JP2005028451A - Method for manufacturing tube with high dimensional accuracy having good surface quality - Google Patents

Method for manufacturing tube with high dimensional accuracy having good surface quality Download PDF

Info

Publication number
JP2005028451A
JP2005028451A JP2004157878A JP2004157878A JP2005028451A JP 2005028451 A JP2005028451 A JP 2005028451A JP 2004157878 A JP2004157878 A JP 2004157878A JP 2004157878 A JP2004157878 A JP 2004157878A JP 2005028451 A JP2005028451 A JP 2005028451A
Authority
JP
Japan
Prior art keywords
tube
dimensional accuracy
lubricant
surface quality
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004157878A
Other languages
Japanese (ja)
Inventor
Kazuhito Kenmochi
一仁 剣持
Takuya Nagahama
拓也 長濱
Takashi Sakata
坂田  敬
Koichi Okita
孝一 置田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004157878A priority Critical patent/JP2005028451A/en
Publication of JP2005028451A publication Critical patent/JP2005028451A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a tube with high dimensional accuracy having good surface quality, which can produce a tube having good surface quality and remarkably higher dimensional accuracy than ever. <P>SOLUTION: A lubricant film is formed on the inner face and/or the outer face of the tube 4. Then a plug 1 is inserted into the tube and the tube is punched by a die 2. The tube may be a steel tube on which oxidized scale remains. It is desirable to use, as a lubricant for forming the lubricant film, any of a liquid lubricant, a grease lubricant, and a drying resin lubricant (drying resin or a solution of the drying resin diluted with a solvent or an emulsion of the drying resin). In the case of using the drying resin lubricant, it is preferable to dry the drying resin lubricant with hot air after applied to the tube. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、表面品質の良好な高寸法精度管の製造方法に関し、詳しくは、例えば自動車用駆動系部品などのような高い寸法精度が要求される管を、表面品質が良好になるように製造する方法に関する。   The present invention relates to a method for manufacturing a high dimensional accuracy tube with good surface quality, and in particular, manufactures a tube that requires high dimensional accuracy, such as an automobile drive system component, so that the surface quality is good. On how to do.

例えば鋼管等の金属管(以下、単に管ともいう。)は溶接管と継目無管に大別される。溶接管は、例えば電縫鋼管のように、帯板の幅を丸め、該丸めた幅の両端を突き合わせて溶接するという方法で製造し、一方、継目無管は、材料の塊を高温で穿孔後マンドレルミル等で圧延するという方法で製造している。溶接管の場合、溶接後に溶接部分の盛り上がりを研削して管の寸法精度を向上させているが、その肉厚偏差は3.0%を超える。また、継目無管の場合、穿孔工程で偏心しやすく、該偏心により大きな肉厚偏差が生じやすい。この肉厚偏差は後工程で低減させる努力が払われているが、それでも充分低減することができず、製品の段階で8.0%以上残存する。   For example, metal pipes such as steel pipes (hereinafter also simply referred to as pipes) are roughly classified into welded pipes and seamless pipes. Welded pipes are manufactured by rounding the width of the strip and welding by welding both ends of the rounded width, such as ERW steel pipes, while seamless pipes are used to drill a mass of material at high temperatures. It is manufactured by a method of rolling with a mandrel mill afterwards. In the case of a welded pipe, the bulge of the welded portion is ground after welding to improve the dimensional accuracy of the pipe, but the thickness deviation exceeds 3.0%. In the case of a seamless pipe, it is easy to be eccentric in the drilling process, and a large thickness deviation is likely to occur due to the eccentricity. Efforts are made to reduce this thickness deviation in a subsequent process, but it cannot be sufficiently reduced, and remains at 8.0% or more at the product stage.

自動車用駆動系部品等に用いる管には肉厚、内径、外径の各偏差として3.0%以下、さらに厳しくは1.0%以下、の高寸法精度が要求される。そこで、管の肉厚、内径、外径の精度を高める手段としては、従来一般に、図2に示すように、管4(溶接管、継目無管とも)を造管後にダイス6とプラグ5を用いて冷間で引き抜く製造方法(いわゆる冷牽法)がとられている(例えば特許文献1参照)。また近年では、図3に示すように、円周方向に分割した分割ダイス8をロータリー鍛造機9で揺動(復動)12させ、該分割ダイス8のダイス孔に管4を押し込んで加工する製造技術(以下、ロータリー鍛造押し込み法という。)が提案されている(特許文献2、3、4参照)。
特許第2812151号公報 特開平9−262637号公報 特開平9−262619号公報 特開平10−15612号公報
Pipes used for automobile drive system parts and the like are required to have a high dimensional accuracy of 3.0% or less, more strictly 1.0% or less, as deviations in thickness, inner diameter, and outer diameter. Therefore, as a means for improving the accuracy of the wall thickness, inner diameter, and outer diameter of the pipe, conventionally, as shown in FIG. A manufacturing method (so-called cold check method) that is used and pulled out cold is used (see, for example, Patent Document 1). In recent years, as shown in FIG. 3, the divided die 8 divided in the circumferential direction is swung (returned) 12 by a rotary forging machine 9, and the tube 4 is pushed into the die hole of the divided die 8 to be processed. A manufacturing technique (hereinafter referred to as a rotary forging indentation method) has been proposed (see Patent Documents 2, 3, and 4).
Japanese Patent No. 2812151 Japanese Patent Laid-Open No. 9-262637 Japanese Patent Laid-Open No. 9-262619 Japanese Patent Laid-Open No. 10-15612

しかし、上記の冷牽法では、設備上の制約や管の肉厚・径が大きいなどによって引き抜き応力が充分得られずに縮径率を低くせざるを得ない場合などでは、加工バイト(プラグとダイス孔内面との隙間)内での管の応力が引張応力であるがゆえにダイスと管外面、および引き抜きプラグと管内面との接触が不十分となり、管の内面、外面の平滑化が不足して凹凸が残留しやすい。そのため、冷牽法では管の縮径率を大きくして加工バイト内で管の内外面とプラグ、ダイスとの間の接触を十分なものとすることが図られている。しかし、ダイスを用いて管を引き抜いた場合、管の内面に凹凸が発生し、この凹凸による粗さは管の縮径率が大きくなるほど増加する。その結果、冷牽法では高寸法精度の管を得ることが難しく、寸法精度のさらに良好な管が強く求められていた。   However, in the above-described cold check method, when the drawing stress is not sufficiently obtained due to restrictions on equipment and the pipe thickness / diameter is large, etc., it is necessary to reduce the diameter reduction rate. Since the stress of the tube within the gap between the die and the inner surface of the die hole is a tensile stress, the contact between the die and the outer surface of the tube and between the drawing plug and the inner surface of the tube is insufficient, and the inner surface of the tube and the outer surface of the tube are insufficiently smoothed. And unevenness tends to remain. For this reason, in the cold check method, it is attempted to increase the diameter reduction ratio of the pipe so that the contact between the inner and outer faces of the pipe and the plug and the die is sufficient in the machining tool. However, when the tube is pulled out using a die, unevenness is generated on the inner surface of the tube, and the roughness due to the unevenness increases as the diameter reduction ratio of the tube increases. As a result, it has been difficult to obtain a tube with high dimensional accuracy by the cold check method, and a tube with better dimensional accuracy has been strongly demanded.

また、前記特許文献2〜4などに示されたロータリー鍛造押し込み法では、分割ダイス8を揺動させて使用しているから、その分割部分で段差が生じやすくて管外面の平滑化が不足し、あるいは、円周方向に異なる分割ダイスの剛性によって仕上げ寸法精度を十分得ることができず、さらに改善を求められていた。また、このロータリー鍛造押し込み法では、管を押し込んだ後の肉厚は、押し込む前の肉厚よりも厚くなっている。これは、複雑な構造を有するために荷重を加えにくいロータリー鍛造機を用いているがゆえの制約からくるものであり、その結果、管の内面に凹凸が発生しやすくなり、管の平滑化がしにくくなっている。肉厚を増加させるには、加工バイトの中で出側になるほど隙間を増大させて管を変形しやすくしているが、隙間があって変形がしやすくなると、ダイスやプラグの表面に管が十分接触しづらくなり、その結果として管内外面の平滑化が進展せずに、高寸法精度管が得られにくい欠点を有していた。   Further, in the rotary forging push-in method shown in Patent Documents 2 to 4 and the like, since the dividing die 8 is used while being swung, a step is easily generated in the divided portion, and the smoothing of the outer surface of the pipe is insufficient. Alternatively, the finished dimensional accuracy cannot be sufficiently obtained due to the rigidity of the divided dies different in the circumferential direction, and further improvement has been demanded. Moreover, in this rotary forging push-in method, the thickness after pushing the pipe is thicker than the thickness before pushing. This is due to the limitations of using a rotary forging machine that has a complicated structure and is difficult to apply a load, and as a result, irregularities are likely to occur on the inner surface of the pipe, and the pipe is smoothed. It is difficult to do. In order to increase the wall thickness, the gap is increased as it goes to the exit side in the machining tool, making it easier to deform the tube, but if there is a gap and deformation is easier, the tube will be on the surface of the die or plug. As a result, it was difficult to make sufficient contact, and as a result, smoothing of the inner and outer surfaces of the tube did not progress, and it was difficult to obtain a high dimensional accuracy tube.

また、高寸法精度管を製造するにあたっては、プラグ外面と管内面、ダイス内面と管外面との摩擦力を可能な限り低減しないと、加工中に管表面に焼付き等の疵が発生して、加工後の管の表面品質が低下し、その管は製品にならないばかりか、加工時の荷重が著しく増加して加工そのものが不可能になる場合があり、その結果、生産能率が著しく低下していた。   Also, when manufacturing a high dimensional accuracy tube, if the frictional force between the outer surface of the plug and the inner surface of the tube, the inner surface of the die and the outer surface of the tube is not reduced as much as possible, seizure such as seizure occurs on the tube surface during processing. The surface quality of the tube after processing deteriorates, the tube does not become a product, and the load during processing may increase significantly, making the processing itself impossible, resulting in a significant reduction in production efficiency. It was.

上記したように従来の冷牽法やロータリー鍛造押し込み法では、高寸法精度の管を得ることが難しく、また、管の表面品質が低下する場合があるという課題が未解決のままであった。これらの課題を解決するために、本発明は、表面品質が良好でかつ従来よりも格段に寸法精度の高い管が得られ、また該管を能率良く製造できる表面品質の良好な高寸法精度管の製造方法を提供することを目的とする。   As described above, in the conventional cold check method and rotary forging indentation method, it has been difficult to obtain a pipe with high dimensional accuracy, and the problem that the surface quality of the pipe may be deteriorated remains unsolved. In order to solve these problems, the present invention provides a high dimensional accuracy tube with good surface quality, which can obtain a tube with good surface quality and much higher dimensional accuracy than before, and can manufacture the tube efficiently. It aims at providing the manufacturing method of.

本発明は、管の内面および/または外面に潤滑被膜を形成させた後、管内にプラグを装入し、ダイスで管の押し抜きを行うことを特徴とする表面品質の良好な高寸法精度管の製造方法である。本発明では、管内に装入したプラグをフローティングさせながら、管を連続して送ってダイスで管の押し抜きを行うことが好ましい。また、本発明では、前記潤滑被膜を形成させる管は、酸化スケールが付着したままの鋼管であってもよい。また、前記潤滑被膜を形成させるのに用いる潤滑剤としては、液体潤滑剤、グリース系潤滑剤、乾燥性樹脂系潤滑剤(すなわち、乾燥性樹脂、あるいは該乾燥性樹脂を溶剤で希釈した液、あるいは該乾燥性樹脂のエマルジョン)のいずれも好ましく用いうる。乾燥性樹脂系潤滑剤を用いる場合の潤滑被膜の形成方法としては、これを管に塗布後、温熱風にあてて乾燥する、あるいは風乾するという方法が好ましい。   The present invention provides a high dimensional accuracy tube with good surface quality, characterized in that after forming a lubricating coating on the inner surface and / or outer surface of the tube, a plug is inserted into the tube and the tube is pushed out with a die. It is a manufacturing method. In the present invention, it is preferable to continuously feed the pipe while the plug inserted in the pipe is floating, and to push out the pipe with a die. In the present invention, the tube on which the lubricating coating is formed may be a steel tube with an oxide scale attached. The lubricant used to form the lubricating coating includes a liquid lubricant, a grease-based lubricant, a drying resin-based lubricant (that is, a drying resin, or a solution obtained by diluting the drying resin with a solvent, Alternatively, any of the drying resin emulsions) can be preferably used. As a method for forming a lubricating coating in the case of using a drying resin-based lubricant, a method of applying this to a pipe and then drying it by applying it to hot air or drying it by air is preferable.

また、用いる潤滑剤を次のいずれか一または二以上の方法で適用し潤滑被膜とすることが好ましい。
F1)ダイス入側で管の先端および/または後端から管に噴射して塗布する。
F2)ダイス入側で噴霧した中に管を通して塗布する。
F3)F1またはF2の塗布後に管に温熱風を通して塗膜を乾燥させる。
F4)F1またはF2の塗布前に管を予熱する。
F5)潤滑被膜を形成させる工程の上流で管を加熱しあるいは加熱後加工し、該管を高温のまま前記潤滑被膜を形成させる工程に搬送する。
Moreover, it is preferable that the lubricant to be used is applied by any one or more of the following methods to form a lubricant film.
F1) It sprays and apply | coats to a pipe | tube from the front-end | tip and / or back end of a pipe | tube at the die entrance side.
F2) Apply through a tube while spraying on the die entry side.
F3) Dry the coating film by passing hot air through the tube after applying F1 or F2.
F4) Preheat tube before application of F1 or F2.
F5) The tube is heated upstream of the step of forming the lubricating coating or processed after the heating, and the tube is conveyed to the step of forming the lubricating coating while maintaining a high temperature.

また、本発明では、前記プラグを管内に装入する工程を省くこともできる。   In the present invention, the step of inserting the plug into the pipe can be omitted.

本発明によれば、管をその表面品質を悪化させることなく、また、能率良く、著しく良好な寸法精度に仕上げることができる。   According to the present invention, it is possible to finish the tube with extremely good dimensional accuracy efficiently without deteriorating the surface quality.

以下、本発明の実施の形態および作用を、従来技術と対比させながら説明する。   Hereinafter, embodiments and operations of the present invention will be described in comparison with the prior art.

従来、ダイスとプラグを用いて管を引き抜いた場合、管の寸法精度を向上させることが困難である理由は、引き抜きであるがゆえに、加工バイト内でダイスと管外面、プラグと管内面の接触が不十分となることに由来する。すなわち、図2に示すように、管4内にプラグ5を装入してダイス6から管4を引き抜くことにより、ダイス6の出側で管引き機7により加えられた引き抜き力10によって加工バイト内には張力(引張応力)が発生する。加工バイト内の入側では、プラグ5に管内面が沿って変形するため、管外面はダイス6に接触しないかあるいは軽度にしか接触せず、また、加工バイト内の出側では、ダイス6に管外面が接触して変形するため、管内面はプラグ5に接触しないかあるいは軽度にしか接触しない。そのため、管外面、管内面ともに加工バイト内に自由変形の部分が存在して凹凸を十分平滑化できずに、引き抜き後には寸法精度の不十分な管しか得られていなかった。   Conventionally, when a pipe is pulled out using a die and a plug, it is difficult to improve the dimensional accuracy of the pipe. This is due to the fact that is insufficient. That is, as shown in FIG. 2, by inserting the plug 5 into the tube 4 and pulling out the tube 4 from the die 6, the cutting tool 10 is pulled by the pulling force 10 applied by the tube drawing machine 7 on the exit side of the die 6. A tension (tensile stress) is generated inside. Since the inner surface of the tube is deformed along the plug 5 on the entry side in the processing tool, the outer surface of the tube does not contact the die 6 or only slightly, and on the exit side in the processing tool, the die 6 is contacted. Since the outer surface of the tube contacts and deforms, the inner surface of the tube does not contact the plug 5 or only slightly contacts. For this reason, both the outer surface of the tube and the inner surface of the tube have free deformation portions in the working bite, and the unevenness cannot be sufficiently smoothed, and only a tube with insufficient dimensional accuracy has been obtained after drawing.

これに比べて、本発明の押し抜きの場合、図1に示すように、管4内にプラグ1を装入し、ダイス2の入側から管押し機3にて管4に押し込み力11を加えて、管4をダイス2内に送り込む。よって、加工バイト内の管の全域に亘って圧縮応力が作用する。その結果、加工バイト内の入側、出側を問わず、管4はプラグ1およびダイス2に十分接触できる。しかも、軽度の縮径率であっても、加工バイト内は圧縮応力状態となるため、引き抜きに比較して管とプラグ、管とダイスが十分接触しやすくて、管は平滑化しやすくなるので、高寸法精度の管が得られるわけである。ここで、生産性の点から、管4内でプラグ1をフローティングさせながら、管4を連続してダイス2内に送り込むことが好ましい。   In contrast, in the case of punching according to the present invention, as shown in FIG. 1, the plug 1 is inserted into the tube 4, and the pushing force 11 is applied to the tube 4 by the tube pusher 3 from the entry side of the die 2. In addition, the tube 4 is fed into the die 2. Therefore, the compressive stress acts on the entire area of the pipe in the machining tool. As a result, the tube 4 can sufficiently contact the plug 1 and the die 2 regardless of the entry side or the exit side in the machining tool. In addition, even in the case of a small diameter reduction ratio, since the processing bite is in a compressive stress state, the tube and the plug, the tube and the die are more easily contacted than the drawing, and the tube is easily smoothed. A tube with high dimensional accuracy is obtained. Here, from the viewpoint of productivity, it is preferable to continuously feed the tube 4 into the die 2 while floating the plug 1 in the tube 4.

また、図3に示す従来のロータリー鍛造押し込み法では、分割ダイス8を揺動(復動)12させて用いているため、分割部分による段差、あるいは、高応力下での円周方向に異なるダイスの剛性に起因する不均一変形を原因として、肉厚精度を十分良好なものにすることができなかった。   Further, in the conventional rotary forging push-in method shown in FIG. 3, since the divided die 8 is used by swinging (returning) 12, the step is different depending on the step due to the divided portion or in the circumferential direction under high stress. The thickness accuracy could not be made sufficiently good due to the non-uniform deformation due to the rigidity of the steel sheet.

これに比べて、本発明の押し抜きでは、ダイスは一体物でよくかつ揺動させる必要がないから、不均一変形が発生せず、その結果として管内面、管外面とも平滑化できるわけである。   Compared to this, in the punching of the present invention, the die may be a single piece and does not need to be swung, so non-uniform deformation does not occur, and as a result, both the inner surface of the tube and the outer surface of the tube can be smoothed. .

また、高寸法精度管の製造にあたり、プラグ外面と管内面、ダイス内面と管外面の間を潤滑すると、加工中に管表面に焼付き等の疵が発生しないため、表面品質の良好な管が製造できる。さらに潤滑により摩擦力が低減するので、加工に必要な荷重を低減できて加工エネルギーを節減でき、また生産能率も向上する。   When manufacturing high dimensional accuracy pipes, lubrication between the outer surface of the plug and the inner surface of the pipe and between the inner surface of the die and the outer surface of the pipe will not cause seizure such as seizure on the pipe surface during processing. Can be manufactured. Furthermore, since the frictional force is reduced by lubrication, the load required for machining can be reduced, machining energy can be saved, and the production efficiency can be improved.

そのために、発明者らは種々の潤滑方法を検討し、その結果、以下の方法が良いことを見出し、本発明の要件とした。すなわち、管の内面、外面のいずれか一方又は両方に予め潤滑被膜を形成させて押し抜きを行うのが良い。潤滑被膜の形成に用いる潤滑剤としては、液体潤滑剤、グリース系潤滑剤、乾燥性樹脂系潤滑剤(すなわち、乾燥性樹脂、あるいは該乾燥性樹脂を溶剤で希釈した液、あるいは該乾燥性樹脂のエマルジョン)のいずれも好ましい。液体潤滑剤としては、鉱物油、合成エステル、動植物油脂、およびこれらに添加剤を混合させたものなどが挙げられる。グリース系潤滑剤としては、Li系グリース潤滑剤、Na系グリース潤滑剤、これらに二硫化モリブデンなどの添加剤を含むものなどが挙げられる。乾燥性樹脂としては、ポリアクリル系樹脂、エポキシ系樹脂、ポリビニル系樹脂、ポリエステル系樹脂などが挙げられる。乾燥性樹脂を希釈する溶剤としては、エーテル類、ケトン類、芳香族系炭化水素、直鎖系・側鎖系炭化水素などが挙げられる。乾燥性樹脂のエマルジョンを得るための分散媒としては、水、アルコール類、これらの混合物などが挙げられる。前記乾燥性樹脂系潤滑剤を用いて潤滑被膜を形成させる方法としては、これを管に塗布して温熱風にあてて乾燥させる、あるいは風乾する方法が好ましい。   Therefore, the inventors examined various lubrication methods, and as a result, found that the following method is good and made it a requirement of the present invention. That is, it is preferable to perform the punching by previously forming a lubricating coating on one or both of the inner surface and the outer surface of the tube. Lubricants used for forming the lubricant film include liquid lubricants, grease-based lubricants, and dry resin-based lubricants (that is, a dry resin, a solution obtained by diluting the dry resin with a solvent, or the dry resin). Are preferred. Examples of liquid lubricants include mineral oils, synthetic esters, animal and vegetable oils and fats, and additives mixed with these. Examples of the grease-based lubricant include Li-based grease lubricant, Na-based grease lubricant, and those containing additives such as molybdenum disulfide. Examples of the drying resin include polyacrylic resins, epoxy resins, polyvinyl resins, and polyester resins. Examples of the solvent for diluting the drying resin include ethers, ketones, aromatic hydrocarbons, linear / side chain hydrocarbons, and the like. Examples of the dispersion medium for obtaining the emulsion of the drying resin include water, alcohols, and a mixture thereof. As a method for forming a lubricating coating using the drying resin lubricant, a method of applying the coating to a tube and applying it to hot air to dry, or air drying is preferable.

なお、温熱風とは、温風または熱風を意味し、温風は常温超100℃未満の気流、熱風は100℃超の気流を意味する。   The hot air means hot air or hot air, the hot air means an air flow above room temperature and below 100 ° C., and the hot air means an air flow above 100 ° C.

これらの潤滑剤を用いて能率良く潤滑被膜を形成させる方法としては、用いる潤滑剤を次のいずれか一または二以上の方法で適用し潤滑被膜とする方法が挙げられる。
F1)ダイス入側で管の先端および/または後端から管に噴射して塗布する。
F2)ダイス入側で噴霧した中に管を通して塗布する。
F3)F1またはF2の塗布後に管に温熱風を通して塗膜を乾燥させる。
F4)F1またはF2の塗布前に管を予熱する。
F5)潤滑被膜を形成させる工程の上流で管を加熱しあるいは加熱後加工し、該管を高温のまま前記潤滑被膜を形成させる工程に搬送する。
Examples of a method for efficiently forming a lubricant film using these lubricants include a method in which the lubricant to be used is applied by any one or more of the following methods to form a lubricant film.
F1) It sprays and apply | coats to a pipe | tube from the front-end | tip and / or back end of a pipe | tube at the die entrance side.
F2) Apply through a tube while spraying on the die entry side.
F3) Dry the coating film by passing hot air through the tube after applying F1 or F2.
F4) Preheat tube before application of F1 or F2.
F5) The tube is heated upstream of the step of forming the lubricating coating or processed after the heating, and the tube is conveyed to the step of forming the lubricating coating while maintaining a high temperature.

さらに能率良く高寸法精度管を製造するには、熱延鋼板をそのまま電縫溶接した電縫鋼管、あるいは炉で加熱されたままの継目無鋼管などを、酸化スケール除去せずにそのまま加工すると良く、またそのようにすれば処理コストを低減できる。   In order to produce high-precision pipes more efficiently, it is better to process ERW welded pipes that are hot-rolled steel sheets as they are, or seamless steel pipes that are heated in a furnace without removing the oxide scale. And if it does so, processing cost can be reduced.

なお、外径精度のみ要求される管を製造する場合は、プラグの装入を省いて押し抜きを行うと、プラグ装入‐取り出しの工程が無くなる分だけ製造時間が短縮し、さらに能率良く製造することができて好ましい。   When manufacturing pipes that only require outer diameter accuracy, if plugging is omitted and the punching is performed, the manufacturing time is shortened by the amount that the plug loading and unloading process is eliminated, and the production is more efficient. This is preferable.

〔比較例1〕表面に熱延スケールが付着したφ40mm×6.0mmt×5.5mmLの電縫鋼管を、図1に示した押し抜きにより次の条件Aで加工した。
(条件A)プラグ:鏡面のプラグを鋼管内に装入しフローティングさせる。
[Comparative Example 1] A 40 mm × 6.0 mmt × 5.5 mmL ERW steel pipe with a hot-rolled scale attached to the surface was processed under the following condition A by punching shown in FIG.
(Condition A) Plug: A mirror surface plug is inserted into a steel pipe and floated.

ダイス:一体型固定ダイス
縮径率:5%
ダイス出側の鋼管肉厚:6.0mmt(=入側肉厚)
〔本発明例1〕同上の鋼管を、その内外両面に液体潤滑剤(鉱物油)を前記F1(先端から)の方法で塗布して潤滑被膜を形成した後、比較例1と同様に加工した。
〔本発明例2〕同上の鋼管を、その内外両面にグリース系潤滑剤(Li系グリース潤滑剤に二硫化モリブデンを添加したもの)を前記F1(後端から)の方法で塗布して潤滑被膜を形成した後、比較例1と同様に加工した。
〔本発明例3〕同上の鋼管を、その内外両面に乾燥性樹脂(ポリアルキル系樹脂)を前記F1(先端から)の方法で塗布し熱風(約200℃)にあてて乾燥して潤滑被膜を形成した後、比較例1と同様に加工した。
〔本発明例4〕同上の鋼管を、その内外両面に乾燥性樹脂(ポリアルキル系樹脂)を溶剤(アセトン)で希釈した液を前記F1(先端から)の方法で塗布し温風(約50℃)にあてて乾燥して潤滑被膜を形成した後、比較例1と同様に加工した。
〔本発明例5〕同上の鋼管を、その内外両面に乾燥性樹脂(ポリアルキル系樹脂)を分散媒(水)に分散させたエマルジョンを前記F1(先端から)の方法で塗布し温風(約70℃)にあてて乾燥して潤滑被膜を形成した後、比較例1と同様に加工した。
〔比較例2〕同上の鋼管を、その内外両面に本発明例1と同じ液体潤滑剤を同じ方法で塗布して潤滑被膜を形成した後、図2に示した冷牽法により次の条件Bで加工した。
(条件B)プラグ、ダイス、縮径率:それぞれ条件Aと同じ
ダイス出側の鋼管肉厚:5.5mmt(<入側肉厚)
〔比較例3〕同上の鋼管を、その内外両面に本発明例1と同じ液体潤滑剤を同じ方法で塗布して潤滑被膜を形成した後、図3に示したロータリー鍛造押し込み法により次の条件Cで加工した。
Dice: Integrated fixed die
Reduction ratio: 5%
Steel pipe wall thickness on the die exit side: 6.0 mmt (= input wall thickness)
[Invention Example 1] The above steel pipe was coated with a liquid lubricant (mineral oil) on both the inner and outer surfaces by the method F1 (from the tip) to form a lubricating film, and then processed in the same manner as in Comparative Example 1. .
[Invention Example 2] Apply a grease lubricant (Li grease grease added with molybdenum disulfide) on both the inner and outer surfaces of the above steel pipe by the method F1 (from the rear end) and apply a lubricating coating. After forming, the same processing as in Comparative Example 1 was performed.
[Invention Example 3] The above steel pipe is coated with a drying resin (polyalkyl resin) on both the inner and outer surfaces by the method F1 (from the tip) and dried by applying hot air (about 200 ° C) to form a lubricating coating. After forming, the same processing as in Comparative Example 1 was performed.
[Invention Example 4] A solution obtained by diluting a drying resin (polyalkyl resin) with a solvent (acetone) on both the inner and outer surfaces of the steel pipe was applied by the method of F1 (from the tip) and warm air (about 50). C.) and dried to form a lubricating film, and then processed in the same manner as in Comparative Example 1.
[Invention Example 5] An emulsion in which a drying resin (polyalkyl resin) is dispersed in a dispersion medium (water) on both the inner and outer surfaces of the steel pipe is applied by the method of F1 (from the tip) and hot air ( (Approx. 70 ° C.) and dried to form a lubricating coating, which was then processed in the same manner as in Comparative Example 1.
[Comparative Example 2] After applying the same liquid lubricant as in Invention Example 1 on the inner and outer surfaces of the above steel pipe by the same method to form a lubricating film, the following condition B was applied by the cooling method shown in FIG. It was processed with.
(Condition B) Plug, die, diameter reduction ratio: same as Condition A
Steel pipe wall thickness on the die exit side: 5.5mmt (<Inside wall thickness)
[Comparative Example 3] After applying the same liquid lubricant as that of Invention Example 1 on both the inner and outer surfaces of the above steel pipe by the same method to form a lubricating film, the following conditions were obtained by the rotary forging indentation method shown in FIG. Processed with C.

(条件C)プラグ:条件Aと同じ
ダイス:分割ダイス
縮径率:条件Aと同じ
ダイス出側の鋼管肉厚:7.0mmt(>入側肉厚)
これら各例の方法で製造された鋼管について、表面疵の状態、および寸法精度(外径偏差、内径偏差、肉厚偏差)を測定した結果を表1に示す。なお、外径偏差および内径偏差は、管の円周方向断面を画像解析して、真円からの最大偏差(すなわち(最大径−最小径)/真円径×100%)を円周方向に算出することにより求めた。また、肉厚偏差は、管の円周方向断面を画像解析して、肉厚断面の画像から平均肉厚に対する最大偏差(すなわち(最大肉厚−最小肉厚)/平均肉厚×100%)として直接測定した。
(Condition C) Plug: Same as Condition A
Dice: Divided dice
Reduction ratio: Same as condition A
Steel pipe wall thickness on the die exit side: 7.0 mmt (> input wall thickness)
Table 1 shows the results of measuring the surface flaw state and dimensional accuracy (outer diameter deviation, inner diameter deviation, wall thickness deviation) of the steel pipes manufactured by the methods of these examples. The outer diameter deviation and the inner diameter deviation are obtained by image analysis of the circumferential section of the tube, and the maximum deviation from the perfect circle (ie, (maximum diameter−minimum diameter) / true circle diameter × 100%) Obtained by calculating. Further, the thickness deviation is obtained by image analysis of the circumferential cross section of the tube, and the maximum deviation with respect to the average thickness from the image of the thickness cross section (that is, (maximum thickness−minimum thickness) / average thickness × 100%). As measured directly.

Figure 2005028451
Figure 2005028451

表1より、潤滑下で押し抜きを行った本発明例ではいずれも、加工後の鋼管表面に疵は全く発生しておらず、良好な表面品質が得られ、寸法精度も著しく良好であった。これに対し、無潤滑下で押し抜きを行った比較例1では加工後の鋼管表面に疵が発生していた。潤滑下で冷牽法による加工を行った比較例2では寸法精度が低下していた。潤滑下でロータリー鍛造押し込み法による加工を行った比較例3では寸法精度がさらに低下していた。   According to Table 1, in all of the examples of the present invention that were punched out under lubrication, no flaws were generated on the surface of the steel pipe after processing, good surface quality was obtained, and dimensional accuracy was remarkably good. . On the other hand, in Comparative Example 1 in which punching was performed without lubrication, wrinkles were generated on the surface of the steel pipe after processing. In Comparative Example 2 in which processing by the cold check method was performed under lubrication, the dimensional accuracy was lowered. In Comparative Example 3 in which processing by the rotary forging indentation method was performed under lubrication, the dimensional accuracy was further lowered.

比較例1と同じ鋼管を用い、液体潤滑剤(合成エステル)、グリース系潤滑剤(Na系グリース潤滑剤に二硫化モリブデンを添加したもの)または乾燥性樹脂のエマルジョンを表2に示す被膜形成条件で適用して潤滑被膜を形成した後、図1に示した押し抜きにより前記条件A(ただし、一部についてはプラグ装入を省略)で加工し、本発明例6〜10とした。   Film formation conditions shown in Table 2 using the same steel pipe as in Comparative Example 1 and liquid lubricant (synthetic ester), grease lubricant (Na grease lubricant added with molybdenum disulfide) or drying resin emulsion After forming a lubricating film by applying the above, the punching shown in FIG. 1 was carried out under the condition A (however, plug insertion was omitted for some parts) to obtain inventive examples 6-10.

得られた管について実施例1と同様の調査を行うと共に、被膜形成条件ごとに加工能率を調査した。その結果を表2に示す。加工能率は、1時間当りの加工本数の相対値(比較例1に対する比)で示した。本発明によれば、無潤滑の比較例1に比べ9倍以上高い加工能率で、表面疵の無い高寸法精度管が得られることがわかる。   The obtained tube was investigated in the same manner as in Example 1, and the processing efficiency was investigated for each film forming condition. The results are shown in Table 2. The processing efficiency was indicated by the relative value of the number of processing per hour (ratio to Comparative Example 1). According to the present invention, it can be seen that a high dimensional accuracy tube having no surface flaws can be obtained with a machining efficiency 9 times or more higher than that of Comparative Example 1 without lubrication.

Figure 2005028451
Figure 2005028451

なお、以上の実施例では、管の内外両面に潤滑被膜を形成したいわゆる両面潤滑の場合を示したが、本発明はこれに限定されず、内面、外面のいずれか一方に潤滑被膜を形成するいわゆる片面潤滑の場合も含むものであり、この片面潤滑の場合でも、潤滑被膜を形成した側の面に疵が発生するのを有効に防止できることは明らかである。   In the above embodiments, the case of so-called double-sided lubrication in which a lubricating coating is formed on both the inner and outer sides of the pipe has been shown, but the present invention is not limited to this, and the lubricating coating is formed on either the inner surface or the outer surface. It also includes the case of so-called single-side lubrication, and it is clear that wrinkles can be effectively prevented from occurring on the surface on which the lubricating film is formed even in this single-side lubrication.

本発明は、管を高寸法精度に仕上げる工程に利用することができる。   The present invention can be used in a process of finishing a pipe with high dimensional accuracy.

本発明で用いる押し抜きの概要を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline | summary of the punch used by this invention. 従来の冷牽法の概要を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline | summary of the conventional cold check method. 従来のロータリー鍛造押し込み法の概要を示す縦断面図(a)およびそのA−A矢視図(b)である。It is the longitudinal cross-sectional view (a) which shows the outline | summary of the conventional rotary forge pushing method, and its AA arrow directional view (b).

符号の説明Explanation of symbols

1 プラグ
2 ダイス(一体型固定ダイス)
3 管押し機
4 管(金属管、鋼管)
5 プラグ
6 ダイス
7 管引き機
8 分割ダイス
9 ロータリー鍛造機
10 引き抜き力
11 押し込み力
12 揺動(復動)
1 plug 2 dice (integrated fixed die)
3 Tube pusher 4 Tube (metal tube, steel tube)
5 Plug 6 Die 7 Pipe puller 8 Divided die 9 Rotary forging machine 10 Pulling force 11 Pushing force 12 Swing (return)

Claims (12)

管の内面および/または外面に潤滑被膜を形成させた後、管内にプラグを装入し、ダイスで管の押し抜きを行うことを特徴とする表面品質の良好な高寸法精度管の製造方法。   A method for producing a high dimensional accuracy tube with good surface quality, comprising forming a lubricating film on the inner surface and / or outer surface of a tube, inserting a plug into the tube, and punching the tube with a die. 管の内面および/または外面に潤滑被膜を形成させた後、管内にプラグを装入しフローティングさせながら、管を連続して送ってダイスで管の押し抜きを行うことを特徴とする表面品質の良好な高寸法精度管の製造方法。   After forming a lubrication film on the inner surface and / or outer surface of the tube, the tube is continuously fed into the tube and floated, and the tube is continuously fed to push the tube with a die. A manufacturing method of a good high dimensional accuracy tube. 前記潤滑被膜を形成させる管が、酸化スケールが付着したままの鋼管であることを特徴とする請求項1または2に記載の表面品質の良好な高寸法精度管の製造方法。   The method for producing a high dimensional accuracy tube with good surface quality according to claim 1 or 2, wherein the tube for forming the lubricating coating is a steel tube with oxide scales still attached. 液体潤滑剤またはグリース系潤滑剤を用いて前記潤滑被膜を形成させることを特徴とする請求項1〜3のいずれかに記載の表面品質の良好な高寸法精度管の製造方法。   The method for producing a high dimensional accuracy tube with good surface quality according to any one of claims 1 to 3, wherein the lubricant film is formed using a liquid lubricant or a grease-based lubricant. 乾燥性樹脂系潤滑剤、すなわち乾燥性樹脂、乾燥性樹脂を溶剤で希釈した液および乾燥性樹脂のエマルジョンのいずれか、を用いて前記潤滑被膜を形成させることを特徴とする請求項1〜3のいずれかに記載の表面品質の良好な高寸法精度管の製造方法。   4. The lubricating coating is formed using a drying resin lubricant, that is, a drying resin, a solution obtained by diluting a drying resin with a solvent, or an emulsion of the drying resin. The manufacturing method of the high dimensional accuracy pipe | tube with favorable surface quality in any one of. 前記乾燥性樹脂系潤滑剤を管に塗布後、温熱風にあてて、あるいは風乾して前記潤滑被膜を形成させることを特徴とする請求項5記載の表面品質の良好な高寸法精度管の製造方法。   6. The production of a high dimensional accuracy tube with good surface quality according to claim 5, wherein the dry resin-based lubricant is applied to the tube and then applied to hot air or air dried to form the lubricating coating. Method. 用いる潤滑剤をダイス入側で管の先端および/または後端から管に噴射して塗布することを特徴とする請求項4または5に記載の表面品質の良好な高寸法精度管の製造方法。   6. The method for producing a high dimensional accuracy pipe with good surface quality according to claim 4, wherein the lubricant to be used is sprayed and applied to the pipe from the front end and / or rear end of the pipe on the die entrance side. 用いる潤滑剤をダイス入側で噴霧した中に管を通して塗布することを特徴とする請求項4または5に記載の表面品質の良好な高寸法精度管の製造方法。   6. The method for producing a high dimensional accuracy tube with good surface quality according to claim 4, wherein the lubricant to be used is applied through the tube while being sprayed on the die entrance side. 前記塗布後に管に温熱風を通して塗膜を乾燥させることを特徴とする請求項7または8に記載の表面品質の良好な高寸法精度管の製造方法。   9. The method for producing a high-dimensional accuracy tube with good surface quality according to claim 7, wherein the coating film is dried by passing hot air through the tube after the application. 前記塗布前に管を予熱することを特徴とする請求項7〜9のいずれかに記載の表面品質の良好な高寸法精度管の製造方法。   The method for manufacturing a high-dimensional accuracy tube with good surface quality according to any one of claims 7 to 9, wherein the tube is preheated before the application. 前記潤滑被膜を形成させる工程の上流で管を加熱しあるいは加熱後加工し、該管を高温のまま前記潤滑被膜を形成させる工程に搬送することを特徴とする請求項1〜10のいずれかに記載の表面品質の良好な高寸法精度管の製造方法。   The tube is heated or processed after heating upstream of the step of forming the lubricating coating, and the tube is conveyed to the step of forming the lubricating coating at a high temperature. The manufacturing method of the high dimensional accuracy pipe | tube with favorable surface quality of description. 前記プラグを管内に装入する工程を省くことを特徴とする請求項1〜11のいずれかに記載の表面品質の良好な高寸法精度管の製造方法。   The method for manufacturing a high-dimensional accuracy pipe with good surface quality according to any one of claims 1 to 11, wherein a step of inserting the plug into the pipe is omitted.
JP2004157878A 2003-06-17 2004-05-27 Method for manufacturing tube with high dimensional accuracy having good surface quality Pending JP2005028451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004157878A JP2005028451A (en) 2003-06-17 2004-05-27 Method for manufacturing tube with high dimensional accuracy having good surface quality

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003171819 2003-06-17
JP2004157878A JP2005028451A (en) 2003-06-17 2004-05-27 Method for manufacturing tube with high dimensional accuracy having good surface quality

Publications (1)

Publication Number Publication Date
JP2005028451A true JP2005028451A (en) 2005-02-03

Family

ID=34219914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157878A Pending JP2005028451A (en) 2003-06-17 2004-05-27 Method for manufacturing tube with high dimensional accuracy having good surface quality

Country Status (1)

Country Link
JP (1) JP2005028451A (en)

Similar Documents

Publication Publication Date Title
JP2004314083A (en) High dimensional precision pipe and its manufacturing method
EP0913213B1 (en) Metalworking method
JP2007000907A (en) High dimensional precision pipe manufacturing method with high efficiency and stability
JP2005028451A (en) Method for manufacturing tube with high dimensional accuracy having good surface quality
JP2006181611A (en) Highly efficient method for manufacturing pipe with high dimensional accuracy and excellent surface quality
JP4682450B2 (en) Seamless steel pipe manufacturing method and seamless steel pipe excellent in internal smoothness
JP2006088221A (en) Manufacturing method of tube having high dimensional accuracy
KR100665977B1 (en) High Dimensional Accuracy Pipe, Manufacturing Method Thereof, and Manufacturing Apparatus
JP4396234B2 (en) Stable manufacturing method of high dimensional accuracy pipe
JP4428225B2 (en) Plug and cold drawing method
JP4285072B2 (en) High-efficiency manufacturing method for high dimensional accuracy pipes
JP2007054882A (en) Method for efficiently manufacturing pipe with high dimensional accuracy
JP4300864B2 (en) High dimensional accuracy pipe manufacturing equipment
JP4333257B2 (en) Stable manufacturing method of high dimensional accuracy pipe
JP2006175485A (en) Method for highly efficiently manufacturing pipe having high dimensional accuracy
RU2779127C1 (en) Method for manufacturing shells of variable cross-section
JP2005125377A (en) Method for manufacturing drawn tube having excellent surface quality
JP2005334901A (en) Method for manufacturing tube having excellent outside diameter accuracy with high efficiency
JP2007090392A (en) Highly-efficient and consistent manufacturing method of high dimensional precision pipe
RU2319559C1 (en) Wire production method
Kumar et al. Forming
JP2006136899A (en) Manufacturing method of pipe having high dimensional accuracy
JP2006000916A (en) Highly efficient manufacturing method of drawn tube
RU2650654C1 (en) Method for radial forging of short-length blanks
JP2006061932A (en) Highly efficient manufacturing method for tube with high dimensional precision