JP2000254751A - Die for shaft reducing and shaft reducing method - Google Patents

Die for shaft reducing and shaft reducing method

Info

Publication number
JP2000254751A
JP2000254751A JP6125099A JP6125099A JP2000254751A JP 2000254751 A JP2000254751 A JP 2000254751A JP 6125099 A JP6125099 A JP 6125099A JP 6125099 A JP6125099 A JP 6125099A JP 2000254751 A JP2000254751 A JP 2000254751A
Authority
JP
Japan
Prior art keywords
die
shaft
punch
axial
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6125099A
Other languages
Japanese (ja)
Inventor
Takayuki Kasai
貴之 笠井
Tadatsugu Yoshida
忠継 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP6125099A priority Critical patent/JP2000254751A/en
Publication of JP2000254751A publication Critical patent/JP2000254751A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a forging method with a punch stroke length, in which working is done with a die of good shaft reduction capability, capable of preventing a forming defect of jamming, etc. suitable for an arbitrary working condition and in a non-steady deformation region, so as to obtain good shaft reduction without generating jamming. SOLUTION: A die, which conducts shaft reducing as a stock 1 is drawn while reducing and has excellent shaft reduction, satisfies 1071 μ+323 n+10 θ+4R-65<0 wherein a friction coefficient μ between a die insert 3 and a stock 1, a work hardening index (n) of the stock 1, a die half angle θ (deg) and a cross section reduction R(%) of a die insert are assumed. Further, forging is done with satisfying S<2.5D0.(1-R/100), wherein a stock diameter D0 (mm), a punch 2 stroke S (mm) and a die cross section reduction R(%) are assumed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鍛造加工の基本的
な加工方法の一つである軸絞りにおいて、押し詰まりな
どの成形不良を生じない軸絞り性に優れた金型および押
し詰まりなどの成形不良を生じない軸絞り方法を提供す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shaft drawing which is one of the basic processing methods of forging, and to a mold having excellent shaft drawability which does not cause molding defects such as a press-fitting and a press-forming method. Provided is an axial drawing method that does not cause molding failure.

【0002】[0002]

【従来の技術】従来、鍛造工程で材料を縮径しながら軸
方向に延伸するために前方押出しが適用されていた。前
方押出しは材料がパンチとダイスに密着して押出される
密閉押出しとダイスには殆ど接触しない非拘束押出しに
大別できる。材料を延伸する場合、過大圧力によるパン
チの破壊を防止するため、非拘束型の押出しが適用され
ることが多い。非拘束型押出しは軸絞りと呼ばれ、鍛造
工程で頻繁に行われる加工であるが、金型の断面減少率
とダイス半角、金型と被加工材との摩擦係数、材料の加
工硬化係数およびパンチのストローク長さの組合わせが
不適切であると、ダイスの入り側で材料が膨らんでダイ
スに接触し密閉押出しとなるため、パンチの破壊限界以
上の表面圧力が作用して成形できないという問題があ
る。
2. Description of the Related Art Conventionally, forward extrusion has been applied to stretch a material in an axial direction while reducing its diameter in a forging process. Forward extrusion can be roughly classified into closed extrusion in which the material is extruded in close contact with the punch and die, and unconstrained extrusion in which the material hardly contacts the die. When the material is stretched, unconstrained extrusion is often applied to prevent punch breakage due to excessive pressure. Unconstrained extrusion is called axial drawing, and is a process frequently performed in the forging process.However, the cross-section reduction rate of the mold and the half angle of the die, the friction coefficient between the mold and the workpiece, the work hardening coefficient of the material, Improper combination of the stroke lengths of the punches causes the material to swell on the entry side of the dies and contact the dies, resulting in a tight extrusion. There is.

【0003】軸絞りの成形条件は金型形状(ダイス半
角、減面率、摩擦係数)および材料特性が連成して影響
を及ぼし、これらの諸因子の影響を定量的に調査するこ
とは困難であり、従来では実機による加工実験を繰り返
し行ない、経験的に最適な金型の形状および材料選択を
行うことが一般的で、開発コストと時間が大幅にかかる
という問題があった。
[0003] The forming conditions of the axial drawing are influenced by the combination of the die shape (die half angle, area reduction, friction coefficient) and material properties, and it is difficult to quantitatively investigate the effects of these factors. Conventionally, it is common practice to repeatedly perform processing experiments using actual machines and to select empirically optimal mold shapes and materials, which has a problem in that development costs and time are greatly increased.

【0004】また軸絞り加工中において、材料の変形挙
動が定常的な場合は問題がないが、金型形状によっては
材料をパンチで押し込んで加工するあいだに材料が膨ら
み続けてダイスと接触し密閉押出しとなる場合もある。
そのため、フォーマーなど短いストローク長さで圧下を
行うことにより非定常な変形域で押し詰まりが発生しな
い範囲を利用する方法も適用されている。したがって、
適切なパンチのストローク長さについても軸絞り性の重
要な因子であるが、このパンチストローク長さの決定も
試行錯誤の開発の必要性があった。
[0004] Further, there is no problem if the deformation behavior of the material is steady during the axial drawing, but depending on the shape of the mold, the material continues to swell and contacts with the die during the process of pushing the material in with a punch and sealing. It may be extruded.
For this reason, a method of using a range in which a clogging does not occur in an unsteady deformation region by performing rolling down with a short stroke length such as a former is also applied. Therefore,
An appropriate punch stroke length is also an important factor in the axial drawability, but the determination of the punch stroke length also required the development of trial and error.

【0005】[0005]

【発明が解決しようとする課題】鍛造の軸絞りにおい
て、各諸因子の影響を考慮しながら型設計を行うための
一般的な指標はないため、鍛造工程や型設計における時
間とコストの増加が避けられなかった。そこで、本発明
は、軸絞り性の良い金型の指標を明確にして、押し詰ま
りなどの成形不良を防止でき、任意の加工条件に適する
軸絞り性の良い金型を提供することである。またその金
型において非定常変形領域で加工を行っても、押し詰ま
りが発生しない良好な軸絞り性が得られるパンチのスト
ローク長さで鍛造する加工方法を提供することである。
In the forging shaft drawing, there is no general index for designing the die while considering the influence of various factors, so that the time and cost in the forging process and the die design are increased. It was inevitable. Accordingly, an object of the present invention is to provide a mold having a good shaft drawing property, which can clarify an index of a mold having a good shaft drawing property, prevent molding defects such as press-down, and be suitable for arbitrary processing conditions. Another object of the present invention is to provide a processing method for forging with a punch stroke length that provides good axial drawability without causing clogging even when processing is performed in an unsteady deformation region in the mold.

【0006】[0006]

【課題を解決するための手段】本発明は、近年技術革新
が多く、技術進展が著しいCAE(計算技術支援)によ
り、材料の変形抵抗、工具と材料間の摩擦係数、型形状
をパラメータとし、材料が非定常変形を起こす領域にお
いても押し詰まりを発生しないパンチストローク長さで
材料を押し込んだ時の軸絞りの成形限界について検討し
た。得られた結果を任意の条件で利用できるように成形
限界を回帰式で表し、軸絞りの成形限界における型形状
を導出した。そして得られた結果を実際の鍛造結果と比
較することにより、軸絞り性に優れる金型の指標を得る
ことができた。
Means for Solving the Problems According to the present invention, CAE (computational technology support), which has undergone many technological innovations in recent years and the technical progress is remarkable, uses the deformation resistance of the material, the friction coefficient between the tool and the material, and the shape of the mold as parameters. The forming limit of the axial drawing when the material is pushed with a punch stroke length that does not cause jamming even in the region where the material undergoes unsteady deformation was studied. The molding limit was expressed by a regression equation so that the obtained results could be used under arbitrary conditions, and the mold shape at the molding limit of the axial drawing was derived. Then, by comparing the obtained result with the actual forging result, it was possible to obtain an index of a mold having excellent shaft drawability.

【0007】すなわち、本発明の上記の課題を解決する
ための手段は、請求項1の発明では、材料を縮径しなが
ら軸方向に延伸する軸絞り工程に用いる金型において、
数式2で規定するパンチストローク長さS(mm)で鍛造す
る際、金型と材料の間の摩擦係数μ、材料の加工硬化指
数n、金型のダイス半角θ(deg)、材料の断面減少率R
(%)の間に次の数式1の関係を満足する関係とすること
を特徴とする軸絞り性に優れた金型である。
[0007] That is, in order to solve the above-mentioned problems of the present invention, according to the first aspect of the present invention, there is provided a mold used in an axial drawing step for extending a material in the axial direction while reducing the diameter.
When forging with a punch stroke length S (mm) specified by Equation 2, the coefficient of friction μ between the mold and the material, the work hardening index n of the material, the half angle of the die of the mold θ (deg), the reduction of the cross section of the material Rate R
A mold having excellent axial drawability, characterized by satisfying the following expression 1 between (%).

【0008】[0008]

【数1】 1071μ+323n+10θ+4R−65<0## EQU1 ## 1071 μ + 323n + 10θ + 4R−65 <0

【0009】請求項2の発明では、請求項1の手段の軸
絞り金型において直径DO(mm)の素材を加工する際に、
該金型の断面減少率R(%)に対するパンチのストローク
の長さS(mm)を数式2を満足する関係として鍛造するこ
とを特徴とする軸絞り加工方法である。
According to a second aspect of the present invention, when a material having a diameter D O (mm) is machined in the axial drawing die of the first aspect,
A shaft drawing method characterized in that forging is performed such that the punch stroke length S (mm) with respect to the section reduction rate R (%) of the mold satisfies Equation 2.

【0010】[0010]

【数2】S<2.5・D0・(1−R/100)S <2.5 · D 0 · (1-R / 100)

【0011】以下に、本発明の作用について説明する。
図1は軸絞りのモデルを示す説明図である。材料1をパ
ンチ2でダイインサート3に押し込むことにより、材料
の初期値径D0を材料の出側直径Dに変化させる。この
際、材料の断面減少率R(%)は数式3で定義される。
The operation of the present invention will be described below.
FIG. 1 is an explanatory diagram showing a model of a shaft stop. By pressing the material 1 into the die insert 3 with the punch 2, the initial value diameter D 0 of the material is changed to the delivery side diameter D of the material. At this time, the cross-sectional reduction rate R (%) of the material is defined by Expression 3.

【0012】[0012]

【数3】R/100=1−(D/D02 R / 100 = 1− (D / D 0 ) 2

【0013】表1は、軸絞り性の限界を示すものであ
り、摩擦係数μ、加工硬化指数n、ダイス半径θ、断面
減少率Rの各パラメータを種々変化させた際に、軸絞り
が可能な場合を○または●で示し、加工とともにダイス
の入り側で材料が膨らんでダイスに接触し密閉押出しと
なるため軸絞りが不可能な場合を×で示す。ただし、●
は圧下とともに材料が膨らみ続ける非定常変形が起こっ
ているが、数式4で規定するパンチストローク長さでは
成形可能である。つまり、●は、数式4で規定したスト
ローク長さにおいて押し詰まりなく良好に軸絞りが行え
る限界条件を示しており、その成形限界の回帰式は数式
5となる。表1の△は成形困難(膨らみ率>1.05)
を示す。
Table 1 shows the limits of the axial drawability. When the friction coefficient μ, the work hardening index n, the die radius θ, and the cross-sectional reduction rate R are variously changed, the axial drawability becomes possible. Are shown by ○ or ●, and when the material expands on the entry side of the die during processing and comes into contact with the die to be closed and extruded, the case where axial drawing is impossible is indicated by ×. However, ●
Although unsteady deformation occurs in which the material continues to swell with reduction, molding is possible with a punch stroke length defined by Expression 4. In other words, ● indicates a limit condition under which the shaft drawing can be performed satisfactorily without clogging at the stroke length defined by Expression 4, and the regression equation of the forming limit is represented by Expression 5. △ in Table 1 is difficult to mold (bulging ratio> 1.05)
Is shown.

【0014】[0014]

【数4】S=2.5・D0・(1−R/100)S = 2.5 · D 0 · (1-R / 100)

【0015】[0015]

【数5】 1071μ+323n+10θ+4R−65=0## EQU5 ## 1071 μ + 323n + 10θ + 4R−65 = 0

【0016】[0016]

【表1】 [Table 1]

【0017】従って、数式2の不等式で規定するストロ
ーク長さで圧下する際、軸絞り性が良好な●または○の
範囲は、数式1の不等式で規定することができる。
Therefore, when rolling down by the stroke length defined by the inequality of the equation (2), the range of ● or な with good shaft drawability can be defined by the inequality of the equation (1).

【0018】[0018]

【数1】 1071μ+323n+10θ+4R−65<0## EQU1 ## 1071 μ + 323n + 10θ + 4R−65 <0

【0019】[0019]

【数2】S<2.5・D0・(1−R/100)S <2.5 · D 0 · (1-R / 100)

【0020】[0020]

【発明の実施の形態】本発明の1実施の形態を図1およ
び表2を用いて説明する。軸絞り温間鍛造または冷間鍛
造とし、材料1として鋼を用いる。材料1を、表2で示
すパンチストローク長さ分、パンチ2でダイインサート
3に押し込むことにより、材料初期直径D0を材料出側
直径Dに変化させる。パンチ2およびダイインサート3
は超硬工具とし、潤滑は燐酸亜鉛皮膜に金属石鹸を塗布
して用いる。パンチストローク長さS、材料1および工
具の形状を設定して実験を行った。加工硬化指数のn値
は熱処理および予備加工で変化させる。すなわち、n値
を0に近づけるためには予備加工で十分加工硬化させ
る。また、n値を大きくする場合は焼鈍を行う。これで
最適なn値が得られない場合は、材料の化学成分などを
変更する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG. Axial drawing is performed by warm forging or cold forging, and steel is used as the material 1. By pressing the material 1 into the die insert 3 by the punch 2 by the punch stroke length shown in Table 2, the material initial diameter D 0 is changed to the material discharge side diameter D. Punch 2 and die insert 3
Is a carbide tool, and lubrication is performed by applying a metal soap to a zinc phosphate film. An experiment was performed by setting the punch stroke length S, the material 1 and the shape of the tool. The n value of the work hardening index is changed by heat treatment and preliminary processing. That is, in order to make the n value close to 0, the work is sufficiently hardened by the preliminary processing. When increasing the n value, annealing is performed. If the optimum n value cannot be obtained, the chemical composition of the material is changed.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【実施例】図1および表2に示す条件で軸絞り加工を実
施した。 実施例:試験条件No.1、試験条件No.2、試験条
件No.3および試験条件No.4ように、数式1およ
び数式2を満足する条件では、いずれの場合も押し詰ま
りを防止して狙いどおりに軸絞り加工が完了した。な
お、この実施例における材料1は表2に示すとおり鋼材
のSCM415であるが、鋼材としてSCM420並び
にSUS304およびSUS316でも、SCM415
と同様に数式1および数式2を満足する条件で軸絞り加
工は可能である。
EXAMPLE Shaft drawing was performed under the conditions shown in FIG. 1 and Table 2. Example: Test condition no. 1, test condition no. 2, test condition No. 3 and test condition No. 3 As shown in FIG. 4, under the conditions satisfying the formulas 1 and 2, in any case, the jamming was prevented and the axial drawing was completed as intended. Although the material 1 in this example is a steel SCM415 as shown in Table 2, even if the steel is SCM420, SUS304 or SUS316, the SCM415 is not used.
Similarly to the above, the axial drawing can be performed under the conditions satisfying Expressions 1 and 2.

【0023】[0023]

【数1】 1071μ+323n+10θ+4R−65<0## EQU1 ## 1071 μ + 323n + 10θ + 4R−65 <0

【0024】[0024]

【数2】S<2.5・D0・(1−R/100)S <2.5 · D 0 · (1-R / 100)

【0025】比較例1:試験条件No.5および試験条
件No.6のように、数式2および数式6で示した条件
では、いずれの場合も加工とともにダイスの入り側で材
料が膨らんでダイスに接触し密閉押出しとなるため軸絞
りが不可能であった。
Comparative Example 1: Test condition No. 5 and test condition No. 5 Under the conditions shown in Equations 2 and 6, as in the case of 6, in any case, the material swells on the entry side of the dies together with the processing and comes into contact with the dies to form a closed extrusion, so that axial drawing is impossible.

【0026】[0026]

【数2】S<2.5・D0・(1−R/100)S <2.5 · D 0 · (1-R / 100)

【0027】[0027]

【数6】 1071μ+323n+10θ+4R−65>0[Formula 6] 1071μ + 323n + 10θ + 4R−65> 0

【0028】比較例2:試験条件No.7および試験条
件No.8のように、数式1および数式7で示した条件
では、いずれの場合も圧下とともに材料が膨らんでダイ
ス入り側に材料が接触して密閉押出しとなり軸絞りが不
可能であった。
Comparative Example 2: Test condition no. 7 and test condition no. As shown in FIG. 8, under the conditions shown in Expressions 1 and 7, in each case, the material swelled with the reduction, and the material came into contact with the die-entering side, whereby the material was hermetically extruded and the axial drawing was impossible.

【0029】[0029]

【数1】 1071μ+323n+10θ+4R−65<0## EQU1 ## 1071 μ + 323n + 10θ + 4R−65 <0

【0030】[0030]

【数2】S>2.5・D0・(1−R/100)S> 2.5 · D 0 · (1-R / 100)

【0031】[0031]

【発明の効果】以上説明したとおり、本発明は、押し詰
まりなどの成形不良を生じにくい軸絞り性に優れた金型
とパンチストローク長さの提供において、軸絞りの加工
設計および型設計を短時間で低コストに実施することが
でき、従来にない優れた効果を奏する。
As described above, the present invention shortens the machining design and the die design of the shaft drawing in providing a die and a punch stroke length which are less likely to cause molding defects such as press-fitting and the like, and which provide a punch stroke length. It can be implemented in a short time and at low cost, and has an unprecedented superior effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施の形態を示す説明図で軸絞りの
モデルを示す。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, and shows a model of an axial stop.

【符号の説明】[Explanation of symbols]

1 材料 2 パンチ 3 ダイインサート L 材料高さ D0材料初期直径 D 材料出側直径 θ ダイス半角 H ダイ高さ1 Material 2 Punch 3 Die Insert L Material Height D 0 Material Initial Diameter D Material Outlet Diameter θ Die Half Angle H Die Height

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4E029 MB07 MB09 4E087 AA10 BA17 CA02 CA13 CA17 CA21 CA33 CB02 CB03 CB07 CB10 CB12 EC01 EC11 EC12 EC17 EC22 EC37 HA31  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4E029 MB07 MB09 4E087 AA10 BA17 CA02 CA13 CA17 CA21 CA33 CB02 CB03 CB07 CB10 CB12 EC01 EC11 EC12 EC17 EC22 EC37 HA31

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 材料を縮径しながら軸方向に延伸する軸
絞り加工に用いる金型において、金型と材料の摩擦係数
μ、材料の加工硬化係数n、金型のダイス半径θ(de
g)、金型の断面減少率R(%)をパラメーターとする数式
1に示す成形限界式を満足することを特徴とする軸絞り
金型。 【数1】 1071μ+323n+10θ+4R−65<0
1. A mold used for axial drawing in which a material is stretched in the axial direction while reducing the diameter of the material, a friction coefficient μ between the mold and the material, a work hardening coefficient n of the material, and a die radius θ (de
g), an axial drawing die, which satisfies the forming limit formula shown in Expression 1 with the die reduction ratio R (%) as a parameter. ## EQU1 ## 1071 μ + 323n + 10θ + 4R−65 <0
【請求項2】 請求項1記載の軸絞り金型において、直
径DO(mm)の素材を加工する際に、該金型の断面減少率
R(%)に対するパンチのストロークの長さS(mm)を数式
2を満足する関係として鍛造することを特徴とする軸絞
り加工方法。 【数2】S<2.5・D0・(1−R/100)
2. The shaft drawing die according to claim 1, wherein, when processing a material having a diameter D O (mm), a punch stroke length S (%) with respect to a cross-sectional reduction rate R (%) of the die. mm) forging a relationship that satisfies Equation 2. S <2.5 · D 0 · (1-R / 100)
JP6125099A 1999-03-09 1999-03-09 Die for shaft reducing and shaft reducing method Pending JP2000254751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6125099A JP2000254751A (en) 1999-03-09 1999-03-09 Die for shaft reducing and shaft reducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6125099A JP2000254751A (en) 1999-03-09 1999-03-09 Die for shaft reducing and shaft reducing method

Publications (1)

Publication Number Publication Date
JP2000254751A true JP2000254751A (en) 2000-09-19

Family

ID=13165813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6125099A Pending JP2000254751A (en) 1999-03-09 1999-03-09 Die for shaft reducing and shaft reducing method

Country Status (1)

Country Link
JP (1) JP2000254751A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004091823A1 (en) * 2003-04-11 2004-10-28 Jfe Steel Corporation Tube with high dimensional accuracy, and method and device for manufacturing the tube
CN100366354C (en) * 2003-04-11 2008-02-06 杰富意钢铁株式会社 Method and device for manufacturing tube with high dimensional accuracy
CN117305602A (en) * 2023-10-17 2023-12-29 中信戴卡股份有限公司 Aluminum scraps solid phase synthesis recovery device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004091823A1 (en) * 2003-04-11 2004-10-28 Jfe Steel Corporation Tube with high dimensional accuracy, and method and device for manufacturing the tube
CN100366354C (en) * 2003-04-11 2008-02-06 杰富意钢铁株式会社 Method and device for manufacturing tube with high dimensional accuracy
CN117305602A (en) * 2023-10-17 2023-12-29 中信戴卡股份有限公司 Aluminum scraps solid phase synthesis recovery device

Similar Documents

Publication Publication Date Title
US5894752A (en) Method and system for warm or hot high-velocity die forging
JPH09236130A (en) Needle-like roller bearing holder and its manufacture
JP3419195B2 (en) Bulge processing method and apparatus
DE102011015732A1 (en) Fluid cooling during hot-blow-forming of metal sheets and tubes
KR20010044765A (en) Production method of grain refinement of difficult-to-work materials using double equal channel angular processing
US20080178650A1 (en) Profile element pipe for hydraulic bulging, hydraulic bulging device using the element pipe, hydraulic bulging method using the element pipe, and hydraulically bulged product
JP2000254751A (en) Die for shaft reducing and shaft reducing method
US6098436A (en) Metalworking method and product obtained with the method
JP2000254752A (en) Die for two stage cold forging and its method
WO2009125786A1 (en) Shearing method
JPH06238358A (en) Punching machine
JP3738659B2 (en) Piercing method and mold and hydraulic bulge processing component in hydraulic bulge processing of metal pipe
JP2000107828A (en) Material excellent in shank reducing property
Hadi et al. The Effect of Aluminum Profile Thickness and Type of Lubricant on Punch Force
JP2853015B2 (en) Method of manufacturing glow plug housing
TW200424026A (en) Pipe having excellent dimensional accuracy, manufacturing method and apparatus thereof
JPH05123808A (en) Plastic working method for stainless steel
JP3697287B2 (en) Shaft-shaped member processing method
JP2828146B2 (en) Extrusion molding method and apparatus for helical gear having shaft hole
Lin et al. Resolving burr issue in metal stamping with TRIZ
JP3696656B2 (en) Punching method
JP2003191011A (en) Method for manufacturing metallic tube
JPH1029031A (en) Extrusion forging method
JP2001286967A (en) Evaluation method of cold forgeability of material having lubricant film
JP2004148359A (en) Forging die and forging method capable of adjusting forging dimension

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050607