JP4300864B2 - High dimensional accuracy pipe manufacturing equipment - Google Patents

High dimensional accuracy pipe manufacturing equipment Download PDF

Info

Publication number
JP4300864B2
JP4300864B2 JP2003123064A JP2003123064A JP4300864B2 JP 4300864 B2 JP4300864 B2 JP 4300864B2 JP 2003123064 A JP2003123064 A JP 2003123064A JP 2003123064 A JP2003123064 A JP 2003123064A JP 4300864 B2 JP4300864 B2 JP 4300864B2
Authority
JP
Japan
Prior art keywords
tube
die
pipe
dimensional accuracy
plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003123064A
Other languages
Japanese (ja)
Other versions
JP2004322181A (en
Inventor
高明 豊岡
一仁 剣持
拓也 長濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003123064A priority Critical patent/JP4300864B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to KR1020057013240A priority patent/KR100665977B1/en
Priority to US10/541,999 priority patent/US20060218985A1/en
Priority to EP04726662A priority patent/EP1621265A1/en
Priority to CA002511633A priority patent/CA2511633A1/en
Priority to PCT/JP2004/005091 priority patent/WO2004091823A1/en
Priority to TW093109912A priority patent/TWI253963B/en
Publication of JP2004322181A publication Critical patent/JP2004322181A/en
Application granted granted Critical
Publication of JP4300864B2 publication Critical patent/JP4300864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)
  • Forging (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高寸法精度管の製造装置に関し、例えば自動車用駆動系部品などの高い寸法精度が要求される管を製造するのに用いて好適な高寸法精度管の製造装置に関する。
【0002】
【従来の技術】
金属管例えば鋼管は通常、溶接管と継目無管に大別される。溶接管は、例えば電縫鋼管のように、帯板の幅を丸め、該丸めた幅の両端を突き合わせて溶接するという方法で製造し、一方、継目無管は、材料の塊を高温で穿孔後マンドレルミル等で圧延するという方法で製造している。溶接管の場合、溶接後に溶接部分の盛り上がりを研削して管の寸法精度を向上させているが、その円周方向肉厚偏差は3.0 %以上になる。また、継目無鋼管の場合、穿孔工程で偏心しやすく、 該偏心により大きな肉厚偏差が生じやすい。この円周方向肉厚偏差は後工程で低減させる努力がなされるが、それでも製品の段階で8.0 %以上残存する。
【0003】
最近、環境問題から自動車の軽量化に拍車がかかっており、ドライブシャフト等の駆動系部品は中実の金属棒から中空の金属管に置き換えられつつある。これら自動車用駆動系部品等の金属管には1.0 %以下の高寸法精度が要求される。
金属管の寸法精度を高める手段として、従来一般に、鋼管(溶接管、継目無管とも)を造管後にダイスとプラグを用いて冷間で引き抜くという製造方法(いわゆる冷牽法)がとられている。また、近年では、円周方向に分割したダイスを組み込んでダイスを復動させるロータリー鍛造機を用いて鋼管を分割ダイス孔に押し込んで加工する製造技術が提案されている(特許文献1,2,3参照)。
【0004】
【特許文献1】
特開平9−262637号公報
【特許文献2】
特開平9−262619号公報
【特許文献3】
特開平10−15612号公報
【0005】
【発明が解決しようとする課題】
しかし、上記従来の冷牽法では、設備上の制約や管の肉厚・径が大きくて引き抜き応力が充分得られずに縮径率を低くせざるをえない場合などでは、 加工バイト中でダイスと管、引き抜きプラグと管の接触が不十分となり、管の内面、 外面の平滑化が不足して凹凸が残留する結果、高寸法精度の管を得ることが難しかった。
【0006】
また、上記従来の冷牽法では、設備能力があって縮径率を大きくできる場合でも、縮径による加工歪みが大きくなって管が加工硬化しやすい。管は引き抜き後にさらに曲げやスウェージなどの加工を施されるが、 前記引き抜きでの加工硬化によって曲げなどで割れが発生しやすくなり問題となるため、引き抜き後に高温で充分な時間をかけて熱処理を加える必要があって、製造コストが著しく多大となるため、安価で加工しやすい高寸法精度の管を製造しうる手段が求められていた。
【0007】
また、特許文献1〜3所載の製造技術では、ロータリー鍛造機のダイスを分割しダイスを復動させている結果、 その部分で段差を生じて外面の平滑化が不足したり、あるいは、 高応力下での円周方向に異なるダイスの剛性によって不均一変形が生じることから肉厚精度を十分良好にすることができず、さらに改善を求められていた。
【0008】
さらに、特許文献1〜3所載の製造技術では、鋼管を押し込んだ後の肉厚は押し込む前の肉厚より厚くなっている。これは複雑な構造を有するために荷重を加え難いロータリー鍛造機を用いているがゆえの制約であり、このことにより、 押し込み後に所望の肉厚を得ようとすると、押し込む前の肉厚を薄くするしかない。したがって、 多様な製品サイズの管を整えるためには、素管サイズを多数用意する必要がある。しかし、素管製造設備に制約があって多くのサイズを用意できないことから、管の全サイズに亘って良好な寸法を得ることが難しかった。また、肉厚を増加させるには、加工バイト内で出口に近い側ほど隙間を増大させて管を変形しやすくしているが、隙間があって変形がしやすくなると、ダイス表面やプラグ表面に管が十分接触しづらくなり、その結果として管表面の平滑化が進展せずに、 高寸法精度管が得られにくい欠点を有していた。
【0009】
上記の要求や難点に鑑み、本発明は、高寸法精度の管を広範囲の製品要求サイズに亘り低コストで製造することを可能にする高寸法精度管の製造装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成した本発明は、図1に示すような装置構成になるもの、すなわち、
(1)金属管4の内面全周に接触可能なプラグ1と、同管4の外面全周に接触可能な孔をもつダイス2と、同管4を押す管押し機3とを有し、冷間で、金属管4を該管内にプラグ1を装入した状態で管押し機3でダイス2の孔に押し込んで通す押し抜きにより、ダイス出側の金属管肉厚をダイス入側のそれと同等あるいはそれ以下とすることを実行可能に構成されたことを特徴とする高寸法精度管の製造装置であり、また、
(2)ダイス2が一体型および/または固定型ダイスであることを特徴とする(1)に記載の高寸法精度管の製造装置であり、また、
(3)プラグ1がフローティングプラグであることを特徴とする(1)または(2)に記載の高寸法精度管の製造装置であり、また、
(4)管押し機3が連続的に管4を押すものであることを特徴とする(1)〜(3)のいずれかに記載の高寸法精度管の製造装置であり、また、
(5)管押し機3が間欠的に管4を押すものであることを特徴とする(1)〜(3)のいずれかに記載の高寸法精度管の製造装置である。
【0011】
【発明の実施の形態】
従来、ダイスとプラグを用いて金属管を引き抜いた場合、管の寸法精度を向上させることが困難である理由は、引き抜きであるがゆえに加工バイト(:プラグとダイス孔内面との隙間)内のダイスと管外面、プラグと管内面の接触が不十分となることに由来する。すなわち、図2に示すように、管(金属管)4内にプラグ5を装入して管4をダイス6の孔から引き抜くことにより、ダイス2の出側で加えられた引き抜き力10によって、加工バイト内には張力が発生して、加工バイト内の入口側では、プラグ5に管内面が沿って変形するため管外面は接触しないかあるいは軽度に接触するにとどまり、また加工バイト内の出口側では、ダイス2に管外面が接触して変形するため管内面は接触しないかあるいは軽度に接触するにとどまる。そのため、管4の内外面ともに加工バイト内に自由変形の部分が存在して凹凸を十分平滑化できず、引き抜き後に得られる管の寸法精度は低かった。
【0012】
これに比較して、本発明に係る押し抜きの場合は、図1に示すように、管4内にプラグ1(このプラグは加工バイト内部で管内面全周に接触可能である。)を装入して管4をダイス2の孔(この孔は加工バイト内部で管外面全周に接触可能である。)に押し込んで通過させる。ダイス2の入側で加えられた押し込み力11によって、加工バイト内部には全面的に圧縮応力が作用する。その結果、加工バイト内の入口側、 出口側のいずれにあっても、管4はプラグ1およびダイス2に十分接触できる。しかも、軽度の縮径率であっても、加工バイト内部は圧縮応力となるため、引き抜きに比較して管とプラグ、管とダイスが十分接触しやすくて、管は平滑化しやすくなり、高寸法精度の管が得られることになる。また、押し抜きの場合、縮径率が小さくても管内外面の平滑化が可能であり、引き抜きの場合に比べて加工歪みが大きくないから、縮径後の熱処理負荷も軽く、あるいは熱処理が省略できて、製造コストは低くなる。
【0013】
そこで、本発明の装置の構成は、金属管4の内面全周に接触可能なプラグ1と、同管4の外面全周に接触可能な孔をもつダイス2と、同管4を押す管押し機3とを有し、金属管4を該管内にプラグ1を装入した状態で管押し機3でダイス2の孔に押し込んで通す押し抜きを実行可能であることを特徴とする。
また、図3に示す従来のロータリー鍛造機9を用いた押し込みでは、一体型のものを円周方向に分割した分割ダイス8を用い、さらにその分割ダイス8を復動12させているため、分割による段差、あるいは高応力下で円周方向に異なるダイスの剛性によって不均一変形が生ずることから、肉厚精度を十分良好にすることができなかった。これに対し、本発明の押し抜き実行可能に構成された装置では、同一断面内で管外面全周に接触する孔をもつダイスの孔に金属管を通すものであるから、分割ダイスで生じるような段差は全く生じず、その結果として管の内外面とも平滑化することができるのである。
【0014】
さらに、本発明では、ダイスとして一体型固定ダイスを用いることにより、従来のロータリー鍛造機に装着した分割ダイスを用いる方法に比較して装置構造をより簡素にすることができ、加工に十分な荷重を加えることができて、ダイス入側の肉厚に比較して出側の肉厚を同等あるいはそれ以下として荷重が増加しても、 十分加工が可能であることから、広範囲の製品要求サイズにおいて寸法精度が著しく良好な金属管が得られる。
【0015】
また、本発明では、プラグをフローティングさせることにより、 ダイスおよびプラグの角度、ダイスおよびプラグ表面の潤滑等が複雑に関与する押し抜き条件が変動しても、常に安定して圧縮応力が加わる場所にプラグが位置するため、安定して良好な寸法精度を得ることができる。
さらに、従来の引き抜きでは、管の先端をすぼめてその部分を引張る必要があって、管を単発で加工せざるを得なかったのに対し、本発明では、管を押すから管の先端をすぼめる必要はなく、次々に管をそのまま押すことが可能であり、プラグをフローティングさせれば連続して押し抜きが可能になり、著しく生産性が向上する。また、管の長さが短い場合は、管押し機として間欠的に押し動作を行うものを用いることにより、生産性を高く保って高寸法精度管を製造することができる。なお、管押し機は、管の胴部を支持して押してもよく、管の片端を押してもよい。
【0016】
【実施例】
以下、実施例を挙げて本発明をさらに具体的に説明する。
実施例1の装置は、管内面に接触させる面を鏡面にした入側端直径28mm、中央部直径30mm、出側端直径28mmのプラグ1と、一体型固定ダイスであって孔内面を鏡面にした孔出口直径40mmのダイス2と、油圧シリンダで構成され“連続押し”と“間欠押し”のいずれの動作モードでも動作可能であって設定された動作モードで管に押し込み力を作用させる管押し機3とを図1のように組み合わせたものであり、プラグ1は一端を固定されて管内に装入される固定式プラグとし、管押し機3の動作モードは“間欠押し”に設定した。この装置を用いて、外径40mm×肉厚6mmの炭素鋼鋼管の押し抜きを行い、外径38mm×肉厚6mmの製品管を得た。
【0017】
実施例2では、実施例1においてプラグ1を固定式プラグに代えてフローティングプラグとした以外は該例と同様にして、外径40mm×肉厚6mmの炭素鋼鋼管の押し抜きを行い、外径38mm×肉厚6mmの製品管を得た。
実施例3では、実施例2において管押し機3の動作モードの設定を“間欠押し”から“連続押し”に切り替えた以外は該例と同様にして、外径40mm×肉厚6mmの炭素鋼鋼管の押し抜きを行い、外径38mm×肉厚6mmの製品管を得た。
【0018】
また、比較例1として、管内面に接触させる面を鏡面にした入側端直径28mm、中央部直径28mm、出側端直径26mmのプラグ5と、一体型固定ダイスであって孔内面を鏡面にした孔出口直径38mmのダイス6と、油圧シリンダで構成され“間欠引き”で動作可能であって設定された動作モードで管に引き抜き力を作用させる管引き機7とを図2のように組み合わせた装置を構成した。プラグ5は一端を固定して管内に装入される固定式プラグとした。この装置を用いて、外径40mm×肉厚7mmの炭素鋼鋼管の引き抜きを行い、外径38mm×肉厚6mmの製品管を得た。なお、比較例1では、鋼管先端をすぼめた上でダイス孔に通す手間を要した。
【0019】
また、比較例2として、実施例1において、プラグ1に代えて比較例1と同じプラグ5とし、かつダイス2に代えてロータリー鍛造機9に組み込んだ分割ダイス8(これの出口側の内径はダイス2の孔出口直径と同じ)として図3に示すような装置構成とした以外は該例と同様にして、外径40mm×肉厚5mmの炭素鋼鋼管の押し込みを行い、外径38mm×肉厚6mmの製品管を得た。
【0020】
これら製品管の寸法精度を測定した結果を表1に示す。なお、表1に示した円周方向肉厚、内径、外径の各偏差の測定方法は次の通りである。
外径(または内径)偏差は、マイクロメータを管外面(または内面)に接触させて管を回転させて測定した外径(または内径)の円周方向分布データから、真円に対する最大偏差として算出した。円周方向肉厚偏差は肉厚断面の画像から目標肉厚に対する最大偏差として直接測定した。なお、外径偏差および内径偏差はマイクロメータを接触させる代わりに、レーザ光を当てて測定した管とレーザ発振源との距離の円周方向分布データから算出しても良い。また、円周方向肉厚偏差は上記外径の円周方向分布データと上記内径の円周方向分布データの差として算出しても良い。
【0021】
なお、肉厚偏差(=円周方向肉厚偏差)、内径偏差、外径偏差は次のように定義される。
肉厚偏差=(MAX 肉厚−MIN 肉厚)/目標肉厚(あるいは平均肉厚)×100 (%)
内径偏差=(MAX 内径−MIN 内径)/目標内径(あるいは平均内径)×100 (%)
外径偏差=(MAX 外径−MIN 外径)/目標外径(あるいは平均外径)×100 (%)
【0022】
【表1】

Figure 0004300864
【0023】
表1より、実施例1〜3の装置による製品管は、寸法精度が著しく良好であり、特にフローティングさせるとさらに良好であり(実施例2)、また連続押し抜きを行っても高寸法精度の製品管が得られた(実施例3)。これに対して、従来の引き抜きでは製品管の寸法精度が低下していた(比較例1)。ロータリー鍛造機を用いた押し込みでも製品管の寸法精度は低下していた(比較例2)。
【0024】
【発明の効果】
本発明によれば、広範囲の製品要求サイズにおいて寸法精度が著しく良好な金属管を低コストで製造することができるようになるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る押し抜きを行う装置構成を示す説明図である。
【図2】従来の引き抜きを行う装置構成を示す説明図である。
【図3】従来の分割ダイスを装着したロータリー鍛造機による押し込みを行う装置構成を示す説明図であり、(a)は管中心軸を含む断面図、(b)は(a)のA−A矢視図である。
【符号の説明】
1 プラグ
2 ダイス(一体型固定ダイス)
3 管押し機
4 管(金属管、鋼管)
5 プラグ
6 ダイス
7 管引き機
8 分割ダイス
9 ロータリー鍛造機
10 引き抜き力
11 押し込み力
12 復動[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for manufacturing a high dimensional accuracy pipe, and more particularly to an apparatus for manufacturing a high dimensional accuracy pipe suitable for use in manufacturing a pipe that requires high dimensional accuracy, such as a driving system component for automobiles.
[0002]
[Prior art]
Metal pipes such as steel pipes are generally roughly classified into welded pipes and seamless pipes. Welded pipes are manufactured by rounding the width of the strip and welding by welding both ends of the rounded width, such as ERW steel pipes, while seamless pipes are used to drill a mass of material at high temperatures. It is manufactured by a method of rolling with a mandrel mill afterwards. In the case of a welded pipe, the bulge of the welded part is ground after welding to improve the dimensional accuracy of the pipe, but the circumferential thickness deviation is 3.0% or more. In the case of a seamless steel pipe, it is easy to be eccentric in the drilling process, and a large thickness deviation is likely to occur due to the eccentricity. Efforts are made to reduce this circumferential thickness deviation in a later process, but it still remains at more than 8.0% at the product stage.
[0003]
Recently, due to environmental problems, the weight reduction of automobiles has been spurred, and drive system parts such as drive shafts are being replaced from solid metal rods to hollow metal tubes. High dimensional accuracy of 1.0% or less is required for these metal pipes for automobile drive system parts.
As a means for improving the dimensional accuracy of metal pipes, a manufacturing method (so-called cold check method) in which steel pipes (both welded pipes and seamless pipes) are generally drawn out cold using dies and plugs has been taken. Yes. In recent years, a manufacturing technique has been proposed in which a steel pipe is pushed into a divided die hole and processed using a rotary forging machine that incorporates a circumferentially divided die and moves the die back (Patent Documents 1, 2, and 3). 3).
[0004]
[Patent Document 1]
JP-A-9-262637 [Patent Document 2]
Japanese Patent Laid-Open No. 9-262619 [Patent Document 3]
Japanese Patent Application Laid-Open No. 10-15612
[Problems to be solved by the invention]
However, with the conventional cold check method described above, when the restrictions on equipment and the wall thickness / diameter of the pipe are large and sufficient pulling stress cannot be obtained and the diameter reduction rate must be reduced, the machining tool must As a result of insufficient contact between the die and the tube, and the drawing plug and the tube, the inner surface and the outer surface of the tube are not smoothed, and unevenness remains, making it difficult to obtain a high dimensional accuracy tube.
[0006]
Further, in the conventional cold check method, even when there is equipment capability and the diameter reduction rate can be increased, the processing strain due to the diameter reduction increases and the tube is easily work-hardened. The pipe is further processed after bending, such as bending and swaging. However, since the work hardening at the time of drawing tends to cause cracking due to bending, etc., heat treatment takes place at a high temperature after drawing. Since the manufacturing cost is remarkably large, a means capable of manufacturing a pipe with high dimensional accuracy that is inexpensive and easy to process has been demanded.
[0007]
Further, in the manufacturing technology described in Patent Documents 1 to 3, as a result of dividing the die of the rotary forging machine and moving the die backward, a step is produced at that portion, and the smoothing of the outer surface is insufficient, Since uneven deformation occurs due to the rigidity of dies different in the circumferential direction under stress, the thickness accuracy cannot be sufficiently improved, and further improvement has been demanded.
[0008]
Furthermore, in the manufacturing technology described in Patent Documents 1 to 3, the thickness after pushing the steel pipe is thicker than the thickness before pushing. This is a limitation due to the use of a rotary forging machine that has a complicated structure and is difficult to apply a load, so that if a desired wall thickness is to be obtained after pressing, the wall thickness before pressing is reduced. There is no choice but to do. Therefore, in order to prepare pipes of various product sizes, it is necessary to prepare a large number of raw tube sizes. However, since there are restrictions on the raw pipe manufacturing equipment and many sizes cannot be prepared, it has been difficult to obtain good dimensions over the entire size of the pipe. In order to increase the wall thickness, the side closer to the outlet in the machining bite is made easier to deform the pipe by increasing the gap, but if there is a gap and the deformation is easier, the die surface or the plug surface As a result, it was difficult to obtain a high dimensional accuracy tube because the tube became difficult to contact sufficiently, and as a result, the smoothness of the tube surface did not progress.
[0009]
SUMMARY OF THE INVENTION In view of the above-described requirements and difficulties, an object of the present invention is to provide a high-dimensional accuracy pipe manufacturing apparatus that enables a high-dimensional accuracy pipe to be manufactured at a low cost over a wide range of product required sizes. .
[0010]
[Means for Solving the Problems]
The present invention that has achieved the above object has an apparatus configuration as shown in FIG.
(1) It has a plug 1 that can contact the entire inner surface of the metal tube 4, a die 2 having a hole that can contact the entire outer surface of the tube 4, and a tube pusher 3 that presses the tube 4. While cold, the metal tube 4 is inserted into the tube with the plug 1 inserted into the hole of the die 2 with a tube pusher 3, and the thickness of the metal tube on the die exit side is compared with that on the die entry side. An apparatus for manufacturing a high-dimensional accuracy tube, characterized in that it can be configured to be equivalent or less, and
(2) The high-dimensional accuracy pipe manufacturing apparatus according to (1), wherein the die 2 is an integral type and / or a fixed die, and
(3) The high-dimensional accuracy pipe manufacturing apparatus according to (1) or (2), wherein the plug 1 is a floating plug, and
(4) The high-precision pipe manufacturing apparatus according to any one of (1) to (3), wherein the pipe pusher 3 continuously pushes the pipe 4;
(5) The high-dimensional precision pipe manufacturing apparatus according to any one of (1) to (3), wherein the pipe pusher 3 pushes the pipe 4 intermittently.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Conventionally, when a metal tube is pulled out using a die and a plug, the reason why it is difficult to improve the dimensional accuracy of the tube is because of the drawing, because it is in the machining tool (the gap between the plug and the die hole inner surface). This is due to insufficient contact between the die and the outer surface of the tube, and between the plug and the inner surface of the tube. That is, as shown in FIG. 2, by inserting the plug 5 into the tube (metal tube) 4 and pulling the tube 4 out of the hole of the die 6, the pulling force 10 applied on the exit side of the die 2 Tension is generated in the machining tool, and the inner surface of the pipe is deformed along the plug 5 on the inlet side in the machining tool, so that the outer surface of the pipe is not in contact or only slightly contacted. On the side, the outer surface of the tube contacts the die 2 and deforms, so that the inner surface of the tube does not contact or slightly contacts. For this reason, both the inner and outer surfaces of the tube 4 have free deformation portions in the working bite, and the unevenness cannot be sufficiently smoothed, and the dimensional accuracy of the tube obtained after drawing was low.
[0012]
In comparison, in the case of punching according to the present invention, as shown in FIG. 1, a plug 1 (this plug can contact the entire inner surface of the pipe inside the processing tool) is installed in the pipe 4. Then, the tube 4 is pushed through the hole of the die 2 (this hole can contact the entire outer periphery of the tube inside the machining tool) and passed therethrough. Due to the pushing force 11 applied on the entry side of the die 2, a compressive stress acts on the entire surface of the machining tool. As a result, the tube 4 can sufficiently contact the plug 1 and the die 2 on either the inlet side or the outlet side in the machining tool. Moreover, even if the diameter reduction is mild, the inside of the machining tool becomes compressive stress, so the tube and plug, and the tube and the die are more easily in contact with each other than the drawing, and the tube is easy to smooth and has a high dimension. An accurate tube will be obtained. Also, in the case of punching, the inner and outer surfaces of the pipe can be smoothed even if the diameter reduction ratio is small, and the processing strain is not large compared to the case of drawing, so the heat treatment load after diameter reduction is light or the heat treatment is omitted. And the manufacturing cost is low.
[0013]
Therefore, the configuration of the apparatus of the present invention includes a plug 1 that can contact the entire inner surface of the metal tube 4, a die 2 that has a hole that can contact the entire outer surface of the tube 4, and a tube pusher that pushes the tube 4. It is characterized in that it is possible to perform punching by pushing the metal tube 4 into the hole of the die 2 with the tube pusher 3 with the plug 1 inserted in the tube 3.
In addition, in the indentation using the conventional rotary forging machine 9 shown in FIG. 3, since the split die 8 obtained by dividing the integral type in the circumferential direction is used, and the split die 8 is moved backward 12, the split is performed. The thickness accuracy could not be made sufficiently good because uneven deformation occurs due to the step caused by or the rigidity of the dies different in the circumferential direction under high stress. On the other hand, in the apparatus configured to be able to perform the punching according to the present invention, the metal tube is passed through the hole of the die having the hole that contacts the entire outer periphery of the tube within the same cross section. As a result, the inner and outer surfaces of the tube can be smoothed.
[0014]
Furthermore, in the present invention, by using an integral fixed die as a die, the structure of the device can be further simplified as compared with a method using a split die mounted on a conventional rotary forging machine, and a load sufficient for processing. Can be added, and even if the load is increased with the thickness on the outlet side being equal to or less than the wall thickness on the die entry side, sufficient processing is possible. A metal tube with extremely good dimensional accuracy can be obtained.
[0015]
In addition, in the present invention, by floating the plug, even if the punching conditions in which the angle of the die and the plug, the lubrication of the die and the surface of the die are complicatedly fluctuate, the compressive stress is always stably applied. Since the plug is positioned, it is possible to stably obtain good dimensional accuracy.
Further, in the conventional drawing, it is necessary to squeeze the tip of the tube and pull the portion, and the tube has to be processed in a single shot, whereas in the present invention, the tip of the tube is squeezed because the tube is pushed. It is not necessary to push the tube one after another as it is, and if the plug is floated, it can be continuously pulled out, and the productivity is remarkably improved. When the length of the tube is short, a high dimensional accuracy tube can be manufactured while maintaining high productivity by using a tube pusher that performs an intermittent pushing operation. The tube pusher may support and push the body of the tube, or may push one end of the tube.
[0016]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
The apparatus of the first embodiment is a plug 1 having an entrance end diameter of 28 mm, a central portion diameter of 30 mm, and an exit end diameter of 28 mm, with the surface to be brought into contact with the inner surface of the tube as a mirror surface, and an integrated fixed die, and the inner surface of the hole is made into a mirror surface. This is a die pusher with a hole outlet diameter of 40 mm and a hydraulic cylinder, which can be operated in either “continuous push” or “intermittent push” operation mode, and pushes the tube in the set operation mode. The machine 3 is combined as shown in FIG. 1, and the plug 1 is a fixed plug that is fixed at one end and inserted into the pipe. The operation mode of the pipe pusher 3 is set to “intermittent push”. Using this device, a carbon steel pipe having an outer diameter of 40 mm and a wall thickness of 6 mm was punched out to obtain a product pipe having an outer diameter of 38 mm and a wall thickness of 6 mm.
[0017]
In Example 2, a carbon steel pipe having an outer diameter of 40 mm × thickness of 6 mm was punched out in the same manner as in Example 1 except that the plug 1 was replaced with a floating plug in Example 1, and the outer diameter was A product tube of 38 mm × wall thickness 6 mm was obtained.
In Example 3, carbon steel having an outer diameter of 40 mm and a wall thickness of 6 mm was obtained in the same manner as in Example 2 except that the operation mode setting of the tube pusher 3 in Example 2 was changed from “intermittent pressing” to “continuous pressing”. The steel pipe was punched out to obtain a product pipe with an outer diameter of 38 mm and a wall thickness of 6 mm.
[0018]
Further, as Comparative Example 1, a plug 5 having an entrance end diameter of 28 mm, a central portion diameter of 28 mm, and an exit end diameter of 26 mm with a mirror-finished surface to be brought into contact with the inner surface of the tube, and an integrated fixed die with the inner surface of the hole as a mirror surface. 2 is combined with a die 6 having a hole outlet diameter of 38 mm and a pipe drawing machine 7 which is constituted by a hydraulic cylinder and can be operated by “intermittent pulling” and applies a pulling force to the pipe in a set operation mode. Configured equipment. The plug 5 was a fixed plug that was inserted into the pipe with one end fixed. Using this apparatus, a carbon steel pipe having an outer diameter of 40 mm × thickness of 7 mm was drawn out to obtain a product pipe having an outer diameter of 38 mm × thickness of 6 mm. In Comparative Example 1, it took time and labor to pass through the die hole after the tip of the steel pipe was shrunk.
[0019]
Further, as Comparative Example 2, in Example 1, a split die 8 (the inner diameter on the outlet side thereof) is replaced by the same plug 5 as in Comparative Example 1 instead of the plug 1 and incorporated in the rotary forging machine 9 instead of the die 2. Except for the device configuration shown in Fig. 3 (same as the hole outlet diameter of the die 2), the carbon steel pipe having an outer diameter of 40 mm x wall thickness of 5 mm was pushed in, and the outer diameter was 38 mm x wall thickness. A product tube with a thickness of 6 mm was obtained.
[0020]
Table 1 shows the results of measuring the dimensional accuracy of these product tubes. In addition, the measuring method of each deviation of the circumferential thickness, the inner diameter, and the outer diameter shown in Table 1 is as follows.
The outer diameter (or inner diameter) deviation is calculated as the maximum deviation from the true circle from the circumferential distribution data of the outer diameter (or inner diameter) measured by rotating the tube with the micrometer in contact with the outer surface (or inner surface) of the tube. did. The thickness deviation in the circumferential direction was measured directly from the image of the thickness section as the maximum deviation with respect to the target thickness. The outer diameter deviation and the inner diameter deviation may be calculated from circumferential distribution data of the distance between the tube and the laser oscillation source measured by applying laser light instead of contacting the micrometer. Further, the circumferential thickness deviation may be calculated as a difference between the circumferential distribution data of the outer diameter and the circumferential distribution data of the inner diameter.
[0021]
The thickness deviation (= circumferential thickness deviation), inner diameter deviation, and outer diameter deviation are defined as follows.
Thickness deviation = (MAX thickness-MIN thickness) / Target thickness (or average thickness) x 100 (%)
Inner diameter deviation = (MAX inner diameter-MIN inner diameter) / Target inner diameter (or average inner diameter) x 100 (%)
Outer diameter deviation = (MAX outer diameter-MIN outer diameter) / Target outer diameter (or average outer diameter) x 100 (%)
[0022]
[Table 1]
Figure 0004300864
[0023]
From Table 1, the product pipes by the apparatuses of Examples 1 to 3 have remarkably good dimensional accuracy, especially better when floating (Example 2), and high dimensional accuracy even if continuous punching is performed. A product tube was obtained (Example 3). On the other hand, in the conventional drawing, the dimensional accuracy of the product pipe was lowered (Comparative Example 1). The dimensional accuracy of the product pipe was reduced even by pressing using a rotary forging machine (Comparative Example 2).
[0024]
【The invention's effect】
According to the present invention, there is an excellent effect that a metal tube with extremely good dimensional accuracy can be manufactured at a low cost in a wide range of product required sizes.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a device configuration for performing punching according to the present invention.
FIG. 2 is an explanatory view showing a configuration of a conventional apparatus for performing extraction.
FIGS. 3A and 3B are explanatory views showing an apparatus configuration for pushing by a rotary forging machine equipped with a conventional split die, where FIG. 3A is a cross-sectional view including a tube center axis, and FIG. It is an arrow view.
[Explanation of symbols]
1 Plug 2 Die (Integrated fixed die)
3 Pipe pusher 4 pipe (metal pipe, steel pipe)
5 Plug 6 Die 7 Pipe drawing machine 8 Split die 9 Rotary forging machine
10 Pulling force
11 Pushing force
12 Return

Claims (5)

金属管の内面全周に接触可能なプラグと、同管の外面全周に接触可能な孔をもつダイスと、同管を押す管押し機とを有し、冷間で、金属管を該管内に前記プラグを装入した状態で前記管押し機で前記ダイスの孔に押し込んで通す押し抜きにより、ダイス出側の金属管肉厚をダイス入側のそれと同等あるいはそれ以下とすることを実行可能に構成されたことを特徴とする高寸法精度管の製造装置。And possible plug contact with the inner surface entire circumference of the metal tube has a die having a contactable holes all around the outer surface of the tube, a tube pusher to push the same tube, cold, the tube metal tubes It is possible to make the metal tube wall thickness on the die exit side equal to or less than that on the die entry side by punching through the die hole with the tube pusher with the plug inserted in the die. An apparatus for manufacturing a high-dimensional accuracy tube, characterized in that it is configured as described above. 前記ダイスが一体型および/または固定型ダイスであることを特徴とする請求項1に記載の高寸法精度管の製造装置。  2. The high-dimensional accuracy pipe manufacturing apparatus according to claim 1, wherein the die is an integrated die and / or a fixed die. 前記プラグがフローティングプラグであることを特徴とする請求項1または2に記載の高寸法精度管の製造装置。  The high-dimensional accuracy pipe manufacturing apparatus according to claim 1, wherein the plug is a floating plug. 前記管押し機が連続的に前記管を押すものであることを特徴とする請求項1〜3のいずれかに記載の高寸法精度管の製造装置。  The apparatus for manufacturing a high-dimensional accuracy tube according to any one of claims 1 to 3, wherein the tube pusher continuously pushes the tube. 前記管押し機が間欠的に前記管を押すものであることを特徴とする請求項1〜3のいずれかに記載の高寸法精度管の製造装置。  The apparatus for manufacturing a high-dimensional accuracy pipe according to any one of claims 1 to 3, wherein the pipe pusher pushes the pipe intermittently.
JP2003123064A 2003-04-11 2003-04-28 High dimensional accuracy pipe manufacturing equipment Expired - Fee Related JP4300864B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003123064A JP4300864B2 (en) 2003-04-28 2003-04-28 High dimensional accuracy pipe manufacturing equipment
US10/541,999 US20060218985A1 (en) 2003-04-11 2004-04-08 Tube with high dimensional accuracy, and method and device for manufacturing the tube
EP04726662A EP1621265A1 (en) 2003-04-11 2004-04-08 Tube with high dimensional accuracy, and method and device for manufacturing the tube
CA002511633A CA2511633A1 (en) 2003-04-11 2004-04-08 High dimensional accuracy pipe, manufacturing method thereof, and manufacturing apparatus
KR1020057013240A KR100665977B1 (en) 2003-04-11 2004-04-08 High Dimensional Accuracy Pipe, Manufacturing Method Thereof, and Manufacturing Apparatus
PCT/JP2004/005091 WO2004091823A1 (en) 2003-04-11 2004-04-08 Tube with high dimensional accuracy, and method and device for manufacturing the tube
TW093109912A TWI253963B (en) 2003-04-11 2004-04-09 Pipe having excellent dimensional accuracy, manufacturing method and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123064A JP4300864B2 (en) 2003-04-28 2003-04-28 High dimensional accuracy pipe manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2004322181A JP2004322181A (en) 2004-11-18
JP4300864B2 true JP4300864B2 (en) 2009-07-22

Family

ID=33501051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123064A Expired - Fee Related JP4300864B2 (en) 2003-04-11 2003-04-28 High dimensional accuracy pipe manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4300864B2 (en)

Also Published As

Publication number Publication date
JP2004322181A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP4285053B2 (en) High dimensional accuracy tube and manufacturing method thereof
JP3419195B2 (en) Bulge processing method and apparatus
US4466267A (en) Process for forming curved structures, and the resulting structures
JP4300864B2 (en) High dimensional accuracy pipe manufacturing equipment
WO2014188599A1 (en) Method for producing steel pipe
US20080120846A1 (en) Apparatus And Method For Manufacturing Outer Race Member For Constant Velocity Joint And Intermediate Molded Body Of The Outer Race Member
JP2001113329A (en) Inner surface expansion tool, and method for expanding steel tube
JP2006088221A (en) Manufacturing method of tube having high dimensional accuracy
JP2007000907A (en) High dimensional precision pipe manufacturing method with high efficiency and stability
JP4285072B2 (en) High-efficiency manufacturing method for high dimensional accuracy pipes
JP2006061932A (en) Highly efficient manufacturing method for tube with high dimensional precision
JP4333257B2 (en) Stable manufacturing method of high dimensional accuracy pipe
JP2006136899A (en) Manufacturing method of pipe having high dimensional accuracy
JP4396234B2 (en) Stable manufacturing method of high dimensional accuracy pipe
RU2401174C2 (en) Method of producing heat exchange pipes with profiled edges
JP2003094140A (en) Method for manufacturing hollow rack bar
RU2457056C1 (en) Method of trimming long heat exchange tube ends
JP2006088194A (en) Manufacturing method of tube having high dimensional accuracy
TW200424026A (en) Pipe having excellent dimensional accuracy, manufacturing method and apparatus thereof
RU2387515C1 (en) Method for obtaining heat-exchange tubes with shaped ends
JP2005334901A (en) Method for manufacturing tube having excellent outside diameter accuracy with high efficiency
JP2006136898A (en) High efficiency stable manufacturing method of pipe having high dimensional accuracy
JP2005014011A (en) Method for manufacturing tube of high dimensional accuracy
JP2006035299A (en) Method for efficiently and consistently manufacturing tube of high dimensional accuracy
JP2005028451A (en) Method for manufacturing tube with high dimensional accuracy having good surface quality

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4300864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees