JP2007054882A - Method for efficiently manufacturing pipe with high dimensional accuracy - Google Patents

Method for efficiently manufacturing pipe with high dimensional accuracy Download PDF

Info

Publication number
JP2007054882A
JP2007054882A JP2005246186A JP2005246186A JP2007054882A JP 2007054882 A JP2007054882 A JP 2007054882A JP 2005246186 A JP2005246186 A JP 2005246186A JP 2005246186 A JP2005246186 A JP 2005246186A JP 2007054882 A JP2007054882 A JP 2007054882A
Authority
JP
Japan
Prior art keywords
pipe
tube
die
dimensional accuracy
high dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005246186A
Other languages
Japanese (ja)
Inventor
Kazuhito Kenmochi
一仁 剣持
Takuya Nagahama
拓也 長濱
Takashi Sakata
坂田  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005246186A priority Critical patent/JP2007054882A/en
Publication of JP2007054882A publication Critical patent/JP2007054882A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently manufacturing a pipe with high dimensional accuracy, which method can efficiently manufacture the pipe with high dimensional accuracy by preventing the generation of buckling and seizure defects by reducing a punching load when manufacturing the pipe with high dimensional accuracy, e.g. excellent wall thickness deviation, etc. by punching process. <P>SOLUTION: In the method, lubricating films are preliminarily formed on the internal and external surfaces of the pipe 1. Then, a plug 3 is inserted into the pipe 1 so as to floatingly support the pipe 1. Then, the pipe 1 is fed into a die 2 by applying a pushing force 5 to the pipe 1 by means of a pipe pushing machine 4 arranged on the inlet side of the die 2 to perform the punching process by means of the die 2. In this case, the ratio of the contact length 6 between the die 2 and the pipe 1 to the outside diameter 7 of the material pipe is set within the range from 0.5 to 1.0. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車駆動系部品などの高い寸法精度が要求される管を高能率に製造する方法に関わる。   The present invention relates to a method for efficiently producing a pipe that requires high dimensional accuracy such as an automobile drive system component.

金属管、例えば鋼管は、通常溶接管と継目無管に大別される。溶接管は、例えば電縫鋼管のように、帯板の幅を丸めて、概丸めた幅の両端を突き合わせて溶接する方法で製造し、一方、継目無管は、材料の塊を高温で穿孔後にマンドレルミル等で圧延する方法で製造する。溶接管の場合、溶接後に溶接部分の盛り上がりを研削して管の寸法精度を向上させているが、その板厚偏差は3.0%を超える。また、継目無管の場合、穿孔工程で偏芯しやすくて、概偏芯により大きな肉厚偏差が生じやすい。この肉厚偏差は後工程で低減させる努力が払われているが、それでも充分低減することができず、製品の段階で8.0%以上残存する。   Metal pipes, for example, steel pipes, are generally classified into welded pipes and seamless pipes. Welded pipes are manufactured by rounding the width of the strip and welding by welding both ends of the roughly rounded width, such as ERW steel pipes, while seamless pipes drill holes of material at high temperatures. It manufactures by the method of rolling with a mandrel mill etc. later. In the case of a welded pipe, the bulge of the welded portion is ground after welding to improve the dimensional accuracy of the pipe, but the plate thickness deviation exceeds 3.0%. In the case of a seamless pipe, it is easy to be eccentric in the drilling process, and a large thickness deviation is likely to occur due to the approximate eccentricity. Although efforts have been made to reduce this thickness deviation in a later process, it cannot be sufficiently reduced, and remains at 8.0% or more at the product stage.

自動車部品等の管には、肉厚、内径、外径の各偏差として3.0%以下、さらに厳しくは1.0%以下の高寸法精度が要求される。金属管の肉厚、内径、外径の精度を高める手段として、従来一般に、例えば特許文献1等に記載されるように、金属管(溶接管,継目無管とも)を造管後にダイスとプラグを用いて冷間で管を引き抜く製造方法(いわゆる冷牽法)がとられている。   The pipes of automobile parts and the like are required to have a high dimensional accuracy of 3.0% or less, more strictly 1.0% or less, as deviations in thickness, inner diameter, and outer diameter. As a means for increasing the accuracy of the thickness, inner diameter, and outer diameter of a metal tube, a die and a plug are generally formed after forming a metal tube (both a welded tube and a seamless tube) as generally described in Patent Document 1, for example. A manufacturing method (so-called cold check method) in which a pipe is pulled out cold using a so-called is used.

しかし、従来の冷牽法では、設備上の制約や管の肉厚・径が大きくて引き抜き応力が充分得られずに縮径率を低くせざるを得ない場合などでは、加工バイト(プラグとダイス孔内面との隙間)内で管の応力が引張力であるがゆえにダイスと管、および、引き抜きプラグと管の接触が不十分となり、管の内面、外面の平滑化が不足して凹凸が残留しやすい。そのため、冷牽で管の縮径率を大きくして加工バイト内で管の内外面とプラグ、ダイスの接触を向上させることが行われている。しかし、ダイスを用いて管を冷牽した場合、管の内面に凹凸が発生して管の縮径率が大きくなるほど凹凸による粗さが増加する。その結果、冷牽法では高寸法精度の管を得ることが難しく、寸法精度のさらに良好な管が強く求められていた。   However, in the conventional cold check method, when the restrictions on equipment and the thickness and diameter of the tube are large and sufficient pulling stress cannot be obtained and the diameter reduction rate must be lowered, etc., a machining tool (plug and plug) Because the stress of the tube within the gap between the inner surface of the die hole is a tensile force, the contact between the die and the tube, and the drawing plug and the tube is insufficient, and the inner surface and outer surface of the tube are not smoothed, resulting in unevenness. It tends to remain. For this reason, the diameter reduction rate of the pipe is increased by a cold check to improve the contact between the inner and outer surfaces of the pipe, the plug, and the die within the machining tool. However, when the tube is cooled using a die, unevenness is generated on the inner surface of the tube, and the roughness due to the unevenness increases as the diameter reduction ratio of the tube increases. As a result, it has been difficult to obtain a tube with high dimensional accuracy by the cold check method, and a tube with better dimensional accuracy has been strongly demanded.

上記のように、従来、ダイスとプラグを用いて管を引き抜いた場合、管の寸法精度を向上することが困難である理由は、引き抜きであるがゆえに加工バイト中のダイスと管外面、プラグと管内面の接触が不十分となることに由来する。すなわち、図3に示すように、プラグ3を挿入してダイス2から管1を引き抜くことにより、ダイス2の出側で管引き抜き機8によって加えられた引き抜き応力9によって加工バイト中には張力が発生する。それによって、加工バイト入側では、管1の内面がプラグ3に沿って変形するため、管1の外面は接触しないかあるいは軽度にしか接触せず、逆に、加工バイト出側では、管1の外面がダイス2に接触して変形するため、管1の内面は接触しないかあるいは軽度にしか接触しない。そのため、管1の内面及び外面ともに加工バイト中に自由変形の部分が存在して凹凸を十分平滑化できずに、引き抜き後には精度の低い管しか得られていなかった。   As described above, conventionally, when a pipe is pulled out using a die and a plug, it is difficult to improve the dimensional accuracy of the pipe. This comes from insufficient contact of the inner surface of the tube. That is, as shown in FIG. 3, when the plug 3 is inserted and the pipe 1 is pulled out from the die 2, a tensile force is applied to the working bite due to the drawing stress 9 applied by the pipe drawing machine 8 on the exit side of the die 2. appear. Accordingly, since the inner surface of the tube 1 is deformed along the plug 3 on the processing bite entry side, the outer surface of the tube 1 is not in contact with or only slightly contacted. Since the outer surface of the tube 1 is deformed by contacting the die 2, the inner surface of the tube 1 is not contacted or only slightly contacted. For this reason, both the inner and outer surfaces of the tube 1 have free deformation portions in the machining bite, and the unevenness cannot be sufficiently smoothed, and only a tube with low accuracy is obtained after drawing.

これに対して、発明者らは、外径偏差、内径偏差、円周方向肉厚偏差の良好な高寸法制度管を得るために、特許文献2において、管内にプラグを装入した状態で管をダイスの孔に押し込んで通過させる押し抜きを行うという高寸法精度管の製造方法を提案している。   On the other hand, in order to obtain a high-dimension system pipe with good outer diameter deviation, inner diameter deviation, and circumferential thickness deviation, the inventors have disclosed a pipe with a plug inserted in the pipe in Patent Document 2. Has proposed a method of manufacturing a high dimensional accuracy tube in which a die is pushed into a hole of a die and passed through.

押し抜きの場合、図2に示すように、プラグ3を装入してダイス2に管1を押し込むことにより、ダイス2の入側で管押し込み機4によって加えられた押し抜き力5によって加工バイトの内部は全て圧縮応力が作用する。その結果、加工バイト入側、出側を問わずに、管1はプラグ3及びダイス2に十分接触できる。しかも、軽度の縮径率であっても、加工バイト内部は圧縮応力となるため、引き抜きに比較して管1とプラグ3、管1とダイス2が十分接触しやすくて、管1は平滑化しやすくなって高寸法精度の管が得られる。
特開平07−032030号公報 特開2004−314083号公報
In the case of punching, as shown in FIG. 2, by inserting the plug 3 and pushing the tube 1 into the die 2, a cutting tool 5 is applied by the punching force 5 applied by the tube pushing machine 4 on the entry side of the die 2. Compressive stress acts on the interior of all. As a result, the tube 1 can sufficiently come into contact with the plug 3 and the die 2 regardless of whether the processing tool enters or exits. In addition, even within a small diameter reduction ratio, the inside of the working bite becomes compressive stress, so that the tube 1 and the plug 3 and the tube 1 and the die 2 are more easily contacted than the drawing, and the tube 1 is smoothed. It becomes easy to obtain a tube with high dimensional accuracy.
Japanese Patent Application Laid-Open No. 07-032030 JP 2004-314083 A

しかし、押し抜き加工による高寸法精度管の製造においては、引き抜き加工と異なり、加工バイトが圧縮場であるため、ダイスと管、プラグと管との間の面圧が大きくなりやすく、プラグ表面と管内面、ダイス表面と管外面との摩擦力を可能な限り低減しないと、加工中に管が座屈したり、管表面に焼き付き疵が発生したりして、加工後の管の表面品質が低下し、その管は製品にならないだけでなく、加工時の荷重が著しく増加して加工そのものが不可能になる場合がある。その場合は、加工条件を変更するために、加工途中で一旦止めて管を抜き出して、ダイスを交換し、プラグを抜き出す必要がある。その結果,管の生産能率が著しく低下してしまう。   However, in the manufacture of high-dimensional accuracy pipes by punching, unlike the drawing process, the processing tool is a compression field, so the surface pressure between the die and the pipe, the plug and the pipe tends to increase, and the plug surface If the frictional force between the inner surface of the tube, the die surface and the outer surface of the tube is not reduced as much as possible, the tube will buckle during processing and seizure will occur on the surface of the tube, resulting in deterioration of the surface quality of the tube after processing. However, not only does the tube not become a product, but the load during processing increases significantly, and processing itself may be impossible. In that case, in order to change the processing conditions, it is necessary to temporarily stop in the middle of processing, extract the tube, replace the die, and extract the plug. As a result, the production efficiency of the pipe is significantly reduced.

本発明は、上記の事情に鑑みてなされたものであり、肉厚偏差等の良好な高寸法精度管を押し抜き加工によって製造するに際し、押し抜き荷重を低減して、座屈や焼き付き疵の発生を防止し、高寸法精度管を高能率に製造することができる高寸法精度管の高能率製造方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and when producing a high-precision tube having a good thickness such as a thickness deviation by punching, the punching load is reduced, and An object of the present invention is to provide a high-efficiency manufacturing method of a high-dimensional accuracy tube that can prevent the occurrence and can manufacture a high-dimensional accuracy tube with high efficiency.

本発明者らは、押し抜き荷重を低減する手段として、ダイス形状に着目した。すなわち、管の押し抜きにあたり、同一素管から所定サイズの管を加工するには、種々のダイス形状の適用が考えられる。そこで、荷重を最も低減できるダイス形状を鋭意検討したところ、素管の径の影響を受けて、素管の径が増加すると荷重が低減し、また、ダイスと管の接触長さの影響を受けて、この接触長さが減少すると荷重が低減することを把握した。その結果、これらの関係から汎用性を持たせて、種々の素管に対して荷重を低減できる適切なダイス形状を得るには、ダイスと管の接触長さと素管径との比率を特定範囲に限定するとよいことを見出した。具体的には、ダイスと管の接触長さと素管径との比率を0.5〜1.0の範囲にすると荷重が低減できて、押し抜きにおける座屈や焼き付きを防止できることを見出した。   The present inventors paid attention to the die shape as a means for reducing the punching load. In other words, various die shapes can be applied to process a tube of a predetermined size from the same blank when punching the tube. Therefore, when diligently examining the shape of the die that can reduce the load most, the load decreases as the diameter of the pipe increases due to the influence of the diameter of the pipe, and the influence of the contact length between the die and the pipe also affects. Thus, it was understood that the load decreases as the contact length decreases. As a result, in order to obtain versatility from these relationships and to obtain an appropriate die shape that can reduce the load on various raw pipes, the ratio between the contact length of the die and the pipe and the raw pipe diameter is within a specific range. It was found that it should be limited to. Specifically, it has been found that when the ratio between the contact length of the die and the pipe and the diameter of the raw pipe is in the range of 0.5 to 1.0, the load can be reduced and buckling or seizure in punching can be prevented.

本発明は以上の観点に基づいてなされたものであり、以下の特徴を有する。   The present invention has been made based on the above viewpoint and has the following characteristics.

[1]管の内面または/および外面に潤滑被膜を形成させて、管の内部にプラグを装入しフローティングさせながら、管を送ってダイスで押し抜き加工を行うに際し、ダイスと管の接触長さと素管外径との比率を0.5〜1.0の範囲とするダイスを用いて押し抜き加工することを特徴とする高寸法精度管の高能率製造方法。   [1] The contact length between the die and the tube when the tube is fed and punched with a die while a lubricating film is formed on the inner surface and / or outer surface of the tube and the plug is inserted into the tube and floated. A high-efficiency manufacturing method of a high dimensional accuracy pipe, characterized by performing a punching process using a die having a ratio between the outer diameter of the pipe and the outer diameter of the raw pipe.

[2]潤滑剤として、乾燥性樹脂を用いることを特徴とする前記[1]に記載の高寸法精度管の高能率製造方法。   [2] The high-efficiency manufacturing method for a high-dimensional accuracy tube according to [1], wherein a drying resin is used as the lubricant.

[3]樹脂、あるいは樹脂を溶剤で希釈した液、あるいは樹脂のエマルジョンを管に塗布して、温熱風をあてて管表面に潤滑被膜を形成させることを特徴とする前記[1]または[2]に記載の高寸法精度管の高能率製造方法。   [3] The above [1] or [2], wherein a resin, a solution obtained by diluting a resin with a solvent, or an emulsion of a resin is applied to a tube, and a hot air is applied to form a lubricating film on the surface of the tube. ] The high-efficiency manufacturing method of the high dimensional accuracy pipe | tube as described in any one of.

本発明においては、ダイスと管の接触長さと素管外径との比率が適切な範囲になるようなダイスを用いて押し抜き加工を行うことにより、押し抜き荷重を低減して、座屈や焼き付き疵の発生を防止し、高寸法精度管を高能率に製造することができる。   In the present invention, by performing the punching process using a die in which the ratio of the contact length between the die and the pipe and the outer diameter of the raw tube is within an appropriate range, the punching load is reduced, and buckling or Generation of seizure flaws can be prevented, and a high dimensional accuracy tube can be manufactured with high efficiency.

本発明の一実施形態を図1に基づいて説明する。   An embodiment of the present invention will be described with reference to FIG.

図1に示すように、この実施形態においては、予め管1の内外表面に潤滑被膜を形成させて、管1の内部にプラグ3を装入しフローティングさせながら、ダイス2の入側に設けられた管押し機4によって押し込み力5を加えて管1を送り、ダイス2で押し抜き加工を行うようにしている。   As shown in FIG. 1, in this embodiment, a lubricant film is formed on the inner and outer surfaces of the tube 1 in advance, and the plug 3 is inserted into the tube 1 to float and is provided on the entry side of the die 2. The tube pusher 4 applies a pushing force 5 to feed the tube 1 and the die 2 performs a punching process.

そして、その際に、ダイス2と管1の接触長さ6と素管外径7との比率を0.5〜1.0の範囲とするダイス2を用いて押し抜き加工を行うようにしている。   At that time, punching is performed using the die 2 in which the ratio between the contact length 6 of the die 2 and the tube 1 and the outer diameter 7 of the raw tube is in the range of 0.5 to 1.0. Yes.

上記のようにすることによって、この実施形態においては、ダイス2の入側で管押し込み機4によって加えられた押し込み力5によって加工バイトの内部は全て圧縮応力が作用するため、管1とプラグ3、管1とダイス2が十分接触し、肉厚偏差等の良好な高寸法精度の管が得られるとともに、ダイス2と管1の接触長さ6と素管外径7との比率が適切な範囲になるようなダイス2を用いて押し抜き加工を行っているので、押し抜き荷重を低減して、座屈や焼き付き疵の発生を防止し、高寸法精度管を高能率に製造することができる。   By doing as described above, in this embodiment, the compressive stress acts on the entire inside of the working bite by the pushing force 5 applied by the pipe pushing machine 4 on the entry side of the die 2. The tube 1 and the die 2 are sufficiently in contact with each other to obtain a tube with good high dimensional accuracy such as thickness deviation, and the ratio of the contact length 6 of the die 2 and the tube 1 to the outer diameter 7 of the raw tube is appropriate. Since punching is performed using a die 2 that falls within the range, the punching load can be reduced, buckling and seizure can be prevented, and high-dimensional accuracy tubes can be manufactured with high efficiency. it can.

なお、用いる潤滑剤については、ダイスと管、プラグと管の間で潤滑剤の強固な膜を形成させるため、乾燥性樹脂がよく、ポリエチレンワックス、ポリアクリレートなどが良い。また、管表面に潤滑被膜を形成させるには、樹脂、あるいは樹脂を溶剤で希釈した液、あるいは樹脂のエマルジョンを管に塗布して、温熱風をあてるとよい。   The lubricant used is preferably a dry resin, such as polyethylene wax or polyacrylate, in order to form a strong film of lubricant between the die and the tube and between the plug and the tube. In order to form a lubricating coating on the surface of the tube, it is preferable to apply hot air to the tube by applying a resin, a solution obtained by diluting the resin with a solvent, or an emulsion of the resin to the tube.

以下、実施例に基づいて説明する。   Hereinafter, a description will be given based on examples.

一例として、φ34mm×7mmt×6mLの鋼管を素管として、鏡面のプラグと一体型固定ダイスを用いて、プラグをフローティングさせて鋼管内部に装入し、縮径率11.8%で鋼管を入側から押して、ダイス出側の管の径をφ30mm、管肉厚を入側と同じ7mmtとした。なお、この際にダイスの角度を変えることにより、ダイスと管の接触長さを変更し、各々の条件で10本ずつ押し抜き加工または引き抜き加工を行った。   As an example, a steel pipe with a diameter of 34 mm x 7 mm t x 6 mL is used as a base pipe, and the plug is floated and inserted into the steel pipe using a mirror surface plug and an integrated fixed die, and the steel pipe is inserted at a reduction ratio of 11.8%. By pushing from the side, the diameter of the tube on the die exit side was set to 30 mm, and the tube thickness was set to 7 mmt on the inlet side. At this time, by changing the angle of the die, the contact length between the die and the tube was changed, and 10 pieces were punched or drawn under each condition.

本発明例1として、上記の押し抜き加工において、ダイスと管との接触長さと素管外径との比率を0.5として、予め潤滑被膜を形成させるため、ポリエチレンワックスの樹脂エマルションを管内外面に塗布して、温熱風をあてて乾燥性樹脂被膜を付着させて10本連続して加工した。   As Example 1 of the present invention, in the above punching process, the ratio of the contact length between the die and the pipe and the outer diameter of the raw pipe is set to 0.5, and in order to form a lubricating film in advance, a polyethylene wax resin emulsion is used for the inner and outer faces of the pipe. 10 pieces were processed continuously by applying hot air and applying a drying resin film.

本発明例2として、上記の押し抜き加工において、ダイスと管との接触長さと素管外径との比率を0.9として、予め潤滑被膜を形成させるため、溶剤で希釈した樹脂を管内外面に塗布して、温熱風をあてて、ポリアクリレートからなる乾燥性樹脂被膜を付着させて10本連続して加工した。   As Example 2 of the present invention, in the above punching process, the ratio of the contact length between the die and the tube and the outer diameter of the raw tube is set to 0.9, and a resin diluted with a solvent is used to form a lubricating coating in advance. The coating was applied to the substrate, hot air was applied, and a drying resin film made of polyacrylate was adhered, and 10 pieces were processed continuously.

比較例1として、上記の押し抜き加工において、ダイスと管との接触長さと素管外径との比率を0.4として、潤滑被膜を形成させるため、ポリエチレンワックスの樹脂エマルションを管内外面に塗布して、温熱風をあてて乾燥性樹脂被膜を付着させて10本連続して加工した。   As Comparative Example 1, in the above punching process, a resin emulsion of polyethylene wax was applied to the inner and outer surfaces of the pipe in order to form a lubricating film with a ratio of the contact length between the die and the pipe to the outer diameter of the raw pipe of 0.4. Then, hot air was applied to attach a drying resin film, and 10 pieces were processed continuously.

比較例2として、上記の押し抜き加工において、ダイスと管との接触長さと素管外径との比率を1.1として、潤滑被膜を形成させるため、ポリエチレンワックスの樹脂エマルションを管内外面に塗布して、温熱風をあてて乾燥性樹脂被膜を付着させて10本連続して加工した。   As Comparative Example 2, in the above-described punching process, the ratio of the contact length between the die and the tube and the outer diameter of the raw tube was 1.1, and in order to form a lubricating coating, a polyethylene wax resin emulsion was applied to the inner and outer surfaces of the tube. Then, hot air was applied to attach a drying resin film, and 10 pieces were processed continuously.

従来例として、引き抜き加工において、ダイスと管との接触長さと素管外径との比率を0.5として、潤滑被膜を形成させるため、ポリエチレンワックスの樹脂エマルションを管に塗布して、温熱風をあてて乾燥性樹脂被膜を付着させて10本連続して加工した。   As a conventional example, in the drawing process, a ratio of the contact length between the die and the pipe and the outer diameter of the raw pipe is set to 0.5, and in order to form a lubricating coating, a polyethylene wax resin emulsion is applied to the pipe, 10 were continuously processed by attaching a drying resin film.

これらの鋼管製造時の荷重、および製造した鋼管の表面疵の発生状態、座屈発生の有無、加工能率について、結果を表1に示す。なお、加工能率は、1時間当たりの加工本数について、従来例の1時間当たりの加工本数を1(基準)として、その比率で示した。   Table 1 shows the results of the load at the time of manufacturing these steel pipes, the state of occurrence of surface flaws in the manufactured steel pipe, the presence or absence of buckling, and the machining efficiency. The processing efficiency is shown as a ratio of the number of processing per hour, where the number of processing per hour of the conventional example is 1 (reference).

Figure 2007054882
Figure 2007054882

表1に示すように、比較例1および比較例2に示す押し抜き加工では、荷重が大きくて、加工後の鋼管表面に疵が発生してダイス及びプラグを交換せざるを得なくなり、特に、比較例2では素管が座屈して加工をやり直す必要が生じて、そのために加工能率が著しく低下した。   As shown in Table 1, in the punching process shown in Comparative Example 1 and Comparative Example 2, the load is large and flaws are generated on the surface of the steel pipe after processing, and the die and plug must be replaced. In Comparative Example 2, the raw tube was buckled, and it was necessary to redo the processing, which significantly reduced the processing efficiency.

また、従来例に示す引き抜きの場合は、荷重は低いが鋼管を単発で加工せざるを得ないため、加工能率が著しく低下した。   In the case of the drawing shown in the conventional example, the load is low, but the steel pipe has to be processed in a single shot, so the processing efficiency is significantly reduced.

これらに比べて、本発明例1および本発明例2の場合は、荷重が低くて焼き付き疵は全く発生せず良好な表面であり、加工能率も著しく良好であった。   Compared with these, in the case of the present invention example 1 and the present invention example 2, the load was low, no seizure flaws were generated, and the surface was good and the processing efficiency was remarkably good.

本発明の一実施形態(ダイスと管との接触長さと素管径との比率を0.5〜1.0の範囲とするダイスでの押し抜き加工)の説明図である。It is explanatory drawing of one Embodiment (Punching process with the die | dye which makes the ratio of the contact length of a die | dye and a pipe | tube, and a raw pipe diameter) the range of 0.5-1.0. 比較技術(ダイスと管との接触長さと素管径との比率を1.0を超える範囲とするダイスでの押し抜き加工)を示す図である。It is a figure which shows the comparison technique (Punching process by the die | dye which makes the ratio of the contact length of a die | dye and a pipe | tube and a raw pipe diameter the range exceeding 1.0). 従来技術(引き抜き加工)を行う方法を示す図である。It is a figure which shows the method of performing a prior art (drawing process).

符号の説明Explanation of symbols

1 管
2 ダイス
3 プラグ
4 管押し込み機
5 押し抜き力
6 ダイスと管との接触長さ
7 素管径
8 管引き抜き機
9 引き抜き力
1 Pipe 2 Die 3 Plug 4 Pipe pusher 5 Pushing force 6 Contact length between die and pipe 7 Diameter of raw pipe 8 Pipe pulling machine 9 Pulling force

Claims (3)

管の内面または/および外面に潤滑被膜を形成させて、管の内部にプラグを装入しフローティングさせながら、管を送ってダイスで押し抜き加工を行うに際し、ダイスと管の接触長さと素管外径との比率を0.5〜1.0の範囲とするダイスを用いて押し抜き加工することを特徴とする高寸法精度管の高能率製造方法。   When forming a lubrication film on the inner surface and / or outer surface of the tube and inserting the plug into the tube and floating it, the tube is fed and punched with a die. A high-efficiency manufacturing method of a high-dimensional accuracy pipe, characterized by performing a punching process using a die whose ratio to the outer diameter is in the range of 0.5 to 1.0. 潤滑剤として、乾燥性樹脂を用いることを特徴とする請求項1に記載の高寸法精度管の高能率製造方法。   2. The high-efficiency manufacturing method for high-dimensional accuracy tubes according to claim 1, wherein a drying resin is used as the lubricant. 樹脂、あるいは樹脂を溶剤で希釈した液、あるいは樹脂のエマルジョンを管に塗布して、温熱風をあてて管表面に潤滑被膜を形成させることを特徴とする請求項1または2に記載の高寸法精度管の高能率製造方法。
The high dimension according to claim 1 or 2, wherein a resin, a solution obtained by diluting a resin with a solvent, or an emulsion of a resin is applied to a tube, and hot air is applied to form a lubricating film on the surface of the tube. High-efficiency manufacturing method for precision tubes.
JP2005246186A 2005-08-26 2005-08-26 Method for efficiently manufacturing pipe with high dimensional accuracy Pending JP2007054882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005246186A JP2007054882A (en) 2005-08-26 2005-08-26 Method for efficiently manufacturing pipe with high dimensional accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005246186A JP2007054882A (en) 2005-08-26 2005-08-26 Method for efficiently manufacturing pipe with high dimensional accuracy

Publications (1)

Publication Number Publication Date
JP2007054882A true JP2007054882A (en) 2007-03-08

Family

ID=37918807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005246186A Pending JP2007054882A (en) 2005-08-26 2005-08-26 Method for efficiently manufacturing pipe with high dimensional accuracy

Country Status (1)

Country Link
JP (1) JP2007054882A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131617A (en) * 2008-12-03 2010-06-17 Sumitomo Metal Ind Ltd Method of manufacturing ultra-thin wall seamless metallic pipe using floating plug

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131617A (en) * 2008-12-03 2010-06-17 Sumitomo Metal Ind Ltd Method of manufacturing ultra-thin wall seamless metallic pipe using floating plug

Similar Documents

Publication Publication Date Title
JP4285053B2 (en) High dimensional accuracy tube and manufacturing method thereof
KR101175461B1 (en) Drawing plug of pipe material and drawing method employing the plug
JP2008173648A (en) Method and apparatus for cold bending pipe, and elbow manufactured by the same method and apparatus
JP2007000907A (en) High dimensional precision pipe manufacturing method with high efficiency and stability
JP2007054882A (en) Method for efficiently manufacturing pipe with high dimensional accuracy
JP2006088221A (en) Manufacturing method of tube having high dimensional accuracy
KR20140062390A (en) Grain refining method for tubular metallic material
JP2007203343A (en) Shaping method and shaping die for cylindrical shaft
JP2006181611A (en) Highly efficient method for manufacturing pipe with high dimensional accuracy and excellent surface quality
JP2007090392A (en) Highly-efficient and consistent manufacturing method of high dimensional precision pipe
JP2006346689A (en) Method for consistently manufacturing high dimensional precision pipe
JP2006346690A (en) Method for consistently manufacturing high dimensional precision pipe, with high efficiency
JP2006175485A (en) Method for highly efficiently manufacturing pipe having high dimensional accuracy
KR100665977B1 (en) High Dimensional Accuracy Pipe, Manufacturing Method Thereof, and Manufacturing Apparatus
JP2005103603A (en) Apparatus and method for manufacturing pipe with grooved inner surface
JP2007090391A (en) Highly-efficient and consistent manufacturing method of high dimensional precision pipe
JP2006061932A (en) Highly efficient manufacturing method for tube with high dimensional precision
JP2007000906A (en) High dimensional precision pipe manufacturing method
JP2006136899A (en) Manufacturing method of pipe having high dimensional accuracy
JP4333257B2 (en) Stable manufacturing method of high dimensional accuracy pipe
JP2006175486A (en) Method and apparatus for highly efficiently manufacturing pipe having high dimensional accuracy
JP4396234B2 (en) Stable manufacturing method of high dimensional accuracy pipe
JP2006035299A (en) Method for efficiently and consistently manufacturing tube of high dimensional accuracy
JP2004322181A (en) Apparatus for manufacturing tube with high dimensional accuracy
JP2005028451A (en) Method for manufacturing tube with high dimensional accuracy having good surface quality