JP2006175486A - Method and apparatus for highly efficiently manufacturing pipe having high dimensional accuracy - Google Patents

Method and apparatus for highly efficiently manufacturing pipe having high dimensional accuracy Download PDF

Info

Publication number
JP2006175486A
JP2006175486A JP2004372454A JP2004372454A JP2006175486A JP 2006175486 A JP2006175486 A JP 2006175486A JP 2004372454 A JP2004372454 A JP 2004372454A JP 2004372454 A JP2004372454 A JP 2004372454A JP 2006175486 A JP2006175486 A JP 2006175486A
Authority
JP
Japan
Prior art keywords
pipe
dimensional accuracy
tube
die
buckling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004372454A
Other languages
Japanese (ja)
Inventor
Kazuhito Kenmochi
一仁 剣持
Takashi Sakata
坂田  敬
Koji Sugano
康二 菅野
Toshio Onishi
寿雄 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004372454A priority Critical patent/JP2006175486A/en
Publication of JP2006175486A publication Critical patent/JP2006175486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for highly efficiently manufacturing a pipe having high dimensional accuracy by which the pipe having the high dimensional accuracy is efficiently manufactured by preventing the buckling of the pipe which is pushed. <P>SOLUTION: In the manufacturing method of the pipe having the high dimensional accuracy by which pushing is performed by feeding the pipe continuously and forcing it into a die 2 while charging a plug 1 into the pipe 3 and floating the pipe, the unworked part of the pipe is pressed with a press roller 5 during working the pipe. It is preferable that a pair and/or a plurality of the press rollers are provided in the feeding direction of the pipe. It is preferable that the press rollers are arranged in a position where buckling critical load is not smaller than pushing load. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高寸法精度管の高能率製造方法および装置に関し、詳しくは、例えば自動車駆動系部品用管などのような高い寸法精度が要求される管を高能率に製造する方法および装置に関する。   The present invention relates to a high-efficiency manufacturing method and apparatus for high-dimensional accuracy pipes, and more particularly to a method and apparatus for high-efficiency manufacturing of pipes requiring high dimensional accuracy, such as automobile drive system component pipes.

例えば鋼管等の金属管(以下、単に管ともいう。)は溶接管と継目無管に大別される。溶接管は、例えば電縫鋼管のように、帯板の幅を丸め、該丸めた幅の両端を突き合わせて溶接するという方法で製造され、一方、継目無管は、材料の塊を高温で穿孔後マンドレルミル等で圧延するという方法で製造される。溶接管の場合、溶接後に溶接部分の盛り上がりを研削して管の寸法精度を向上させているが、その肉厚偏差は3.0%を超える。また、継目無管の場合、穿孔工程で偏心しやすく、該偏心により大きな肉厚偏差が生じやすい。この肉厚偏差は後工程で低減させる努力が払われているが、それでも充分低減することができず、製品の段階で8.0%以上残存する。   For example, metal pipes such as steel pipes (hereinafter also simply referred to as pipes) are roughly classified into welded pipes and seamless pipes. Welded pipes are manufactured by rounding the width of the strip and welding by welding both ends of the rounded width, such as ERW steel pipes, while seamless pipes drill a mass of material at high temperatures. It is manufactured by a method of rolling with a post mandrel mill or the like. In the case of a welded pipe, the bulge of the welded portion is ground after welding to improve the dimensional accuracy of the pipe, but the thickness deviation exceeds 3.0%. In the case of a seamless pipe, it is easy to be eccentric in the drilling process, and a large thickness deviation is likely to occur due to the eccentricity. Although efforts have been made to reduce this thickness deviation in a later process, it cannot be sufficiently reduced, and remains at 8.0% or more at the product stage.

自動車駆動系部品等に用いる管には肉厚、内径、外径の各偏差として3.0%以下、さらに厳しくは1.0%以下、の高寸法精度が要求される。そこで、管の肉厚、内径、外径の精度を高める手段としては、従来一般に、金属管(溶接管、継目無管とも)を造管後にダイスとプラグを用いて冷間で引き抜く製造方法(いわゆる冷牽法)がとられている(例えば特許文献1参照)。   Pipes used for automobile drive system parts and the like are required to have a high dimensional accuracy of 3.0% or less, more strictly 1.0% or less as deviations in thickness, inner diameter, and outer diameter. Therefore, as a means for improving the accuracy of the wall thickness, inner diameter, and outer diameter of the pipe, conventionally, a metal pipe (both welded pipe and seamless pipe) is generally made by cold drawing using a die and a plug after pipe making ( A so-called cold check method is employed (see, for example, Patent Document 1).

しかし、冷牽法では、設備上の制約や管の肉厚・径が大きいなどによって引き抜き応力が充分得られずに縮径率を低くせざるを得ない場合などでは、加工バイト(プラグとダイス孔内面との隙間)内の応力場が引張場であるがゆえにダイスと管外面、および引き抜きプラグと管内面との接触が不十分となり、管の内面、外面の平滑化が不足して凹凸が残留しやすい。そのため、冷牽法では管の縮径率を大きくして加工バイト内で管の内外面とプラグ、ダイスとの間の接触を十分なものとすることが図られている。しかし、ダイスを用いて管を引き抜いた場合、管の内面に凹凸が発生し、この凹凸による粗さは管の縮径率が大きくなるほど増加する。その結果、冷牽法では高寸法精度の管を得ることが難しく、寸法精度のさらに良好な管が強く求められていた。   However, with the cold check method, when the drawing stress cannot be sufficiently obtained due to restrictions on the equipment or the pipe thickness / diameter is large, etc., it is necessary to reduce the diameter reduction rate. Since the stress field in the gap between the inner surface of the hole) is a tensile field, the contact between the die and the outer surface of the tube, and between the drawing plug and the inner surface of the tube is insufficient, and the inner surface of the tube and the outer surface are not smoothed, resulting in unevenness. It tends to remain. For this reason, in the cold check method, it is attempted to increase the diameter reduction ratio of the pipe so that the contact between the inner and outer faces of the pipe and the plug and the die is sufficient in the machining tool. However, when the tube is pulled out using a die, unevenness is generated on the inner surface of the tube, and the roughness due to the unevenness increases as the diameter reduction ratio of the tube increases. As a result, it has been difficult to obtain a tube with high dimensional accuracy by the cold check method, and a tube with better dimensional accuracy has been strongly demanded.

また、引き抜きでは、管の先端を強力に挟んで張力を加える必要があることから、管の先端を窄めて単発で管を引き抜く必要があり、加工能率が著しく低かった。
一方、最近、管内にプラグを装入し、その管をダイスに押し込んで通す、押し抜き加工による高寸法精度管の製造方法が提案されている(特許文献2参照)。この押し抜き加工によれば、プラグを内挿された管をダイスに押し込むので、加工バイト内の全域が圧縮場となり、その結果、加工バイト内の入側、出側を問わず、管はプラグおよびダイスに充分接触できる。しかも、軽度の縮径率であっても、加工バイト内が圧縮場になるから、引き抜きに比べ管とプラグ、管とダイスが十分接触しやすくて、管は平滑化しやすくなって高寸法精度の管が得られる。また、押し抜きではダイス入側から管を押すので、管の先端を窄める必要がなく、先行する管と後続の管を次々と連続してダイスに送り込むことができ、能率良く加工することができる。
特許第2812151号公報 特開2004−314083号公報
Further, since it is necessary to apply tension by strongly pinching the tip of the tube in the drawing, it is necessary to narrow the tip of the tube and pull out the tube in a single shot, and the processing efficiency is extremely low.
On the other hand, recently, a manufacturing method of a high dimensional accuracy pipe by a punching process in which a plug is inserted into a pipe and the pipe is pushed through a die is proposed (see Patent Document 2). According to this punching process, the tube with the plug inserted therein is pushed into the die, so that the entire area inside the machining tool becomes a compression field. As a result, the pipe is plugged regardless of the entry side or exit side in the machining tool. And can fully contact the die. Moreover, even if the diameter reduction is slight, the inside of the working bite becomes a compression field, so the tube and plug, and the tube and the die are more easily in contact with each other than withdrawing, and the tube is easy to smooth and has high dimensional accuracy. A tube is obtained. In addition, since the tube is pushed from the die entry side in the punching, it is not necessary to squeeze the tip of the tube, and the preceding tube and the succeeding tube can be continuously fed into the die one after another and processed efficiently. Can do.
Japanese Patent No. 2812151 JP 2004-314083 A

しかしながら、押し抜き加工では、管をその長手方向(=管送り方向)に押すことから、座屈が問題になる。細くて長い管をその長手方向に大きな力で押すと、管が座屈して大きく曲がって加工できず、曲がった管を真っ直ぐに強制するには多大な負荷がかかる。そこで、管の座屈を有利に防止し能率良く押し抜き加工できる手段が望まれている。
この要望に応えて本発明は、押し抜き加工される管の座屈を防いで寸法精度の高い管を能率良く製造できる高寸法精度管の高能率製造方法および装置を提供することを目的とする。
However, in the punching process, buckling is a problem because the tube is pushed in its longitudinal direction (= tube feeding direction). When a thin and long tube is pushed in the longitudinal direction with a large force, the tube buckles and cannot be bent and processed, and a great load is applied to force the bent tube straightly. Therefore, a means that can advantageously prevent the buckling of the tube and efficiently perform the punching process is desired.
In response to this demand, an object of the present invention is to provide a high-efficiency manufacturing method and apparatus for a high dimensional accuracy tube that can efficiently manufacture a tube with high dimensional accuracy by preventing buckling of the tube to be punched. .

前記目的を達成した本発明は、以下のとおりである。
(1)管内にプラグを装入しフローティングさせながら、管を連続して送ってダイスに押し込んで押し抜き加工する高寸法精度管の製造方法において、前記管の加工中に同管の未加工部分を押さえローラで押さえることを特徴とする高寸法精度管の高能率製造方法。
(2)前記押さえローラは、一対のものであることを特徴とする(1)記載の高寸法精度管の高能率製造方法。
(3)前記押さえローラは、管送り方向に複数設けたものであることを特徴とする(1)または(2)に記載の高寸法精度管の高能率製造方法。
(4)前記押さえローラは、座屈限界荷重が押し抜き荷重以上となる位置に設けたものであることを特徴とする(1)〜(3)のいずれかに記載の高寸法精度管の高能率製造方法。
(5)プラグを内挿された管を通すダイスと、前記管を連続して送って前記ダイスに押し込む管押し機とを有する高寸法精度管の製造装置において、前記ダイスに押し込まれ中の管を該ダイスの入側で押さえる押さえローラを有することを特徴とする高寸法精度管の高能率製造装置。
(6)前記押さえローラは、一対のものであることを特徴とする(5)記載の高寸法精度管の高能率製造装置。
(7)前記押さえローラは、管送り方向に複数設けたものであることを特徴とする(5)または(6)に記載の高寸法精度管の高能率製造装置。
(8)前記押さえローラは、座屈限界荷重が押し抜き荷重以上となる位置に設けたものであることを特徴とする(5)〜(7)のいずれかに記載の高寸法精度管の高能率製造装置。
The present invention that has achieved the above object is as follows.
(1) In a manufacturing method of a high dimensional accuracy pipe in which a pipe is continuously inserted into a pipe and floated, and the pipe is continuously sent and pushed into a die to be punched out. A high-efficiency manufacturing method for high-dimensional accuracy pipes, characterized in that the pipe is pressed by a pressing roller.
(2) The high-efficiency manufacturing method for a high-dimensional accuracy tube according to (1), wherein the pressing roller is a pair.
(3) The high-efficiency manufacturing method for a high-dimensional accuracy pipe according to (1) or (2), wherein a plurality of the pressing rollers are provided in the pipe feeding direction.
(4) The pressing roller is provided at a position where the buckling limit load is equal to or greater than the punching load. The high dimensional accuracy tube according to any one of (1) to (3), Efficiency manufacturing method.
(5) In a high dimensional accuracy pipe manufacturing apparatus having a die through which a pipe with a plug inserted is passed and a pipe pusher for continuously feeding the pipe into the die, the pipe being pushed into the die A high-efficiency manufacturing apparatus for high-dimensional accuracy tubes, comprising a pressing roller that presses the die at the entrance side of the die.
(6) The high-efficiency manufacturing apparatus for high-dimensional accuracy tubes according to (5), wherein the pressing roller is a pair.
(7) The high-efficiency manufacturing apparatus for high-dimensional accuracy pipes according to (5) or (6), wherein a plurality of the pressing rollers are provided in the pipe feeding direction.
(8) The pressing roller is provided at a position where the buckling limit load is equal to or greater than the punching load. The high dimensional accuracy tube according to any one of (5) to (7), Efficiency manufacturing equipment.

本発明によれば、著しく良好な寸法精度を得つつ、管を高能率に安定して製造可能である。   According to the present invention, it is possible to stably produce a pipe with high efficiency while obtaining remarkably good dimensional accuracy.

管の押し抜き加工を行うに際し、ダイスで管を縮径する荷重が低い場合、管の外径が大きくて肉厚が厚い場合は安定して加工が可能である。
しかし、ダイスと管、またはプラグと管との摩擦が増大して押し抜き荷重が大きい場合、あるいは、管の外径が小さくて肉厚が薄い場合は、管の座屈が発生しやすい。一旦座屈が発生するとその管を取り除くために加工を停止する必要があり、さらに、座屈した管で周辺装置を壊してしまう場合もあり、また、座屈して曲がった管を再利用するには矯正を加える必要があってコストと加工時間が増大して大きな問題となる。
When the tube is punched, if the load for reducing the diameter of the tube with a die is low, stable processing is possible if the outer diameter of the tube is large and the wall thickness is large.
However, when the friction between the die and the tube or the plug and the tube increases and the punching load is large, or when the outer diameter of the tube is small and the wall thickness is small, the tube is likely to buckle. Once buckling occurs, processing must be stopped to remove the tube, and the peripheral device may be damaged by the buckled tube, and the buckled and bent tube may be reused. However, it is necessary to add correction, which increases costs and processing time, and becomes a big problem.

そこで、本発明者らは、座屈防止のために、加工途中の管を押さえ込む方法に着目した。すなわち、管の押し抜き途中の座屈を防止するために、ダイスの入側に押さえローラを設置し、この押さえローラで管を押さえ込む。これにより、座屈長さは押さえ部分からダイスまでの距離になる。また押さえローラを管送り方向に複数設置して管を押さえ込めば、それら押さえローラ相互間距離が座屈長さになる。よって、座屈限界長さが著しく短くなって座屈を防止できるのである。   Therefore, the present inventors have paid attention to a method of pressing down a tube being processed in order to prevent buckling. That is, in order to prevent buckling during the punching of the tube, a pressing roller is installed on the entry side of the die, and the tube is pressed by this pressing roller. Thereby, the buckling length becomes the distance from the pressing portion to the die. If a plurality of pressing rollers are installed in the tube feeding direction and the tube is pressed down, the distance between the pressing rollers becomes the buckling length. Therefore, the buckling limit length is remarkably shortened and buckling can be prevented.

もっとも、座屈して曲がる方向は必ずしも一定しないため、一対の押さえローラで管を押さえれば、方向に影響されずに座屈を防止できる。また、管の長さが長い場合は、管送り方向の複数点に押さえローラを設置することにより、押さえローラ間の長さを短くできて、有利に座屈を防止できるわけである。
また、管が座屈するには押し抜き荷重が大きく関与する。そこで、座屈限界荷重を押し抜き荷重(=押し抜きに必要な荷重=加工荷重)以上にできれば座屈を防止できるため、ダイスから押さえローラまでの距離、あるいは押さえローラ相互間の距離を短くして、座屈限界荷重を向上させるとよい。
However, since the direction of buckling and bending is not always constant, buckling can be prevented without being affected by the direction if the pipe is pressed by a pair of pressing rollers. In addition, when the length of the tube is long, by installing the pressing rollers at a plurality of points in the tube feeding direction, the length between the pressing rollers can be shortened, and buckling can be advantageously prevented.
In addition, the punching load greatly affects the buckling of the pipe. Therefore, buckling can be prevented if the buckling limit load can be increased beyond the punching load (= the load required for punching = processing load). Therefore, the distance from the die to the pressing roller or between the pressing rollers is reduced. Therefore, the buckling limit load should be improved.

具体的には、以下の(I)式および(II)式により、座屈限界荷重を押し抜きに必要な荷重に置き換えて式中の座屈限界の管長さを逆算して、短い方の管長さを限界長さに採用し、押さえローラとダイスとの距離、あるいは押さえローラ相互間の距離が前記短い方の管長さ超えないように、押さえローラを設置する位置を決定するとよい。
σ=YS×(1−a×λ),λ=(L/√n)/K,n=1,a=0.0185 ‥‥(I)
σ=n×π×E×(K/L) ‥‥(II)
YS:管の降伏応力、L:管長さ、K:断面2次半径、E:ヤング率
なお、押し抜きにあたっては、管に潤滑剤を適用してダイスおよび/またはプラグとの摩擦力を低減すると、押し抜き荷重を低減できて好ましい。
Specifically, using the following formulas (I) and (II), replace the buckling limit load with the load required for punching out, and back-calculate the buckling limit pipe length in the formula. It is preferable to determine the position where the pressing roller is installed so that the distance between the pressing roller and the die or the distance between the pressing rollers does not exceed the shorter pipe length.
σ k = YS × (1−a × λ), λ = (L / √n) / K, n = 1, a = 0.0185 (I)
σ k = n × π 2 × E 0 × (K / L) 2 (II)
YS: Yield stress of pipe, L: Pipe length, K: Secondary radius of cross section, E 0 : Young's modulus In addition, when punching, a lubricant is applied to the pipe to reduce the frictional force with the die and / or plug Then, the punching load can be reduced, which is preferable.

図1は、本発明装置の一例を示す縦断面図である。この例では、ダイス2の入側に一対の押さえローラ5,5を配置している。管3はプラグ1を内挿され管押し機4でダイス2に押し込まれ、押し抜き加工中である。押さえローラ5は管3の未加工部分を押さえて、管押し機4の圧縮力による座屈を防止している。   FIG. 1 is a longitudinal sectional view showing an example of the device of the present invention. In this example, a pair of pressing rollers 5 and 5 are disposed on the entry side of the die 2. The tube 3 is inserted into the die 2 by the tube pusher 4 with the plug 1 inserted therein, and is being punched. The pressing roller 5 presses the unprocessed portion of the tube 3 to prevent buckling due to the compressive force of the tube pusher 4.

(条件1) サイズ=φ40mm×6.0mmt×5.5mmL、降伏応力=490MPaの鋼管を素材とし、図1に示す装置を用いた押し抜き加工により、φ3.5mm×6mmtの管10本の製造を試みた。管押し機4とダイス2との距離は500mm、ダイス2と押さえローラ5との距離は250mmとした。加工前の管には乾燥性潤滑剤被膜を充分付着させ、管を連続送りして加工した。
(条件2) 条件1と同様の鋼管を素材とし、図2に示す装置を用いた押し抜き加工により、条件1と同サイズの管10本の製造を試みた。管押し機4とダイス2との距離は500mmとした。管押し機4とダイス2の間で管3に液体潤滑剤を供給しつつ、管を連続送りして加工した。
(条件3) 条件1と同様の鋼管を素材とし、図3に示す装置を用いた引き抜き加工により、条件1と同サイズの管10本の製造を試みた。加工前の管には乾燥性潤滑剤被膜を充分付着させた。管引き機6に強力に掴ませるために管3の先端を窄める必要があるため、管を1本ずつ単発的に加工した。
(Condition 1) Manufacture of 10 tubes of φ3.5 mm × 6 mmt by punching using a steel tube of size = φ40 mm × 6.0 mmt × 5.5 mmL and yield stress = 490 MPa as a material. Tried. The distance between the tube pusher 4 and the die 2 was 500 mm, and the distance between the die 2 and the pressing roller 5 was 250 mm. A dry lubricant film was sufficiently adhered to the tube before processing, and the tube was continuously fed to be processed.
(Condition 2) Using the same steel pipe as in Condition 1, the production of 10 tubes of the same size as in Condition 1 was attempted by punching using the apparatus shown in FIG. The distance between the tube pusher 4 and the die 2 was 500 mm. While supplying the liquid lubricant to the tube 3 between the tube pusher 4 and the die 2, the tube was continuously fed and processed.
(Condition 3) Using the same steel pipe as in Condition 1, the production of 10 tubes of the same size as in Condition 1 was attempted by drawing using the apparatus shown in FIG. A dry lubricant film was sufficiently adhered to the tube before processing. Since it is necessary to squeeze the tip of the tube 3 in order to force the tube drawing machine 6 to grip it, the tubes were processed one by one.

各条件で製造された鋼管について、座屈発生の有無、押し抜きまたは引き抜きの加工荷重、加工能率および寸法精度(肉厚精度および外径精度で代表)を調査した結果を表1に示す。肉厚精度は、管の円周方向断面を画像解析し、肉厚断面の画像から平均肉厚に対する最大偏差(すなわち肉厚偏差=(最大肉厚−最小肉厚)/平均肉厚×100%)を測定して評価した。外径精度は、管の円周方向断面を画像解析し、平均外径に対する最大偏差(すなわち外径偏差=(最大外径―最小外径)/平均外径×100%)を測定して評価した。加工能率は、従来例の単位時間当たりの加工本数を1(基準)とした相対比で示した。   Table 1 shows the results of investigating the presence or absence of buckling, the processing load of punching or drawing, processing efficiency, and dimensional accuracy (represented by wall thickness accuracy and outer diameter accuracy) for steel pipes manufactured under each condition. The wall thickness accuracy is obtained by image analysis of the circumferential section of the tube, and from the image of the wall section, the maximum deviation from the average wall thickness (that is, wall thickness deviation = (maximum wall thickness−minimum wall thickness) / average wall thickness × 100%. ) Was measured and evaluated. The outer diameter accuracy is evaluated by image analysis of the circumferential section of the tube and measuring the maximum deviation from the average outer diameter (ie, outer diameter deviation = (maximum outer diameter-minimum outer diameter) / average outer diameter x 100%). did. The machining efficiency is shown as a relative ratio where the number of machining per unit time in the conventional example is 1 (reference).

表1より、比較例(条件2)は従来例(条件3)と比べ、寸法精度と加工能率が格段に良好であるが、加工荷重が高く、座屈が発生する短所がある。これに対し、本発明の実施例(条件1)は、寸法精度を同程度に高位に維持しながら、加工荷重が低減し、加工能率が向上している。   From Table 1, the comparative example (Condition 2) has much better dimensional accuracy and machining efficiency than the conventional example (Condition 3), but has the disadvantage that the machining load is high and buckling occurs. On the other hand, in the example (condition 1) of the present invention, the machining load is reduced and the machining efficiency is improved while maintaining the dimensional accuracy at the same level.

本発明の実施形態の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of embodiment of this invention. 比較例を示す縦断面図である。It is a longitudinal cross-sectional view which shows a comparative example. 従来例を示す縦断面図である。It is a longitudinal cross-sectional view which shows a prior art example.

符号の説明Explanation of symbols

1 プラグ
2 ダイス
3 管
4 管押し機
5 押さえローラ
6 管引き機
1 Plug 2 Die 3 Tube 4 Tube Pusher 5 Pressing Roller 6 Tube Puller

Claims (8)

管内にプラグを装入しフローティングさせながら、管を連続して送ってダイスに押し込んで押し抜き加工する高寸法精度管の製造方法において、前記管の加工中に同管の未加工部分を押さえローラで押さえることを特徴とする高寸法精度管の高能率製造方法。   In a manufacturing method of a high dimensional accuracy pipe, in which a plug is inserted into a pipe and floated, and the pipe is continuously sent and pushed into a die to perform punching processing. A high-efficiency manufacturing method for high-dimensional accuracy pipes, characterized in that it is held in place. 前記押さえローラは、一対のものであることを特徴とする請求項1記載の高寸法精度管の高能率製造方法。   The high-efficiency manufacturing method for a high-dimensional accuracy tube according to claim 1, wherein the pressing rollers are a pair. 前記押さえローラは、管送り方向に複数設けたものであることを特徴とする請求項1または2に記載の高寸法精度管の高能率製造方法。   The high-efficiency manufacturing method for a high-dimensional accuracy pipe according to claim 1 or 2, wherein a plurality of the pressing rollers are provided in the pipe feeding direction. 前記押さえローラは、座屈限界荷重が押し抜き荷重以上となる位置に設けたものであることを特徴とする請求項1〜3のいずれかに記載の高寸法精度管の高能率製造方法。   The high-efficiency manufacturing method for a high-dimensional accuracy pipe according to any one of claims 1 to 3, wherein the pressing roller is provided at a position where a buckling limit load is equal to or greater than a punching load. プラグを内挿された管を通すダイスと、前記管を連続して送って前記ダイスに押し込む管押し機とを有する高寸法精度管の製造装置において、前記ダイスに押し込まれ中の管を該ダイスの入側で押さえる押さえローラを有することを特徴とする高寸法精度管の高能率製造装置。   In a manufacturing apparatus for a high dimensional accuracy pipe having a die for passing a pipe having a plug inserted therein and a pipe pusher for continuously feeding the pipe and pushing the pipe into the die, the pipe being pushed into the die is moved to the die. A high-efficiency manufacturing apparatus for high-dimensional accuracy pipes, comprising a pressing roller for pressing on the inlet side of the tube. 前記押さえローラは、一対のものであることを特徴とする請求項5記載の高寸法精度管の高能率製造装置。   6. The high-efficiency manufacturing apparatus for high-dimensional accuracy tubes according to claim 5, wherein the pressing roller is a pair. 前記押さえローラは、管送り方向に複数設けたものであることを特徴とする請求項5または6に記載の高寸法精度管の高能率製造装置。   The high-efficiency manufacturing apparatus for high-dimensional accuracy pipes according to claim 5 or 6, wherein a plurality of the pressing rollers are provided in the pipe feeding direction. 前記押さえローラは、座屈限界荷重が押し抜き荷重以上となる位置に設けたものであることを特徴とする請求項5〜7のいずれかに記載の高寸法精度管の高能率製造装置。   The high-efficiency manufacturing apparatus for high-dimensional accuracy tubes according to any one of claims 5 to 7, wherein the pressing roller is provided at a position where a buckling limit load is equal to or greater than a punching load.
JP2004372454A 2004-12-24 2004-12-24 Method and apparatus for highly efficiently manufacturing pipe having high dimensional accuracy Pending JP2006175486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004372454A JP2006175486A (en) 2004-12-24 2004-12-24 Method and apparatus for highly efficiently manufacturing pipe having high dimensional accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372454A JP2006175486A (en) 2004-12-24 2004-12-24 Method and apparatus for highly efficiently manufacturing pipe having high dimensional accuracy

Publications (1)

Publication Number Publication Date
JP2006175486A true JP2006175486A (en) 2006-07-06

Family

ID=36730075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372454A Pending JP2006175486A (en) 2004-12-24 2004-12-24 Method and apparatus for highly efficiently manufacturing pipe having high dimensional accuracy

Country Status (1)

Country Link
JP (1) JP2006175486A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102357546A (en) * 2011-07-03 2012-02-22 胡顺珍 Floating core rod pipe-drawing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102357546A (en) * 2011-07-03 2012-02-22 胡顺珍 Floating core rod pipe-drawing device

Similar Documents

Publication Publication Date Title
JP4285053B2 (en) High dimensional accuracy tube and manufacturing method thereof
US8141405B2 (en) Method for producing ultra thin wall metallic tube with cold working process
JP2001205309A (en) Working device for continuous shear deformation
JP2009202185A (en) Rolling method using reversible rolling mill, and manufacturing method for hot-rolled steel strip
JP2007000907A (en) High dimensional precision pipe manufacturing method with high efficiency and stability
JP2006175486A (en) Method and apparatus for highly efficiently manufacturing pipe having high dimensional accuracy
WO2014188599A1 (en) Method for producing steel pipe
JP2006088221A (en) Manufacturing method of tube having high dimensional accuracy
JP2006061932A (en) Highly efficient manufacturing method for tube with high dimensional precision
JP2007054883A (en) Method for efficiently manufacturing pipe with high dimensional accuracy so as to prevent crush of leading end
TWI253963B (en) Pipe having excellent dimensional accuracy, manufacturing method and apparatus thereof
JP4285072B2 (en) High-efficiency manufacturing method for high dimensional accuracy pipes
JP2007054882A (en) Method for efficiently manufacturing pipe with high dimensional accuracy
JP2006136898A (en) High efficiency stable manufacturing method of pipe having high dimensional accuracy
JP2007090392A (en) Highly-efficient and consistent manufacturing method of high dimensional precision pipe
JP2006136899A (en) Manufacturing method of pipe having high dimensional accuracy
JP2006181611A (en) Highly efficient method for manufacturing pipe with high dimensional accuracy and excellent surface quality
JP2006346689A (en) Method for consistently manufacturing high dimensional precision pipe
JP2005334901A (en) Method for manufacturing tube having excellent outside diameter accuracy with high efficiency
JP2008254026A (en) Method of manufacturing high tensile strength metal strip having excellent press formability
JP4333257B2 (en) Stable manufacturing method of high dimensional accuracy pipe
JP2006088194A (en) Manufacturing method of tube having high dimensional accuracy
JP2006346690A (en) Method for consistently manufacturing high dimensional precision pipe, with high efficiency
JP2019084564A (en) Hot rolling method and hot rolling mill row
JP2007118037A (en) High dimensional accuracy tube manufacturing method for reducing decentration and uneven thickness