JP2004314083A - High dimensional precision pipe and its manufacturing method - Google Patents

High dimensional precision pipe and its manufacturing method Download PDF

Info

Publication number
JP2004314083A
JP2004314083A JP2003107364A JP2003107364A JP2004314083A JP 2004314083 A JP2004314083 A JP 2004314083A JP 2003107364 A JP2003107364 A JP 2003107364A JP 2003107364 A JP2003107364 A JP 2003107364A JP 2004314083 A JP2004314083 A JP 2004314083A
Authority
JP
Japan
Prior art keywords
pipe
die
deviation
tube
plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003107364A
Other languages
Japanese (ja)
Other versions
JP4285053B2 (en
Inventor
Kazuhito Kenmochi
一仁 剣持
Takuya Nagahama
拓也 長濱
Takaaki Toyooka
高明 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003107364A priority Critical patent/JP4285053B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to EP04726662A priority patent/EP1621265A1/en
Priority to US10/541,999 priority patent/US20060218985A1/en
Priority to CNB2004800030567A priority patent/CN100366354C/en
Priority to KR1020057013240A priority patent/KR100665977B1/en
Priority to PCT/JP2004/005091 priority patent/WO2004091823A1/en
Priority to CA002511633A priority patent/CA2511633A1/en
Priority to TW093109912A priority patent/TWI253963B/en
Publication of JP2004314083A publication Critical patent/JP2004314083A/en
Application granted granted Critical
Publication of JP4285053B2 publication Critical patent/JP4285053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)
  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high dimensional precision pipe which has satisfactory fatigue strength and can be manufactured at a low cost for a broad range of size requirement of the pipe and a manufacturing method for it. <P>SOLUTION: The high dimensional precision pipe is manufactured by pushing a metal pipe 5 in a cavity of die 2 preferably in an integrated type and/or a fixed type, keeping a plug 1 inserted inside the pipe 5. The pipe has a dimensional deviation of not more than 3.0% in one or two or more among an outer diameter deviation, an inner diameter deviation and a circumferential thickness deviation in a passed through state, or furthermore, the wall thickness of the metal pipe at the exit side of the die is not more than that at the entry side. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高寸法精度管およびその製造方法に関し、例えば自動車用駆動系部品などのような高い寸法精度が要求されるものに有利に適用しうる高寸法精度管、および該管を製造するのに用いて好適な高寸法精度管の製造方法に関する。
【0002】
【従来の技術】
金属管例えば鋼管は通常、溶接管と継目無管に大別される。溶接管は、例えば電縫鋼管のように、帯板の幅を丸め、該丸めた幅の両端を突き合わせて溶接するという方法で製造し、一方、継目無管は、材料の塊を高温で穿孔後マンドレルミル等で圧延するという方法で製造している。溶接管の場合、溶接後に溶接部分の盛り上がりを研削して管の寸法精度を向上させているが、その肉厚偏差は3.0 %を超える。また、継目無管の場合、穿孔工程で偏心しやすく、 該偏心により大きな肉厚偏差が生じやすい。この肉厚偏差は後工程で低減させる努力が払われているが、それでも充分低減することができず、製品の段階で8.0 %以上残存する。
【0003】
最近、環境問題から自動車の軽量化に拍車がかかっており、ドライブシャフト等の駆動系部品は中実の金属棒から中空の金属管に置き換えられつつある。これら自動車用駆動系部品等の金属管には肉厚、 内径、 外径の各偏差として3.0 %以下、さらに厳しくは1.0 %以下、の高寸法精度が要求される。なぜなら、駆動系部品は自動車の長距離走行による疲労に耐えなければならないところ、金属管の肉厚、 内径、 外径の精度が悪いと、必然的に管内外面に比較的多大に存在する凹凸を起点として疲労破壊が進展しやすくなり、疲労強度が著しく低下するため、十分な疲労強度を保つためには金属管の肉厚、 内径、 外径の精度を良好にする必要があるからである。
【0004】
金属管の肉厚、 内径、 外径の精度を高める手段として、従来一般に、鋼管(溶接管、継目無管とも)を造管後にダイスとプラグを用いて冷間で引き抜くという製造方法(いわゆる冷牽法)がとられている。また、近年では、円周方向に分割したダイスを組み込んだロータリー鍛造機を用いて鋼管をダイス孔に押し込んで加工する製造技術が提案されている(特許文献1,2,3参照)。
【0005】
【特許文献1】
特開平9−262637号公報
【特許文献2】
特開平9−262619号公報
【特許文献3】
特開平10−15612号公報
【0006】
【発明が解決しようとする課題】
しかし、上記従来の冷牽法では、設備上の制約や管の肉厚・径が大きくて引き抜き応力が充分得られずに縮径率を低くせざるをえない場合などでは、 加工バイト(:プラグとダイス孔内面との隙間)内で管の応力が引張力であるがゆえにダイスと管、および、引き抜きプラグと管の接触が不十分となり、管の内面、 外面の平滑化が不足して凹凸が残留しやすい。そのため、冷牽で管の縮径率を大きくして加工バイト内で管の内外面とプラグ、ダイスの接触を向上させることが行なわれている。しかし、管をダイスを用いて冷牽した場合、管の内面に凹凸が発生して管の縮径率が大きくなるほど凹凸による粗さが増加する。その結果、冷牽法では高寸法精度の管を得ることが難しく、そのため管の疲労強度が充分ではなかったことから、さらに寸法精度および疲労強度の良好な管が強く求められていた。
【0007】
また、上記従来の冷牽法では、設備能力があって縮径率を大きくできる場合でも、縮径による加工歪みが大きくなって管が加工硬化しやすい。管は引き抜き後にさらに曲げやスウェージなどの加工を施されるが、 前記引き抜きでの加工硬化によって割れが発生しやすくなり問題となるため、引き抜き後に高温で充分な時間をかけて熱処理を加える必要があって、製造コストが著しく多大となるため、安価で加工しやすい高寸法精度の管が求められていた。
【0008】
また、特許文献1〜3所載の製造技術では、ロータリー鍛造機のダイスを分割しそのダイスを復動させている結果、 その分割部分で段差が生じやすくて外面の平滑化が不足したり、あるいは円周方向に異なるダイスの剛性によって不均一変形が生じたりする結果、肉厚精度も不足するため目標とする仕上寸法精度を充分得ることができず、その鋼管の疲労強度は十分なものではなく、さらに改善を求められていた。
【0009】
さらに、特許文献1〜3所載の製造技術では、鋼管を押し込んだ後の肉厚は押し込む前の肉厚より厚くなっている。これは複雑な構造を有するために荷重を加え難いロータリー鍛造機を用いているがゆえの制約であり、その結果、管の内面に凹凸が発生しやすくなり、管の平滑化がし難くなっている。このことにより、 押し込み後に所望の肉厚を得ようとすると、押し込む前の肉厚を薄くするしかない。したがって、 多様な製品サイズの管を整え、それらの管の疲労強度などの性能を向上させるには、 素管サイズを多数用意する必要がある。しかし、 素管製造設備に制約があって多くのサイズを用意できないことから、管の全要求サイズに亘って良好な寸法を得ることが難しかった。また、肉厚を増加させるには、加工バイト内で出口に近い側ほど隙間を増大させて管を変形しやすくしているが、隙間があって変形がしやすくなると管の内面に凹凸が発生してさらに肉厚を増加させると隙間が大きくなり、ダイス表面やプラグ表面に管が十分接触しづらくなり、その結果として管表面の平滑化が進展せずに、 高寸法精度管が得られにくい欠点を有していた。
【0010】
上記の要求や難点に鑑み、本発明は、管の広範囲の要求サイズに亘り、低コストで製造できて、十分な疲労強度を有する高寸法精度管およびその製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成した本発明は、以下の要旨構成になる高寸法精度管であり、また該高寸法精度管の製造方法である。
(1)金属管を該管内にプラグを装入した状態でダイスの孔に押し込んで通過させる押し抜きを行うことにより製造された、外径偏差、内径偏差、円周方向肉厚偏差のいずれか一または二以上が3.0 %以下であることを特徴とする押し抜きのままの高寸法精度管。
【0012】
(2)金属管を該管内にプラグを装入した状態でダイスの孔に押し込んで通過させる押し抜きを行い、前記ダイスの出側の金属管の肉厚を入側のそれ以下とすることにより製造された、外径偏差、内径偏差、円周方向肉厚偏差のいずれか一または二以上が3.0 以下であることを特徴とする押し抜きのままの高寸法精度管。
【0013】
(3)前記押し抜きは金属管を該管の同一断面内でプラグに全周外接かつダイスに全周内接させながら行うものであることを特徴とする(1)または(2)に記載の高寸法精度管。
(4)前記ダイスが一体型および/または固定型ダイスであることを特徴とする(1)〜(3)のいずれかに記載の高寸法精度管。
【0014】
(5)金属管を該管内にプラグを装入した状態でダイスの孔に押し込んで通過させる押し抜きを行うことを特徴とする高寸法精度管の製造方法。
(6)前記ダイスの出側の管の肉厚を同入側の同管の肉厚以下とすることを特徴とする(5)に記載の高寸法精度管の製造方法。
(7)前記押し抜きは金属管を該管の同一断面内でプラグに全周外接かつダイスに全周内接させながら行うものであることを特徴とする(5)または(6)に記載の高寸法精度管の製造方法。
【0015】
(8)前記ダイスが一体型および/または固定型ダイスであることを特徴とする(5)〜(7)のいずれかに記載の高寸法精度管の製造方法。
(9)前記プラグがフローティングプラグであることを特徴とする(5)〜(8)のいずれかに記載の高寸法精度管の製造方法。
なお、本発明では、上記外径偏差、内径偏差および円周方向肉厚偏差の上限は、好ましくは1.0 %であり、より好ましくは0.5 %である。
【0016】
【発明の実施の形態】
従来、ダイスとプラグを用いて金属管を引き抜いた場合、管の寸法精度を向上させることが困難な理由は、引き抜きであるがゆえに加工バイト内でのダイスと管外面、および、プラグと管内面の接触が不十分となることに由来する。すなわち、図2に示すように、管(金属管)5内にプラグ1を装入して管5をダイス2の孔から引き抜くことにより、ダイス2の出側で加えられた引き抜き力9によって、加工バイト内部には張力が発生して、加工バイトの入口から出側に向かって管の内外面に凹凸が発生し増加する。また、加工バイト内の入口側では、プラグ1に管内面が沿って変形するため管外面は接触しないかあるいは軽度に接触するにとどまり、また加工バイト内の出口側では、ダイス2に管外面が接触して変形するため管内面は接触しないかあるいは軽度に接触するにとどまる。そのため、管の内外面ともに自由変形の部分が存在して凹凸を十分平滑化できず、引き抜き後に得られる管の寸法精度は低かった。
【0017】
これに比較して、本発明で用いる押し抜きの場合は、図1に示すように、管5内にプラグ1を装入して管5をダイス2の孔に押し込んで通過させる。ダイス2の入側で加えられた押し込み力8によって、加工バイト内部には全面的に圧縮応力が作用する。その結果、加工バイトの入側、 出側のいずれにあっても、管5はプラグ1およびダイス2に同一断面内で円周方向全域に亘り十分接触できる。しかも、軽度の縮径率であっても、加工バイト内部は圧縮応力となるため、引き抜きに比較して管とプラグ、管とダイスが同一断面内で円周方向全域に亘り十分接触しやすくて、管は平滑化しやすくなり、高寸法精度の管が得られることになる。
【0018】
その結果、これらの管の疲労強度を比較すると、押し抜きにより製造した管は従来の引き抜きにより製造した管に比較して目標とする十分な疲労強度を得ることができる。また、押し抜きの場合、縮径率が小さくても管内外面の平滑化が可能なため引き抜きの場合に比べて加工歪みが大きくならず、よって縮径後の熱処理負荷も軽くて、製造コストは低くなる。
【0019】
また、図3に示す従来のロータリー鍛造機3を用いた押し込みでは、一体型のものを円周方向に分割した分割ダイス4を用いてダイスを復動10させて加工するため、段差が生じて肉厚精度を十分良好にすることができなかったのに対し、本発明では、そのような段差は全く生じず、その結果として管の内外面とも平滑化できて、十分な疲労強度を得ることができる。本発明では、例えば、ダイスを一体型ダイスとして段差をなくしても良く、あるいは固定型ダイスとして復動回転による段差を防止しても良い。勿論、ダイスを一体型かつ固定型ダイスとして段差を防止しても良い。
【0020】
さらに、本発明では、従来のロータリー鍛造機を用いてダイスを復動させる方法に比較して装置構造をより簡素にすることができ、加工に十分な荷重を加えることができて、ダイス入側の肉厚に比較して出側の肉厚を同等あるいはそれ以下とすることによる荷重の増加に対しても、 十分加工が可能であるから、広範囲の要求サイズに対して寸法精度が良好で疲労強度も十分な管が得られる。
【0021】
従来、金属管の外径偏差、内径偏差、円周方向肉厚偏差を3.0 %以下にする方法として、機械加工(材料の部分的除去を伴う加工)による方法が公知であるが、加工費用が多大となり、作業能率も悪く、また、長尺で小径の金属管の加工は困難であった。したがって、自動車部品のドライブシャフト等へ適用するのは難しい。
【0022】
上記機械加工された金属管と本金属管(本発明に係る押し抜きままの金属管)を識別する方法としては、本金属管の表面には製造の前工程の加熱、圧延等により黒皮が付着しているのに対し、機械加工されたものは黒皮が除去されているので、管表面の状況を観察するという方法が挙げられ、この方法により識別が可能である。
【0023】
さらに、本金属管は、従来のロータリー鍛造機を用いて鋼管をダイスに押し込んで加工する方法(例えば特許文献1,2,3参照)で製造されたものに比べて肉厚偏差が数倍優れている。すなわち、過去、押し抜きのままで外径偏差、内径偏差、円周方向肉厚偏差のいずれか一または二以上が3.0 %以下となっている鋼管は得られなかった。
【0024】
本発明において、寸法精度の指標とした外径偏差、内径偏差および円周方向肉厚偏差は、次のようにして求める。
外径(または内径)偏差は、マイクロメータを管外面(または内面)に接触させて、管を回転して測定した外径(または内径)の円周方向分布データから、目標外径(または目標内径)に対する最大偏差として算出するか、または、レーザ光を管外面(または内面)に当てて測定した管とレーザ発振源との距離の円周方向分布データから、目標外径(または目標内径)に対する最大偏差として算出する。または、管の円周方向断面を画像解析して、真円からの偏差を円周方向に算出して外径(または内径)偏差を算出してもよい。
【0025】
円周方向肉厚偏差は、上記外径の円周方向分布データと上記内径の円周方向分布データの差として算出するか、または、管の円周方向断面を画像解析して、肉厚断面の画像から目標肉厚に対する最大偏差として直接測定する。
また、測定は管の先・後端部より150mm を除いた任意の位置で10mm以下のピッチで行い、10点以上の測定点の値より求めるものとする。
【0026】
すなわち、外径偏差、内径偏差および肉厚偏差(=円周方向肉厚偏差)は次のように定義される。
外径偏差:(MAX 外径−MIN 外径)/目標外径(あるいは平均外径)×100 (%)
内径偏差:(MAX 内径−MIN 内径)/目標内径(あるいは平均内径)×100 (%)
肉厚偏差:(MAX 肉厚−MIN 肉厚)/目標肉厚(あるいは平均肉厚)×100 (%)
本発明の高寸法精度管は、上記三寸法精度指標の一または二以上が3.0 %以下となっている金属管であるから、3.0 %以下の高寸法精度が要求される自動車用駆動系部品等の金属管として使用することができる。
【0027】
【実施例】
以下、実施例を挙げて本発明をさらに具体的に説明する。
実施例1では、外径40mm×肉厚6mmの鋼管に対し図1に示した形態の押し抜き加工を行った。ここでは、管内面に接触させる面を鏡面にしたプラグと、一体型固定ダイスであって管外面に接触させる面を鏡面にしたダイスを用いた。プラグは一端を固定して管内に装入した。加工条件は、出側肉厚=入側肉厚、縮径率=10%とした。
【0028】
実施例2では、実施例1において縮径率=5%とした以外は該例と同様にして加工を行った。
実施例3では、実施例2においてプラグをフローティングさせた以外は該例と同様にして加工を行った。
また、比較例1として、実施例2において図1に示した形態の押し抜きに代えて図2に示した形態の引き抜きとし、かつ出側板厚<入側板厚とした以外は該例と同様にして加工を行なった。
【0029】
また、比較例2として、実施例2において一体型固定ダイスに代えて、図3に示した形態の分割ダイスをロータリー鍛造機に組み込んで復動させて用い、かつ押し抜きに代えて押し込みとした以外は該例と同様にして加工を行なった。
また、比較例3として、比較例2において加工条件を、出側肉厚=入側肉厚+1mm(=7mm)とした以外は該例と同様にして加工を行なった。
【0030】
縮径加工後のこれら鋼管について前記三寸法精度指標を求めるとともに、これら鋼管を疲労試験に供した。その結果を表1に示す。
なお、表1に示した外径および内径偏差は、前記レーザ光を用いた測定により求め、これら測定データの円周方向分布の差から、同表の円周方向肉厚偏差を求めた。
【0031】
また、表1に示された疲労試験の耐久限界回数とは、図4に示すように、応力を一定として亀裂発生までの繰り返し回数(すなわち耐久回数)を求める試験にて応力レベルを種々変えて応力と耐久回数の関係を図式化した図において、耐久回数の増加につれて応力が減少傾向から略一定となり始める屈曲点での耐久回数を意味し、この値が大きいほど疲労強度は良好である。すなわち、この例の場合は、応力約150MPaでの耐久回数である。
【0032】
【表1】

Figure 2004314083
【0033】
表1より、実施例1〜3の製品管は、寸法精度が著しく良好で、疲労強度も最も良好であり、特にプラグをフローティングさせると寸法精度はさらに良好であった(実施例3)。これに対して、従来の引き抜きでは製品管の寸法精度が低下しその結果疲労強度も著しく低下していた(比較例1)。ロータリー鍛造機を用いた押し込みでも製品管の寸法精度は低下し(比較例2)、増肉させるとさらに低下し(比較例3)、十分な疲労強度を得ることはできなかった。
【0034】
【発明の効果】
本発明の高寸法精度管は著しく良好な寸法精度を有しその結果良好な疲労強度を具えたものであり、しかも低コストで製造しうるから、自動車用駆動系部品等の軽量化促進に多大に寄与するという優れた効果を奏する。また、本発明の製造方法によれば、広範囲の管要求サイズに亘り寸法精度が著しく良好な金属管を低コストで製造することができるようになるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明で用いる押し抜きの実施形態を示す説明図である。
【図2】従来の引き抜きの実施形態を示す説明図である。
【図3】従来の分割ダイスを装着して復動させるロータリー鍛造機による押し込みの実施形態を示す説明図であり、(a)は管中心軸を含む断面図、(b)は(a)のA−A矢視図である。
【図4】疲労試験の応力と耐久回数の関係を示す特性図である。
【符号の説明】
1 プラグ
2 ダイス(例:一体型固定ダイス)
3 ロータリー鍛造機
4 分割ダイス
5 管(金属管、鋼管)
6 管押し機
7 管引き機
8 押し込み力
9 引き抜き力
10 復動[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-dimensional precision pipe and a method for manufacturing the same, and more particularly to a high-dimensional precision pipe which can be advantageously applied to a part requiring high dimensional precision, such as a drive system part for an automobile, and a method for manufacturing the pipe. The present invention relates to a method for manufacturing a high-dimensional precision pipe suitable for use in a pipe.
[0002]
[Prior art]
Metal pipes such as steel pipes are generally roughly classified into welded pipes and seamless pipes. Welded pipes are manufactured by rounding the width of the strip and welding the ends of the rounded width against each other, such as ERW pipes, while seamless pipes are made by drilling a mass of material at high temperatures. It is manufactured by rolling it with a mandrel mill or the like. In the case of a welded pipe, the bulge of the welded portion is ground after welding to improve the dimensional accuracy of the pipe, but the wall thickness deviation exceeds 3.0%. Further, in the case of a seamless pipe, eccentricity tends to occur in the drilling step, and the eccentricity tends to cause a large thickness deviation. Efforts have been made to reduce this thickness deviation in the post-process, but it is still not possible to reduce it sufficiently, and more than 8.0% remains in the product stage.
[0003]
Recently, due to environmental problems, the weight of automobiles has been spurred, and drive system components such as drive shafts are being replaced with solid metal rods and hollow metal tubes. High dimensional accuracy of 3.0% or less, more strictly 1.0% or less, in thickness, inner diameter, and outer diameter deviations is required for metal pipes of such drive system parts for automobiles. This is because drive train components must withstand fatigue caused by long-distance running of automobiles. This is because fatigue fracture tends to progress as a starting point and the fatigue strength is significantly reduced. Therefore, in order to maintain sufficient fatigue strength, it is necessary to improve the accuracy of the wall thickness, inner diameter, and outer diameter of the metal pipe.
[0004]
As a means of improving the accuracy of the wall thickness, inner diameter, and outer diameter of a metal pipe, a conventional method of drawing a steel pipe (both a welded pipe and a seamless pipe) cold by using a die and a plug after forming the pipe (so-called cold pipe). Towing method) is taken. In recent years, a manufacturing technique has been proposed in which a steel pipe is pressed into a die hole using a rotary forging machine incorporating a die divided in a circumferential direction (see Patent Documents 1, 2, and 3).
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-262637 [Patent Document 2]
Japanese Patent Application Laid-Open No. 9-262519 [Patent Document 3]
JP-A-10-15612
[Problems to be solved by the invention]
However, in the above-mentioned conventional cold drawing method, when the restriction on equipment or the wall thickness / diameter of the pipe is large and the pulling stress cannot be sufficiently obtained and the reduction ratio has to be reduced, the processing bite (: Since the stress of the pipe is a tensile force in the gap between the plug and the inner surface of the die hole, the contact between the die and the pipe and between the drawn plug and the pipe becomes insufficient, and the inner and outer surfaces of the pipe become insufficiently smooth. Irregularities are likely to remain. Therefore, the diameter of the tube is reduced by cold drawing to improve the contact between the inner and outer surfaces of the tube, the plug, and the die in the working bite. However, when the pipe is cold-drawn by using a die, irregularities occur on the inner surface of the pipe, and the roughness due to the irregularities increases as the diameter reduction rate of the pipe increases. As a result, it is difficult to obtain a pipe with high dimensional accuracy by the cold drawing method, and the fatigue strength of the pipe is not sufficient. Therefore, a pipe with better dimensional accuracy and fatigue strength has been strongly demanded.
[0007]
Further, in the above-mentioned conventional cold drawing method, even if the diameter reduction ratio can be increased due to the facility capability, the processing distortion due to the diameter reduction is increased, and the pipe is easily worked and hardened. The pipe is subjected to further processing such as bending and swaging after drawing.However, since the work hardening at the time of drawing tends to cause cracks, which is problematic, it is necessary to apply heat treatment at a high temperature for a sufficient time after drawing. Because of this, the production cost becomes extremely large, and there has been a demand for an inexpensive and easy-to-process pipe with high dimensional accuracy.
[0008]
Further, in the manufacturing technology described in Patent Documents 1 to 3, as a result of dividing the die of the rotary forging machine and moving the die back, a step is easily generated in the divided portion, and smoothing of the outer surface is insufficient, Or, uneven deformation may occur due to the different stiffness of the dies in the circumferential direction.Thus, the wall thickness accuracy is insufficient, so that the target finish dimensional accuracy cannot be sufficiently obtained, and the fatigue strength of the steel pipe is not sufficient. No further improvement was required.
[0009]
Further, in the manufacturing techniques described in Patent Documents 1 to 3, the wall thickness after pushing the steel pipe is thicker than the wall thickness before pushing. This is a limitation due to the use of a rotary forging machine, which has a complicated structure and is difficult to apply a load, and as a result, irregularities are easily generated on the inner surface of the tube, making it difficult to smooth the tube. I have. As a result, in order to obtain a desired thickness after the pressing, the only option is to reduce the thickness before the pressing. Therefore, in order to prepare pipes of various product sizes and improve the performance such as the fatigue strength of those pipes, it is necessary to prepare many pipe sizes. However, it was difficult to obtain good dimensions over the entire required size of the pipe, because there were restrictions on the raw pipe manufacturing equipment and many sizes could not be prepared. To increase the wall thickness, the gap is increased on the side closer to the outlet in the machining tool to make the tube easier to deform. When the wall thickness is further increased, the gap becomes larger, making it difficult for the tube to sufficiently contact the die surface or plug surface.As a result, the surface of the tube does not progress smoothly, and it is difficult to obtain a tube with high dimensional accuracy. Had disadvantages.
[0010]
In view of the above demands and difficulties, an object of the present invention is to provide a high-dimensional precision pipe having sufficient fatigue strength, which can be manufactured at low cost over a wide range of required sizes of pipes, and a method of manufacturing the same. .
[0011]
[Means for Solving the Problems]
The present invention that has achieved the above object is a high-dimensional precision pipe having the following gist configuration, and a method of manufacturing the high-dimensional precision pipe.
(1) Any one of an outer diameter deviation, an inner diameter deviation, and a circumferential thickness deviation manufactured by performing a punching operation in which a metal tube is pushed through a hole of a die while a plug is inserted in the tube. A high dimensional precision pipe as punched, characterized in that one or two or more are 3.0% or less.
[0012]
(2) A metal tube is pressed into a hole of a die while a plug is inserted into the tube, and the metal tube is pressed and passed to make the metal tube on the exit side of the die have a thickness smaller than that of the entrance side. A high-precision tube as-punched, wherein at least one of outer diameter deviation, inner diameter deviation, and circumferential thickness deviation is not more than 3.0.
[0013]
(3) The method according to (1) or (2), wherein the punching is performed while the metal tube is circumscribed entirely around the plug and entirely around the die within the same cross section of the tube. High dimensional precision tube.
(4) The high dimensional precision tube according to any one of (1) to (3), wherein the die is an integrated die and / or a fixed die.
[0014]
(5) A method of manufacturing a high dimensional precision tube, wherein a metal tube is subjected to a punching operation in which a plug is inserted into the tube and the metal tube is pushed into a hole of a die and passed therethrough.
(6) The method for manufacturing a high-dimensional precision pipe according to (5), wherein the thickness of the pipe on the outlet side of the die is equal to or less than the thickness of the pipe on the inlet side.
(7) The method according to (5) or (6), wherein the punching is performed while the metal pipe is circumscribed around the plug and the die all around the same cross section of the pipe. Manufacturing method of high dimensional accuracy pipe.
[0015]
(8) The method according to any one of (5) to (7), wherein the die is an integrated die and / or a fixed die.
(9) The method according to any one of (5) to (8), wherein the plug is a floating plug.
In the present invention, the upper limit of the outer diameter deviation, the inner diameter deviation and the circumferential thickness deviation is preferably 1.0%, more preferably 0.5%.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Conventionally, when a metal tube is drawn using a die and a plug, it is difficult to improve the dimensional accuracy of the tube because of the drawing, the die and the tube outer surface in the machining tool, and the plug and the tube inner surface. From insufficient contact. That is, as shown in FIG. 2, by inserting the plug 1 into the pipe (metal pipe) 5 and pulling out the pipe 5 from the hole of the die 2, the pulling force 9 applied on the exit side of the die 2 causes Tension is generated inside the machining tool, and irregularities are generated and increased on the inner and outer surfaces of the pipe from the entrance to the machining tool toward the exit side. On the inlet side in the machining tool, the inner surface of the tube deforms along the plug 1 so that the outer surface of the tube does not contact or only slightly contacts. The inner surface of the tube does not touch or only slightly touches because of deformation due to contact. For this reason, the inner and outer surfaces of the tube had free deformation portions, and the unevenness could not be sufficiently smoothed, and the dimensional accuracy of the tube obtained after drawing was low.
[0017]
On the other hand, in the case of the punching used in the present invention, as shown in FIG. 1, the plug 1 is inserted into the tube 5 and the tube 5 is pushed into the hole of the die 2 and passed therethrough. Due to the pushing force 8 applied on the entry side of the die 2, a compressive stress acts on the entire inside of the working tool. As a result, the pipe 5 can make sufficient contact with the plug 1 and the die 2 in the same cross section over the entire area in the circumferential direction, regardless of the entry side or the exit side of the machining tool. Moreover, even with a small diameter reduction ratio, the inside of the working bite is subjected to compressive stress, so that the pipe and the plug, the pipe and the die can easily come into full contact in the entire circumferential direction within the same cross section as compared with drawing. Therefore, the tube is easily smoothed, and a tube with high dimensional accuracy can be obtained.
[0018]
As a result, when comparing the fatigue strength of these pipes, a pipe manufactured by punching can obtain a target sufficient fatigue strength as compared with a pipe manufactured by conventional drawing. Also, in the case of extrusion, even if the diameter reduction ratio is small, the inner and outer surfaces of the pipe can be smoothed, so that the processing distortion does not increase as compared with the case of drawing, so the heat treatment load after diameter reduction is light, and the manufacturing cost is low. Lower.
[0019]
In addition, in the press-in using the conventional rotary forging machine 3 shown in FIG. 3, the integrated die is processed by returning the die 10 using the divided dies 4 which are divided in the circumferential direction. Although the wall thickness accuracy could not be sufficiently improved, in the present invention, such a step did not occur at all, and as a result, the inner and outer surfaces of the pipe could be smoothed to obtain sufficient fatigue strength. Can be. In the present invention, for example, a step may be eliminated as an integrated die, or a step due to backward rotation may be prevented as a fixed die. Of course, the die may be formed as an integral and fixed die to prevent the step.
[0020]
Furthermore, in the present invention, the apparatus structure can be simplified as compared with the method of moving the die back using a conventional rotary forging machine, and a sufficient load can be applied to the processing, and the die entrance side It is possible to process enough even if the load on the outlet side is made equal to or less than the thickness of A tube with sufficient strength can be obtained.
[0021]
Conventionally, as a method of reducing the outer diameter deviation, the inner diameter deviation, and the circumferential thickness deviation of a metal pipe to 3.0% or less, a method by machining (processing involving partial removal of material) is known. The cost was high, the work efficiency was poor, and it was difficult to process a long, small-diameter metal tube. Therefore, it is difficult to apply it to a drive shaft of an automobile part.
[0022]
As a method for distinguishing the machined metal tube from the present metal tube (as-extruded metal tube according to the present invention), black scale is formed on the surface of the present metal tube by heating, rolling, or the like in a pre-production process. In contrast to the adherence, the machined one has the black scale removed, so that a method of observing the condition of the tube surface can be mentioned, and this method can be used for identification.
[0023]
Further, the present metal pipe has a wall thickness deviation several times better than that manufactured by a method in which a steel pipe is pressed into a die using a conventional rotary forging machine (see, for example, Patent Documents 1, 2, and 3). ing. That is, in the past, no steel pipe was obtained in which any one or more of the outer diameter deviation, the inner diameter deviation, and the thickness deviation in the circumferential direction was 3.0% or less while being punched.
[0024]
In the present invention, the outer diameter deviation, the inner diameter deviation, and the circumferential thickness deviation, which are used as indices of the dimensional accuracy, are obtained as follows.
The outer diameter (or inner diameter) deviation is calculated from the circumferential distribution data of the outer diameter (or inner diameter) measured by rotating the tube with a micrometer in contact with the outer surface (or inner surface) of the tube, from the target outer diameter (or target). Calculated as the maximum deviation from the inner diameter, or from the circumferential distribution data of the distance between the tube and the laser oscillation source measured by applying laser light to the outer surface (or inner surface) of the tube, the target outer diameter (or target inner diameter) Is calculated as the maximum deviation from. Alternatively, the outer diameter (or inner diameter) deviation may be calculated by image analysis of a cross section in the circumferential direction of the pipe and calculating a deviation from a perfect circle in the circumferential direction.
[0025]
The circumferential thickness deviation is calculated as the difference between the circumferential distribution data of the outer diameter and the circumferential distribution data of the inner diameter, or the circumferential cross section of the pipe is image-analyzed and the thickness cross section is calculated. Is directly measured as the maximum deviation from the target image thickness from the image of FIG.
The measurement is performed at an arbitrary position excluding 150 mm from the front and rear ends of the pipe at a pitch of 10 mm or less, and is determined from the values of 10 or more measurement points.
[0026]
That is, the outer diameter deviation, the inner diameter deviation, and the thickness deviation (= circumferential thickness deviation) are defined as follows.
Outer diameter deviation: (MAX outer diameter-MIN outer diameter) / Target outer diameter (or average outer diameter) x 100 (%)
Inner diameter deviation: (MAX inner diameter-MIN inner diameter) / target inner diameter (or average inner diameter) x 100 (%)
Wall thickness deviation: (MAX wall thickness-MIN wall thickness) / Target wall thickness (or average wall thickness) x 100 (%)
Since the high dimensional accuracy pipe of the present invention is a metal pipe in which one or more of the three dimensional accuracy indicators is 3.0% or less, it is used for automobiles requiring high dimensional accuracy of 3.0% or less. It can be used as a metal tube for drive system parts and the like.
[0027]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
In Example 1, a steel pipe having an outer diameter of 40 mm and a wall thickness of 6 mm was subjected to a punching process in the form shown in FIG. Here, a plug having a mirror-finished surface to be brought into contact with the inner surface of the tube and a dice which is an integrated fixed die and having a mirror-finished surface to be brought into contact with the outer surface of the tube were used. The plug was inserted into the tube with one end fixed. The processing conditions were as follows: Outlet thickness = Inlet thickness, diameter reduction ratio = 10%.
[0028]
In Example 2, processing was performed in the same manner as in Example 1, except that the diameter reduction rate was 5%.
In Example 3, processing was performed in the same manner as in Example 2, except that the plug was floated.
Further, as Comparative Example 1, the same procedure as in Example 2 was carried out except that in Example 2, the drawing shown in FIG. 1 was used instead of the drawing shown in FIG. 1, and the outlet plate thickness was smaller than the inlet plate thickness. Processing.
[0029]
Further, as Comparative Example 2, instead of the integral fixed die in Example 2, a split die having the form shown in FIG. 3 was incorporated into a rotary forging machine and used in a backward movement, and the punching was performed instead of the punching. Processing was performed in the same manner as in the example except for the above.
Further, as Comparative Example 3, the processing was performed in the same manner as in Comparative Example 2, except that the processing conditions were set such that the outgoing side wall thickness = the incoming side wall thickness + 1 mm (= 7 mm).
[0030]
The three-dimensional accuracy index was determined for these steel pipes after diameter reduction processing, and the steel pipes were subjected to a fatigue test. Table 1 shows the results.
The outer diameter and inner diameter deviations shown in Table 1 were obtained by measurement using the laser light, and the circumferential thickness deviations in the same table were obtained from the difference in the circumferential distribution of these measurement data.
[0031]
As shown in FIG. 4, the endurance limit number of the fatigue test shown in Table 1 is obtained by changing the stress level variously in a test for obtaining the number of repetitions (namely, the endurance number) until a crack is generated while keeping the stress constant. In the graph of the relationship between stress and the number of times of endurance, the number of endurances at the inflection point at which the stress starts to decrease and becomes substantially constant as the number of times of endurance increases, the larger the value, the better the fatigue strength. That is, in the case of this example, the number of times of endurance at a stress of about 150 MPa.
[0032]
[Table 1]
Figure 2004314083
[0033]
From Table 1, the product pipes of Examples 1 to 3 had remarkably good dimensional accuracy and the best fatigue strength. Particularly, when the plug was floated, the dimensional accuracy was even better (Example 3). On the other hand, in the conventional drawing, the dimensional accuracy of the product pipe was reduced, and as a result, the fatigue strength was also significantly reduced (Comparative Example 1). The dimensional accuracy of the product tube was reduced even by pushing using a rotary forging machine (Comparative Example 2), and further increasing the wall thickness (Comparative Example 3), and sufficient fatigue strength could not be obtained.
[0034]
【The invention's effect】
The high dimensional accuracy pipe of the present invention has remarkably good dimensional accuracy and, as a result, has good fatigue strength, and can be manufactured at low cost. It has an excellent effect of contributing to Further, according to the manufacturing method of the present invention, there is an excellent effect that a metal pipe having extremely good dimensional accuracy over a wide range of required pipe sizes can be manufactured at low cost.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an embodiment of punching used in the present invention.
FIG. 2 is an explanatory view showing a conventional drawing embodiment.
FIGS. 3A and 3B are explanatory views showing an embodiment of pushing by a rotary forging machine in which a conventional split die is mounted and moved backward, in which FIG. 3A is a cross-sectional view including a pipe center axis, and FIG. It is an AA arrow line view.
FIG. 4 is a characteristic diagram showing a relationship between stress in a fatigue test and the number of times of endurance.
[Explanation of symbols]
1 Plug 2 Dice (Example: One-piece fixed die)
3 Rotary forging machine 4 Split die 5 Tube (metal tube, steel tube)
6 Pipe pusher 7 Pipe puller 8 Push-in force 9 Pull-out force 10 Return

Claims (9)

金属管を該管内にプラグを装入した状態でダイスの孔に押し込んで通過させる押し抜きを行うことにより製造された、外径偏差、内径偏差、円周方向肉厚偏差のいずれか一または二以上が3.0 %以下であることを特徴とする押し抜きのままの高寸法精度管。Any one or two of an outer diameter deviation, an inner diameter deviation, and a circumferential thickness deviation manufactured by performing a punching operation in which a metal tube is pressed into a hole of a die with a plug inserted into the tube and passed therethrough. The high-precision pipe as punched, characterized in that the above is 3.0% or less. 金属管を該管内にプラグを装入した状態でダイスの孔に押し込んで通過させる押し抜きを行い、前記ダイスの出側の金属管の肉厚を入側のそれ以下とすることにより製造された、外径偏差、内径偏差、円周方向肉厚偏差のいずれか一または二以上が3.0 %以下であることを特徴とする押し抜きのままの高寸法精度管。The metal pipe was manufactured by pressing the metal pipe into the hole of the die while inserting a plug into the pipe, performing punching, and making the thickness of the metal pipe on the exit side of the die smaller than that on the entry side. A high-precision pipe as punched out, characterized in that at least one or more of the deviation of the outer diameter, the deviation of the inner diameter and the deviation of the wall thickness in the circumferential direction is not more than 3.0%. 前記押し抜きは金属管を該管の同一断面内でプラグに全周外接かつダイスに全周内接させながら行うものであることを特徴とする請求項1または2に記載の高寸法精度管。The high-precision pipe according to claim 1 or 2, wherein the punching is performed while the metal pipe is in full contact with the plug and the die in the same cross section of the pipe. 前記ダイスが一体型および/または固定型ダイスであることを特徴とする請求項1〜3のいずれかに記載の高寸法精度管。The high dimensional precision tube according to any one of claims 1 to 3, wherein the die is an integrated die and / or a fixed die. 金属管を該管内にプラグを装入した状態でダイスの孔に押し込んで通過させる押し抜きを行うことを特徴とする高寸法精度管の製造方法。A method of manufacturing a high-precision pipe, wherein a metal pipe is subjected to a punching operation in which a plug is inserted into the pipe and the metal pipe is pressed into and passed through a hole of a die. 前記ダイスの出側の管の肉厚を同入側の同管の肉厚以下とすることを特徴とする請求項5に記載の高寸法精度管の製造方法。The method according to claim 5, wherein the thickness of the pipe on the exit side of the die is equal to or less than the thickness of the pipe on the entry side. 前記押し抜きは金属管を該管の同一断面内でプラグに全周外接かつダイスに全周内接させながら行うものであることを特徴とする請求項5または6に記載の高寸法精度管の製造方法。7. The high dimensional precision tube according to claim 5, wherein the punching is performed while the metal tube is circumscribed entirely around the plug and entirely around the die in the same cross section of the tube. Production method. 前記ダイスが一体型および/または固定型ダイスであることを特徴とする請求項5〜7のいずれかに記載の高寸法精度管の製造方法。The method according to any one of claims 5 to 7, wherein the die is an integrated die and / or a fixed die. 前記プラグがフローティングプラグであることを特徴とする請求項5〜8のいずれかに記載の高寸法精度管の製造方法。9. The method according to claim 5, wherein the plug is a floating plug.
JP2003107364A 2003-04-11 2003-04-11 High dimensional accuracy tube and manufacturing method thereof Expired - Fee Related JP4285053B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003107364A JP4285053B2 (en) 2003-04-11 2003-04-11 High dimensional accuracy tube and manufacturing method thereof
US10/541,999 US20060218985A1 (en) 2003-04-11 2004-04-08 Tube with high dimensional accuracy, and method and device for manufacturing the tube
CNB2004800030567A CN100366354C (en) 2003-04-11 2004-04-08 Method and device for manufacturing tube with high dimensional accuracy
KR1020057013240A KR100665977B1 (en) 2003-04-11 2004-04-08 High Dimensional Accuracy Pipe, Manufacturing Method Thereof, and Manufacturing Apparatus
EP04726662A EP1621265A1 (en) 2003-04-11 2004-04-08 Tube with high dimensional accuracy, and method and device for manufacturing the tube
PCT/JP2004/005091 WO2004091823A1 (en) 2003-04-11 2004-04-08 Tube with high dimensional accuracy, and method and device for manufacturing the tube
CA002511633A CA2511633A1 (en) 2003-04-11 2004-04-08 High dimensional accuracy pipe, manufacturing method thereof, and manufacturing apparatus
TW093109912A TWI253963B (en) 2003-04-11 2004-04-09 Pipe having excellent dimensional accuracy, manufacturing method and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107364A JP4285053B2 (en) 2003-04-11 2003-04-11 High dimensional accuracy tube and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004314083A true JP2004314083A (en) 2004-11-11
JP4285053B2 JP4285053B2 (en) 2009-06-24

Family

ID=33469217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107364A Expired - Fee Related JP4285053B2 (en) 2003-04-11 2003-04-11 High dimensional accuracy tube and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP4285053B2 (en)
CN (1) CN100366354C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139040A (en) * 2008-12-15 2010-06-24 Mitsubishi Cable Ind Ltd Metal o-ring and method for manufacturing the same
CN112642871A (en) * 2020-12-21 2021-04-13 滕广涛 Central air-conditioning copper pipe forming processing machine and forming processing method

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5035489B1 (en) * 2011-02-15 2012-09-26 住友金属工業株式会社 Pipe end straightening method for seamless pipe made of high Cr stainless steel
CN102527755A (en) * 2011-11-27 2012-07-04 胡顺珍 Tube drawing device of spherical core head compound die
CN103357768A (en) * 2012-04-09 2013-10-23 南通海利源船舶设备工程有限公司 Improved pulling-expanding head
CN102678627A (en) * 2012-05-09 2012-09-19 刘思花 Water outlet section for submersible electric pump in deep well and machining method
WO2013171935A1 (en) * 2012-05-14 2013-11-21 新日鐵住金株式会社 Method for manufacturing seamless pipe
US20140102159A1 (en) * 2012-10-12 2014-04-17 Manchester Copper Products, Llc Extrusion press die assembly
CN103071697A (en) * 2013-01-18 2013-05-01 浙江海亮股份有限公司 Internal peeling core head for hollow tube and drawing device thereof
DE102013017178B4 (en) * 2013-10-16 2020-07-16 Ulrich Bruhnke Extrusion press for the production of flat sheets
CN104368620B (en) * 2014-11-26 2016-09-28 内蒙古北方重工业集团有限公司 The extruding of major-diameter thick-wall seamless steel pipe vertical extruder guides straightener
CN105032963B (en) * 2015-07-31 2017-07-21 成都航天精诚科技有限公司 The method for fine finishing of waveguide component
CN107504354B (en) * 2015-09-12 2019-06-04 太仓升达机械有限公司 A kind of working method of tube-drawing inner cavity refueling device
KR101859936B1 (en) * 2016-02-01 2018-05-21 일진제강(주) Drawing plug
WO2017170561A1 (en) * 2016-04-01 2017-10-05 新日鐵住金株式会社 Metal tube and structural member using metal tube
DE102017114371A1 (en) * 2017-06-28 2019-01-03 Technische Universität Berlin BRIDGE TOOL FOR THE PRODUCTION OF STRING PRESSING PROFILES WITH A VARIOUS CROSS SECTION
CN109500118B (en) * 2018-12-26 2023-06-09 重庆龙煜精密铜管有限公司 Anti-jump moving core head and copper pipe reducing drawing anti-jump method
JP6839732B2 (en) * 2019-07-08 2021-03-10 日本発條株式会社 Stabilizer and manufacturing method of stabilizer
CN111069445B (en) * 2019-11-27 2021-03-02 江阴和宏精工科技有限公司 Wall thickness control method for expanding and drawing copper pipe
CN112024625B (en) * 2020-08-12 2021-04-02 江苏君睿智能制造有限公司 Special-shaped steel pipe grabbing-free pulling system and pulling method thereof
CN113814677A (en) * 2021-11-13 2021-12-21 无锡华光环保能源集团股份有限公司 Method for forming reducing pipe

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219418A (en) * 1985-03-26 1986-09-29 Sumitomo Light Metal Ind Ltd Expanding and drawing method of metal pipe
FR2642474B1 (en) * 1989-01-27 1992-05-15 Floquet Monopole HOLLOW SHAFT, ESPECIALLY FOR AN INTERNAL COMBUSTION ENGINE PISTON, AND ITS MANUFACTURING METHOD
JPH03204113A (en) * 1989-12-29 1991-09-05 Nippon Steel Corp Plug for hot indentation
JPH03204111A (en) * 1989-12-29 1991-09-05 Nippon Steel Corp Manufacturing method and device for steel pipe with thick wall and small diameter
JP2728965B2 (en) * 1990-03-27 1998-03-18 新日本製鐵株式会社 Continuous drawing equipment for metal wire or metal tube
CN2150937Y (en) * 1992-12-14 1993-12-29 郝露霞 Propelling pipe and bar drawbench
JPH0739923A (en) * 1993-07-30 1995-02-10 Nippon Steel Corp Continuous working device for metallic wire or tube
JPH08174048A (en) * 1994-12-20 1996-07-09 Sankyo Alum Ind Co Ltd Extrusion press-forming method and apparatus thereof
JP2000254751A (en) * 1999-03-09 2000-09-19 Sanyo Special Steel Co Ltd Die for shaft reducing and shaft reducing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139040A (en) * 2008-12-15 2010-06-24 Mitsubishi Cable Ind Ltd Metal o-ring and method for manufacturing the same
CN112642871A (en) * 2020-12-21 2021-04-13 滕广涛 Central air-conditioning copper pipe forming processing machine and forming processing method

Also Published As

Publication number Publication date
CN100366354C (en) 2008-02-06
JP4285053B2 (en) 2009-06-24
CN1744956A (en) 2006-03-08

Similar Documents

Publication Publication Date Title
JP2004314083A (en) High dimensional precision pipe and its manufacturing method
JP4557006B2 (en) Plug, tube expansion method using plug, metal tube manufacturing method, and metal tube
EP1785204B1 (en) Die, method of manufacturing stepped metal tube, and stepped metal tube
ZA200507391B (en) Method of manufacturing a seamless pipe
CN104833331B (en) The inside/outside diameter size of axis blank of being swaged in the middle of car constant-speed Universal drive determines method
JP2001113329A (en) Inner surface expansion tool, and method for expanding steel tube
JP2006088221A (en) Manufacturing method of tube having high dimensional accuracy
JP2007000907A (en) High dimensional precision pipe manufacturing method with high efficiency and stability
JP4300864B2 (en) High dimensional accuracy pipe manufacturing equipment
JP4285072B2 (en) High-efficiency manufacturing method for high dimensional accuracy pipes
TWI253963B (en) Pipe having excellent dimensional accuracy, manufacturing method and apparatus thereof
JP4396234B2 (en) Stable manufacturing method of high dimensional accuracy pipe
JP2006181611A (en) Highly efficient method for manufacturing pipe with high dimensional accuracy and excellent surface quality
JP4428225B2 (en) Plug and cold drawing method
KR100724231B1 (en) Die, method of manufacturing stepped metal tube, and stepped metal tube
JP4333257B2 (en) Stable manufacturing method of high dimensional accuracy pipe
JP2005028451A (en) Method for manufacturing tube with high dimensional accuracy having good surface quality
JP2006136899A (en) Manufacturing method of pipe having high dimensional accuracy
JP2006061932A (en) Highly efficient manufacturing method for tube with high dimensional precision
JP2007118037A (en) High dimensional accuracy tube manufacturing method for reducing decentration and uneven thickness
JP2007054882A (en) Method for efficiently manufacturing pipe with high dimensional accuracy
JP2005334901A (en) Method for manufacturing tube having excellent outside diameter accuracy with high efficiency
JP2006088194A (en) Manufacturing method of tube having high dimensional accuracy
JP2005014011A (en) Method for manufacturing tube of high dimensional accuracy
RU2383404C1 (en) Hard alloy die for production of strip bar

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060130

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120403

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees