JP2006035299A - Method for efficiently and consistently manufacturing tube of high dimensional accuracy - Google Patents

Method for efficiently and consistently manufacturing tube of high dimensional accuracy Download PDF

Info

Publication number
JP2006035299A
JP2006035299A JP2004222842A JP2004222842A JP2006035299A JP 2006035299 A JP2006035299 A JP 2006035299A JP 2004222842 A JP2004222842 A JP 2004222842A JP 2004222842 A JP2004222842 A JP 2004222842A JP 2006035299 A JP2006035299 A JP 2006035299A
Authority
JP
Japan
Prior art keywords
tube
die
plug
dimensional accuracy
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004222842A
Other languages
Japanese (ja)
Inventor
Kazuhito Kenmochi
一仁 剣持
Takuya Nagahama
拓也 長濱
Takashi Sakata
坂田  敬
Koji Sugano
康二 菅野
Toshio Onishi
寿雄 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004222842A priority Critical patent/JP2006035299A/en
Publication of JP2006035299A publication Critical patent/JP2006035299A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently and consistently manufacturing a tube of high dimensional accuracy capable of efficiently and consistenty manufacturing the tube of high dimensional accuracy. <P>SOLUTION: When manufacturing a tube of high dimensional accuracy by extrusion in which a plug 1 is inserted in a tube 4 and the tube is pressed into and extruded from the hole of a die 2, the taper angle θ1 of the plug to be used is set to be not more than the taper angle θ2 of the die, and the outermost diameter d0 of the plug is set to be below the inside diameter D0 of the tube on the inlet side of the die. The bearing diameter d1 of the plug is preferably set to be not less than (the die outlet side hole diameter d2-2 × the wall thickness t of the tube on the inlet side of the die). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高寸法精度管の高能率安定製造方法に関し、詳しくは、例えば自動車用駆動系部品などのような高い寸法精度が要求される管を、高能率にかつ安定して製造しうる高寸法精度管の高能率安定製造方法に関する。   The present invention relates to a high-efficiency and stable manufacturing method for high-dimensional accuracy pipes, and more specifically, a high-efficiency and stable production of pipes that require high dimensional accuracy, such as automobile drive system parts. The present invention relates to a highly efficient and stable manufacturing method of a dimensional accuracy tube.

金属管、例えば鋼管は通常、溶接管と継目無管に大別される。溶接管は、例えば電縫鋼管のように、帯板の幅を丸め、該丸めた幅の両端を突き合わせて溶接するという方法で製造し、一方、継目無管は、材料の塊を高温で穿孔後マンドレルミル等で圧延するという方法で製造している。溶接管の場合、溶接後に溶接部分の盛り上がりを研削して管の寸法精度を向上させているが、その肉厚偏差は、後工程で低減させる努力が払われているものの、3.0%を超える。また、継目無管の場合、穿孔工程で偏心しやすく該偏心により大きな肉厚偏差が生じやすい。この肉厚偏差は後工程で低減させる努力が払われているが、それでも充分低減させることができず、製品の段階で8.0%以上残存する。   Metal pipes, such as steel pipes, are generally roughly classified into welded pipes and seamless pipes. Welded pipes are manufactured by rounding the width of the strip and welding by welding both ends of the rounded width, such as ERW steel pipes, while seamless pipes are used to drill a mass of material at high temperatures. It is manufactured by a method of rolling with a mandrel mill afterwards. In the case of a welded pipe, the bulge of the welded part is ground after welding to improve the dimensional accuracy of the pipe, but the thickness deviation is 3.0%, although efforts are made to reduce it in a later process. Exceed. In the case of a seamless pipe, it is easy to be eccentric in the drilling process, and a large thickness deviation is likely to occur due to the eccentricity. Although efforts have been made to reduce this thickness deviation in a later process, it cannot be sufficiently reduced, and remains at 8.0% or more at the product stage.

最近、環境問題から自動車の軽量化に拍車が掛かっており、ドライブシャフト等の駆動系部品は中実の金属棒から中空の金属管に置き換えられつつある。これら自動車用駆動系部品の金属管には、肉厚、内径、外径の各偏差として3.0%以下、さらに厳しくは1.0%以下、の高寸法精度が要求される。   Recently, due to environmental problems, the weight reduction of automobiles has been accelerated, and drive system parts such as drive shafts are being replaced from solid metal rods to hollow metal tubes. The metal pipes of these automobile drive system parts are required to have a high dimensional accuracy of 3.0% or less, more strictly 1.0% or less, as deviations in thickness, inner diameter, and outer diameter.

そこで、金属管の肉厚、内径、外径の精度を高める手段として、従来一般に、図3に示すように、管4(溶接管、継目無管とも)を造管後にダイス6とプラグ5を用いて冷間で引き抜く製造方法(いわゆる冷牽法)がとられている(例えば特許文献1)。
特許第2812151号公報
Therefore, as a means for improving the accuracy of the thickness, inner diameter, and outer diameter of the metal pipe, conventionally, as shown in FIG. 3, after forming the pipe 4 (both welded pipe and seamless pipe), the die 6 and the plug 5 are inserted. A manufacturing method (so-called cold check method) that is used and pulled out cold is used (for example, Patent Document 1).
Japanese Patent No. 2812151

しかし、従来の冷牽法では、設備上の制約や管の肉厚・径が大きくて引き抜き応力が充分得られずに縮径率を低くせざるを得ない場合などでは、加工バイト(プラグとダイス孔内面との隙間)内での管の応力が引張応力であるがゆえに、ダイスと管外面、およびプラグと管内面の接触が不十分となり、管の内面、外面の平滑化が不足して凹凸が残留しやすい。そのため、冷牽法では管の縮径率を大きくして加工バイト内で管の内外面とプラグ、ダイスとの間の接触を向上させることが行われている。しかし、冷牽法において管の縮径率を大きくすると、管の内面に凹凸が発生して管の縮径率が大きくなるほど凹凸による粗さが増加する。その結果、冷牽法では高寸法精度の管を安定して得ることが難しいという問題があった。   However, in the conventional cold check method, when the restrictions on equipment and the thickness and diameter of the tube are large and sufficient pulling stress cannot be obtained and the diameter reduction rate must be lowered, etc., a machining tool (plug and plug) Because the stress of the tube within the gap between the die hole inner surface is a tensile stress, the contact between the die and the outer surface of the tube and the plug and the inner surface of the tube is insufficient, and the smoothness of the inner and outer surfaces of the tube is insufficient. Unevenness is likely to remain. Therefore, in the cold check method, the reduction ratio of the tube is increased to improve the contact between the inner and outer surfaces of the tube and the plug and die in the machining tool. However, when the diameter reduction ratio of the pipe is increased in the cold check method, unevenness is generated on the inner surface of the pipe, and the roughness due to the unevenness increases as the diameter reduction ratio of the pipe increases. As a result, the cold check method has a problem that it is difficult to stably obtain a pipe with high dimensional accuracy.

また、鋼管を素材とした高寸法精度管の製造においては、プラグ表面、ダイス表面とこれらに接する鋼管表面との摩擦力を可能な限り低減しないと、加工中に鋼管表面に焼き付き等の疵が発生して、加工後の鋼管の表面品質が低下しその鋼管は製品にならないだけでなく、加工時の荷重が著しく増加して加工そのものが不可能になる場合があり、その結果、高寸法精度管の生産能率が著しく低下するという問題もあった。   Also, in the manufacture of high dimensional accuracy pipes made of steel pipes, if the frictional force between the plug surface, the die surface and the steel pipe surface in contact with them is not reduced as much as possible, seizure such as seizure will occur on the steel pipe surface during processing. Occurs, the surface quality of the steel pipe after processing deteriorates and the steel pipe does not become a product, but the processing load may increase significantly and processing itself may become impossible, resulting in high dimensional accuracy. There was also a problem that the production efficiency of the tube was significantly reduced.

本発明は、上記の問題を解決し、高寸法精度管を高能率にかつ安定して製造しうる高寸法精度管の高能率安定製造方法を提供することを目的とする。   An object of the present invention is to solve the above problems and to provide a high-efficiency and stable manufacturing method for a high-dimensional accuracy tube that can stably manufacture a high-dimensional accuracy tube with high efficiency.

発明者らは上記目的を達成するために鋭意検討した結果、管内にプラグを装入して該管をダイスの孔に押し込んで通す押し抜き法を採用し、用いるプラグおよびダイスを最適化することにより、冷牽法では到達できなかった高寸法精度の管を安定して製造できることを見いだし、本発明をなした。   As a result of intensive studies to achieve the above object, the inventors have adopted a punching method in which a plug is inserted into a tube and the tube is pushed through a hole of a die and the plug and die to be used are optimized. Thus, it has been found that a high dimensional accuracy tube that could not be achieved by the cold check method can be stably manufactured, and the present invention has been made.

すなわち、本発明は、管内にプラグを装入して該管をダイスの孔に押し込んで通す押し抜き加工により高寸法精度管を製造するにあたり、用いるプラグのテーパ角度をダイスのテーパ角度以下とし、かつ該プラグの最外径をダイス入側の管の内径未満とすることを特徴とする高寸法精度管の高能率安定製造方法である。   That is, in the present invention, in manufacturing a high dimensional accuracy tube by punching through which a plug is inserted into the tube and the tube is pushed through the hole of the die, the taper angle of the plug to be used is equal to or less than the taper angle of the die. In addition, the present invention provides a highly efficient and stable production method of a high dimensional accuracy pipe, characterized in that the outermost diameter of the plug is less than the inner diameter of the pipe on the die entry side.

本発明では、前記プラグのベアリング径を、(ダイス出側孔径−ダイス入側の管の肉厚×2)以上とすることが好ましい。また、本発明では、用いるダイスを一体型ダイスとすることが好ましい。また、本発明では、前記プラグを管内でフローティングさせることが好ましい。   In the present invention, it is preferable that the bearing diameter of the plug is equal to or greater than (die outlet side hole diameter−die inlet side pipe thickness × 2). In the present invention, it is preferable that the die to be used is an integrated die. In the present invention, the plug is preferably floated in the pipe.

本発明によれば、押し抜き加工を採用し、そのなかで、用いるプラグとダイスを最適化したので、高寸法精度管を高能率にかつ安定して製造することができる。   According to the present invention, since the punching process is adopted and the plug and the die to be used are optimized, the high dimensional accuracy tube can be manufactured efficiently and stably.

従来、ダイスとプラグを用いて管を引き抜いた場合、管の寸法精度を向上させることが困難である理由は、引き抜きであるがゆえに、加工バイト内でダイスと管外面、プラグと管内面の接触が不十分となることに由来する。すなわち、図3に示すように、管4内にプラグ5を装入してダイス6から管4を引き抜くことにより、ダイス6の出側で管引き機7により加えられた引き抜き力10によって加工バイト内には張力(引張応力)が発生する。加工バイト内の入側では、プラグ5に管内面が沿って変形するため、管外面はダイス6に接触しないかあるいは軽度にしか接触せず、また、加工バイト内の出側では、ダイス6に管外面が接触して変形するため、管内面はプラグ5に接触しないかあるいは軽度にしか接触しない。そのため、管外面、管内面ともに加工バイト内に自由変形の部分が存在して凹凸を十分平滑化できずに、引き抜き後には寸法精度の不十分な管しか得られていなかった。   Conventionally, when a pipe is pulled out using a die and a plug, it is difficult to improve the dimensional accuracy of the pipe. This is due to the fact that is insufficient. That is, as shown in FIG. 3, by inserting the plug 5 into the tube 4 and pulling the tube 4 out of the die 6, the cutting tool 10 is pulled by the pulling force 10 applied by the tube drawing machine 7 on the exit side of the die 6. A tension (tensile stress) is generated inside. Since the inner surface of the tube deforms along the plug 5 on the entry side in the machining bite, the outer surface of the tube does not contact the die 6 or only slightly, and on the exit side in the machining bite, the die 6 Since the outer surface of the tube contacts and deforms, the inner surface of the tube does not contact the plug 5 or only slightly contacts. For this reason, both the outer surface of the tube and the inner surface of the tube have free deformation portions in the working bite, and the unevenness cannot be sufficiently smoothed, and only a tube with insufficient dimensional accuracy has been obtained after drawing.

これに比べて、本発明で用いる押し抜き加工の場合、図2に示すように、管4内にプラグ1を装入し、ダイス2の入側から管押し機3にて管4に押し込み力11を加えて、管4をダイス2の孔内に送り込む。よって、加工バイト内の管4の全域に亘って圧縮応力が作用する。その結果、加工バイト内の入側、出側を問わず、管4はプラグ1およびダイス2に十分接触できる。しかも、軽度の縮径率であっても、加工バイト内は圧縮応力状態となるため、引き抜きに比較して管4とプラグ1、管4とダイス2が十分接触しやすくて、管は平滑化しやすくなるので、高寸法精度の管が得られるわけである。   In contrast, in the punching process used in the present invention, as shown in FIG. 2, the plug 1 is inserted into the tube 4, and the pushing force is applied to the tube 4 by the tube pusher 3 from the entry side of the die 2. 11 is added and the tube 4 is fed into the hole of the die 2. Therefore, a compressive stress acts on the whole area of the tube 4 in the machining tool. As a result, the tube 4 can sufficiently contact the plug 1 and the die 2 regardless of the entry side or the exit side in the machining tool. In addition, even in the case of a small diameter reduction ratio, since the inside of the working bite is in a compressive stress state, the tube 4 and the plug 1 and the tube 4 and the die 2 are more easily contacted than the drawing, and the tube is smoothed. This makes it easy to obtain a tube with high dimensional accuracy.

しかし、押し抜きにおいて、図2に示すようにプラグ1の傾斜部1Tとベアリング部1Bとを双方とも管4内面に接触させると、管4とプラグ1との摩擦面積が増加して押し抜き荷重が増大する。その結果、素材によっては焼き付きが発生して押し抜きが不能になる場合があり、その場合、押し抜きを可能とするために、ダイスおよびプラグの形状を修正して縮径率を低減したり潤滑剤を変更する必要が生じていた。   However, in the punching, if both the inclined portion 1T of the plug 1 and the bearing portion 1B are brought into contact with the inner surface of the tube 4 as shown in FIG. 2, the friction area between the tube 4 and the plug 1 increases and the punching load is increased. Will increase. As a result, depending on the material, seizure may occur and punching may become impossible.In this case, in order to enable punching, the shape of the die and plug is modified to reduce the diameter reduction rate or lubrication. It was necessary to change the agent.

そこで、本発明者らは管とプラグとの接触に着目し、焼き付きを発生させずに高能率に押し抜きを遂行可能とする方法を検討した。この検討では、プラグと管、ダイスと管のそれぞれに対し潤滑剤を変更して押し抜きを行った。その結果、プラグと管との摩擦が大きくて焼き付きが発生しやすく十分な潤滑が必要であることを把握した。したがって、プラグと管との接触を緩和できれば、摩擦力が低減できて押し抜き荷重が低くなり、焼き付きを防止することができる。   Accordingly, the present inventors have focused on the contact between the tube and the plug, and have studied a method that enables highly efficient punching without causing seizure. In this study, the lubricant was changed for each of the plug and tube, and the die and tube, and punching was performed. As a result, it was understood that the friction between the plug and the pipe was so large that seizure was likely to occur and sufficient lubrication was necessary. Therefore, if the contact between the plug and the tube can be relaxed, the frictional force can be reduced, the punching load is reduced, and seizure can be prevented.

一方、ダイス出側の管は外径および肉厚とも所定サイズに仕上げる必要があるから、プラグのベアリング部に関しては、その径を前記所定サイズに対応したものとする必要がある。   On the other hand, since the outer diameter and thickness of the pipe on the die exit side need to be finished to a predetermined size, the diameter of the bearing portion of the plug needs to correspond to the predetermined size.

そこで、本発明では、プラグのテーパ部に着目し、図1に示すように、プラグ1のテーパ角度θ1をダイス2のテーパ角度θ2以下とし、かつプラグ1の最外径d0をダイス2入側の管4の内径D0未満とした。ここで、プラグ1のテーパ角度θ1は、ベアリング部1Bに連なる傾斜部1Tの周面が加工中心軸8に対してなす角度であり、ダイス2のテーパ角度θ2は、傾斜孔の内面が加工中心軸8に対してなす角度である。これにより、プラグ1と管4との接触を緩和することができる。   Therefore, in the present invention, paying attention to the taper portion of the plug, as shown in FIG. The inner diameter D0 of the tube 4 was set to be less than that. Here, the taper angle θ1 of the plug 1 is an angle formed by the peripheral surface of the inclined portion 1T connected to the bearing portion 1B with respect to the processing center axis 8, and the taper angle θ2 of the die 2 is the processing center on the inner surface of the inclined hole. An angle formed with respect to the axis 8. Thereby, the contact between the plug 1 and the tube 4 can be relaxed.

もっとも、プラグ1のテーパ部1Tと管4との接触を緩和すると、管4の寸法精度を高位に保つのが難しくなる場合がある。その場合、プラグ1のベアリング径d1を、(ダイス出側孔径d2−ダイス入側の管の肉厚t×2)以上とすることが好ましい。これにより、ベアリング径d1をプラグがない場合のダイス出側孔通過時の管の内径よりも大きくでき、ベアリング部1Bと管4との十分な接触が可能となる。   However, if the contact between the tapered portion 1T of the plug 1 and the tube 4 is relaxed, it may be difficult to keep the dimensional accuracy of the tube 4 high. In that case, it is preferable that the bearing diameter d1 of the plug 1 is equal to or greater than (die exit side hole diameter d2—thickness t × 2 of the pipe on the die entrance side). Thereby, the bearing diameter d1 can be made larger than the inner diameter of the pipe when passing through the die outlet side hole when there is no plug, and sufficient contact between the bearing portion 1B and the pipe 4 becomes possible.

なお、ダイスには一体型ダイスのほか、分割型ダイスがあるが、ダイスの継ぎ目による寸法不良を避ける観点から、一体型ダイスを用いるのが好ましい。また、プラグを管内でフローティングさせると、管を連続して押し込むことが可能になり、さらに高能率に加工できて好ましい。   In addition to the integrated die, the die includes a split die. However, it is preferable to use the integrated die from the viewpoint of avoiding a dimensional defect due to the joint of the die. Further, it is preferable to float the plug in the pipe because the pipe can be continuously pushed in and can be further processed with high efficiency.

(本発明例1、2)
外径D0=40mm、肉厚t=6mmの電縫鋼管を素材とし、鏡面のプラグと一体型ダイスを用いて図1に示した形態で押し抜き加工を行った。用いたプラグおよびダイスの形状条件を表1に示す。プラグは管内にフローティングさせた。
(比較例1)
本発明例と同じロットの鋼管を素管とし、鏡面のプラグと一体型ダイスを用いて図2に示した形態で押し抜き加工を行った。用いたプラグおよびダイスの形状条件を表1に示す。プラグは管内にフローティングさせた。
(比較例2、3)
本発明例と同じロットの鋼管を素管とし、鏡面のプラグと一体型ダイスを用いて図3に示した形態で引き抜き加工を行った。用いたプラグおよびダイスの形状条件を表1に示す。プラグは管内にフローティングさせた。
(Invention Examples 1 and 2)
Using an ERW steel pipe having an outer diameter D0 = 40 mm and a wall thickness t = 6 mm as a raw material, a punching process was performed in the form shown in FIG. 1 using a mirror surface plug and an integrated die. The plug and die shape conditions used are shown in Table 1. The plug was floated in the tube.
(Comparative Example 1)
A steel pipe of the same lot as that of the example of the present invention was used as a raw pipe, and a punching process was performed in the form shown in FIG. 2 using a mirror surface plug and an integrated die. The plug and die shape conditions used are shown in Table 1. The plug was floated in the tube.
(Comparative Examples 2 and 3)
A steel pipe of the same lot as that of the example of the present invention was used as a base pipe, and a drawing process was performed in the form shown in FIG. 3 using a mirror surface plug and an integrated die. The plug and die shape conditions used are shown in Table 1. The plug was floated in the tube.

上記各例について、加工中の焼き付き発生の有無、加工能率、および加工後の管の寸法精度(肉厚偏差、外径偏差)を表1に示す。ここで、加工能率は所定時間内に加工できた本数を比較例3の場合を1とした相対値で示した。外径偏差は、管の円周方向断面を画像解析して、真円からの最大偏差(すなわち(最大径−最小径)/真円径×100%)を円周方向に算出することにより求めた。また、肉厚偏差は、管の円周方向断面を画像解析して、肉厚断面の画像から平均肉厚に対する最大偏差(すなわち(最大肉厚−最小肉厚)/平均肉厚×100%)として直接測定した。   Table 1 shows the presence or absence of seizure during processing, the processing efficiency, and the dimensional accuracy (thickness deviation, outer diameter deviation) of the pipe after processing for each of the above examples. Here, the machining efficiency is shown as a relative value where the number of pieces processed within a predetermined time is set to 1 in the case of Comparative Example 3. The outer diameter deviation is obtained by image analysis of the circumferential section of the tube and calculating the maximum deviation from the perfect circle (that is, (maximum diameter−minimum diameter) / true circle diameter × 100%) in the circumferential direction. It was. Further, the thickness deviation is obtained by image analysis of the circumferential cross section of the tube, and the maximum deviation with respect to the average thickness from the image of the thickness cross section (that is, (maximum thickness−minimum thickness) / average thickness × 100%). As measured directly.

Figure 2006035299
Figure 2006035299

表1より、本発明例では安定して高能率に押し抜き加工することができ、その押し抜き後の鋼管の寸法精度は著しく良好であった。これに対して、比較例1では加工中の鋼管本数の約1%ほどに焼き付きが発生してプラグとダイスを交換したため加工能率がやや低下した。比較例2では引き抜き後の引き抜き後の寸法精度が著しく低下した。比較例3では引き抜き中に焼き付きが発生してプラグとダイスを交換したため加工能率がやや低下し、寸法精度も著しく低下した。   From Table 1, in the example of the present invention, it was possible to stably perform the punching process with high efficiency, and the dimensional accuracy of the steel pipe after the punching was remarkably good. On the other hand, in Comparative Example 1, seizure occurred in about 1% of the number of steel pipes being processed, and the plug and the die were exchanged, so that the processing efficiency was slightly lowered. In Comparative Example 2, the dimensional accuracy after drawing after drawing was significantly reduced. In Comparative Example 3, seizure occurred during drawing and the plug and the die were exchanged, so that the processing efficiency was slightly lowered and the dimensional accuracy was remarkably lowered.

本発明の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows embodiment of this invention. 本発明で用いる押し抜き加工の概要を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline | summary of the punching process used by this invention. 従来の冷牽法の概要を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline | summary of the conventional cold check method.

符号の説明Explanation of symbols

1 プラグ
1B ベアリング部
1T テーパ部
2 ダイス(一体型ダイス)
3 管押し機
4 管(金属管、鋼管)
5 プラグ
6 ダイス
7 管引き機
8 加工中心軸
10 引き抜き力
11 押し込み力
1 Plug 1B Bearing part 1T Taper part 2 Dies (integrated die)
3 Tube pusher 4 Tube (metal tube, steel tube)
5 Plug 6 Die 7 Pipe puller 8 Machining center axis 10 Pulling force 11 Pushing force

Claims (4)

管内にプラグを装入して該管をダイスの孔に押し込んで通す押し抜き加工により高寸法精度管を製造するにあたり、用いるプラグのテーパ角度をダイスのテーパ角度以下とし、かつ該プラグの最外径をダイス入側の管の内径未満とすることを特徴とする高寸法精度管の高能率安定製造方法。   When manufacturing a high dimensional accuracy tube by inserting a plug into the tube and pushing the tube through the hole of the die and passing it through, the taper angle of the plug to be used is less than the taper angle of the die and the outermost of the plug A high-efficiency and stable production method for high-dimensional accuracy pipes, characterized in that the diameter is less than the inner diameter of the pipe on the die entry side. 前記プラグのベアリング径を、(ダイス出側孔径−ダイス入側の管の肉厚×2)以上とすることを特徴とする請求項1記載の高寸法精度管の高能率安定製造方法。   The high-efficiency and stable production method for a high-dimensional accuracy pipe according to claim 1, wherein a bearing diameter of the plug is equal to or larger than (die outlet side hole diameter-die inlet side pipe thickness x 2). 用いるダイスを一体型ダイスとすることを特徴とする請求項1または2に記載の高寸法精度管の高能率安定製造方法。   3. A highly efficient and stable method for producing a high dimensional accuracy tube according to claim 1, wherein the die used is an integrated die. 前記プラグを管内でフローティングさせることを特徴とする請求項1〜3のいずれかに記載の高寸法精度管の高能率安定製造方法。   The high-efficiency stable manufacturing method for a high-dimensional accuracy pipe according to any one of claims 1 to 3, wherein the plug is floated in the pipe.
JP2004222842A 2004-07-30 2004-07-30 Method for efficiently and consistently manufacturing tube of high dimensional accuracy Pending JP2006035299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222842A JP2006035299A (en) 2004-07-30 2004-07-30 Method for efficiently and consistently manufacturing tube of high dimensional accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222842A JP2006035299A (en) 2004-07-30 2004-07-30 Method for efficiently and consistently manufacturing tube of high dimensional accuracy

Publications (1)

Publication Number Publication Date
JP2006035299A true JP2006035299A (en) 2006-02-09

Family

ID=35900840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222842A Pending JP2006035299A (en) 2004-07-30 2004-07-30 Method for efficiently and consistently manufacturing tube of high dimensional accuracy

Country Status (1)

Country Link
JP (1) JP2006035299A (en)

Similar Documents

Publication Publication Date Title
JP4557006B2 (en) Plug, tube expansion method using plug, metal tube manufacturing method, and metal tube
JP4285053B2 (en) High dimensional accuracy tube and manufacturing method thereof
WO2005068098A9 (en) Method for producing seamless pipe
WO2006025369A1 (en) Die, method of manufacturing stepped metal tube, and stepped metal tube
JP2007000907A (en) High dimensional precision pipe manufacturing method with high efficiency and stability
WO2014188599A1 (en) Method for producing steel pipe
JP2006088221A (en) Manufacturing method of tube having high dimensional accuracy
JP2006035299A (en) Method for efficiently and consistently manufacturing tube of high dimensional accuracy
JP2001113329A (en) Inner surface expansion tool, and method for expanding steel tube
JP4333257B2 (en) Stable manufacturing method of high dimensional accuracy pipe
JP2003136131A (en) Method for manufacturing hollow member provided with solid-core portion in end side
JP2006061932A (en) Highly efficient manufacturing method for tube with high dimensional precision
JP2006181611A (en) Highly efficient method for manufacturing pipe with high dimensional accuracy and excellent surface quality
JP2005103603A (en) Apparatus and method for manufacturing pipe with grooved inner surface
JP2006346689A (en) Method for consistently manufacturing high dimensional precision pipe
JP2006088194A (en) Manufacturing method of tube having high dimensional accuracy
JP2006175485A (en) Method for highly efficiently manufacturing pipe having high dimensional accuracy
JP2006136899A (en) Manufacturing method of pipe having high dimensional accuracy
JP2007054882A (en) Method for efficiently manufacturing pipe with high dimensional accuracy
JP2007090391A (en) Highly-efficient and consistent manufacturing method of high dimensional precision pipe
JP4300864B2 (en) High dimensional accuracy pipe manufacturing equipment
JP2006346690A (en) Method for consistently manufacturing high dimensional precision pipe, with high efficiency
JP4285072B2 (en) High-efficiency manufacturing method for high dimensional accuracy pipes
JP2007090392A (en) Highly-efficient and consistent manufacturing method of high dimensional precision pipe
WO2004091823A1 (en) Tube with high dimensional accuracy, and method and device for manufacturing the tube