JP6915595B2 - How to reduce the width of the slab - Google Patents

How to reduce the width of the slab Download PDF

Info

Publication number
JP6915595B2
JP6915595B2 JP2018143557A JP2018143557A JP6915595B2 JP 6915595 B2 JP6915595 B2 JP 6915595B2 JP 2018143557 A JP2018143557 A JP 2018143557A JP 2018143557 A JP2018143557 A JP 2018143557A JP 6915595 B2 JP6915595 B2 JP 6915595B2
Authority
JP
Japan
Prior art keywords
slab
width
pair
transport
width reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018143557A
Other languages
Japanese (ja)
Other versions
JP2020019036A (en
Inventor
寛人 後藤
寛人 後藤
高嶋 由紀雄
由紀雄 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018143557A priority Critical patent/JP6915595B2/en
Publication of JP2020019036A publication Critical patent/JP2020019036A/en
Application granted granted Critical
Publication of JP6915595B2 publication Critical patent/JP6915595B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)

Description

本発明は、スラブの幅圧下方法に関する。 The present invention relates to a method for reducing the width of a slab.

一般に、熱延鋼板の製造ライン(ホットストリップミル)では、加熱されたスラブが粗圧延工程や仕上圧延工程などの製造工程を経ることで、所定の板幅及び板厚の鋼板が製造される。
粗圧延工程では、スラブを所定の厚さに圧延する水平圧延や、水平圧延の前にスラブを幅方向に圧下(幅圧下)する幅圧下プレスなどが行われる。幅圧下プレスでは、スラブの幅方向に配される一対の金型を有するサイジングプレスを用いて、一対の金型でスラブを間欠的に鍛造しながら、スラブを長手方向に搬送することで、スラブの長手方向にわたって幅圧下が行われる。また、幅圧下毎にスラブを搬送するときのスラブの移動量を搬送量という。
Generally, in a hot-rolled steel sheet production line (hot strip mill), a heated slab undergoes a manufacturing process such as a rough rolling process and a finish rolling process to produce a steel sheet having a predetermined plate width and thickness.
In the rough rolling step, horizontal rolling in which the slab is rolled to a predetermined thickness, width rolling in which the slab is reduced in the width direction (width reduction) before horizontal rolling, and the like are performed. In the width reduction press, the slab is conveyed in the longitudinal direction while intermittently forging the slab with the pair of dies using a sizing press having a pair of dies arranged in the width direction of the slab. Width reduction is performed over the longitudinal direction of the. Further, the amount of movement of the slab when the slab is conveyed for each width reduction is referred to as a transfer amount.

サイジングプレスは、間欠的にスラブを鍛造しながらスラブを搬送させるので、粗圧延や仕上圧延などその他のプロセスと比較して能率が悪く、熱延鋼板の製造ライン全体の能率を低下させることが多い。このため、サイジングプレスの能率を上げるために様々な技術が検討されてきた。
例えば、特許文献1には、幅圧下時に金型を動かすためのクランク軸に生じるトルクを予測して、クランク軸が許容できる最大のトルクとなるように幅圧下速度を設定することでサイジングプレスの能率を向上させる方法が開示されている。
さらに、特許文献2には、幅圧下時の増厚挙動に着目し、先端部と尾端部とでは、尾端部のほうが幅圧下時の増厚が小さいことから、サイジングプレスの後に続く工程である圧延において、尾端側から圧延機に噛み込ませることで、粗圧延によるパス数を減らし、粗圧延工程全体の能率を向上させる方法が開示されている。
Since the sizing press transports the slab while intermittently forging the slab, it is inefficient compared to other processes such as rough rolling and finish rolling, and often reduces the efficiency of the entire hot-rolled steel sheet production line. .. Therefore, various techniques have been studied to improve the efficiency of the sizing press.
For example, in Patent Document 1, the torque generated in the crankshaft for moving the die during width reduction is predicted, and the width reduction speed is set so that the crankshaft has the maximum allowable torque. Methods for improving efficiency are disclosed.
Further, in Patent Document 2, attention is paid to the thickening behavior when the width is rolled down, and since the thickness of the tail end portion is smaller when the width is rolled down, the step following the sizing press is performed. In rolling, a method is disclosed in which the number of passes due to rough rolling is reduced and the efficiency of the entire rough rolling process is improved by engaging the rolling mill from the tail end side.

特開2006−231364号公報Japanese Unexamined Patent Publication No. 2006-231364 特開平11-285701号公報Japanese Unexamined Patent Publication No. 11-285701

しかし、特許文献1に開示された方法では、クランク軸のトルク許容限界に応じた回転速度までしか上げることができず、設備仕様に応じて能率向上効果の限界が決定してしまう。
また、特許文献2に開示された方法では、圧延の噛込端をサイジングプレス時の尾端側にするために、スラブを旋回させる必要が生じる。また、スラブを前方側から後方側に搬送させながら幅圧下を実施する必要が生じる。このため、特許文献2に開示された方法では、時間的なロスが生じることが問題となる。
However, with the method disclosed in Patent Document 1, the rotation speed can be increased only according to the torque allowable limit of the crankshaft, and the limit of the efficiency improving effect is determined according to the equipment specifications.
Further, in the method disclosed in Patent Document 2, it is necessary to rotate the slab in order to set the biting end of rolling to the tail end side at the time of sizing press. Further, it becomes necessary to carry out width reduction while transporting the slab from the front side to the rear side. Therefore, the method disclosed in Patent Document 2 has a problem that a time loss occurs.

そこで、本発明は、上記の課題に着目してなされたものであり、サイジングプレスによってスラブの全長を幅圧下するときの能率を向上させることができる、スラブの幅圧下方法を提供することを目的としている。 Therefore, the present invention has been made focusing on the above-mentioned problems, and an object of the present invention is to provide a method for reducing the width of a slab, which can improve the efficiency when the entire length of the slab is reduced by a sizing press. It is said.

本発明の一態様によれば、一対の金型を用いた間欠的な鍛造によりスラブを幅圧下するスラブの幅圧下方法において、上記一対の金型の間に配された上記スラブを、搬送方向に搬送量Dだけ搬送する搬送工程と、上記一対の金型を上記スラブの板幅方向に移動させることで、搬送された上記スラブを幅圧下する幅圧下工程と、を備え、上記一対の金型として、上記搬送方向の前方側に上記スラブの端面と平行な平行部と、上記平行部よりも上記搬送方向の後方側に設けられ、上記搬送方向の後方側が上記板幅方向に広がるように傾斜した傾斜部とをそれぞれ有するものを用い、上記一対の金型による上記スラブの幅圧下量の半分の値が、上記幅工程における上記一対の金型の上記板幅方向の移動量である金型ストローク未満であり、上記搬送量Dが下記(1)式を満たす、スラブの幅圧下方法が提供される。
S/tanθ≦D≦L1 ・・・(1)
S:金型ストローク(m)
θ:傾斜部の傾斜角度(°)
L1:平行部の長さ(m)
According to one aspect of the present invention, in the method of reducing the width of a slab by intermittent forging using a pair of dies, the slabs arranged between the pair of dies are conveyed in a transport direction. The pair of dies are provided with a transport step of transporting only the transport amount D and a width reduction step of reducing the width of the transported slab by moving the pair of dies in the plate width direction of the slab. As a mold, a parallel portion parallel to the end face of the slab and a rear side in the transport direction are provided on the front side in the transport direction so that the rear side in the transport direction spreads in the plate width direction. A mold having an inclined portion is used, and the value of half the width reduction amount of the slab by the pair of dies is the amount of movement of the pair of dies in the plate width direction in the width process. Provided is a method for reducing the width of a slab, which is less than a die stroke and the transfer amount D satisfies the following equation (1).
S / tan θ ≦ D ≦ L1 ・ ・ ・ (1)
S: Mold stroke (m)
θ: Inclination angle (°) of the inclined part
L1: Length of parallel part (m)

本発明の一態様によれば、サイジングプレスによってスラブの全長を幅圧下するときの能率を向上させることができる、スラブの幅圧下方法を提供することができる。 According to one aspect of the present invention, it is possible to provide a method for reducing the width of a slab, which can improve the efficiency when the entire length of the slab is reduced by a sizing press.

本発明の一実施形態におけるサイジングプレスを示す平面図である。It is a top view which shows the sizing press in one Embodiment of this invention. 搬送量DがL1以上となる場合における、幅圧下工程直前の状態を示す平面図である。It is a top view which shows the state immediately before the width reduction process in the case where the transport amount D becomes L1 or more. スラブの幅圧下量の半分の値が、金型の金型ストローク以上となる条件における、搬送工程及び幅圧下工程を示す説明図である。It is explanatory drawing which shows the transfer process and width reduction process under the condition that the value of half of the width reduction amount of a slab is equal to or more than the die stroke of a mold. スラブの幅圧下量の半分の値が、金型の金型ストローク未満となる条件における、搬送工程及び幅圧下工程を示す説明図である。It is explanatory drawing which shows the transfer process and width reduction process under the condition that the value of half of the width reduction amount of a slab is less than the mold stroke of a mold. 本実施形態に係る幅圧下方法における、幅圧下工程直前の状態を示す平面図である。It is a top view which shows the state immediately before the width reduction process in the width reduction method which concerns on this embodiment.

以下の詳細な説明では、本発明の完全な理解を提供するように、本発明の実施形態を例示して多くの特定の細部について説明する。しかしながら、かかる特定の細部の説明がなくても1つ以上の実施態様が実施できることは明らかである。また、図面は、簡潔にするために、周知の構造及び装置が略図で示されている。 The following detailed description illustrates many specific details by exemplifying embodiments of the invention to provide a complete understanding of the invention. However, it is clear that one or more embodiments can be implemented without such particular detail description. Also, for the sake of brevity, the drawings are schematic representations of well-known structures and devices.

<スラブの幅圧下方法>
図面を参照して、本発明の一実施形態に係るスラブの幅圧下方法について説明する。本実施形態では、図1に示すサイジングプレス1を用いて、スラブ2の幅圧下を行う。サイジングプレス1は、搬送されるスラブ2の板幅方向(図1の上下方向)に対向して配される一対の金型3a,3bを有する。
<Method of reducing the width of the slab>
A method for reducing the width of the slab according to the embodiment of the present invention will be described with reference to the drawings. In the present embodiment, the width reduction of the slab 2 is performed using the sizing press 1 shown in FIG. The sizing press 1 has a pair of dies 3a and 3b arranged so as to face each other in the plate width direction (vertical direction in FIG. 1) of the slab 2 to be conveyed.

一対の金型3a,3bは、スラブ2との接触面(互いに対向する端面)において、傾斜部31と、平行部32と、補助傾斜部33とを有する。傾斜部31、平行部32及び補助傾斜部33は、スラブ2の搬送方向2a(図1の左側から右側に向かう方向)の後方側から順に連続して形成される。傾斜部31は、図1に示す平面視にて、搬送方向2aの後方側が板幅方向の外側となるように、搬送方向2aに対して一定の角度で傾斜して形成される端面である。搬送方向2a及び平行部32に対する傾斜部31の傾斜角度θは、13°以上17°以下とすることが好ましい。平行部32は、図1に示す平面視にて、傾斜部31の搬送方向2aの前方側に、搬送方向2a及び搬送されるスラブ2の端面に平行に延在して形成される端面である。また、平行部32の搬送方向2aに平行な長さを、L1とする。補助傾斜部33は、図1に示す平面視にて、平行部32の搬送方向2aの前方側に、搬送方向2aに対して一定の角度で、傾斜部31とは逆側に傾斜して形成される端面である。搬送方向2a及び平行部32に対する補助傾斜部33の傾斜角度は、13°以上25°以下とすることが好ましい。なお、一対の金型3a,3bは、同じ形状であり、図1に示す平面視において、上下反転した形状となる。 The pair of molds 3a and 3b have an inclined portion 31, a parallel portion 32, and an auxiliary inclined portion 33 on a contact surface (end surface facing each other) with the slab 2. The inclined portion 31, the parallel portion 32, and the auxiliary inclined portion 33 are continuously formed in order from the rear side in the transport direction 2a (direction from the left side to the right side in FIG. 1) of the slab 2. The inclined portion 31 is an end face formed by being inclined at a constant angle with respect to the conveying direction 2a so that the rear side in the conveying direction 2a is outside in the plate width direction in the plan view shown in FIG. The inclination angle θ of the inclined portion 31 with respect to the transport direction 2a and the parallel portion 32 is preferably 13 ° or more and 17 ° or less. The parallel portion 32 is an end face formed so as to extend in parallel with the transport direction 2a and the end face of the transport slab 2 on the front side of the inclined portion 31 in the transport direction 2a in the plan view shown in FIG. .. Further, the length of the parallel portion 32 parallel to the transport direction 2a is defined as L1. In the plan view shown in FIG. 1, the auxiliary inclined portion 33 is formed so as to be inclined to the front side of the parallel portion 32 in the transport direction 2a at a constant angle with respect to the transport direction 2a and to the opposite side to the inclined portion 31. It is the end face to be done. The inclination angle of the auxiliary inclined portion 33 with respect to the transport direction 2a and the parallel portion 32 is preferably 13 ° or more and 25 ° or less. The pair of molds 3a and 3b have the same shape, and have an upside-down shape in the plan view shown in FIG.

また、一対の金型3a,3bは、圧下スクリュー(不図示)を通してクランク軸(不図示)に接続されており、クランク軸が回転することで、互いに対向する方向、つまり搬送されるスラブ2の板幅方向に周期的に移動する。この際、一対の金型3a,3bは、互いの離間距離が短くなる方向、及びこの離間距離が長くなる方向へと連動して移動するように構成される。一対の金型3a,3bが周期的に移動するときの移動量である振幅は、クランク軸の偏心量に依存しており、常に一定となる。この振幅を金型ストロークSと呼ぶ。また、一対の金型3a,3b同士が最も離れた位置にある状態を第1状態といい、一対の金型3a,3b同士が最も近づいた状態を第2状態という。つまり、一対の金型3a,3bは、クランク軸の回転によって、第1状態及び第2状態に位置が繰り返し変化するように、周期的に移動する。なお、一対の金型3a,3bが第1状態から第2状態へと位置が移動する動作、つまり一対の金型3a,3bが閉まる動作を閉動作といい、一対の金型3a,3bが第2状態から第1状態へと位置が移動する動作、つまり一対の金型3a,3bが開く動作を開動作という。 Further, the pair of molds 3a and 3b are connected to the crankshaft (not shown) through a reduction screw (not shown), and the rotation of the crankshaft causes the slabs 2 to face each other, that is, to be conveyed. It moves periodically in the plate width direction. At this time, the pair of molds 3a and 3b are configured to move in conjunction with each other in a direction in which the separation distance becomes shorter and in a direction in which the separation distance becomes longer. The amplitude, which is the amount of movement when the pair of molds 3a and 3b move periodically, depends on the amount of eccentricity of the crankshaft and is always constant. This amplitude is called the mold stroke S. The state in which the pair of molds 3a and 3b are closest to each other is referred to as the first state, and the state in which the pair of molds 3a and 3b are closest to each other is referred to as the second state. That is, the pair of molds 3a and 3b periodically move so that the positions are repeatedly changed to the first state and the second state by the rotation of the crankshaft. The operation of moving the position of the pair of molds 3a and 3b from the first state to the second state, that is, the operation of closing the pair of molds 3a and 3b is called a closing operation, and the pair of molds 3a and 3b The operation of moving the position from the second state to the first state, that is, the operation of opening the pair of molds 3a and 3b is called the opening operation.

さらに、サイジングプレス1は、スラブ2の板幅方向に対向して配される一対の金型3a,3bと、一対の金型3a,3bの後方側及び前方側に設けられるピンチロール(不図示)とを有する。サイジングプレス1は、ピンチロールを用いてスラブを間欠的に搬送しながら、一対の金型3a,3bを板幅方向に動かし、スラブ2を板幅方向に圧下することでスラブ2の板幅を小さくする。ピンチロールは、スラブ2を後方側から前方側へ向かう前進方向に搬送(順送)及び前進方向の逆方向となる後進方向に搬送(逆走)することができる。 Further, the sizing press 1 is provided with a pair of dies 3a and 3b arranged to face each other in the plate width direction of the slab 2 and pinch rolls (not shown) provided on the rear side and the front side of the pair of dies 3a and 3b. ) And. The sizing press 1 moves the pair of dies 3a and 3b in the plate width direction while intermittently transporting the slab using a pinch roll, and presses the slab 2 in the plate width direction to reduce the plate width of the slab 2. Make it smaller. The pinch roll can convey the slab 2 in the forward direction from the rear side to the front side (forward feed) and in the reverse direction which is the opposite direction of the forward direction (reverse run).

サイジングプレス1は、ピンチロールを用いてスラブを間欠的に搬送しながら、一対の金型3a,3bを板幅方向に動かし、スラブ2を板幅方向に圧下することでスラブ2の板幅を小さくする。ピンチロールは、スラブ2を後方工程側から前方工程側へ向かう前進方向に搬送(順送)及び前進方向の逆方向となる後進方向に搬送(逆走)することができる。 The sizing press 1 moves the pair of dies 3a and 3b in the plate width direction while intermittently transporting the slab using a pinch roll, and presses the slab 2 in the plate width direction to reduce the plate width of the slab 2. Make it smaller. The pinch roll can convey the slab 2 in the forward direction from the rear process side to the front process side (forward) and in the reverse direction opposite to the forward direction (reverse run).

さらに、本実施形態では、幅圧下の条件として、スラブ2の幅圧下量の半分の値が、金型3a,3bの金型ストロークS未満となるものとする。
スラブ2の幅圧下量は、幅圧下によるスラブ2の板幅の変化量であり、幅圧下前のスラブ2の板幅Wから幅圧下後のスラブ2の板幅Wを差し引いた長さ(W−W)である。スラブ2の幅圧下は、詳細は後述するように、一対の金型3a,3bの間の中央にスラブ2が配された状態で、一対の金型3a,3bが第1状態(図1の実線)から第2状態(図1の一点鎖線)に移動することで、スラブ2を幅方向に圧下する。このため、スラブ2の幅圧下量は、スラブ2の幅圧下前の板幅Wと、一対の金型3a,3bの設置位置と、金型ストロークSとに応じて決定される。つまり、スラブ2の幅圧下量の半分の値が金型3a,3bの金型ストロークS以下となる場合において、第1状態では、図1に示すように、一対の金型3a,3bの離間距離(平行部32同士の離間距離)が幅圧下前のスラブ2の板幅Wよりも大きな値となっている。
Further, in the present embodiment, as a condition of width reduction, half of the width reduction amount of the slab 2 is less than the mold stroke S of the molds 3a and 3b.
The width reduction amount of the slab 2 is the amount of change in the plate width of the slab 2 due to the width reduction, and is the length obtained by subtracting the plate width W 1 of the slab 2 after the width reduction from the plate width W 0 of the slab 2 before the width reduction. (W 0- W 1 ). The width reduction of the slab 2 is a state in which the slab 2 is arranged in the center between the pair of molds 3a and 3b, and the pair of molds 3a and 3b are in the first state (FIG. 1). By moving from the solid line) to the second state (one-dot chain line in FIG. 1), the slab 2 is reduced in the width direction. Therefore, the width reduction amount of the slab 2 is determined according to the plate width W 0 before the width reduction of the slab 2, the installation positions of the pair of molds 3a and 3b, and the mold stroke S. That is, when the value of half of the width reduction amount of the slab 2 is equal to or less than the mold stroke S of the molds 3a and 3b, in the first state, as shown in FIG. 1, the pair of molds 3a and 3b are separated from each other. The distance (distance between the parallel portions 32) is larger than the plate width W 0 of the slab 2 before the width reduction.

本実施形態に係るスラブ2の幅圧下方法では、スラブ2の先端の搬送方向2aに対する位置が金型3a,3bの平行部32の位置となるように、第1状態の一対の金型3a,3bの間にスラブ2を搬送する。
次いで、スラブ2を停止させた状態で、一対の金型3a,3bを閉動作させ、第1状態から第2状態とすることで、スラブ2の先端側を幅圧下(幅方向に圧下)する(幅圧下工程)。
In the width reduction method of the slab 2 according to the present embodiment, the pair of molds 3a, in the first state, so that the position of the tip of the slab 2 with respect to the transport direction 2a is the position of the parallel portion 32 of the molds 3a, 3b. Transport the slab 2 between 3b.
Next, with the slab 2 stopped, the pair of molds 3a and 3b are closed to change from the first state to the second state, thereby reducing the width of the tip side of the slab 2 (downward in the width direction). (Width reduction process).

さらに、一対の金型3a,3bを開動作させ、第2状態から第1状態とするとともに、スラブ2を搬送方向2aに、搬送量D(m)だけ搬送させる(搬送工程)。この際、搬送量Dは、下記の(1)式を満たす距離である。上述のように、(1)式において、Sは金型ストローク(m)であり、θは傾斜部31の傾斜角度(°)であり、L1は平行部32の長さ(m)である。
S/tanθ≦D≦L1 ・・・(1)
Further, the pair of molds 3a and 3b are opened to change from the second state to the first state, and the slab 2 is transported in the transport direction 2a by the transport amount D (m) (convey step). At this time, the transport amount D is a distance that satisfies the following equation (1). As described above, in the equation (1), S is the mold stroke (m), θ is the inclination angle (°) of the inclined portion 31, and L1 is the length (m) of the parallel portion 32.
S / tan θ ≦ D ≦ L1 ・ ・ ・ (1)

搬送量DがL1超となる場合、搬送工程後の状態において、板幅L1まで幅圧下されていない箇所が、平行部32よりも搬送方向2aの前方側に位置してしまう。このため、図2に示すように、幅圧下後のスラブ2に未圧下部が生じることとなる。
一方、搬送量DがS/tanθ未満となる場合、搬送量Dが従来の幅圧下方法と同程度となり、幅圧下の能率を向上させることができないことから、本実施形態に係る幅圧下方法では不適となる。ここで、従来の幅圧下方法では、一対の金型3a,3bとスラブ2との位置関係から、搬送工程における搬送量DをS/tanθ未満とする制御が行われてきた。搬送量DをS/tanθ未満とする理由について、図3を参照して説明する。
When the transport amount D exceeds L1, the portion that is not reduced in width to the plate width L1 is located on the front side in the transport direction 2a with respect to the parallel portion 32 in the state after the transport process. Therefore, as shown in FIG. 2, an uncompressed lower portion is generated in the slab 2 after the width reduction.
On the other hand, when the transport amount D is less than S / tan θ, the transport amount D becomes about the same as that of the conventional width reduction method, and the efficiency of width reduction cannot be improved. It becomes unsuitable. Here, in the conventional width reduction method, the transfer amount D in the transfer step is controlled to be less than S / tan θ due to the positional relationship between the pair of dies 3a and 3b and the slab 2. The reason why the transport amount D is set to less than S / tan θ will be described with reference to FIG.

図3に示す例では、幅圧下の条件が、スラブ2の幅圧下量の半分の値が金型3a,3bの金型ストロークS以上となる場合における幅圧下の様子として、図3(a)に示す幅圧下工程の後、図3(b)に示す搬送工程が行われる状態を示す。図3に示す幅圧下の条件の場合、一対の金型3a,3bが第1状態(図3(b)の実線の状態)でスラブ2を搬送させようとすると、搬送量Dが大きいと一対の金型3a,3bとスラブ2とが接触してしまう。このとき、一対の金型3a,3bとスラブ2との幾何学的な位置関係から、搬送量DがS/tanθ以上となる場合に、一対の金型3a,3b(傾斜部31)とスラブ2(板幅がW超W未満となるまで幅圧下されたスラブ2の傾斜部)とが接触することとなる。なお、S/tanθは、幅圧下工程後に一対の金型3a,3bが開動作し第1状態となった場合における、搬送方向2aにおける、金型3a,3bの傾斜部31とスラブ2の傾斜部との距離である。このため、従来の幅圧下方法では、幅圧下の条件に関わらず、設備レイアウトによる幾何学的な制約による搬送工程における一対の金型3a,3bとスラブ2との接触を防止するため、搬送量DをS/tanθ未満とする条件で幅圧下が行われてきた。 In the example shown in FIG. 3, the condition of the width reduction is as shown in FIG. A state in which the transfer step shown in FIG. 3B is performed after the width reduction step shown in FIG. 3B is shown. In the case of the condition under the width reduction shown in FIG. 3, when the pair of molds 3a and 3b try to transport the slab 2 in the first state (the state of the solid line in FIG. 3B), the pair when the transport amount D is large The molds 3a and 3b of the above and the slab 2 come into contact with each other. At this time, due to the geometrical positional relationship between the pair of molds 3a and 3b and the slab 2, when the transport amount D is S / tan θ or more, the pair of molds 3a and 3b (inclined portion 31) and the slab 2 (the inclined portion of the slab 2 whose width is reduced until the plate width becomes more than W 1 and less than W 0) comes into contact with each other. The S / tan θ is the inclination of the inclined portions 31 and the slab 2 of the molds 3a and 3b in the transport direction 2a when the pair of molds 3a and 3b are opened and brought into the first state after the width reduction step. The distance to the department. For this reason, in the conventional width reduction method, regardless of the width reduction conditions, in order to prevent contact between the pair of dies 3a and 3b and the slab 2 in the transfer process due to geometric restrictions due to the equipment layout, the transfer amount Width reduction has been performed under the condition that D is less than S / tan θ.

しかし、本発明者らは、幅圧下の条件が、スラブ2の幅圧下量の半分の値が、金型3a,3bの金型ストロークS未満となる場合には、搬送工程における一対の金型3a,3bとスラブ2との接触が起きないことから、搬送量Dを大きくできることを知見した。図4に示す例には、幅圧下の条件が、スラブ2の幅圧下量の半分の値が金型3a,3bの金型ストロークS未満となる場合における、幅圧下の様子として、図4(a)に示す幅圧下工程の後、図4(b)に示す搬送工程を行う状態を示す。図4に示す幅圧下の条件の場合、搬送量DがS/tanθ以上と大きな場合でも、一対の金型3a,3bとスラブ2とが接触することはない。つまり、本実施形態のように、スラブ2の幅圧下量の半分の値が、金型3a,3bの金型ストロークS未満となる幅圧下の条件の場合においては、搬送量DをS/tanθ以上とすることができ、幅圧下の能率を向上させることができる。 However, the present inventors have found that when the width reduction condition is that the value of half the width reduction amount of the slab 2 is less than the mold stroke S of the dies 3a and 3b, a pair of dies in the transfer step. It was found that the transport amount D can be increased because the contact between 3a and 3b and the slab 2 does not occur. In the example shown in FIG. 4, as a state of width reduction when the value of half of the width reduction amount of the slab 2 is less than the mold stroke S of the molds 3a and 3b, FIG. A state in which the transfer step shown in FIG. 4B is performed after the width reduction step shown in a) is shown. Under the condition under the width reduction shown in FIG. 4, the pair of molds 3a and 3b and the slab 2 do not come into contact with each other even when the transport amount D is as large as S / tan θ or more. That is, as in the present embodiment, in the case where the value of half of the width reduction amount of the slab 2 is less than the mold stroke S of the molds 3a and 3b, the transport amount D is set to S / tanθ. The above can be achieved, and the efficiency under width reduction can be improved.

そして、幅圧下工程の後、さらに、上述の搬送工程及び幅圧下工程を順に繰り返し行うことで、スラブ2の長手方向の全長にわたって、幅圧下が行われることで、長手方向全長の板幅が全てWとなるスラブ2が製造される。図5には、搬送工程と幅圧下工程とを複数回行った後、さらに幅圧下工程が行われる直前の状態を示す。図5に示すように、本実施形態では、搬送量Dを(1)式の範囲とすることにより、板幅がWとなる位置についても、平行部32にて圧下できるようになり、より少ない鍛造回数(プレス回数)でスラブ2の長手方向全長にわたって幅圧下を行うことができる。幅圧下が施されたスラブ2は、その後、次工程へと搬送され、熱間圧延等の処理が施されることで、鋼帯が製造される。
なお、本実施形態では、スラブ2の幅圧下量の半分の値が、金型3a,3bの金型ストロークS未満となる条件について説明したが、スラブ2の幅圧下量の半分の値が、金型3a,3bの金型ストロークS以上となる場合には、搬送量DはS/tanθ未満となる。
Then, after the width reduction step, the above-mentioned transfer step and width reduction step are repeated in order to perform width reduction over the entire length of the slab 2 in the longitudinal direction, so that the plate width of the entire length in the longitudinal direction is all. The slab 2 which becomes W 1 is manufactured. FIG. 5 shows a state immediately before the width reduction process is further performed after the transfer process and the width reduction process are performed a plurality of times. As shown in FIG. 5, in the present embodiment, by setting the transport amount D within the range of the equation (1), the parallel portion 32 can reduce the position where the plate width becomes W 0. Width reduction can be performed over the entire length of the slab 2 in the longitudinal direction with a small number of forgings (number of presses). The slab 2 that has been subjected to width reduction is then conveyed to the next process and subjected to a process such as hot rolling to produce a steel strip.
In the present embodiment, the condition that the half value of the width reduction amount of the slab 2 is less than the mold stroke S of the molds 3a and 3b has been described, but the half value of the width reduction amount of the slab 2 is When the mold strokes S or more of the molds 3a and 3b are longer, the transport amount D is less than S / tan θ.

<変形例>
以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態とともに種々の変形例を含む本発明の別の実施形態も明らかである。従って、特許請求の範囲に記載された発明の実施形態には、本明細書に記載したこれらの変形例を単独または組み合わせて含む実施形態も網羅すると解すべきである。
<Modification example>
Although the present invention has been described above with reference to specific embodiments, it is not intended to limit the invention by these descriptions. By reference to the description of the invention, one of ordinary skill in the art will appreciate the disclosed embodiments as well as other embodiments of the invention that include various modifications. Therefore, it should be understood that the embodiments of the invention described in the claims also include embodiments including these modifications described in the present specification alone or in combination.

例えば、上記実施形態では、一対の金型3a,3bが、傾斜部31と平行部32とを有するとしたが、本発明はかかる例に限定されない。例えば、一対の金型3a,3bは、複数の平行部を有してもよい。この場合、一対の金型3a,3bには、搬送方向2aの後方側から傾斜部と平行部とが順に複数形成される。例えば、図1に示す金型3a,3bにおいて、傾斜部31の位置に、傾斜部と、平行部と、傾斜部とが順にされた形状としてもよい。また、傾斜部の傾斜角度θは、傾斜部毎に異なる角度であってもよい。さらに、平行部や傾斜部が複数設けられる場合には、(1)式における傾斜角度θには、複数の傾斜部のうち最も傾斜角度の小さい傾斜部のものが用いられる。 For example, in the above embodiment, the pair of molds 3a and 3b has an inclined portion 31 and a parallel portion 32, but the present invention is not limited to such an example. For example, the pair of molds 3a and 3b may have a plurality of parallel portions. In this case, a plurality of inclined portions and parallel portions are formed in order from the rear side in the transport direction 2a on the pair of molds 3a and 3b. For example, in the molds 3a and 3b shown in FIG. 1, the inclined portion, the parallel portion, and the inclined portion may be arranged in order at the position of the inclined portion 31. Further, the inclination angle θ of the inclined portion may be different for each inclined portion. Further, when a plurality of parallel portions and inclined portions are provided, the inclined portion having the smallest inclined angle among the plurality of inclined portions is used as the inclined angle θ in the equation (1).

さらに、上記実施形態では、搬送工程にてスラブ2を搬送方向2aに送り、スラブ2を搬送方向2aの前方側から幅圧下するとしたが、本発明はかかる例に限定されない。上記の実施形態と同様にスラブ2を搬送方向2aの前方側から幅圧下した後、一対の金型3a,3bの搬送方向2aの前方側にあるスラブ2を、搬送方向2aの後方側から幅圧下するようにしてもよい。この場合、搬送工程でスラブ2を搬送方向2aと逆側に搬送させた後、幅圧下工程を行うことで、スラブ2が搬送方向2aの後方側から幅圧下される。また、幅圧下工程では、平行部32と補助傾斜部33とによって、スラブ2の幅圧下が行われる。さらに、搬送工程では、(1)式の傾斜角度θとして補助傾斜部33のものが用いられて搬送量Dが決定される。このようにすることで、スラブ2の幅圧下を2段階で行うことができるようになるため、より大きな幅圧下量でスラブ2を幅圧下することができる。なお、このような幅圧下は、サイジングプレスの能率を低下させるものであるため、幅圧下するスラブ2が少ない等の設備能力に余力がある場合に行うことが好ましい。また、搬送方向2aにのみしかスラブ2を搬送させない場合には、一対の金型3a,3bには、補助傾斜部33が形成されなくてもよい。 Further, in the above embodiment, the slab 2 is fed in the transport direction 2a in the transport step, and the slab 2 is reduced in width from the front side in the transport direction 2a, but the present invention is not limited to this example. Similar to the above embodiment, the slab 2 is reduced in width from the front side in the transport direction 2a, and then the slab 2 on the front side in the transport direction 2a of the pair of molds 3a and 3b is widened from the rear side in the transport direction 2a. It may be reduced. In this case, the slab 2 is transported in the direction opposite to the transport direction 2a in the transport step, and then the width reduction step is performed to reduce the width of the slab 2 from the rear side in the transport direction 2a. Further, in the width reduction step, the width reduction of the slab 2 is performed by the parallel portion 32 and the auxiliary inclined portion 33. Further, in the transfer step, the auxiliary inclination portion 33 is used as the inclination angle θ of the equation (1), and the transfer amount D is determined. By doing so, the width reduction of the slab 2 can be performed in two steps, so that the width reduction of the slab 2 can be performed with a larger width reduction amount. Since such width reduction reduces the efficiency of the sizing press, it is preferable to perform such width reduction when there is sufficient equipment capacity such as a small number of slabs 2 to reduce width. Further, when the slab 2 is conveyed only in the conveying direction 2a, the auxiliary inclined portion 33 may not be formed on the pair of molds 3a and 3b.

<実施形態の効果>
本発明の一態様に係るスラブ2の幅圧下方法は、一対の金型3a,3bを用いた間欠的な鍛造によりスラブ2を幅圧下するスラブ2の幅圧下方法において、一対の金型3a,3bの間に配されたスラブ2を、搬送方向2aに搬送量Dだけ搬送する搬送工程と、一対の金型3a,3bをスラブ2の板幅方向に移動させることで、搬送されたスラブ2を幅圧下する幅圧下工程と、を備え、一対の金型3a,3bとして、搬送方向2aの前方側にスラブ2の端面と平行に形成される平行部32と、平行部32よりも搬送方向の後方側に設けられ、搬送方向2aの後方側が板幅方向に広がるように傾斜した傾斜部31とをそれぞれ有するものを用い、一対の金型3a,3bによるスラブ2の幅圧下量の半分の値が、幅圧下工程における一対の金型3a,3bの板幅方向の移動量である金型ストロークS未満であり、搬送量Dが(1)式を満たす。
<Effect of embodiment>
The width reduction method for the slab 2 according to one aspect of the present invention is the width reduction method for the slab 2 that reduces the width of the slab 2 by intermittent forging using the pair of dies 3a and 3b. The slab 2 arranged between the slabs 2 is transported in the transport direction 2a by the transport amount D, and the pair of molds 3a and 3b are moved in the plate width direction of the slab 2. As a pair of dies 3a and 3b, a parallel portion 32 formed parallel to the end face of the slab 2 on the front side of the transport direction 2a and a transport direction rather than the parallel portion 32. The one provided on the rear side of the slab and having an inclined portion 31 inclined so that the rear side of the transport direction 2a spreads in the plate width direction is used, and half of the width reduction amount of the slab 2 by the pair of dies 3a and 3b. The value is less than the mold stroke S, which is the amount of movement of the pair of molds 3a and 3b in the plate width direction in the width reduction step, and the transport amount D satisfies the equation (1).

上記構成の幅圧下方法によれば、スラブ2を搬送させる際において、スラブ2と一対の金型3a,3bとの接触の懸念がないことから、搬送量DをS/tanθ以上とすることができ、サイジングプレス1の能率を向上させることができる。また、搬送量DをL1以下とすることで、未圧下部の発生を防止することができる。 According to the width reduction method having the above configuration, when the slab 2 is conveyed, there is no concern about contact between the slab 2 and the pair of dies 3a and 3b, so that the transfer amount D can be set to S / tan θ or more. It is possible to improve the efficiency of the sizing press 1. Further, by setting the transport amount D to L1 or less, it is possible to prevent the occurrence of an unpressurized lower portion.

次に、本発明者らが行った実施例について説明する。実施例では、長さ10000mm、幅1500mm、厚み260mmのスラブ2を用意した。サイジングプレス1の金型ストロークSは100mm、金型3a,3bの傾斜角度θは13°、金型3a,3bの平行部32の長さL1は560mmであった。
表1に、実施例及び比較例の幅圧下プレスの条件及び、スラブの幅圧下後の調査結果を示す。
Next, the examples carried out by the present inventors will be described. In the embodiment, a slab 2 having a length of 10000 mm, a width of 1500 mm, and a thickness of 260 mm was prepared. The die stroke S of the sizing press 1 was 100 mm, the inclination angles θ of the dies 3a and 3b were 13 °, and the length L1 of the parallel portions 32 of the dies 3a and 3b was 560 mm.
Table 1 shows the conditions of the width reduction press of Examples and Comparative Examples and the investigation results after the width reduction of the slab.

Figure 0006915595
Figure 0006915595

比較例1−1は、幅圧下量が50mmで搬送量Dが350mmであった。このとき、スラブ2の長手方向の全長に幅圧下するのに要したプレス回数は30回で、スラブ2の長手方向の全長を幅圧下するのに要した時間は42.0secであった。
実施例1−1は、幅圧下量が50mmで搬送量Dが450mmであった。このとき、スラブ2の長手方向の全長に幅圧下するのに要したプレス回数は23回で、スラブ2の長手方向の全長を幅圧下するのに要した時間は32.2secであった。
In Comparative Example 1-1, the width reduction amount was 50 mm and the transport amount D was 350 mm. At this time, the number of presses required to reduce the width of the slab 2 in the longitudinal direction was 30 times, and the time required to reduce the width of the slab 2 in the longitudinal direction was 42.0 sec.
In Example 1-1, the width reduction amount was 50 mm and the transport amount D was 450 mm. At this time, the number of presses required to reduce the width of the slab 2 in the longitudinal direction was 23, and the time required to reduce the width of the slab 2 in the longitudinal direction was 32.2 sec.

実施例1−2は、幅圧下量が50mmで搬送量Dが550mmであった。このとき、スラブ2の長手方向の全長に幅圧下するのに要したプレス回数は19回で、スラブ2の長手方向の全長を幅圧下するのに要した時間は26.6secであった。
比較例1−2は、幅圧下量が50mmで搬送量Dが650mmであった。このとき、スラブ2の長手方向の全長に幅圧下するのに要したプレス回数は16回で、スラブ22の長手方向の全長を幅圧下するのに要した時間は22.4secであった。また、搬送量が金型平行部長さより長く、板幅がWとなっていない未圧下部が生じた。
In Example 1-2, the width reduction amount was 50 mm and the transport amount D was 550 mm. At this time, the number of presses required to reduce the width of the slab 2 in the longitudinal direction was 19 times, and the time required to reduce the width of the slab 2 in the longitudinal direction was 26.6 sec.
In Comparative Example 1-2, the width reduction amount was 50 mm and the transport amount D was 650 mm. At this time, the number of presses required to reduce the width of the slab 2 to the total length in the longitudinal direction was 16 times, and the time required to reduce the width of the slab 22 to the total length in the longitudinal direction was 22.4 sec. Further, the amount of transport is longer than the die parallel portion length, non-pressure portion not in the plate width and W 1 has occurred.

比較例1−1と実施例1−1,1−2とを比較すると分かるように、搬送量Dを上げることでサイジングプレス1で全長を幅圧下するのに要する時間が減っており、能率を向上させることができている。また比較例1−2では、搬送量Dを上げて能率を向上させることはできているが未圧下部が生じている。
比較例2−1は、幅圧下量が150mmで搬送量Dが350mmであった。このとき、スラブ2の長手方向の全長に幅圧下するのに要したプレス回数は32回で、スラブ2の長手方向の全長を幅圧下するのに要した時間は44.8secであった。
As can be seen by comparing Comparative Example 1-1 and Examples 1-1 and 1-2, the time required for the sizing press 1 to reduce the overall length by increasing the transport amount D is reduced, and the efficiency is reduced. It has been improved. Further, in Comparative Example 1-2, although the transfer amount D can be increased to improve the efficiency, an unpressurized lower portion is generated.
In Comparative Example 2-1 the width reduction amount was 150 mm and the transport amount D was 350 mm. At this time, the number of presses required to reduce the width of the slab 2 in the longitudinal direction was 32, and the time required to reduce the width of the slab 2 in the longitudinal direction was 44.8 sec.

実施例2−1は、幅圧下量が150mmで搬送量Dが450mmであった。このとき、スラブ2の長手方向の全長に幅圧下するのに要したプレス回数は24回で、スラブ2の長手方向の全長を幅圧下するのに要した時間は33.6secであった。
実施例2−2は、幅圧下量150mmで搬送量が550mmであった。このとき、スラブ2の長手方向の全長に幅圧下するのに要したプレス回数は20回で、スラブ2の長手方向の全長を幅圧下するのに要した時間は28.0secであった。
In Example 2-1 the width reduction amount was 150 mm and the transport amount D was 450 mm. At this time, the number of presses required to reduce the width of the slab 2 in the longitudinal direction was 24, and the time required to reduce the width of the slab 2 in the longitudinal direction was 33.6 sec.
In Example 2-2, the width reduction amount was 150 mm and the transport amount was 550 mm. At this time, the number of presses required to reduce the width of the slab 2 in the longitudinal direction was 20 times, and the time required to reduce the width of the slab 2 in the longitudinal direction was 28.0 sec.

比較例2−2は、幅圧下量が150mmで搬送量が650mmであった。このとき、スラブ2の長手方向の全長に幅圧下するのに要したプレス回数は17回で、スラブ2の長手方向の全長を幅圧下するのに要した時間は23.8secであった。また、搬送量Dが平行部32の長さL1より長く、未圧下部が生じた。
比較例2−1と実施例2−1,2−2とを比較すると分かるように、搬送量Dを上げることでサイジングプレス1で全長を幅圧下するのに要する時間が減っており、能率を向上させることができている。また比較例2−2では、搬送量Dを上げて能率を向上させることはできているが未圧下部が生じている。
以上の本発明によれば、サイジングプレス1の能率が向上できることを確認した。
In Comparative Example 2-2, the width reduction amount was 150 mm and the transport amount was 650 mm. At this time, the number of presses required to reduce the width of the slab 2 in the longitudinal direction was 17 times, and the time required to reduce the width of the slab 2 in the longitudinal direction was 23.8 sec. Further, the conveyed amount D was longer than the length L1 of the parallel portion 32, and an uncompressed lower portion was generated.
As can be seen by comparing Comparative Example 2-1 and Examples 2-1 and 2-2, the time required for the sizing press 1 to reduce the overall length by increasing the transport amount D is reduced, and the efficiency is improved. It has been improved. Further, in Comparative Example 2-2, although the transfer amount D can be increased to improve the efficiency, an unpressurized lower portion is generated.
According to the above invention, it was confirmed that the efficiency of the sizing press 1 can be improved.

1 サイジングプレス
2 スラブ
2a 搬送方向
3a,3b 金型
31 傾斜部
32 平行部
33 補助傾斜部
1 Sizing press 2 Slab 2a Transport direction 3a, 3b Mold 31 Inclined part 32 Parallel part 33 Auxiliary inclined part

Claims (1)

一対の金型を用いた間欠的な鍛造によりスラブを幅圧下するスラブの幅圧下方法において、
前記一対の金型の間に配された前記スラブを、搬送方向に搬送量Dだけ搬送する搬送工程と、
前記一対の金型を前記スラブの板幅方向に移動させることで、搬送された前記スラブを幅圧下する幅圧下工程と、
を備え、
前記一対の金型として、前記搬送方向の前方側に前記スラブの端面と平行に形成される平行部と、前記平行部よりも前記搬送方向の後方側に設けられ、前記搬送方向の後方側が前記板幅方向に広がるように傾斜した傾斜部とをそれぞれ有するものを用い、
前記一対の金型による前記スラブの幅圧下量の半分の値が、前記幅圧下工程における前記一対の金型の前記板幅方向の移動量である金型ストローク未満であり、
前記搬送量Dが下記(1)式を満たし、450mm以上550mm以下であり、
前記幅圧下量が50mm以上150mm以下である、スラブの幅圧下方法。
S/tanθ≦D≦L1 ・・・(1)
S:金型ストローク(m)
θ:傾斜部の傾斜角度(°)
L1:平行部の長さ(m)
In the slab width reduction method in which the slab is width-reduced by intermittent forging using a pair of dies.
A transport process in which the slabs arranged between the pair of molds are transported in the transport direction by a transport amount D, and a transport step.
A width reduction step of reducing the width of the conveyed slab by moving the pair of dies in the plate width direction of the slab.
With
As the pair of molds, a parallel portion formed in parallel with the end face of the slab on the front side in the transport direction and a rear side in the transport direction from the parallel portion are provided, and the rear side in the transport direction is the said. Use one that has an inclined portion that is inclined so as to spread in the plate width direction.
Half of the width reduction amount of the slab by the pair of dies is less than the mold stroke which is the movement amount of the pair of dies in the plate width direction in the width reduction step.
The transport amount D satisfies the following formula (1) and is 450 mm or more and 550 mm or less.
A method for reducing the width of a slab, wherein the amount of width reduction is 50 mm or more and 150 mm or less.
S / tan θ ≦ D ≦ L1 ・ ・ ・ (1)
S: Mold stroke (m)
θ: Inclination angle (°) of the inclined part
L1: Length of parallel part (m)
JP2018143557A 2018-07-31 2018-07-31 How to reduce the width of the slab Active JP6915595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018143557A JP6915595B2 (en) 2018-07-31 2018-07-31 How to reduce the width of the slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018143557A JP6915595B2 (en) 2018-07-31 2018-07-31 How to reduce the width of the slab

Publications (2)

Publication Number Publication Date
JP2020019036A JP2020019036A (en) 2020-02-06
JP6915595B2 true JP6915595B2 (en) 2021-08-04

Family

ID=69587837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018143557A Active JP6915595B2 (en) 2018-07-31 2018-07-31 How to reduce the width of the slab

Country Status (1)

Country Link
JP (1) JP6915595B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245931A (en) * 1985-04-24 1986-11-01 Kawasaki Steel Corp Width reduction pressing device for hot slab and width reduction method using pressing device
DE4029429A1 (en) * 1990-09-17 1992-03-19 Schloemann Siemag Ag Compression press tool change - has trolley with lifting frame and tool holder and trolley to carry the tools for an automated operation
JPH07328701A (en) * 1994-06-03 1995-12-19 Sumitomo Metal Ind Ltd Method for controlling transpotation of slab at time of edging slab and device therefor
JPH08224605A (en) * 1995-11-27 1996-09-03 Kawasaki Steel Corp Width drawing down press device for hot slab and width drawing down press method using the same
KR101428257B1 (en) * 2012-12-07 2014-08-07 주식회사 포스코 Sizing pressing method and apparatus

Also Published As

Publication number Publication date
JP2020019036A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
EP1452245B1 (en) A hot rolled steel sheet manufacturing apparatus
US4387586A (en) Method of widthwise rolling of rolled material and apparatus therefor
US4760728A (en) Method for reducing widths of hot slabs
JP6915595B2 (en) How to reduce the width of the slab
JP2008238235A (en) Width press method in hot rolling, and method of manufacturing hot-rolled metal plate by using the same
JP6172109B2 (en) Hot rolled steel sheet rolling method
KR101661826B1 (en) Hot slab shape control equipment and shape control method
JP6365626B2 (en) Slab shape adjustment method
JPH0929377A (en) Upsetting tool of upsetting tool pair for forming continuously cast slab, and upsetting method by said upsetting tool
JP5058658B2 (en) Width reduction method for metal slabs
JP2009006361A (en) Hot-rolling method
JP5042690B2 (en) Slab width reduction equipment
JP6888520B2 (en) Slab width reduction method and width reduction device
JP3671722B2 (en) Hot slab sizing press method
JPH11156406A (en) Method for plate thickness reduction and equipment therefor
JP6005581B2 (en) Press mold
JP5024099B2 (en) Width reduction mold for hot slab and width reduction method
JP6747256B2 (en) Method for manufacturing H-section steel
JP6627730B2 (en) Hot slab width reduction device, hot slab width reduction method, and hot rolled steel sheet manufacturing method
JPH1094801A (en) Method for pressing width of hot slab
JP2006272427A (en) Method and apparatus for edging hot slab
JP4605552B2 (en) Hot slab forging method
JP2009190049A (en) Die for and method of edging hot slab
JP2000079401A (en) Method for edging metal slab
JP3294797B2 (en) Strip steel production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210423

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210517

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210628

R150 Certificate of patent or registration of utility model

Ref document number: 6915595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250