JP4285072B2 - High-efficiency manufacturing method for high dimensional accuracy pipes - Google Patents
High-efficiency manufacturing method for high dimensional accuracy pipes Download PDFInfo
- Publication number
- JP4285072B2 JP4285072B2 JP2003139264A JP2003139264A JP4285072B2 JP 4285072 B2 JP4285072 B2 JP 4285072B2 JP 2003139264 A JP2003139264 A JP 2003139264A JP 2003139264 A JP2003139264 A JP 2003139264A JP 4285072 B2 JP4285072 B2 JP 4285072B2
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- dimensional accuracy
- tube
- die
- feeding means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Metal Extraction Processes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、高寸法精度管の高能率製造方法に関し、詳しくは、例えば自動車用駆動系部品などのような高い寸法精度が要求される管を高能率に製造しうる、高寸法精度管の高能率製造方法に関する。
【0002】
【従来の技術】
例えば鋼管等の金属管(以下、単に管という。)は溶接管と継目無管に大別される。溶接管は、例えば電縫鋼管のように、帯板の幅を丸め、該丸めた幅の両端を突き合わせて溶接するという方法で製造し、一方、継目無管は、材料の塊を高温で穿孔後マンドレルミル等で圧延するという方法で製造している。溶接管の場合、溶接後に溶接部分の盛り上がりを研削して管の寸法精度を向上させているが、その肉厚偏差は3.0 %を超える。また、継目無管の場合、穿孔工程で偏心しやすく、該偏心により大きな肉厚偏差が生じやすい。この肉厚偏差は後工程で低減させる努力が払われているが、それでも充分低減することができず、製品の段階で8.0 %以上残存する。
【0003】
最近、環境問題から自動車の軽量化に拍車がかかっており、ドライブシャフト等の駆動系部品は中実の金属棒から中空の金属管に置き換えられつつある。これら自動車用駆動系部品等の金属管には肉厚、内径、外径の各偏差として3.0 %以下、さらに厳しくは1.0 %以下、の高寸法精度が要求される。
従って、上記の溶接管、継目無管ともに、高寸法精度管の製造方法として、従来、例えば図6に示すように、造管後にダイス2とプラグ1を用いて冷間で管5を引き抜く所謂冷牽法が採用されていた。また、近年では、例えば図7に示すように、円周方向に分割した分割ダイス4を組み込んだロータリー鍛造機3を用いて鋼管をダイス孔に押し込んで加工する製造技術(以下、ロータリー鍛造押し込み法という。)が提案されている(特許文献1,2,3参照)。なお、上記のほか、金属管の押圧装置を提案したものもある(例えば特許文献4参照)。
【0004】
【特許文献1】
特開平9−262637号公報
【特許文献2】
特開平9−262619号公報
【特許文献3】
特開平10−15612号公報
【特許文献4】
特許第2858446号公報
【0005】
【発明が解決しようとする課題】
しかし、前記冷牽法では、設備上の制約や管の肉厚・径が大きいなどによって引き抜き応力が充分得られずに縮径率を低くせざるを得ない場合など、加工バイト内でダイスと管外面、プラグと管内面との接触が不十分となり、管の内面、外面の平滑化が不足して凹凸が残留する結果、管の寸法精度が低下してしまうことから、さらに高寸法とする製造方法が強く求められていた。また、管の先端を強力に挟んで張力を加える必要があることから、管の先端を窄めて単発で引き抜かざるを得ず、加工能率が著しく低い問題があった。
【0006】
また、設備能力があって縮径率を大きくできる場合でも、縮径による加工歪みが大きくなって管が加工硬化しやすい。管は引き抜き後にさらに曲げやスウェージングなどの加工を施されるが、前記引き抜きでの加工硬化によって、その後の曲げ工程などにおいて割れが発生しやすくなる問題があって、引き抜き後に高温で充分な時間をかけて熱処理を加える必要があり、製造コストが著しく多大となるため、安価で加工しやすい高寸法精度管を高能率に製造し得る方法が熱望されていた。
【0007】
また、前記特許文献1〜3所載のロータリー鍛造押し込み法では、分割ダイス4を使用しているから、その分割部分で段差を生じて管外面の平滑化が不足したり、あるいは、高応力下で分割ダイスの剛性が円周方向に異なることに起因して生じる不均一変形が原因となって、円周方向肉厚偏差を十分良好にすることができず、更なる改善が求められていた。
【0008】
さらに前記ロータリー鍛造押し込み法では、管を押し込んだ後の肉厚は、押し込む前の肉厚よりも厚くなっている。これは、複雑な構造を有するために荷重を高め難いロータリー鍛造機を用いるがゆえの制約からくるものであり、このことにより、押し込み後に所望の肉厚を得ようとすると、押し込む前の管の肉厚を薄くするしかない。従って、多種類の製品管サイズに対応するには、素管サイズを多数用意する必要があるが、素管製造設備に制約があることから、全ての管サイズに亘って良好な寸法精度を得ることが難しかった。また、肉厚を増加させるには、加工バイト内で出側になるほどダイスとプラグの隙間を増大させて管を変形しやすくしているが、隙間が増大して変形がしやすくなると、ダイスやプラグの表面に管が十分接触しづらくなり、その結果として管内外面の平滑化が進展せずに、高寸法精度管が得られ難い欠点を有していた。
【0009】
なお、特許文献4所載の金属管の押圧装置は、金属管を他の装置で引っ張り、その引っ張りによる管の破断を防止して内面に溝を形成させるために必要な引張力を低減するための補助装置であり、管内外面を平滑化するものではない。
上記従来技術の諸問題に鑑み、本発明は、外径偏差、内径偏差、円周方向肉厚偏差の1種又は2種以上を極めて小さくした高寸法精度管を高能率に製造し得る方法、すなわち高寸法精度管の高能率製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
前記目的を達成した本発明は、以下のとおりである。
(1)冷間で、押し抜き加工により管の外径偏差、内径偏差、円周方向肉厚偏差のいずれか1種または2種以上を向上させて高寸法精度管とするにあたり、管内にプラグを装入しフローティングさせながら、ダイス入側の管送り込み手段で管をダイス内に連続して送り込送り込んで、ダイス出側の管肉厚をダイス入側のそれと同等とする、あるいはそれより減肉させることを特徴とする高寸法精度管の高能率製造方法。
【0011】
(2)前記管送り込み手段が、加工前の管を掴むキャタピラであることを特徴とする(1)記載の高寸法精度管の高能率製造方法。
(3)前記管送り込み手段が、加工前の管を押さえるエンドレスベルトであることを特徴とする(1)記載の高寸法精度管の高能率製造方法。
(4)前記管送り込み手段が、加工前の管を掴んで交互に間欠送りする間欠送り機であることを特徴とする(1)記載の高寸法精度管の高能率製造方法。
【0012】
(5)前記管送り込み手段が、加工前の管を順次押すプレスであることを特徴とする(1)記載の高寸法精度管の高能率製造方法。
(6)前記管送り込み手段が、加工前の管を挟む孔型ロールであることを特徴とする請求項1記載の高寸法精度管の高能率製造方法。
(7)前記孔型ロールが2ロール以上の孔型ロールであることを特徴とする(6)記載の高寸法精度管の高能率製造方法。
【0013】
(8)前記孔型ロールを2スタンド以上設置することを特徴とする(6)または(7)記載の高寸法精度管の高能率製造方法。
【0014】
【発明の実施の形態】
本発明において、寸法精度の指標とした外径偏差、内径偏差および円周方向肉厚偏差は、次のようにして求める。
外径(または内径)偏差は、マイクロメータを管外面(または内面)に接触させて、管を回転して測定した外径(または内径)の円周方向分布データから、目標外径(または目標内径)に対する最大偏差として算出するか、または、レーザ光を管外面(または内面)に当てて測定した管とレーザ発振源との距離の円周方向分布データから、目標外径(または目標内径)に対する最大偏差として算出する。または、管の円周方向断面を画像解析して、真円からの偏差を円周方向に算出して外径(または内径)偏差を算出してもよい。なお、目標外径(または目標内径)に代えて平均外径(または平均内径)としてもよい。
【0015】
円周方向肉厚偏差は、上記外径の円周方向分布データと上記内径の円周方向分布データの差として算出するか、または、管の円周方向断面を画像解析して、肉厚断面の画像から目標肉厚に対する最大偏差として直接測定する。なお、目標肉厚に代えて平均肉厚としてもよい。
また、測定は管の先・後端部より150mm を除いた任意の位置で10mm以下のピッチで行い、10点以上の測定点の値より求めるものとする。
【0016】
すなわち、外径偏差、内径偏差および肉厚偏差(=円周方向肉厚偏差)は次のように定義される。
外径偏差:(MAX 外径−MIN 外径)/目標外径(あるいは平均外径)×100 (%)
内径偏差:(MAX 内径−MIN 内径)/目標内径(あるいは平均内径)×100 (%)
肉厚偏差:(MAX 肉厚−MIN 肉厚)/目標肉厚(あるいは平均肉厚)×100 (%)
以下、本発明の実施形態および作用を、従来技術と対比して詳しく説明する。
【0017】
従来、ダイスとプラグを用いて管を引き抜いた場合、管の寸法精度を向上させることが困難である理由は、引き抜きであるがゆえに、加工バイト内でダイスと管外面、プラグと管内面の接触が不十分となることに由来する。すなわち、図6に示すように、管5内にプラグ1を装入してダイス2から管5を引き抜くことにより、ダイス2の出側で加えられた引き抜き力16によって加工バイト内には張力(引張応力)が発生して、加工バイト内の入側では、プラグ1に管内面が沿って変形するため、管外面はダイス2に接触しないかあるいは軽度にしか接触せず、また、加工バイト内の出側では、ダイス2に管外面が接触して変形するため、管内面はプラグ1に接触しないかあるいは軽度にしか接触しない。そのため、管外面、管内面ともに加工バイト内に自由変形の部分が存在して凹凸を十分平滑化できずに、引き抜き後には寸法精度の不十分な管しか得られていなかった。
【0018】
これに比較して、本発明の押し抜きの場合、図1に示すように、管5内にプラグ1を装入し、ダイス2の入側から管5に押し込み力15を加えて、管5をダイス2内に送り込むので、加工バイト内の全域に亘って圧縮応力が作用する。その結果、加工バイト内の入側、出側を問わず、管5はプラグ1およびダイス2に十分接触しうる。しかも、軽度の縮径率であっても、加工バイト内は圧縮応力状態となるため、引き抜きに比較して管とプラグ、管とダイスが十分接触しやすくて、管は平滑化しやすくなるので、高寸法精度の管が得られるわけである。
【0019】
また、図7に示す従来のロータリー鍛造押し込み法では、ダイス4を分割物としてかつ揺動10(復動ともいう)させて用いているため、ダイス分割による段差、あるいは、高応力下での円周方向に異なるダイスの剛性に起因する不均一変形を原因として、円周方向肉厚偏差を十分良好なものにすることができなかった。
【0020】
これに比較して、本発明の押し抜きでは、ダイスは一体物でよくかつ揺動させる必要がないから、不均一変形が発生せず、その結果として管内面、管外面とも平滑化できるわけである。
さらに、従来のロータリー鍛造押し込み法ではダイス4の揺動10に連動して管5を送ることが必須であるため、ダイスの衝撃荷重限界から揺動速度を一定以上に上げられず、加工能率が低い。また、従来の引き抜きでは管の先端を強力に挟んで張力を加える必要があることから、管の先端を窄めて管を引き抜く必要があって、単発で加工せざるを得ず、加工能率が著しく低かった。
【0021】
これに対し、本発明では、押し抜きであってかつプラグをフローティングさせるため、管送り込み手段11を用いて管にダイス入側から押し込み力15を作用させ、ダイス内に連続して送り込むことが可能であり、従来に比して格段に高能率の加工が可能になる。なお、ここでいう" 連続して送り込む" とは、図1に示すように、ある管5とその次の管5とを間断なく送り込むことを指し、管体を通管方向に移動させる形態は、連続的移動、停止時間の可及的に短い断続的(間欠的)移動のいずれであってもよい。
【0022】
管送り込み手段11の好適なものとしては、加工前の管5を掴むキャタピラ6(管を掴む小片を無限軌道状に繋げたもの;図2参照)、加工前の管5を押さえるエンドレスベルト7(図3参照)、加工前の管を掴んで交互に間欠送りする間欠送り機8(図4参照)、加工前の管を順次押すプレス(図示省略)、加工前の管を挟む孔型ロール9(図5参照)などが挙げられる。無論これらの1種又は2種以上を組み合わせて管送り込み手段11を構成してもよい。
【0023】
管送り込み手段は、管のサイズ(径、長さ、肉厚)、管を押し抜きするのに必要な力、押し抜き後の管に要求される長さ等により最適に選択されるが、管を挟んだり押さえたりした際の疵を防止しつつ必要な押し抜き力を確保することも重要である。
なお、孔型ロールで加工前の管を挟む場合、2ロール以上の孔型ロールを用いる形態、および/または、孔型ロールを2スタンド以上設置する形態を採用すると、管に疵を発生させずに押し抜き力を確保しやすいので好ましい。
【0024】
また、プラグをフローティングさせると、ダイスおよびプラグの角度、ダイスおよびプラグの表面の潤滑等が複雑に関与する押し抜き条件が変動しても、常に安定して圧縮応力が加わる位置にプラグが存在するため、安定して良好な寸法精度を得ることができるわけである。
【0025】
【実施例】
以下、実施例に基づいて説明する。
本発明例として、φ40mm×6mmt×5.5mmLの鋼管を素材とし、鏡面のプラグと一体型固定ダイスを用いて、プラグをフローティングさせて鋼管内に装入し、縮径率5%で鋼管をダイス入側から押して、ダイス出側の鋼管肉厚をダイス入側と同じ6mmtとして押し抜きを行った。なお、管送り込み手段として図4に示した形態の間欠送り機を用い、管を連続してダイス内に送り込むようにした。
【0026】
また、比較例1として、図6の形態の引き抜きを行った。この例では同上の鋼管を素材とし、同上のプラグとダイスを用い、プラグを鋼管内に装入し、同上の縮径率で鋼管をダイス出側から引いて、ダイス出側の鋼管肉厚を5.5mmtと減肉させた。
また、比較例2として、図7の形態のロータリー鍛造押し込み法を行った。この例では同上の鋼管を素材とし、上記一体型固定ダイスの代わりに分割ダイスを用いたロータリー鍛造機を用い、同上のプラグを鋼管内に装入し、同上の縮径率でロータリー鍛造押し込みを行って同鍛造機出側の鋼管肉厚を7mmtに増肉させた。
【0027】
これら各例の方法で製造した鋼管の寸法精度(外径偏差、内径偏差、円周方向肉厚偏差)を測定し、かつ加工能率を調査した。その結果を表1に示す。なお、外径偏差および内径偏差は、管の円周方向断面を画像解析して、真円からの偏差を円周方向に算出することにより求めた。また、円周方向肉厚偏差は、管の円周方向断面を画像解析して、肉厚断面の画像から平均肉厚に対する最大偏差として直接測定した。
【0028】
【表1】
【0029】
表1より、本発明例の押し抜きで製造された鋼管は寸法精度が著しく良好であり、加工能率も良好であった。これに対し、比較例1の引き抜きで製造された鋼管では寸法精度が低下していた。また、比較例2のロータリー鍛造押し込みで製造された鋼管においても寸法精度は低下していた。また、引き抜き、ロータリー鍛造押し込みともに加工能率は著しく低かった。
【0030】
【発明の効果】
かくして本発明によれば、管を著しく良好な寸法精度に仕上げることができ、しかもその仕上げ加工を極めて高能率に遂行できるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の骨子を示す縦断面図である。
【図2】管送り込み手段としてキャタピラを用いた本発明例を示す縦断面図である。
【図3】管送り込み手段としてエンドレスベルトを用いた本発明例を示す縦断面図である。
【図4】管送り込み手段として間欠送り機を用いた本発明例を示す縦断面図である。
【図5】管送り込み手段として孔型ロールを用いた本発明例を示す縦断面図である。
【図6】従来の冷牽法を示す縦断面図である。
【図7】従来のロータリー鍛造法を示す縦断面図(a)およびそのA−A矢視図(b)である。
【符号の説明】
1 プラグ
2 ダイス(一体ダイス)
3 ロータリー鍛造機
4 ダイス(分割ダイス)
5 管
6 キャタピラ
7 エンドレスベルト
8 間欠送り機
9 孔型ロール
10 揺動
11 管送り込み手段
15 押し込み力
16 引き抜き力[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-efficiency manufacturing method for high-dimensional accuracy pipes, and more particularly, to a high-efficiency pipe for high-dimensional accuracy pipes that can efficiently manufacture pipes that require high dimensional accuracy, such as automotive drive system components. The present invention relates to an efficient manufacturing method.
[0002]
[Prior art]
For example, metal pipes such as steel pipes (hereinafter simply referred to as pipes) are roughly classified into welded pipes and seamless pipes. Welded pipes are manufactured by rounding the width of the strip and welding by welding both ends of the rounded width, such as ERW steel pipes, while seamless pipes are used to drill a mass of material at high temperatures. It is manufactured by a method of rolling with a mandrel mill afterwards. In the case of a welded pipe, the bulge of the welded part is ground after welding to improve the dimensional accuracy of the pipe, but the wall thickness deviation exceeds 3.0%. In the case of a seamless pipe, it is easy to be eccentric in the drilling process, and a large thickness deviation is likely to occur due to the eccentricity. Although efforts have been made to reduce this thickness deviation in a later process, it cannot be sufficiently reduced, and remains at 8.0% or more at the product stage.
[0003]
Recently, due to environmental problems, the weight reduction of automobiles has been spurred, and drive system parts such as drive shafts are being replaced from solid metal rods to hollow metal tubes. These metal pipes for automobile drive system parts are required to have a high dimensional accuracy of 3.0% or less, more strictly 1.0% or less, as deviations in thickness, inner diameter, and outer diameter.
Therefore, as a manufacturing method of a high dimensional accuracy pipe for both the above-mentioned welded pipe and seamless pipe, conventionally, as shown in FIG. 6, for example, as shown in FIG. 6, the
[0004]
[Patent Document 1]
JP-A-9-262637 [Patent Document 2]
Japanese Patent Laid-Open No. 9-262619 [Patent Document 3]
Japanese Patent Laid-Open No. 10-15612 [Patent Document 4]
Japanese Patent No. 2858446 [0005]
[Problems to be solved by the invention]
However, in the cold check method, when the drawing stress is not sufficiently obtained due to restrictions on equipment and the tube thickness / diameter is large, etc. The outer surface of the tube, the contact between the plug and the inner surface of the tube is insufficient, the inner surface of the tube and the outer surface are not smoothed, and unevenness remains, resulting in a decrease in the dimensional accuracy of the tube. There was a strong demand for manufacturing methods. In addition, since it is necessary to apply tension while strongly pinching the tip of the tube, the tip of the tube has to be narrowed and pulled out in a single shot, which has a problem of extremely low processing efficiency.
[0006]
Further, even when there is equipment capacity and the diameter reduction rate can be increased, the processing distortion due to the diameter reduction increases, and the tube is easily work hardened. The tube is subjected to further processing such as bending and swaging after drawing, but there is a problem that cracking tends to occur in the subsequent bending process due to work hardening in the drawing, and sufficient time at high temperature after drawing. Therefore, it is necessary to add a heat treatment, and the manufacturing cost is remarkably increased. Therefore, a method capable of manufacturing a high-dimensional accuracy tube that is inexpensive and easy to process with high efficiency has been eagerly desired.
[0007]
Further, in the rotary forging push-in method described in
[0008]
Further, in the rotary forging push-in method, the thickness after pushing the tube is thicker than the thickness before pushing. This is because of the limitation of using a rotary forging machine that has a complicated structure and it is difficult to increase the load, and when trying to obtain a desired wall thickness after pushing, There is no choice but to reduce the wall thickness. Therefore, in order to cope with various types of product tube sizes, it is necessary to prepare a large number of tube sizes, but because there are restrictions on the tube manufacturing equipment, good dimensional accuracy is obtained over all tube sizes. It was difficult. Also, in order to increase the wall thickness, the gap between the die and the plug is increased as the exit side in the processing bite becomes easier to deform the tube, but when the gap increases and deformation is easier, As a result, it has been difficult to obtain a high dimensional accuracy tube without smoothing the inner and outer surfaces of the tube.
[0009]
Note that the metal tube pressing device described in
In view of the above-mentioned problems of the prior art, the present invention is a method capable of highly efficiently producing a high dimensional accuracy tube in which one or more of outer diameter deviation, inner diameter deviation, and circumferential thickness deviation are extremely small, That is, an object is to provide a high-efficiency manufacturing method for high-dimensional accuracy tubes.
[0010]
[Means for Solving the Problems]
The present invention that has achieved the above object is as follows.
(1) In order to improve one or more of the outer diameter deviation, inner diameter deviation, and circumferential thickness deviation of the pipe by cold punching, it is plugged into the pipe to make a high dimensional accuracy pipe. while charged floating and Nde write sends write feed tube in tube feeding means of the die inlet side consecutively in a die, the tube wall thickness of the die outlet side and equivalent to that of the die inlet side, or than A high-efficiency manufacturing method for high-dimensional accuracy tubes, characterized by reducing the thickness .
[0011]
(2) The high-efficiency manufacturing method for a high-dimensional accuracy pipe according to (1), wherein the pipe feeding means is a caterpillar for gripping a pipe before processing.
(3) The high-efficiency manufacturing method for high-dimensional accuracy pipes according to (1), wherein the pipe feeding means is an endless belt that presses the pipe before processing.
(4) The high-efficiency manufacturing method for high-dimensional accuracy pipes according to (1), wherein the pipe feeding means is an intermittent feeder that grabs a pipe before processing and intermittently feeds it alternately.
[0012]
(5) The high-efficiency manufacturing method for high-dimensional accuracy pipes according to (1), wherein the pipe feeding means is a press that sequentially presses the pipes before processing.
(6) The high-efficiency manufacturing method for a high-dimensional accuracy pipe according to
(7) The high-efficiency manufacturing method for a high-dimensional accuracy tube according to (6), wherein the perforated roll is a perforated roll of two or more rolls.
[0013]
(8) The highly efficient manufacturing method of the high dimensional accuracy pipe according to (6) or (7), wherein two or more of the perforated rolls are installed.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the outer diameter deviation, the inner diameter deviation, and the circumferential thickness deviation as indices of dimensional accuracy are obtained as follows.
The outer diameter (or inner diameter) deviation is calculated from the distribution data in the circumferential direction of the outer diameter (or inner diameter) measured by rotating the tube with the micrometer in contact with the outer surface (or inner surface) of the tube. Calculated as the maximum deviation from the inner diameter), or from the distribution data in the circumferential direction of the distance between the tube and the laser oscillation source measured by applying laser light to the outer surface (or inner surface) of the tube, the target outer diameter (or target inner diameter) Is calculated as the maximum deviation for. Alternatively, an outer diameter (or inner diameter) deviation may be calculated by image analysis of a circumferential section of the tube and calculating a deviation from a perfect circle in the circumferential direction. Note that the average outer diameter (or average inner diameter) may be used instead of the target outer diameter (or target inner diameter).
[0015]
The circumferential wall thickness deviation is calculated as the difference between the circumferential distribution data of the outer diameter and the circumferential distribution data of the inner diameter, or the circumferential section of the tube is image-analyzed to obtain a thick section. Measure directly as the maximum deviation from the target wall thickness. The average wall thickness may be used instead of the target wall thickness.
In addition, measurement shall be performed at a pitch of 10 mm or less at any position excluding 150 mm from the front and rear ends of the tube, and obtained from the values of 10 or more measurement points.
[0016]
That is, the outer diameter deviation, the inner diameter deviation, and the thickness deviation (= circumferential thickness deviation) are defined as follows.
Outer diameter deviation: (MAX outer diameter-MIN outer diameter) / Target outer diameter (or average outer diameter) x 100 (%)
Inner diameter deviation: (MAX inner diameter-MIN inner diameter) / target inner diameter (or average inner diameter) x 100 (%)
Thickness deviation: (MAX thickness-MIN thickness) / Target thickness (or average thickness) x 100 (%)
Hereinafter, embodiments and operations of the present invention will be described in detail in comparison with the prior art.
[0017]
Conventionally, when a pipe is pulled out using a die and a plug, it is difficult to improve the dimensional accuracy of the pipe. This is due to the fact that is insufficient. That is, as shown in FIG. 6, by inserting the
[0018]
In comparison with this, in the case of the punching according to the present invention, as shown in FIG. 1, the
[0019]
Further, in the conventional rotary forging push-in method shown in FIG. 7, since the
[0020]
Compared to this, in the punching of the present invention, the die may be a single piece and does not need to be swung, so non-uniform deformation does not occur, and as a result, both the pipe inner surface and the pipe outer surface can be smoothed. is there.
Further, in the conventional rotary forging push-in method, it is essential to feed the
[0021]
On the other hand, in the present invention, since it is punched and the plug is floated, it is possible to continuously feed the pipe into the die by applying the pushing
[0022]
Suitable pipe feeding means 11 include a
[0023]
The pipe feeding means is optimally selected depending on the size (diameter, length, wall thickness) of the pipe, the force required to punch the pipe, the length required for the pipe after punching, etc. It is also important to ensure the necessary punching force while preventing wrinkles when pinching or pressing.
In addition, when sandwiching a tube before processing with a perforated roll, if a form using two or more perforated rolls and / or a form where two or more perforated rolls are installed are adopted, no flaws are generated in the pipe. It is preferable because the punching force is easily secured.
[0024]
In addition, when the plug is floated, the plug always exists in a position where the compressive stress is stably applied even if the punching conditions in which the die and the plug angle, the lubrication of the die and the surface of the plug and the like are involved in a complicated manner fluctuate. Therefore, stable and good dimensional accuracy can be obtained.
[0025]
【Example】
Hereinafter, a description will be given based on examples.
As an example of the present invention, a steel pipe having a diameter of 40 mm × 6 mmt × 5.5 mmL is used as a raw material, and a plug is floated and inserted into the steel pipe using a mirror surface plug and an integral fixing die. Pushing from the die entry side, the steel pipe wall thickness on the die exit side was set to 6 mmt, which was the same as that on the die entry side, and punching was performed. In addition, the intermittent feeder of the form shown in FIG. 4 was used as the pipe feeding means, and the pipe was continuously fed into the die.
[0026]
Further, as Comparative Example 1, the embodiment shown in FIG. In this example, the same steel pipe is used, the plug and die are used, the plug is inserted into the steel pipe, the steel pipe is pulled from the die exit side with the same diameter reduction rate, and the steel pipe wall thickness on the die exit side is increased. The thickness was reduced to 5.5 mm.
Further, as Comparative Example 2, a rotary forging indentation method having the form shown in FIG. In this example, the above steel pipe is used as a raw material, a rotary forging machine using a split die instead of the above-mentioned integral fixed die is used, the same plug is inserted into the steel pipe, and rotary forging indentation is performed at the same diameter reduction ratio. The steel pipe wall thickness on the exit side of the forging machine was increased to 7 mm.
[0027]
The dimensional accuracy (outer diameter deviation, inner diameter deviation, circumferential thickness deviation) of the steel pipe manufactured by the method of each example was measured, and the machining efficiency was investigated. The results are shown in Table 1. The outer diameter deviation and inner diameter deviation were obtained by image analysis of the circumferential section of the tube and calculating the deviation from the true circle in the circumferential direction. Further, the circumferential thickness deviation was directly measured as a maximum deviation with respect to the average thickness from an image of the thickness section by image analysis of the circumferential section of the tube.
[0028]
[Table 1]
[0029]
From Table 1, the steel pipe manufactured by the punching of the example of the present invention has remarkably good dimensional accuracy and good processing efficiency. On the other hand, in the steel pipe manufactured by the drawing of Comparative Example 1, the dimensional accuracy was lowered. In addition, the dimensional accuracy of the steel pipe manufactured by rotary forging in Comparative Example 2 also decreased. In addition, the processing efficiency was extremely low for both drawing and rotary forging.
[0030]
【The invention's effect】
Thus, according to the present invention, the pipe can be finished with extremely good dimensional accuracy, and the finishing process can be performed with extremely high efficiency.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing the outline of the present invention.
FIG. 2 is a longitudinal sectional view showing an example of the present invention using a caterpillar as a pipe feeding means.
FIG. 3 is a longitudinal sectional view showing an example of the present invention using an endless belt as a pipe feeding means.
FIG. 4 is a longitudinal sectional view showing an example of the present invention using an intermittent feeder as a pipe feeding means.
FIG. 5 is a longitudinal sectional view showing an example of the present invention in which a hole type roll is used as a pipe feeding means.
FIG. 6 is a longitudinal sectional view showing a conventional cooling method.
FIG. 7 is a longitudinal sectional view (a) showing a conventional rotary forging method and an AA arrow view (b) thereof.
[Explanation of symbols]
1
3
5
Claims (8)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003139264A JP4285072B2 (en) | 2003-05-16 | 2003-05-16 | High-efficiency manufacturing method for high dimensional accuracy pipes |
US10/541,999 US20060218985A1 (en) | 2003-04-11 | 2004-04-08 | Tube with high dimensional accuracy, and method and device for manufacturing the tube |
EP04726662A EP1621265A1 (en) | 2003-04-11 | 2004-04-08 | Tube with high dimensional accuracy, and method and device for manufacturing the tube |
CA002511633A CA2511633A1 (en) | 2003-04-11 | 2004-04-08 | High dimensional accuracy pipe, manufacturing method thereof, and manufacturing apparatus |
KR1020057013240A KR100665977B1 (en) | 2003-04-11 | 2004-04-08 | High Dimensional Accuracy Pipe, Manufacturing Method Thereof, and Manufacturing Apparatus |
PCT/JP2004/005091 WO2004091823A1 (en) | 2003-04-11 | 2004-04-08 | Tube with high dimensional accuracy, and method and device for manufacturing the tube |
TW093109912A TWI253963B (en) | 2003-04-11 | 2004-04-09 | Pipe having excellent dimensional accuracy, manufacturing method and apparatus thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003139264A JP4285072B2 (en) | 2003-05-16 | 2003-05-16 | High-efficiency manufacturing method for high dimensional accuracy pipes |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004337944A JP2004337944A (en) | 2004-12-02 |
JP4285072B2 true JP4285072B2 (en) | 2009-06-24 |
Family
ID=33528407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003139264A Expired - Fee Related JP4285072B2 (en) | 2003-04-11 | 2003-05-16 | High-efficiency manufacturing method for high dimensional accuracy pipes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4285072B2 (en) |
-
2003
- 2003-05-16 JP JP2003139264A patent/JP4285072B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004337944A (en) | 2004-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4285053B2 (en) | High dimensional accuracy tube and manufacturing method thereof | |
JP4633122B2 (en) | Method for producing seamless hot-finished steel pipe and apparatus for carrying out this method | |
US8141405B2 (en) | Method for producing ultra thin wall metallic tube with cold working process | |
EP0913213B1 (en) | Metalworking method | |
JP5380780B2 (en) | UOE steel pipe expansion method, pipe expansion head, pipe expansion machine main body and pipe expansion device | |
JP4285072B2 (en) | High-efficiency manufacturing method for high dimensional accuracy pipes | |
WO2000053349A1 (en) | Device and method for manufacturing hot-rolled sheet steel and device and method for sheet thickness pressing used for the device and method | |
JP2006088221A (en) | Manufacturing method of tube having high dimensional accuracy | |
JP2007000907A (en) | High dimensional precision pipe manufacturing method with high efficiency and stability | |
JP2005334901A (en) | Method for manufacturing tube having excellent outside diameter accuracy with high efficiency | |
TWI253963B (en) | Pipe having excellent dimensional accuracy, manufacturing method and apparatus thereof | |
JP4300864B2 (en) | High dimensional accuracy pipe manufacturing equipment | |
JP2006061932A (en) | Highly efficient manufacturing method for tube with high dimensional precision | |
JP4333257B2 (en) | Stable manufacturing method of high dimensional accuracy pipe | |
JP2006136898A (en) | High efficiency stable manufacturing method of pipe having high dimensional accuracy | |
JP2006088194A (en) | Manufacturing method of tube having high dimensional accuracy | |
JP4396234B2 (en) | Stable manufacturing method of high dimensional accuracy pipe | |
JP2005014011A (en) | Method for manufacturing tube of high dimensional accuracy | |
JP2005028451A (en) | Method for manufacturing tube with high dimensional accuracy having good surface quality | |
JP2006175486A (en) | Method and apparatus for highly efficiently manufacturing pipe having high dimensional accuracy | |
JP2000254752A (en) | Die for two stage cold forging and its method | |
Kumar et al. | Forming | |
JP6915595B2 (en) | How to reduce the width of the slab | |
JP2006136899A (en) | Manufacturing method of pipe having high dimensional accuracy | |
JP2007054882A (en) | Method for efficiently manufacturing pipe with high dimensional accuracy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090303 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090316 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120403 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |