JP2007090392A - Highly-efficient and consistent manufacturing method of high dimensional precision pipe - Google Patents

Highly-efficient and consistent manufacturing method of high dimensional precision pipe Download PDF

Info

Publication number
JP2007090392A
JP2007090392A JP2005283610A JP2005283610A JP2007090392A JP 2007090392 A JP2007090392 A JP 2007090392A JP 2005283610 A JP2005283610 A JP 2005283610A JP 2005283610 A JP2005283610 A JP 2005283610A JP 2007090392 A JP2007090392 A JP 2007090392A
Authority
JP
Japan
Prior art keywords
tube
die
round shape
bearing
plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005283610A
Other languages
Japanese (ja)
Inventor
Kazuhito Kenmochi
一仁 剣持
Takuya Nagahama
拓也 長濱
Takashi Sakata
坂田  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005283610A priority Critical patent/JP2007090392A/en
Publication of JP2007090392A publication Critical patent/JP2007090392A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly-efficient and consistent manufacturing method of a high dimensional precision pipe capable of consistently manufacturing the high dimensional precision pipe with high efficiency by reducing the punching load and preventing occurrence of buckling and seizure flaw or the like when manufacturing the high dimensional precision pipe excellent in wall thickness deviation or the like by punching. <P>SOLUTION: A corner 6 of an approach part of a die 2 and a bearing has a round shape. The radius Rd of curvature of the round shape is set to be ≥5 mm. A corner 7 of an approach part of a plug 3 and the bearing has also a round shape. The radius Rp of curvature is set to be ≥5 mm to perform the punching. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車駆動系部品などの高い寸法精度が要求される管を高能率に安定して製造する方法に関わる。   The present invention relates to a method for stably and efficiently producing a pipe that requires high dimensional accuracy, such as an automobile drive system component.

金属管、例えば鋼管は、通常溶接管と継目無管に大別される。溶接管は、例えば電縫鋼管のように、帯板の幅を丸めて、概丸めた幅の両端を突き合わせて溶接する方法で製造し、一方、継目無管は、材料の塊を高温で穿孔後にマンドレルミル等で圧延する方法で製造する。溶接管の場合、溶接後に溶接部分の盛り上がりを研削して管の寸法精度を向上させているが、その板厚偏差は3.0%を超える。また、継目無管の場合、穿孔工程で偏芯しやすくて、概偏芯により大きな肉厚偏差が生じやすい。この肉厚偏差は後工程で低減させる努力が払われているが、それでも充分低減することができず、製品の段階で8.0%以上残存する。   Metal pipes, for example, steel pipes, are generally classified into welded pipes and seamless pipes. Welded pipes are manufactured by rounding the width of the strip and welding by welding both ends of the roughly rounded width, such as ERW steel pipes, while seamless pipes drill holes of material at high temperatures. It manufactures by the method of rolling with a mandrel mill etc. later. In the case of a welded pipe, the bulge of the welded portion is ground after welding to improve the dimensional accuracy of the pipe, but the plate thickness deviation exceeds 3.0%. In the case of a seamless pipe, it is easy to be eccentric in the drilling process, and a large thickness deviation is likely to occur due to the approximate eccentricity. Although efforts have been made to reduce this thickness deviation in a later process, it cannot be sufficiently reduced, and remains at 8.0% or more at the product stage.

自動車部品等の管には、肉厚、内径、外径の各偏差として3.0%以下、さらに厳しくは1.0%以下の高寸法精度が要求される。金属管の肉厚、内径、外径の精度を高める手段として、従来一般に、例えば特許文献1等に記載されるように、金属管(溶接管,継目無管とも)を造管後にダイスとプラグを用いて冷間で管を引き抜く製造方法(いわゆる冷牽法)がとられている。   The pipes of automobile parts and the like are required to have a high dimensional accuracy of 3.0% or less, more strictly 1.0% or less, as deviations in thickness, inner diameter, and outer diameter. As a means for increasing the accuracy of the thickness, inner diameter, and outer diameter of a metal tube, a die and a plug are generally formed after forming a metal tube (both a welded tube and a seamless tube) as generally described in Patent Document 1, for example. A manufacturing method (so-called cold check method) in which a pipe is pulled out cold using a so-called is used.

しかし、従来の冷牽法では、設備上の制約や管の肉厚・径が大きくて引き抜き応力が充分得られずに縮径率を低くせざるを得ない場合などでは、加工バイト(プラグとダイス孔内面との隙間)内で管の応力が引張力であるがゆえにダイスと管、および、引き抜きプラグと管の接触が不十分となり、管の内面、外面の平滑化が不足して凹凸が残留しやすい。そのため、冷牽で管の縮径率を大きくして加工バイト内で管の内外面とプラグ、ダイスの接触を向上させることが行われている。しかし、ダイスを用いて管を冷牽した場合、管の内面に凹凸が発生して管の縮径率が大きくなるほど凹凸による粗さが増加する。その結果、冷牽法では高寸法精度の管を得ることが難しく、寸法精度のさらに良好な管が強く求められていた。   However, in the conventional cold check method, when the restrictions on equipment and the thickness and diameter of the tube are large and sufficient pulling stress cannot be obtained and the diameter reduction rate must be lowered, etc., a machining tool (plug and plug) Because the stress of the tube within the gap between the inner surface of the die hole is a tensile force, the contact between the die and the tube, and the drawing plug and the tube is insufficient, and the inner surface and outer surface of the tube are not smoothed, resulting in unevenness. It tends to remain. For this reason, the diameter reduction rate of the pipe is increased by a cold check to improve the contact between the inner and outer surfaces of the pipe, the plug, and the die within the machining tool. However, when the tube is cooled using a die, unevenness is generated on the inner surface of the tube, and the roughness due to the unevenness increases as the diameter reduction ratio of the tube increases. As a result, it has been difficult to obtain a tube with high dimensional accuracy by the cold check method, and a tube with better dimensional accuracy has been strongly demanded.

上記のように、ダイスとプラグを用いて管を引き抜いた場合、管の寸法精度を向上することが困難である理由は、引き抜きであるがゆえに加工バイト中のダイスと管外面、プラグと管内面の接触が不十分となることに由来する。すなわち、図3に示すように、プラグ3を挿入してダイス2から管1を引き抜くことにより、ダイス3の出側で管引き抜き機8によって加えられた引き抜き力9によって加工バイト中には張力が発生する。それによって、加工バイト入側では、管1の内面がプラグ3に沿って変形するため、管1の外面は接触しないかあるいは軽度にしか接触せず、逆に、加工バイト出側では、管1の外面がダイス2に接触して変形するため、管1の内面は接触しないかあるいは軽度にしか接触しない。そのため、管1の内面及び外面ともに加工バイト中に自由変形の部分が存在して凹凸を十分平滑化できずに、引き抜き後には精度の低い管しか得られていなかった。   As described above, when a pipe is pulled out using a die and a plug, it is difficult to improve the dimensional accuracy of the pipe. This comes from the fact that the contact becomes insufficient. That is, as shown in FIG. 3, when the plug 3 is inserted and the pipe 1 is pulled out from the die 2, the pulling force 9 applied by the pipe puller 8 on the exit side of the die 3 causes a tension in the machining tool. appear. Accordingly, since the inner surface of the tube 1 is deformed along the plug 3 on the processing bite entry side, the outer surface of the tube 1 is not in contact with or only slightly contacted. Since the outer surface of the tube 1 is deformed by contacting the die 2, the inner surface of the tube 1 is not contacted or only slightly contacted. For this reason, both the inner and outer surfaces of the tube 1 have free deformation portions in the machining bite, and the unevenness cannot be sufficiently smoothed, and only a tube with low accuracy is obtained after drawing.

これに対して、発明者らは、外径偏差、内径偏差、円周方向肉厚偏差の良好な高寸法制度管を得るために、特許文献2において、管内にプラグを装入した状態で管をダイスの孔に押し込んで通過させる押し抜きを行うという高寸法精度管の製造方法を提案している。   On the other hand, in order to obtain a high-dimension system pipe with good outer diameter deviation, inner diameter deviation, and circumferential thickness deviation, the inventors have disclosed a pipe with a plug inserted in the pipe in Patent Document 2. Has proposed a method of manufacturing a high dimensional accuracy tube in which a die is pushed into a hole of a die and passed through.

押し抜きの場合、図2に示すように、プラグ3を挿入してダイス2に管1を押し込むことにより、ダイス2の入側で管押し込み機4によって加えられた押し抜き力5によって加工バイトの内部は全て圧縮応力が作用する。その結果、加工バイト入側、出側を問わずに、管1はプラグ3及びダイス2に十分接触できる。しかも、軽度の縮径率であっても、加工バイト内部は圧縮応力となるため、引き抜きに比較して管1とプラグ3、管1とダイス2が十分接触しやすくて、管1は平滑化しやすくなって高寸法精度の管が得られる。
特開平07−032030号公報 特開2004−314083号公報
In the case of punching, as shown in FIG. 2, by inserting the plug 3 and pushing the pipe 1 into the die 2, the punching force 5 applied by the pipe pushing machine 4 on the entry side of the die 2 is used to All the inside is subjected to compressive stress. As a result, the tube 1 can sufficiently come into contact with the plug 3 and the die 2 regardless of whether the processing tool enters or exits. In addition, even within a small diameter reduction ratio, the inside of the working bite becomes compressive stress, so that the tube 1 and the plug 3 and the tube 1 and the die 2 are more easily contacted than the drawing, and the tube 1 is smoothed. It becomes easy to obtain a tube with high dimensional accuracy.
Japanese Patent Application Laid-Open No. 07-032030 JP 2004-314083 A

しかし、押し抜き加工による高寸法精度管の製造においては、引き抜き加工と異なり、加工バイトが圧縮場であるため、ダイスと管、プラグと管との間の面圧が大きくなりやすく、プラグ表面と管内面、ダイス表面と管外面との摩擦力を可能な限り低減しないと、加工中に管が座屈したり、管表面に焼き付き疵が発生したりして、加工後の管の表面品質が低下し、その管は製品にならないだけでなく、加工時の荷重が著しく増加して加工そのものが不可能になる場合がある。その場合は、加工条件を変更するために、加工途中で一旦止めて管を抜き出して、ダイスを交換し、プラグを抜き出す必要がある。その結果,管の生産能率が著しく低下してしまう。   However, in the manufacture of high-dimensional accuracy pipes by punching, unlike the drawing process, the processing tool is a compression field, so the surface pressure between the die and the pipe, the plug and the pipe tends to increase, and the plug surface If the frictional force between the inner surface of the tube, the die surface and the outer surface of the tube is not reduced as much as possible, the tube will buckle during processing and seizure will occur on the surface of the tube, resulting in deterioration of the surface quality of the tube after processing. However, not only does the tube not become a product, but the load during processing increases significantly, and processing itself may be impossible. In that case, in order to change the processing conditions, it is necessary to temporarily stop in the middle of processing, extract the tube, replace the die, and extract the plug. As a result, the production efficiency of the pipe is significantly reduced.

本発明は、上記の事情に鑑みてなされたものであり、肉厚偏差等の良好な高寸法精度管を押し抜き加工によって製造するに際し、押し抜き荷重を低減して、座屈や焼き付き疵の発生を防止し、高寸法精度管を高能率に安定して製造することができる高寸法精度管の高能率安定製造方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and when producing a high-precision tube having a good thickness such as a thickness deviation by punching, the punching load is reduced, and An object of the present invention is to provide a high-efficiency and stable manufacturing method of a high-dimensional accuracy tube that can prevent the occurrence and stably manufacture a high-dimensional accuracy tube.

本発明者らは、高寸法精度管を押し抜き加工によって製造するに際し、押し抜き荷重を低減する手段として、ダイス形状とプラグ形状に着目した。   The present inventors paid attention to the die shape and the plug shape as a means for reducing the punching load when manufacturing a high-dimensional accuracy tube by punching.

すなわち、管の押し抜きにあたり、同一素管から所定サイズの管を加工するには、種々のダイス形状の適用が考えられる。そこで、押し抜き荷重を最も低減できるダイス形状を鋭意検討したところ、管に作用する応力はダイスのアプローチ部とベアリングとの間(コーナ)で最も大きくなり、応力集中が起きていることがわかった。その結果、管の塑性変形が円滑に進まないだけでなく、潤滑剤が充分に供給されずに、加工時の荷重が大きくなって座屈や焼き付きを発生しやすいことを見出した。すなわち、アプローチ部とベアリングとのコーナにおいて、管を円滑に塑性変形させると、加工時の荷重を低減できて、座屈や焼き付きを防止できるわけであり、アプローチ部とベアリングとのコーナを適切なラウンド形状にすればよいことを見出した。また、プラグ形状についてもダイス形状と同様にアプローチ部とベアリングとのコーナを適切なラウンド形状にすれば、一層好ましいことを見出した。   In other words, various die shapes can be applied to process a tube of a predetermined size from the same blank when punching the tube. Therefore, when diligently examining the die shape that can reduce the punching load the most, the stress acting on the tube was the largest between the die approach and the bearing (corner), and it was found that stress concentration occurred. . As a result, it has been found that not only plastic deformation of the tube does not proceed smoothly, but also that the lubricant is not sufficiently supplied, and the load during processing increases and buckling and seizure are likely to occur. In other words, if the tube is smoothly plastically deformed at the corner between the approach portion and the bearing, the load during processing can be reduced, and buckling and seizure can be prevented. It has been found that a round shape may be used. Further, it has been found that the plug shape is more preferable if the corners of the approach portion and the bearing are made to have an appropriate round shape as in the case of the die shape.

本発明は以上の観点に基づいてなされたものであり、以下の特徴を有する。   The present invention has been made based on the above viewpoint and has the following characteristics.

[1]管の内面または/および外面に潤滑被膜を形成させて、管の内部にプラグを装入しフローティングさせながら、管を送ってダイスで押し抜き加工を行うに際し、ダイスのアプローチ部とベアリングとの間をラウンド形状とし、ラウンド形状の曲率半径を5mm以上とすることを特徴とする高寸法精度管の高能率安定製造方法。   [1] When a pipe is inserted and floated while a lubricating film is formed on the inner surface and / or outer surface of the tube and a plug is inserted into the tube and floated, the die approach and bearing A high-efficiency, stable production method for high-dimensional accuracy tubes, characterized in that a round shape is formed between the two and the curvature radius of the round shape is 5 mm or more.

[2]プラグのアプローチ部とベアリングとの間をラウンド形状とし、ラウンド形状の曲率半径を5mm以上とすることを特徴とする前記[1]に記載の高寸法精度管の高能率安定製造方法。   [2] The high-efficiency and stable production method for a high-dimensional accuracy tube according to [1], wherein a round shape is formed between the approach portion of the plug and the bearing, and the radius of curvature of the round shape is 5 mm or more.

[3]潤滑被膜として、乾燥性樹脂被膜を用いることを特徴とする前記[1]または[2]に記載の高寸法精度管の高能率安定製造方法。   [3] The highly efficient and stable production method for a high dimensional accuracy tube according to the above [1] or [2], wherein a dry resin film is used as the lubricating film.

[4]樹脂、あるいは樹脂を溶剤で希釈した液、あるいは樹脂のエマルジョンを管に塗布して、温熱風をあてて管表面に潤滑被膜を形成させることを特徴とする前記[1]〜[3]のいずれかに記載の高寸法精度管の高能率安定製造方法。   [4] The above [1] to [3], wherein a resin, a solution obtained by diluting a resin with a solvent, or an emulsion of a resin is applied to a tube, and hot air is applied to form a lubricating film on the surface of the tube. ] The highly efficient stable manufacturing method of the high dimensional accuracy pipe | tube in any one of.

本発明においては、アプローチ部とベアリングとの間を適切なラウンド形状としたダイスを用いて押し抜き加工を行うようにしているので、アプローチ部とベアリングとの間での応力集中を軽減して、管を円滑に塑性変形させることとなり、押し抜き荷重を低減して、座屈や焼き付き疵の発生を防止し、高寸法精度管を高能率に安定して製造することができる。   In the present invention, since the punching process is performed using a die having an appropriate round shape between the approach portion and the bearing, the stress concentration between the approach portion and the bearing is reduced, The tube is smoothly plastically deformed, the punching load is reduced, the occurrence of buckling and seizure flaws is prevented, and a high dimensional accuracy tube can be stably manufactured with high efficiency.

本発明の一実施形態を図1に基づいて説明する。   An embodiment of the present invention will be described with reference to FIG.

図1に示すように、この実施形態においては、予め管1の内外表面に潤滑被膜を形成させて、管1の内部にプラグ3を装入しフローティングさせながら、ダイス2の入側に設けられた管押し機4によって押し込み力5を加えて管1を送り、ダイス2で押し抜き加工を行うようにしている。   As shown in FIG. 1, in this embodiment, a lubricant film is formed on the inner and outer surfaces of the tube 1 in advance, and the plug 3 is inserted into the tube 1 to float and is provided on the entry side of the die 2. The tube pusher 4 applies a pushing force 5 to feed the tube 1 and the die 2 performs a punching process.

そして、その際に、ダイス2のアプローチ部とベアリングとのコーナ6をラウンド形状とし、そのラウンド形状の曲率半径Rdを5mm以上にするとともに、プラグ3のアプローチ部とベアリングとのコーナ7もラウンド形状とし、そのラウンド形状の曲率半径Rpを5mm以上にしている。   At that time, the corner 6 between the approach portion of the die 2 and the bearing is rounded, the radius of curvature Rd of the round shape is set to 5 mm or more, and the corner 7 between the approach portion of the plug 3 and the bearing is also rounded. And the radius of curvature Rp of the round shape is 5 mm or more.

ちなみに、ダイス2のアプローチ部とベアリングとのコーナ6の形状については、種々の素管に対して押し抜き荷重を充分低減できる適切な形状を検討したところ、曲率半径Rdが5mm以上のラウンド形状であれば、アプローチ部とベアリングとのコーナでの応力集中を軽減し、管1を円滑に塑性変形させて、押し抜き荷重を充分低減できることを見出したものである。   By the way, as for the shape of the corner 6 of the approach portion of the die 2 and the bearing, when considering an appropriate shape that can sufficiently reduce the punching load with respect to various raw pipes, a round shape having a curvature radius Rd of 5 mm or more is considered. If there is, it has been found that the stress concentration at the corner between the approach portion and the bearing can be reduced, the tube 1 can be smoothly plastically deformed, and the punching load can be sufficiently reduced.

また、プラグ3のアプローチ部とベアリングとのコーナ7の形状についても、種々の素管に対して押し抜き荷重を低減できる適切な形状を検討したところ、曲率半径Rpが5mm以上のラウンド形状であれば、アプローチ部とベアリングとのコーナでの応力集中を軽減し、管1をさらに円滑に塑性変形させて、押し抜き荷重を一層低減できることを見出したものである。   Further, as to the shape of the corner 7 of the approach portion of the plug 3 and the bearing, an appropriate shape capable of reducing the punching load with respect to various raw pipes has been studied, and if it is a round shape having a curvature radius Rp of 5 mm or more. For example, it has been found that the stress concentration at the corner between the approach portion and the bearing can be reduced, and the tube 1 can be plastically deformed more smoothly to further reduce the punching load.

上記のようにすることによって、この実施形態においては、ダイス2の入側で管押し込み機4によって加えられた押し込み力5によって加工バイトの内部は全て圧縮応力が作用するため、管1とプラグ3、管1とダイス2が十分接触し、肉厚偏差等の良好な高寸法精度の管が得られるとともに、アプローチ部とベアリングとのコーナ6が適切なラウンド形状を有したダイス2とアプローチ部とベアリングとのコーナ7が適切なラウンド形状を有したプラグを用いているので、アプローチ部とベアリングとのコーナでの応力集中を軽減して、管1を円滑に塑性変形させることとなり、押し抜き荷重を低減して、座屈や焼き付き疵の発生を防止し、高寸法精度管を高能率に安定して製造することができる。   By doing as described above, in this embodiment, the compressive stress acts on the entire inside of the working bite by the pushing force 5 applied by the pipe pushing machine 4 on the entry side of the die 2. The tube 1 and the die 2 are in sufficient contact with each other to obtain a tube with good high dimensional accuracy such as a thickness deviation, and the corner 6 of the approach portion and the bearing has an appropriate round shape. Since the corner 7 with the bearing uses a plug having an appropriate round shape, the stress concentration at the corner between the approach portion and the bearing is reduced, and the tube 1 is smoothly plastically deformed. Can be prevented, buckling and seizure can be prevented, and a high dimensional accuracy tube can be stably manufactured with high efficiency.

なお、用いる潤滑剤については、ダイスと管、プラグと管の間で潤滑剤の強固な膜を形成させるため、乾燥性樹脂がよく、ポリエチレンワックス、ポリアクリレートなどがよい。また、管表面に潤滑被膜を形成させるには、樹脂、あるいは樹脂を溶剤で希釈した液、あるいは樹脂のエマルジョンを管に塗布して、温熱風をあてるとよい。   The lubricant used is preferably a dry resin, such as polyethylene wax or polyacrylate, in order to form a firm film of the lubricant between the die and the tube and between the plug and the tube. In order to form a lubricating coating on the surface of the tube, it is preferable to apply hot air to the tube by applying a resin, a solution obtained by diluting the resin with a solvent, or an emulsion of the resin to the tube.

以下、実施例に基づいて説明する。   Hereinafter, a description will be given based on examples.

一例として、φ34mm×7mmt×6mLの鋼管を素管として、鏡面のプラグと一体型固定ダイスを用いて、プラグをフローティングさせて鋼管内部に装入し、縮径率11.8%で鋼管を入側から押して、ダイス出側の管の径をφ30mm、管肉厚を入側と同じ7mmtとした。なお、この際にダイスのアプローチ部とベアリングとの間をラウンド形状として、その曲率半径Rdを変えることにより、各々の条件で10本ずつ押し抜き加工または引き抜き加工を行った。   As an example, a steel pipe with a diameter of 34 mm x 7 mm t x 6 mL is used as a base pipe, and the plug is floated and inserted into the steel pipe using a mirror surface plug and an integrated fixed die, and the steel pipe is inserted at a reduction ratio of 11.8%. By pushing from the side, the diameter of the tube on the die exit side was set to 30 mm, and the tube thickness was set to 7 mmt on the inlet side. At this time, a round shape was formed between the approach portion of the die and the bearing, and the radius of curvature Rd was changed, so that ten pieces were punched or drawn under each condition.

本発明例1として、上記の押し抜き加工において、アプローチ部とベアリングとの間を曲率半径Rdが10mmのラウンド形状としたダイスと、アプローチ部とベアリングとの間を曲率半径Rpが3mmのラウンド形状としたプラグを用い、予め潤滑被膜を形成させるため、ポリエチレンワックスの樹脂エマルションを管内外面に塗布して、温熱風をあてて乾燥性樹脂被膜を付着させて10本連続して加工した。   As Example 1 of the present invention, in the above punching process, a die having a round shape with a radius of curvature Rd of 10 mm between the approach portion and the bearing, and a round shape with a radius of curvature Rp of 3 mm between the approach portion and the bearing. In order to form a lubricating coating in advance, a polyethylene wax resin emulsion was applied to the inner and outer surfaces of the tube, hot air was applied to attach a drying resin coating, and 10 were continuously processed.

本発明例2として、上記の押し抜き加工において、アプローチ部とベアリングとの間を曲率半径Rdが30mmのラウンド形状としたダイスと、アプローチ部とベアリングとの間を曲率半径Rpが30mmのラウンド形状としたプラグを用い、予め潤滑被膜を形成させるため、溶剤で希釈した樹脂を管内外面に塗布して、温熱風をあてて、ポリアクリレートからなる乾燥性樹脂被膜を付着させて10本連続して加工した。   As Example 2 of the present invention, in the above punching process, a die having a round shape with a curvature radius Rd of 30 mm between the approach portion and the bearing, and a round shape with a curvature radius Rp of 30 mm between the approach portion and the bearing. In order to form a lubricating film in advance, a resin diluted with a solvent is applied to the inner and outer surfaces of the pipe, hot air is applied, and a dry resin film made of polyacrylate is adhered to the plugs. processed.

比較例として、上記の押し抜き加工において、アプローチ部とベアリングとの間をわずかにラウンド形状としたダイスとプラグ、すなわち、アプローチ部とベアリングとの間を曲率半径Rd、Rpが3mmのラウンド形状としたダイスとプラグを用い、予め潤滑被膜を形成させるため、ポリエチレンワックスの樹脂エマルジョンを管内外面に塗布して、温熱風をあてて乾燥性樹脂被膜を付着させて10本連続して加工した。   As a comparative example, in the above punching process, a die and a plug having a slightly round shape between the approach portion and the bearing, that is, a round shape having a curvature radius Rd, Rp of 3 mm between the approach portion and the bearing. In order to form a lubricating film in advance using the die and the plug, a polyethylene wax resin emulsion was applied to the inner and outer surfaces of the pipe, hot air was applied to attach the drying resin film, and 10 pieces were continuously processed.

従来例として、引き抜き加工において、アプローチ部とベアリングとの間を曲率半径Rd、Rpが3mmのラウンド形状としたダイスとプラグを用い、予め潤滑被膜を形成させるため、ポリエチレンワックスの樹脂エマルションを管に塗布して、温熱風をあてて乾燥性樹脂被膜を付着させて10本連続して加工した。   As a conventional example, in the drawing process, a polyethylene wax resin emulsion is used as a tube in order to form a lubricating film in advance by using a round die with a radius of curvature Rd and Rp of 3 mm between the approach portion and the bearing. It was coated and applied with hot air to attach a drying resin film, and 10 were processed continuously.

これらの鋼管の製造における荷重、および、座屈発生の有無、加工能率について、結果を表1に示す。なお、加工能率は、1時間当たりの加工本数について、従来例の1時間当たりの加工本数を1(基準)として、その比率で示した。   Table 1 shows the results of the load, the presence or absence of occurrence of buckling, and the machining efficiency in the production of these steel pipes. The processing efficiency is shown as a ratio of the number of processing per hour, where the number of processing per hour of the conventional example is 1 (reference).

Figure 2007090392
Figure 2007090392

表1より、比較例に示す押し抜き加工では荷重が大きくて座屈が発生した。また、従来例に示す引き抜きの場合は、荷重は低いが鋼管を単発で加工せざるを得ないため、加工能率が著しく低下した。   From Table 1, in the punching process shown in the comparative example, the load was large and buckling occurred. In the case of the drawing shown in the conventional example, the load is low, but the steel pipe has to be processed in a single shot, so the processing efficiency is significantly reduced.

これらに比べて、本発明例1および本発明例2の場合は、荷重が低くて座屈が発生せず、加工能率も著しく良好であった。   Compared with these, in the case of Invention Example 1 and Invention Example 2, the load was low, buckling did not occur, and the processing efficiency was remarkably good.

本発明の一実施形態(ダイスのアプローチ部とベアリングとの間を所定寸法のラウンド形状としてダイスで押し抜き加工を行う)を示した図。The figure which showed one Embodiment (The punching process is carried out with a die | dye by making a round shape of a predetermined dimension between the approach part of a die | dye and a bearing). 比較技術(ダイスのアプローチ部とベアリングとの間をわずかにラウンド形状としてダイスで押し抜き加工を行う)を示した図。The figure which showed the comparison technique (The punching process is performed by using a die with a slightly round shape between the approach portion of the die and the bearing). 従来技術(引き抜き加工を行う)を示した図。The figure which showed the prior art (performing drawing).

符号の説明Explanation of symbols

1 管
2 ダイス
3 プラグ
4 管押し込み機
5 管押し抜き力
6 ダイスのアプローチ部とベアリングとの間のラウンド形状部分
7 プラグのアプローチ部とベアリングとの間のラウンド形状部分
8 管引き抜き機
9 管引き抜き力
DESCRIPTION OF SYMBOLS 1 Pipe 2 Dies 3 Plug 4 Pipe pushing machine 5 Pipe pushing force 6 Round shape part between die approach part and bearing 7 Round shape part between plug approach part and bearing 8 Pipe drawing machine 9 Pipe drawing Power

Claims (4)

管の内面または/および外面に潤滑被膜を形成させて、管の内部にプラグを装入しフローティングさせながら、管を送ってダイスで押し抜き加工を行うに際し、ダイスのアプローチ部とベアリングとの間をラウンド形状とし、ラウンド形状の曲率半径を5mm以上とすることを特徴とする高寸法精度管の高能率安定製造方法。   A lubrication film is formed on the inner surface and / or outer surface of the tube, and a plug is inserted into the tube and floated. When the tube is fed and punched with a die, it is between the die approach and the bearing. Is a round shape, and the curvature radius of the round shape is 5 mm or more. プラグのアプローチ部とベアリングとの間をラウンド形状とし、ラウンド形状の曲率半径を5mm以上とすることを特徴とする請求項1に記載の高寸法精度管の高能率安定製造方法。   2. A highly efficient and stable manufacturing method for a high dimensional accuracy tube according to claim 1, wherein a round shape is formed between the approach portion of the plug and the bearing, and the radius of curvature of the round shape is 5 mm or more. 潤滑被膜として、乾燥性樹脂被膜を用いることを特徴とする請求項1または2に記載の高寸法精度管の高能率安定製造方法。   3. A highly efficient and stable method for producing a high dimensional accuracy tube according to claim 1, wherein a dry resin film is used as the lubricating film. 樹脂、あるいは樹脂を溶剤で希釈した液、あるいは樹脂のエマルジョンを管に塗布して、温熱風をあてて管表面に潤滑被膜を形成させることを特徴とする請求項1〜[3]のいずれかに記載の高寸法精度管の高能率安定製造方法。   4. A resin, a solution obtained by diluting a resin with a solvent, or an emulsion of a resin is applied to a tube, and a hot air is applied to form a lubricating film on the surface of the tube. A high-efficiency stable manufacturing method for high-dimensional accuracy tubes as described in 1.
JP2005283610A 2005-09-29 2005-09-29 Highly-efficient and consistent manufacturing method of high dimensional precision pipe Pending JP2007090392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283610A JP2007090392A (en) 2005-09-29 2005-09-29 Highly-efficient and consistent manufacturing method of high dimensional precision pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283610A JP2007090392A (en) 2005-09-29 2005-09-29 Highly-efficient and consistent manufacturing method of high dimensional precision pipe

Publications (1)

Publication Number Publication Date
JP2007090392A true JP2007090392A (en) 2007-04-12

Family

ID=37976669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283610A Pending JP2007090392A (en) 2005-09-29 2005-09-29 Highly-efficient and consistent manufacturing method of high dimensional precision pipe

Country Status (1)

Country Link
JP (1) JP2007090392A (en)

Similar Documents

Publication Publication Date Title
US7895870B2 (en) Method for producing ultra thin wall metallic tube with cold working process
JP5136990B2 (en) Manufacturing method of ultra-thin seamless metal pipe using floating plug
JP2008173648A (en) Method and apparatus for cold bending pipe, and elbow manufactured by the same method and apparatus
JP2004314083A (en) High dimensional precision pipe and its manufacturing method
JP2007000907A (en) High dimensional precision pipe manufacturing method with high efficiency and stability
JP5541432B1 (en) Steel pipe manufacturing method
JP2006088221A (en) Manufacturing method of tube having high dimensional accuracy
JP2007054882A (en) Method for efficiently manufacturing pipe with high dimensional accuracy
JP2007203343A (en) Shaping method and shaping die for cylindrical shaft
JP2007090392A (en) Highly-efficient and consistent manufacturing method of high dimensional precision pipe
WO2009125786A1 (en) Shearing method
JP2006181611A (en) Highly efficient method for manufacturing pipe with high dimensional accuracy and excellent surface quality
JP2006346689A (en) Method for consistently manufacturing high dimensional precision pipe
JP2006346690A (en) Method for consistently manufacturing high dimensional precision pipe, with high efficiency
WO2004091823A1 (en) Tube with high dimensional accuracy, and method and device for manufacturing the tube
JP2006175485A (en) Method for highly efficiently manufacturing pipe having high dimensional accuracy
JP2007090391A (en) Highly-efficient and consistent manufacturing method of high dimensional precision pipe
JP2005103603A (en) Apparatus and method for manufacturing pipe with grooved inner surface
JP2006061932A (en) Highly efficient manufacturing method for tube with high dimensional precision
JP4333257B2 (en) Stable manufacturing method of high dimensional accuracy pipe
JP2006175486A (en) Method and apparatus for highly efficiently manufacturing pipe having high dimensional accuracy
JP2006035299A (en) Method for efficiently and consistently manufacturing tube of high dimensional accuracy
JP2006136899A (en) Manufacturing method of pipe having high dimensional accuracy
JP2006088194A (en) Manufacturing method of tube having high dimensional accuracy
JP2006136898A (en) High efficiency stable manufacturing method of pipe having high dimensional accuracy