白丸で示している。本実施形態にて色域内部の格子点については色域の大きさを維持するための条件を課することなく自由に移動させる。そこで、本実施形態では最適化対象抽出部62bが最適化対象として図10に黒丸で示す色域の内部に存在する格子点を抽出したときに、演算対象抽出部62dでは当該最適化対象の格子点に対して6方で隣接する6個の格子点を演算対象の格子点として抽出する。
【0120】
同図においても最適化対象の格子点をベクトルLとして示しており、演算対象抽出部62dにて抽出される格子点をベクトルLa1〜ベクトルLa6として示している。ここで、ベクトルLは上記式(3)によって算出され、上記位置情報(Pr,Pg,Pb)を変数として表現される。色域の内部に存在する格子点を最適化するための評価関数は、ベクトルLおよびベクトルLa1〜ベクトルLa6を利用し、以下に示す式(6)で表現される。
【数6】
Figure 2004320627
すなわち、ここでも最適化対象の格子点から互いに逆向きのベクトルの距離が等しく、方向が正反対に近いほど評価関数の値が小さくなるようにしてある。
【0121】
隣接する格子点を結ぶ線(図10ではベクトルLa1〜ベクトルL〜ベクトルLa2が示す格子点を通る線等)が直線に近く、また格子点が均等に配置されるほど格子点配置が平滑化される傾向にあるので、式(6)に示すEを極小化することによって図10の右側に示すようにベクトルLの格子点位置を最適化したベクトルL’を取得することができる。
【0122】
また、ベクトルL,ベクトルLa1〜ベクトルLa6は位置情報(Pr,Pg,Pb)によって表現され、評価関数EにおいてはベクトルLを与える位置情報(Pr,Pg,Pb)の総てを可変にしている。以上のように、位置情報を変動させて評価関数Eを極小化すると、その時点での評価関数を極小化させる位置情報が算出され、この処理を繰り返すことによって格子点位置を最適化したベクトルL’を取得することができる。
【0123】
(5)他の実施形態:
上記実施形態は一例であり、スムージング処理を行うことによって高精度に色変換実施可能にできる限りにおいて、他にも種々の構成を採用することができる。例えば、上記評価関数E,Eにおいては、格子点が立方格子を形成するとしたときにベクトルが直交するような格子点のみを最適化対象の周囲の格子点として抽出していたが、このような選び方が必須という訳ではなく、図9のベクトルLa5,ベクトルLa6のように格子点が立方格子を形成するとしたときに対角位置にあるような格子点を含めて評価関数としても良い。このような対角位置にある格子点は、RGB色空間においても対角位置にあり、特にR=G=Bの対角軸はグレー軸に該当する。従って、対角位置にある格子点についても配置の平滑程度が向上すると、モノクロ出力時にトーンジャンプが発生することを防止することができる。
【0124】
さらに、上述の実施形態においては互いに逆向きのベクトルの和をとることによって平滑程度の高い格子点配置で評価関数の値が小さくなるようにしていたが、むろん、他の構成を採用しても良い。例えば、格子点間の相対位置関係が類似しているか否かを評価する関数であっても良い。具体的には、図9においてベクトルLa5−ベクトルLa4とベクトルLa1−ベクトルLとの差をとると両ベクトルの差ベクトル、すなわち(ベクトルLa5−ベクトルLa4)−(ベクトルLa1−ベクトルL)が得られるが、当該差ベクトルの値が小さいほど格子点間の相対位置関係が類似していると言える。従って、ベクトルLa1−ベクトルLと隣接する格子間ベクトルとの差をとって足し合わせることによって配置の平滑程度を評価する評価関数を取得することができる。
【0125】
さらに、上述の評価関数では、最適化対象の格子点を中心に互いに逆向きのベクトルの差をとり、それぞれの差を加え合わせていた。すなわち、仮想Lab色空間で全格子点が均等になる状態を理想としていた。しかし、分版LUT43に規定されたRGBデータによってRGB空間中に形成する格子点が元々不均等であったり、意図的に仮想Lab色空間中の格子点間隔を不均等にしたい場合には、評価関数を変更しても良い。このように格子点を不均等にしたときに最適であるとする例としては、評価関数に式(7)のように重み変数を設けることで対処することが可能である。
【数7】
Figure 2004320627
ここで、W,Wは重み係数である。
【0126】
すなわち、同式(7)においてW>Wであるならば、差ベクトルLa1−ベクトルLの大きさがベクトルLa2−ベクトルLの大きさより小さい状態で評価関数Eの値を小さくすることができ、最適化対象の格子点が一方の格子点に近い状態が最適状態であるとすることができる。尚、重み係数としては種々の態様を採用可能であるが、格子点配置を不均等間隔にする場合に例えば式(8)によって決定することができる。
【数8】
Figure 2004320627
【0127】
ここで、DとDはRGB色空間中の距離であり、Dは仮想LabベクトルLa1を与える分版LUTのRGB格子点からベクトルLを与える分版LUTのRGB格子点までの距離であり、Dは仮想LabベクトルLa2を与える分版LUTのRGB格子点からベクトルLを与える分版LUTのRGB格子点までの距離である。むろん、この式(8)は一例であり、他にも重みを設けた評価関数を設計することで、分版LUTのRGBデータが形成する格子点の間隔によって、仮想Lab色空間中の格子点間隔を制御したり、特定の意図に従って、仮想Lab色空間中で局部的に格子点の密度を多くすることが可能となる。さらに、上記評価関数E,Eの場合も同様に重みを設けることで、容易に格子点間隔を制御することが可能となる。
【0128】
尚、重みを設けた評価関数を設計することで仮想Lab色空間中の格子点間隔を制御する構成は、インク特性に応じて格子点間隔を不均等にする場合、すなわち、インク記録率が大きくなると濃度の変化度合が小さくなるというインク特性を考慮して低インク記録率で格子点を多くする場合に特に有用である。さらに、重みを設けた評価関数を設計することで仮想Lab色空間中で局所的に格子点の密度を多くする構成は、局所的に色変換精度を高くしたい場合等に特に有用である。
【0129】
さらに、上記実施形態においては、仮想Lab色空間中の色域の部位毎に別個の隣接格子点を抽出して最適化対象の格子点配置をスムージングしているので、評価関数E〜評価関数Eのそれぞれによって最適化される各格子点同士に関連がない。そこで、各部位毎に別個の評価関数で格子点を最適化しつつ各部位の境界においても配置の平滑程度が高くなるように重み付け演算をしてもよい。
【0130】
上述の評価関数E,Eでは位置情報(Pr,Pg,Pb)のいずれか一つまたは二つを固定していたが、評価関数Eでは位置情報(Pr,Pg,Pb)の三つとも可変であるので、色域境界付近では束縛条件が急激に変化する。また、色域の境界同士でも色域境界を形成する稜線と外面とでは束縛条件が急激に変化する。束縛条件が急激に変動すると、格子点配置を平滑化するために格子点を移動させる際の自由度および移動方向の自由度が全く異なるので、この場合に格子点配置の平滑程度の不連続が生じるおそれがある。そこで、束縛条件が急激に変化することを防止するために色域境界に近づくほど、位置情報が変動しにくくなるような重みを持った項を評価関数に付加する。
【0131】
分版LUTのRGBデータの値域が0〜255であるとすると、RGBデータの各色成分がその値域の中点から遠いほど仮想Lab格子点が色域境界に近いと言える。従って、R成分に関しては絶対値|R−127.5|により、色域の境界に近いか否かを判断することができる。そこで他の色成分も同様に考え、下記式(9)式にて色域境界への近づき度合いに応じた重みを定義する。
【数9】
Figure 2004320627
【0132】
尚、W,W,Wは位置情報Pr,Pg,Pbのそれぞれを可変にする際の重みである。また、kwr,kwg,kwbは各重みの大きさを決定する係数であり、色域境界で各位置情報を変動させないようにするために充分な大きさの値にする。また、γwr,γwg,γwbは重みの大きさの変化度合を調整する係数である。これらの係数を調整すると、分版LUTのRGBデータに応じて重みを変化させることができ、色域の中心付近であまり重みをかけずに充分な最適化を行いたい場合に大きくするなどの調整が可能である。
【0133】
ここでは、位置情報としてPrのみを可変とした場合の色域境界の辺について考え、上記評価関数Eについて具体例を示して説明する。下記式(10)は、上記重みWを付加した評価関数Eである。
【数10】
Figure 2004320627
同式の第2項が色域境界(この場合、色域境界上に形成される稜線の端部)に近づくほど位置情報Prが変化しづらくなるように付加した項であり、Prは現在のR方向位置情報である。
【0134】
すなわち、上記式の第2項は色域境界に近ければ近いほど、重み係数Wの値が大きく、位置情報Prが現在位置Prから離れるほど当該第2項が大きくなる。従って、評価関数Eを極小化する最適化処理において位置情報Pr,Prは近い値になるとともに色域境界に近いほど両位置情報が近い値となる。尚、位置情報Pgのみを可変にしたり位置情報Pbのみを可変にした場合であっても同様の考え方で評価関数Eに第2項を付加することができる。むろん、評価関数E,評価関数Eでも同様であり、評価関数Eでは位置情報のうち2つの成分が可変であるので評価関数に対して2つの項が付加され、評価関数Eでは位置情報の3つの成分が可変であるので評価関数に対して3つの項が付加される。
【0135】
さらに、上述の実施形態においては、サーバ50にて色補正なしLUT44を作成し、クライアント10にて当該色補正なしLUT44を参照しつつメディアプロファイル42を作成していたが、むろん、サーバ50にて色補正なしLUT44を作成し、さらに、メディアプロファイル42を作成してクライアント10に対して送信しても良い。かかる構成によれば、クライアント10にて必要とされる処理はDLL40およびメディアプロファイル42等のデータ送信と更新後のDLL40およびメディアプロファイル42の受信作業のみであり、非常に単純なプログラムのみをクライアント10で実施すればよい。予めプリンタドライバ30の付属機能として搭載させておくことも非常に容易である。むろん、クライアントにおいて測色を行わず、DLL40とスムージング対象を示すデータのみを送信し、サーバ側で測色を行うことによって測色値を取得しても良い。
【0136】
また、上述の実施形態においては、分版LUT43を更新することとしていたが、更新後の色補正なしLUT44をさらなるスムージング対象としてサーバ50に送信しても良い。かかる構成によれば、一旦分版LUT43をスムージングし、高精度に色変換可能な色補正なしLUT44を作成した後に経時的な変動等によって色変換精度が下がった場合であっても、再び高精度に色変換を実施可能な色補正なしLUT44およびメディアプロファイル42を取得することが可能になる。
【0137】
さらに、上記実施形態においてはICCプロファイルによる色変換を実施していたが、むろん、ディスプレイ等で使用する画像データをプリンタで使用する画像データに変換する色補正LUTを利用して色変換を行う構成であっても良い。すなわち、色変換の際にソースプロファイル41とメディアプロファイル42と分版LUT43とを参照するのではなく、予め入力画像データ(sRGBデータ等)と出力画像データ(CMYKlclmデータ等)を対応づけた色補正LUTによって直接的にsRGBデータ等をCMYKlclmデータ等に変換する。
【0138】
この色補正LUTは、上述のターゲットLab値をターゲットsRGB値とすることによってsRGBデータと色補正なしLUT44で使用するRGBデータとの対応関係を対応づけ、このRGBデータを色補正なしLUT44で変換して得られるCMYKlclmデータと元のsRGBデータとを対応づけるなどして作成される。従って、色補正なしLUT44をスムージングする本発明を適用することにより、高精度に色変換可能な色補正LUTを作成し、高精度に色変換を実施して印刷することができる。
【0139】
さらに、上記プリンタ15においてはCMYKlclmの6色のインクを搭載可能であったが、むろん、DY(ダークイエロー)を追加して色数をより多くしても良いし、lclmを利用しないことにして色数をより少なくしても良い。さらに、他の色、例えばR(レッド),V(バイオレット)を利用してCMYKRVの6色のインクを搭載可能にしても良い。
【図面の簡単な説明】
【図1】メディアプロファイルの作成工程を概略的に説明する説明図である。
【図2】スムージングを概略的に説明する説明図である。
【図3】クライアントの構成を示すブロック図である。
【図4】クライアントおよびサーバの処理を示すフローチャートである。
【図5】サーバの構成を示すブロック図である。
【図6】スムージング処理を示すフローチャートである。
【図7】プリンタの色域を示す模式図である。
【図8】稜線上の格子点を最適化する評価関数の説明図である。
【図9】外面上の格子点を最適化する評価関数の説明図である。
【図10】色域内部の格子点を最適化する評価関数の説明図である。
【符号の説明】
10…クライアント,12…ハードディスク,15…プリンタ,17…測色機,20…プロファイル作成プログラム,21…ターゲットLab値決定モジュール,22…メディアプロファイル生成モジュール,23…通信制御部,30…プリンタドライバ,31…画像データ取得モジュール,32…色結合処理部,33…色補正モジュール,34…ハーフトーン処理モジュール,35…印刷処理モジュール,41…ソースプロファイル,42…メディアプロファイル,43…色補正LUT,44…色補正なしLUT,45…測色値,50…クライアント,54…通信制御部,56a…中間RGB輝度値,56b…インク量データ,56c…仮想Lab値,56d…位置情報,58…ハードディスク,60…スムージング処理モジュール,62a…中間RGB輝度変換処理部,62b…最適化対象抽出部,62c…仮想Lab値算出部,62d…演算対象抽出部,62e…評価関数算出部,62f…位置情報更新部,62g…インク量算出部,62h…色補正なしLUT生成部

Claims (11)

  1. クライアントに接続された印刷装置で使用する各色のインク量と他の表色系における色成分値との対応関係を規定した対応関係定義データを作成するにあたり参照される複数の格子点をサーバにて決定する対応関係定義データ作成用格子点決定システムであって、
    上記クライアントは、
    上記各色のインク数より少ない色成分で規定される低次元色空間内における低次元色格子点と上記各色のインク量を成分としたインク量空間内におけるインク量格子点との対応関係を予め規定した第1対応関係定義データを記録する第1対応関係定義データ記録手段と、
    双方向通信を介してデータを送受信するクライアント側通信手段と、
    同クライアント側通信手段を介して上記第1対応関係定義データをサーバに送信する第1対応関係定義データ送信手段とを具備し、
    上記サーバは、
    双方向通信を介してデータを送受信するサーバ側通信手段と、
    同サーバ側通信手段を介して上記第1対応関係定義データを受信する第1対応関係定義データ受信手段と、
    同第1対応関係定義データを参照して上記低次元色格子点と機器非依存色空間内の格子点との対応関係を取得する対応関係取得手段と、
    当該機器非依存色空間内の格子点の配置の平滑程度を評価する関数であって上記低次元色空間の格子点位置情報を変数とした平滑程度評価関数を規定する平滑程度評価関数算出手段と、
    当該格子点位置情報を変動させながら上記平滑程度評価関数の評価を向上させることによって上記機器非依存色空間内の格子点配置を最適化する最適化手段と、
    上記第1対応関係定義データを参照して当該最適化された状態での格子点位置情報で指定される上記低次元色空間内の格子点に対応した上記各色のインク量と上記第1対応関係定義データに規定された低次元色空間内の格子点とを対応づけることによって上記対応関係定義データ作成用格子点を決定する対応関係定義データ作成用格子点決定手段とを具備することを特徴とする対応関係定義データ作成用格子点決定システム。
  2. 上記サーバは、上記サーバ側通信手段を介して上記対応関係定義データ作成用格子点を示すデータを送信する対応関係定義データ作成用格子点データ送信手段を具備し、上記クライアントは、上記クライアント側通信手段を介して対応関係定義データ作成用格子点を示すデータを受信する対応関係定義データ作成用格子点データ受信手段と、同受信した対応関係定義データ作成用格子点データにて規定されるインク量での印刷結果を所定の測色機によって測色した測色値によって上記インク量と上記他の表色系における色成分値とを対応づけた対応関係定義データを作成する対応関係定義データ作成手段とを具備することを特徴とする上記請求項1に記載の対応関係定義データ作成用格子点決定システム。
  3. 上記サーバは、上記対応関係定義データ作成用格子点を示すデータにて規定されるインク量での印刷結果を所定の測色機によって測色した測色値によって上記インク量と上記他の表色系における色成分値とを対応づけた対応関係定義データを作成する対応関係定義データ作成手段と、上記サーバ側通信手段を介して同作成した対応関係定義データを送信する対応関係定義データ送信手段を具備し、上記クライアントは、上記クライアント側通信手段を介して対応関係定義データを受信する対応関係定義データ受信手段を具備することを特徴とする上記請求項1に記載の対応関係定義データ作成用格子点決定システム。
  4. 印刷装置で使用する各色のインク量と他の表色系における色成分値との対応関係を規定した対応関係定義データを作成するにあたり参照される複数の格子点を決定するようサーバに要求する対応関係定義データ作成用格子点要求クライアントであって、
    上記各色のインク数より少ない色成分で規定される低次元色空間内における低次元色格子点と上記各色のインク量を成分としたインク量空間内におけるインク量格子点との対応関係を予め規定した第1対応関係定義データを記録する第1対応関係定義データ記録手段と、
    双方向通信を介してデータを送受信するクライアント側通信手段と、
    同クライアント側通信手段を介して上記第1対応関係定義データをサーバに送信する第1対応関係定義データ送信手段とを具備することを特徴とする対応関係定義データ作成用格子点要求クライアント。
  5. 印刷装置で使用する各色のインク量と他の表色系における色成分値との対応関係を規定した対応関係定義データを作成するにあたり参照される複数の格子点を決定する対応関係定義データ作成用格子点決定サーバであって、
    双方向通信を介してデータを送受信するサーバ側通信手段と、
    同サーバ側通信手段を介して上記各色のインク数より少ない色成分で規定される低次元色空間内における低次元色格子点と上記各色のインク量を成分としたインク量空間内におけるインク量格子点との対応関係を予め規定した第1対応関係定義データを受信する第1対応関係定義データ受信手段と、
    同第1対応関係定義データを参照して上記低次元色格子点と機器非依存色空間内の格子点との対応関係を取得する対応関係取得手段と、
    当該機器非依存色空間内の格子点の配置の平滑程度を評価する関数であって上記低次元色空間の格子点位置情報を変数とした平滑程度評価関数を規定する平滑程度評価関数算出手段と、
    当該格子点位置情報を変動させながら上記平滑程度評価関数の評価を向上させることによって上記機器非依存色空間内の格子点配置を最適化する最適化手段と、
    上記第1対応関係定義データを参照して当該最適化された状態での格子点位置情報で指定される上記低次元色空間内の格子点に対応した上記各色のインク量と上記第1対応関係定義データに規定された低次元色空間内の格子点とを対応づけることによって上記対応関係定義データ作成用格子点を決定する対応関係定義データ作成用格子点決定手段とを具備することを特徴とする対応関係定義データ作成用格子点決定サーバ。
  6. クライアントに接続された印刷装置で使用する各色のインク量と他の表色系における色成分値との対応関係を規定した対応関係定義データを作成するにあたり参照される複数の格子点をサーバにて決定する対応関係定義データ作成用格子点決定方法であって、
    上記各色のインク数より少ない色成分で規定される低次元色空間内における低次元色格子点と上記各色のインク量を成分としたインク量空間内におけるインク量格子点との対応関係を予め規定した第1対応関係定義データをクライアントに搭載された所定の記録媒体に記録しておき、双方向通信を介して同第1対応関係定義データをサーバに送信し、
    上記サーバにおいて、上記第1対応関係定義データを受信し、当該第1対応関係定義データを参照して上記低次元色格子点と機器非依存色空間内の格子点との対応関係を取得し、当該機器非依存色空間内の格子点の配置の平滑程度を評価する関数であって上記低次元色空間の格子点位置情報を変数とした平滑程度評価関数を規定し、当該格子点位置情報を変動させながら上記平滑程度評価関数の評価を向上させることによって上記機器非依存色空間内の格子点配置を最適化し、上記第1対応関係定義データを参照して当該最適化された状態での格子点位置情報で指定される上記低次元色空間内の格子点に対応した上記各色のインク量と上記第1対応関係定義データに規定された低次元色空間内の格子点とを対応づけることによって上記対応関係定義データ作成用格子点を決定することを特徴とする対応関係定義データ作成用格子点決定方法。
  7. 印刷装置で使用する各色のインク量と他の表色系における色成分値との対応関係を規定した対応関係定義データを作成するにあたり参照される複数の格子点を決定するようサーバに要求する対応関係定義データ作成用格子点要求方法であって、
    上記各色のインク数より少ない色成分で規定される低次元色空間内における低次元色格子点と上記各色のインク量を成分としたインク量空間内におけるインク量格子点との対応関係を予め規定した第1対応関係定義データを所定の記録媒体に記録しておき、双方向通信を介して上記第1対応関係定義データをサーバに送信することを特徴とする対応関係定義データ作成用格子点要求方法。
  8. 印刷装置で使用する各色のインク量と他の表色系における色成分値との対応関係を規定した対応関係定義データを作成するにあたり参照される複数の格子点を決定する対応関係定義データ作成用格子点決定方法であって、上記各色のインク数より少ない色成分で規定される低次元色空間内における低次元色格子点と上記各色のインク量を成分としたインク量空間内におけるインク量格子点との対応関係を予め規定した第1対応関係定義データを双方向通信を介して取得し、同第1対応関係定義データを参照して上記低次元色格子点と機器非依存色空間内の格子点との対応関係を取得し、当該機器非依存色空間内の格子点の配置の平滑程度を評価する関数であって上記低次元色空間の格子点位置情報を変数とした平滑程度評価関数を規定し、当該格子点位置情報を変動させながら上記平滑程度評価関数の評価を向上させることによって上記機器非依存色空間内の格子点配置を最適化し、上記第1対応関係定義データを参照して当該最適化された状態での格子点位置情報で指定される上記低次元色空間内の格子点に対応した上記各色のインク量と上記第1対応関係定義データに規定された低次元色空間内の格子点とを対応づけることによって上記対応関係定義データ作成用格子点を決定することを特徴とする対応関係定義データ作成用格子点決定方法。
  9. クライアントに接続された印刷装置で使用する各色のインク量と他の表色系における色成分値との対応関係を規定した対応関係定義データを作成するにあたり参照される複数の格子点をサーバにて決定する対応関係定義データ作成用格子点決定プログラムであって、
    上記クライアントに、
    上記各色のインク数より少ない色成分で規定される低次元色空間内における低次元色格子点と上記各色のインク量を成分としたインク量空間内におけるインク量格子点との対応関係を予め規定した第1対応関係定義データを所定の記録媒体に記録する第1対応関係定義データ記録機能と、
    双方向通信を介してデータを送受信するクライアント側通信機能と、
    同クライアント側通信機能を介して上記第1対応関係定義データをサーバに送信する第1対応関係定義データ送信機能とを実現させ、
    上記サーバに、
    双方向通信を介してデータを送受信するサーバ側通信機能と、
    同サーバ側通信機能を介して上記第1対応関係定義データを受信する第1対応関係定義データ受信機能と、
    同第1対応関係定義データを参照して上記低次元色格子点と機器非依存色空間内の格子点との対応関係を取得する対応関係取得機能と、
    当該機器非依存色空間内の格子点の配置の平滑程度を評価する関数であって上記低次元色空間の格子点位置情報を変数とした平滑程度評価関数を規定する平滑程度評価関数算出機能と、
    当該格子点位置情報を変動させながら上記平滑程度評価関数の評価を向上させることによって上記機器非依存色空間内の格子点配置を最適化する最適化機能と、
    上記第1対応関係定義データを参照して当該最適化された状態での格子点位置情報で指定される上記低次元色空間内の格子点に対応した上記各色のインク量と上記第1対応関係定義データに規定された低次元色空間内の格子点とを対応づけることによって上記対応関係定義データ作成用格子点を決定する対応関係定義データ作成用格子点決定機能とを実現させることを特徴とする対応関係定義データ作成用格子点決定プログラム。
  10. 印刷装置で使用する各色のインク量と他の表色系における色成分値との対応関係を規定した対応関係定義データを作成するにあたり参照される複数の格子点を決定するようサーバに要求する対応関係定義データ作成用格子点要求プログラムであって、
    上記各色のインク数より少ない色成分で規定される低次元色空間内における低次元色格子点と上記各色のインク量を成分としたインク量空間内におけるインク量格子点との対応関係を予め規定した第1対応関係定義データを所定の記録媒体に記録する第1対応関係定義データ記録機能と、
    双方向通信を介してデータを送受信するクライアント側通信機能と、
    同クライアント側通信機能を介して上記第1対応関係定義データをサーバに送信する第1対応関係定義データ送信機能とをクライアントコンピュータに実現させることを特徴とする対応関係定義データ作成用格子点要求プログラム。
  11. 印刷装置で使用する各色のインク量と他の表色系における色成分値との対応関係を規定した対応関係定義データを作成するにあたり参照される複数の格子点を決定する対応関係定義データ作成用格子点決定プログラムであって、
    双方向通信を介してデータを送受信するサーバ側通信機能と、
    同サーバ側通信機能を介して上記各色のインク数より少ない色成分で規定される低次元色空間内における低次元色格子点と上記各色のインク量を成分としたインク量空間内におけるインク量格子点との対応関係を予め規定した第1対応関係定義データを受信する第1対応関係定義データ受信機能と、
    同第1対応関係定義データを参照して上記低次元色格子点と機器非依存色空間内の格子点との対応関係を取得する対応関係取得機能と、
    当該機器非依存色空間内の格子点の配置の平滑程度を評価する関数であって上記低次元色空間の格子点位置情報を変数とした平滑程度評価関数を規定する平滑程度評価関数算出機能と、
    当該格子点位置情報を変動させながら上記平滑程度評価関数の評価を向上させることによって上記機器非依存色空間内の格子点配置を最適化する最適化機能と、
    上記第1対応関係定義データを参照して当該最適化された状態での格子点位置情報で指定される上記低次元色空間内の格子点に対応した上記各色のインク量と上記第1対応関係定義データに規定された低次元色空間内の格子点とを対応づけることによって上記対応関係定義データ作成用格子点を決定する対応関係定義データ作成用格子点決定機能とをサーバコンピュータに実現させることを特徴とする対応関係定義データ作成用格子点決定プログラム。
JP2003114422A 2003-04-18 2003-04-18 対応関係定義データ作成用格子点決定システム、対応関係定義データ作成用格子点要求クライアント、対応関係定義データ作成用格子点決定サーバおよびその方法並びにプログラム Pending JP2004320627A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003114422A JP2004320627A (ja) 2003-04-18 2003-04-18 対応関係定義データ作成用格子点決定システム、対応関係定義データ作成用格子点要求クライアント、対応関係定義データ作成用格子点決定サーバおよびその方法並びにプログラム
US10/826,434 US7471415B2 (en) 2003-04-18 2004-04-15 System for offering color conversion profile capable of color conversion with high accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003114422A JP2004320627A (ja) 2003-04-18 2003-04-18 対応関係定義データ作成用格子点決定システム、対応関係定義データ作成用格子点要求クライアント、対応関係定義データ作成用格子点決定サーバおよびその方法並びにプログラム

Publications (1)

Publication Number Publication Date
JP2004320627A true JP2004320627A (ja) 2004-11-11

Family

ID=33474020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114422A Pending JP2004320627A (ja) 2003-04-18 2003-04-18 対応関係定義データ作成用格子点決定システム、対応関係定義データ作成用格子点要求クライアント、対応関係定義データ作成用格子点決定サーバおよびその方法並びにプログラム

Country Status (2)

Country Link
US (1) US7471415B2 (ja)
JP (1) JP2004320627A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217150A (ja) * 2005-02-02 2006-08-17 Seiko Epson Corp 格子点配置の平滑化
WO2007035256A2 (en) 2005-09-16 2007-03-29 Eastman Chemical Company Aluminum containing polyester polymers having low acetaldehyde generation rates
JP2009033429A (ja) * 2007-07-26 2009-02-12 Fuji Xerox Co Ltd 画像処理装置
JP2013509059A (ja) * 2009-10-19 2013-03-07 ゲーエムゲー ゲーエムベーハー ウント コー.カーゲー 最適化されたプリンタ・キャリブレーション方法
US10375276B2 (en) 2016-03-17 2019-08-06 Seiko Epson Corporation Color correction table creation method, color correction table creation apparatus, and non-transitory computer readable medium for storing program
US10540582B2 (en) 2015-12-18 2020-01-21 Seiko Epson Corporation Method for creating color conversion table

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081187A1 (ja) * 2004-02-25 2005-09-01 Matsushita Electric Industrial Co., Ltd. 画像処理装置、画像処理システム、画像処理方法、画像処理プログラムおよび集積回路装置
JP4492358B2 (ja) * 2005-01-12 2010-06-30 セイコーエプソン株式会社 格子点配置の平滑化
US7619771B2 (en) * 2005-01-28 2009-11-17 Hewlett-Packard Development Company, L.P. Color calibration in a printer
JP4595734B2 (ja) * 2005-08-03 2010-12-08 セイコーエプソン株式会社 プロファイル作成方法、プロファイル作成装置、プロファイル作成プログラム、印刷制御方法、印刷制御装置、及び印刷制御プログラム
JP4881274B2 (ja) * 2007-10-16 2012-02-22 キヤノン株式会社 画像処理装置およびその方法
US20090157906A1 (en) * 2007-12-14 2009-06-18 Ricoh Company, Ltd. Information processing device, information processing device controlling method, and computer-readable recording medium
US9299461B2 (en) 2008-06-13 2016-03-29 Arcata Systems Single pass, heavy ion systems for large-scale neutron source applications
JP6123238B2 (ja) * 2012-11-06 2017-05-10 株式会社リコー 画像処理システム、情報処理装置、およびプログラム
JP5861690B2 (ja) * 2013-11-19 2016-02-16 コニカミノルタ株式会社 プロファイル作成方法、プロファイル作成プログラム、記録媒体、およびプロファイル作成装置
US9336473B2 (en) * 2014-09-11 2016-05-10 Electronics For Imaging, Inc. Virtual ink channels
RU2664334C1 (ru) 2015-05-15 2018-08-16 Хьюлетт-Паккард Дивелопмент Компани, Л.П. Картридж для устройства печати с запоминающим устройством, содержащим сжатые многомерные цветовые таблицы
JP6639138B2 (ja) * 2015-07-30 2020-02-05 キヤノン株式会社 画像処理装置および画像処理方法、プログラム
CN115050487B (zh) * 2022-06-10 2023-06-02 奇医天下大数据科技(珠海横琴)有限公司 一种基于人工智能的互联网医疗服务管理系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3712057B2 (ja) * 2001-08-30 2005-11-02 セイコーエプソン株式会社 色変換テーブル作成方法、色変換テーブル作成装置、色変換テーブル作成プログラム、色変換装置および印刷装置
EP1445941A4 (en) * 2001-11-13 2006-09-20 Seiko Epson Corp COLOR IMPLEMENTATION DEVICE, COLOR IMPLEMENTATION PROCEDURE, COLOR CHANGE PROGRAM AND RECORDING MEDIUM
EP1465407A4 (en) * 2002-01-09 2005-12-28 Seiko Epson Corp METHOD FOR PRODUCING COLOR CONVERSION TABLE, IMAGE PROCESSING DEVICE, IMAGE PROCESSING METHOD, PROGRAM, AND RECORDING MEDIUM

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217150A (ja) * 2005-02-02 2006-08-17 Seiko Epson Corp 格子点配置の平滑化
JP4582310B2 (ja) * 2005-02-02 2010-11-17 セイコーエプソン株式会社 プロファイル作成方法、プロファイル作成装置、プロファイル作成プログラム、及び印刷制御装置
WO2007035256A2 (en) 2005-09-16 2007-03-29 Eastman Chemical Company Aluminum containing polyester polymers having low acetaldehyde generation rates
JP2009033429A (ja) * 2007-07-26 2009-02-12 Fuji Xerox Co Ltd 画像処理装置
JP2013509059A (ja) * 2009-10-19 2013-03-07 ゲーエムゲー ゲーエムベーハー ウント コー.カーゲー 最適化されたプリンタ・キャリブレーション方法
US10540582B2 (en) 2015-12-18 2020-01-21 Seiko Epson Corporation Method for creating color conversion table
US10375276B2 (en) 2016-03-17 2019-08-06 Seiko Epson Corporation Color correction table creation method, color correction table creation apparatus, and non-transitory computer readable medium for storing program

Also Published As

Publication number Publication date
US20040263881A1 (en) 2004-12-30
US7471415B2 (en) 2008-12-30

Similar Documents

Publication Publication Date Title
JP4595734B2 (ja) プロファイル作成方法、プロファイル作成装置、プロファイル作成プログラム、印刷制御方法、印刷制御装置、及び印刷制御プログラム
JP4200365B2 (ja) 対応関係定義データ作成用格子点決定方法、対応関係定義データ作成用格子点決定装置、対応関係定義データ作成用格子点決定プログラム、印刷制御装置、印刷制御方法、印刷制御プログラムおよび画像データ処理装置
JP4388553B2 (ja) 印刷用色変換プロファイルの生成
JP4528782B2 (ja) 印刷用色変換プロファイルの生成
JP2004320627A (ja) 対応関係定義データ作成用格子点決定システム、対応関係定義データ作成用格子点要求クライアント、対応関係定義データ作成用格子点決定サーバおよびその方法並びにプログラム
US7450267B2 (en) Accuracy of color conversion profile
US7542167B2 (en) Smoothing lattice positions
US7760398B2 (en) Color conversion table generation method and color conversion table generation device
US7369272B2 (en) Accuracy of color conversion profile
US7595921B2 (en) Increasing profile accuracy and accelerating profile creation
US8199367B2 (en) Printing control device, printing system and printing control program
JP2002359748A (ja) 色変換プログラムを記録した媒体、色変換プログラム、色変換テーブルの作成方法、色変換テーブルデータを記録した媒体、色変換装置、色変換方法および色変換テーブル
US20090285475A1 (en) Image processing apparatus, image processing method, and computer-readable recording medium storing image processing program
US8427722B2 (en) Color transform insensitive to process variability
US6330078B1 (en) Feedback method and apparatus for printing calibration
US20020154326A1 (en) Image processing method and apparatus
JP5777497B2 (ja) 色処理装置およびその方法
JP2011120026A (ja) 色処理装置およびその方法
US7515300B2 (en) Image processing apparatus and image processing method
JP2011120025A (ja) 色処理装置およびその方法
JP4380503B2 (ja) ルックアップテーブル作成方法および分版方法
JP2001111852A (ja) カラー画像処理方法及びカラー画像処理装置、色変換係数生成方法及び色変換係数生成装置、記憶媒体
JP2004140578A (ja) 対応関係定義データ作成用格子点決定方法、画像処理装置、画像処理方法および画像処理プログラム
JP2003283856A5 (ja)
JP4130550B2 (ja) プロファイル生成装置、プロファイル生成方法、プログラムおよび記録媒体