JP2004296919A - キャパシタ製造方法、メモリ装置、及び電子機器 - Google Patents

キャパシタ製造方法、メモリ装置、及び電子機器 Download PDF

Info

Publication number
JP2004296919A
JP2004296919A JP2003089112A JP2003089112A JP2004296919A JP 2004296919 A JP2004296919 A JP 2004296919A JP 2003089112 A JP2003089112 A JP 2003089112A JP 2003089112 A JP2003089112 A JP 2003089112A JP 2004296919 A JP2004296919 A JP 2004296919A
Authority
JP
Japan
Prior art keywords
layer
ferroelectric
buffer layer
lattice constant
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003089112A
Other languages
English (en)
Inventor
Junichi Karasawa
潤一 柄沢
Koji Ohashi
幸司 大橋
泰彰 ▲濱▼田
Yasuaki Hamada
Takeshi Kijima
健 木島
Eiji Natori
栄治 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003089112A priority Critical patent/JP2004296919A/ja
Publication of JP2004296919A publication Critical patent/JP2004296919A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】電極と強誘電体層との格子不整合の少ないキャパシタを提供する。
【解決手段】下部電極210及び強誘電体層230を有するキャパシタ200を製造するキャパシタ製造方法であって、下部電極210を形成する金属層形成ステップと、下部電極210の格子定数と強誘電体層230の格子定数との間の格子定数を有する、強誘電体特性を示すバッファ層220を、下部電極210上に形成するバッファ層形成ステップと、強誘電体層230を、バッファ層220上に形成する強誘電体層形成ステップとを備えたキャパシタ製造方法。
【選択図】図2

Description

【0001】
【発明の属する技術分野】
本発明は、キャパシタ製造方法、メモリ装置、及び電子機器に関する。
【0002】
【背景の技術】
従来の強誘電体キャパシタを有する半導体装置として、特開2000−156471号公報(特許文献1)に開示されたものがある。上記特許文献1には、白金からなる下部電極と、当該下部電極上に形成された強誘電体薄膜と、当該強誘電体薄膜上に形成された上部電極とを備えた半導体装置が開示されている。
【0003】
【特許文献1】
特開2000−156471号公報
【発明が解決しようとする課題】
しかし、上記特許文献に開示された従来の半導体装置では、下部電極と強誘電体薄膜との格子不整合が大きく、歪の少ない強誘電体薄膜を下部電極上に形成するのが困難であった。
【0004】
よって、本発明は、上記の課題を解決することのできるキャパシタ製造方法、メモリ装置、及び電子機器を提供することを目的とする。この目的は特許請求の範囲における独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例を規定する。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明の第1の形態によれば、金属層及び強誘電体層を有するキャパシタを製造するキャパシタ製造方法であって、金属層を形成する金属層形成ステップと、金属層の格子定数と強誘電体層の格子定数との間の格子定数を有する、強誘電体特性を示すバッファ層を、金属層上に形成するバッファ層形成ステップと、強誘電体層を、バッファ層上に形成する強誘電体層形成ステップとを備えたことを特徴とするキャパシタ製造方法を提供する。これにより、金属層と強誘電体層の格子不整合がきわめて少ないキャパシタを提供することができる。
【0006】
また、強誘電体層形成ステップは、金属層より格子定数が小さい所定の強誘電体材料により強誘電体層を形成し、バッファ層形成ステップは、所定の強誘電体材料と、金属層より格子定数が大きく所定の強誘電体材料と同一の結晶構造を有する他の強誘電体材料との混晶材料によりバッファ層を形成してもよい。また、強誘電体層形成ステップは、金属層より格子定数が大きい所定の強誘電体材料により強誘電体層を形成し、バッファ層形成ステップは、所定の強誘電体材料と、金属層より格子定数が小さく所定の強誘電体材料と同一の結晶構造を有する他の強誘電体材料との混晶材料によりバッファ層を形成してもよい。これにより、金属層及び強誘電体層の格子定数に応じて、バッファ層の格子定数を容易に制御することができる。
【0007】
また、所定の強誘電体材料は、チタン酸鉛とジルコン酸鉛との混晶材料であり、他の強誘電体材料は、チタン酸カルシウム又はチタン酸ストロンチウムであることが好ましい。これにより、キャパシタの容量を高く保ったまま、容易にバッファ層の格子定数を制御することができる。
【0008】
また、バッファ層形成ステップは、金属層から強誘電体層に向かう方向において、格子定数が連続的に変化するように、バッファ層を形成することが好ましい。これにより、バッファ層が単層で形成される場合であっても、強誘電体層の格子不整合を低減させることができる。
【0009】
バッファ層形成ステップは、強誘電体特性を示す、格子定数が互いに異なる複数の層を、当該格子定数が金属層から強誘電体層に向かう方向において段階的に変化するように形成することにより、バッファ層を形成することが好ましい。これにより、金属層と強誘電体層の格子定数の差が大きい場合であっても、強誘電体層の格子不整合を低減させることができる。
【0010】
本発明の第2の形態によれば、上記キャパシタ製造方法により製造されたキャパシタを備えたことを特徴とするメモリ装置を提供する。メモリ装置は、上記キャパシタを備えた強誘電体メモリ、並びに上記キャパシタ及びロジック回路を備えた混載デバイスその他の上記キャパシタを備えた半導体装置を含む。
【0011】
本発明の第3の形態によれば、上記キャパシタを備えたことを特徴とする電子機器を提供する。電子機器は、パーソナルコンピュータ、ゲーム機、携帯情報端末、携帯通信機器、ICカードその他の上記メモリ装置を備えた機器を含む。
【0012】
【発明の実施の形態】
以下、図面を参照しつつ、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0013】
図1は、本発明の一実施形態に係るメモリ装置100を示す図である。メモリ装置100は、電荷を蓄積することによりデータを記憶するキャパシタ200と、キャパシタ200を構成する下部電極210(図2参照)に電気的に接続され、キャパシタ200に電圧を印加するか否かを切り替えるトランジスタ110と、トランジスタ110のゲートに電気的に接続されたワード線120と、トランジスタ110のソース又はドレインに電気的に接続されたビット線130と、キャパシタ200を構成する上部電極240(図2参照)に電気的に接続されたプレート線140とを備える。
【0014】
メモリ装置100の動作について説明する。キャパシタ200にデータを書き込む場合、データを書き込むキャパシタ200に対応するビット線130及びプレート線140を所定の電圧にチャージする。そして、当該キャパシタ200に対応するワード線120を所定の電圧にチャージしてトランジスタ110をオンにすることにより、キャパシタ200に電荷を蓄積させる。キャパシタ200は、後述するように強誘電体層を備えて構成されているため、当該強誘電体層の残留分極特性により、メモリ装置100の電源を切った場合であっても、キャパシタ200は書き込まれたデータを保持することができる。
【0015】
一方、キャパシタ200に書き込まれたデータを読み出す場合は、データを読み出すキャパシタ200に対応するワード線120を所定の電圧にチャージしてトランジスタ110をオンにすることにより、キャパシタ200からビット線130に流れ出る電荷を、当該ビット線130に電気的に接続されたセンスアンプ等により検出し、当該キャパシタ200に保持されたデータを判定する。
【0016】
図2は、キャパシタ200の一例を示す図である。キャパシタ200は、金属層の一例である下部電極210と、バッファ層220と、強誘電体層230と、上部電極240とを有する。下部電極210及び上部電極240は、白金(Pt)、イリジウム(Ir)、ルテニウム(Ru)、金(Au)等の貴金属材料により形成されるのが望ましい。
【0017】
バッファ層220は、下部電極210を構成する材料の格子定数と、強誘電体層230を構成する材料の格子定数との間の格子定数を有する材料により構成される。すなわち、バッファ層220は、下部電極210と強誘電体層230とを格子整合するような材料により構成される。また、バッファ層220は、強誘電体特性を示す材料、すなわち、電圧を印加することにより自発分極し、電圧を取り除いた後でも当該分極が維持される材料を含んで構成される。
【0018】
バッファ層220は、強誘電体層230を構成する所定の強誘電体材料と、当該所定の強誘電体材料と同一の結晶構造を有する他の強誘電体材料であるバッファ材料との混晶材料により構成されるのが好ましい。下部電極210の格子定数が強誘電体層230の格子定数より小さい場合、バッファ材料は、下部電極210より小さい格子定数を有することが好ましい。また、下部電極210の格子定数が強誘電体層230の格子定数より大きい場合、バッファ材料は、下部電極210より大きい格子定数を有することが好ましい。
【0019】
本実施形態において、強誘電体層230は、ペロブスカイト構造を有する、チタン酸鉛(PbTiO)とジルコン酸鉛(PbZrO)との混晶材料(PZT)により構成されている。また、バッファ層220は、ペロブスカイト構造を有する、PZTとチタン酸カルシウム(CaTiO)又はチタン酸ストロンチウム(SrTiO)との混晶材料により構成されている。なお、バッファ層220は、PZTとチタン酸カルシウム及びチタン酸ストロンチウムの双方を含む混晶材料により構成されてもよい。
【0020】
バッファ層220は、当該バッファ層220の内部において格子定数が変化するように構成されてもよい。このとき、下部電極210の格子定数が、強誘電体層230の格子定数より小さい場合には、バッファ層220は、下部電極210から強誘電体層230に向かう方向に格子定数が大きくなるように構成される。また、下部電極210の格子定数が、強誘電体層230の格子定数より大きい場合、バッファ層220は、下部電極210から強誘電体層230に向かう方向に格子定数が小さくなるように構成される。具体的には、バッファ層220に含まれるバッファ材料の含有量を変化させることにより、バッファ層220の格子定数を変化させる。この場合、バッファ層220におけるバッファ材料の含有量は、バッファ層220の内部において連続的に変化させてもよく、また、段階的に変化させてもよい。
【0021】
図3は、キャパシタ200の他の例を示す図である。本例においてキャパシタ200は、下部電極210と、強誘電体層230と、上部電極240と、下部電極210上に形成された第1バッファ層220−1と、第1バッファ層220−1上に形成された第2バッファ層220−2と、第2バッファ層220−2上に形成された第3バッファ層220−3とを有する。すなわち、キャパシタ200は、下部電極210と強誘電体層230との間に、複数のバッファ層220を有する。
【0022】
第1バッファ層220−1、第2バッファ層220−2、及び第3バッファ層220−3は、互いに異なる格子定数を持つことが好ましい。さらに好ましくは、下部電極210から強誘電体層230に向かう方向において、各バッファ層220の格子定数が段階的に変化するように形成される。例えば、下部電極210の格子定数が強誘電体層230の格子定数より小さい場合、第1バッファ層220−1、第2バッファ層220−2、第3バッファ層220−3の順に格子定数が大きくなるように、下部電極210と強誘電体層230との間において、第1バッファ層220−1、第2バッファ層220−2、及び第3バッファ層220−3を形成する。
【0023】
また、第1バッファ層220−1、第2バッファ層220−2、及び第3バッファ層220−3は、所定の強誘電体材料とバッファ材料とを含む同一の混晶材料により構成されるのが好ましい。この場合、第1バッファ層220−1、第2バッファ層220−2、及び第3バッファ層220−3は、それぞれ当該混晶材料におけるバッファ材料の含有量が異なるように形成される。また、第1バッファ層220−1、第2バッファ層220−2、及び第3バッファ層220−3は、それぞれ異なる強誘電体材料により形成されてもよい。
【0024】
図4は、本実施形態におけるバッファ層220を構成する材料の組成比と格子定数との関係を示す図である。同図において、縦軸は格子定数を示し、横軸は、バッファ層220における、鉛(Pb)とカルシウム(Ca)又はストロンチウム(Sr)の総和を1とした場合の、当該バッファ層220におけるカルシウム又はストロンチウムの含有比率xを示す。
【0025】
同図において、線Aは、下部電極210を構成する白金(Pt)の格子定数を示す。線Bは、強誘電体層230を構成するPZTの格子定数を示す。本実施形態では、下部電極210は、面心立方構造を有する白金(Pt)により構成されており、格子定数は0.3924nm(ナノメートル)である。また、強誘電体層230は、ペロブスカイト構造を有するPZTにより構成されており、PZTが正方晶である場合、a軸方向における格子定数は0.3899nmであり、c軸方向の格子定数は0.4153nmである。また、本実施形態では、強誘電体層230を構成するPZTは、<111>方向に配向しているため、バッファ層220と接する面におけるPZTの平均格子定数は、0.3982nmである。
【0026】
線Cは、バッファ層220をPZTとチタン酸カルシウムとの混晶材料により構成した場合における、カルシウムの含有比率xとバッファ層220の格子定数との関係を示す。すなわち、線Cは、(Pb1−x,Ca)(Zr,Ti)O(以下、PCZTとする)における、カルシウムの含有比率xと格子定数との関係を示している。また、線Dは、バッファ層220をPZTとチタン酸ジルコニウムとの混晶材料により構成した場合における、ストロンチウム(Sr)の含有比率xとバッファ層220の格子定数との関係を示す。すなわち、線Dは、(Pb1−x,Sr)(Zr,Ti)O(以下、PSZTとする)における、ストロンチウムの含有比率xと格子定数との関係を示している。同図に示すように、カルシウム又はストロンチウムの含有比率xを変化させることにより、すなわち、バッファ層220におけるバッファ材料の比率を変化させることにより、バッファ層220の格子定数を所望の値に制御することができる。
【0027】
図3及び図4を参照して、キャパシタ200を形成する方法の一例について説明する。まず、スパッタリング法や蒸着法等により下部電極210を形成した後、下部電極210に接するようにバッファ層220を形成する。以下において、下部電極210との格子定数の差が、下部電極210と強誘電体層230との格子定数の差の、それぞれ1/3、1/2、2/3程度となるように、第1バッファ層220−1、第2バッファ層220−2、及び第3バッファ層220−3を、下部電極210と強誘電体層230との間に、スピンコート法により形成する例について説明する。
【0028】
下部電極210が形成された後、下部電極210との格子定数の差が、下部電極210と強誘電体層230との格子定数の差の1/3程度となるように、第1バッファ層220−1を下部電極210上に形成する。図4を参照して、下部電極210との格子定数の差が、下部電極210と強誘電体層230との格子定数の差の1/3程度となるような格子定数の値は約0.3962nmである。そのため、PCZT又はPSZTの格子定数が約0.3962nmとなるように、カルシウム又はストロンチウムの含有量xが調整された塗布溶液により、第1バッファ層220−1を形成する。
【0029】
具体的には、PCZTにおけるカルシウムの含有率xが0.1〜0.15程度(線C参照)となるように調整したPCZT塗布溶液、又はPSZTにおけるストロンチウムの含有率xが0.2〜0.3程度(線D参照)となるように調整したPSZT塗布溶液を、下部電極210上にスピンコート法により塗布し、当該塗布溶液を100〜200℃程度の温度で乾燥した後、200〜400℃程度の温度で熱分解させることにより、第1バッファ層220−1を形成する。
【0030】
次に、下部電極210又は強誘電体層230との格子定数の差が、下部電極210と強誘電体層230との格子定数の差の1/2程度となるように、第2バッファ層220−2を第1バッファ層220−1上に形成する。図4を参照して、下部電極210又は強誘電体層230との格子定数の差が、下部電極210と強誘電体層230との格子定数の差の1/2程度となるような格子定数の値は約0.3951nmである。そのため、PCZT又はPSZTの格子定数が約0.3951nmとなるように、カルシウム又はストロンチウムの含有量xが調整された塗布溶液により、第2バッファ層220−2を形成する。
【0031】
具体的には、PCZTにおけるカルシウムの含有率xが0.23〜0.28程度(線C参照)となるように調整したPCZT塗布溶液、又はPSZTにおけるストロンチウムの含有率xが0.45〜0.55程度(線D参照)となるように調整したPSZT塗布溶液を、第1バッファ層220−1上にスピンコート法により塗布し、当該塗布溶液を100〜200℃程度の温度で乾燥した後、200〜400℃程度の温度で熱分解させることにより、第2バッファ層220−2を形成する。
【0032】
次に、強誘電体層230との格子定数の差が、下部電極と強誘電体層との格子定数の差の2/3程度となるように、第3バッファ層220−3を第2バッファ層220−2上に形成する。図4を参照して、強誘電体層230との格子定数の差が、下部電極210と強誘電体層230との格子定数の差の2/3程度となるような格子定数の値は約0.3963nmである。そのため、PCZT又はPSZTの格子定数が約0.3963nmとなるように、カルシウム又はストロンチウムの含有量xが調整された塗布溶液により、第3バッファ層220−3を形成する。
【0033】
具体的には、PCZTにおけるカルシウムの含有率xが0.17〜0.22程度(線C参照)となるように調整したPCZT塗布溶液、又はPSZTにおけるストロンチウムの含有率xが0.33〜0.43程度(線D参照)となるように調整したPSZT塗布溶液を、第2バッファ層220−2上にスピンコート法により塗布し、当該塗布溶液を100〜200℃程度の温度で乾燥した後、200〜400℃程度の温度で熱分解させることにより、第3バッファ層220−2を形成する。
【0034】
本例では、それぞれ格子定数が異なるバッファ層220を3層形成しているが、バッファ層220は、4層以上形成されてもよい。バッファ層220が複数層形成される場合、当該複数のバッファ層220は、下部電極210から強誘電体層230に向かう方向において、各層の格子定数が段階的に変化するように形成されるのが望ましい。
【0035】
また、バッファ層220は、バッファ層220の内部において格子定数が連続的に変化するように形成されてもよい。例えば、LSMCD(Liquid Source Misted Chemical Deposition)やMOCVD(Metal Organic CVD)のように、バッファ層220を形成するための原料供給量を、成膜過程において連続的に変化させることができる方法によりバッファ層220を形成することにより、内部において格子定数が連続的に変化するようにバッファ層220を形成することができる。この場合も、バッファ層220は、下部電極210から強誘電体層230に向かう方向において、バッファ層220の格子定数が連続的に変化するように形成されるのが望ましい。
【0036】
次に、第3バッファ層220−3上に、強誘電体層230をスピンコート法により形成する。具体的には、PZT塗布溶液をスピンコート法により塗布し、当該塗布溶液を100〜200℃程度の温度で乾燥した後、200〜400℃程度の温度で熱分解させる。そして、このPZT塗布工程を、強誘電体層230が所望の厚さになるまで繰り返すことにより、強誘電体層230を形成する。
【0037】
なお、バッファ層220の厚さは5〜30nm程度であることが好ましく、また、強誘電体層230の厚さは50〜300nm程度であることが好ましい。また、バッファ層220の厚さは、強誘電体層230の厚さの5〜20%程度であることが好ましい。
【0038】
次に、バッファ層220及び強誘電体層230を結晶化させる。具体的には、バッファ層220及び強誘電体層230を、450〜650℃程度の温度に加熱することにより結晶化させる。このとき、バッファ層220及び強誘電体層230は、RTA(Rapid Thermal Annealing)により結晶化させるのが好ましい。
【0039】
そして、強誘電体層230上に、例えばスパッタリング法により上部電極240を形成してキャパシタ200を得る。上部電極240は、白金等の貴金属材料により形成されるのが好ましい。強誘電体層230と上部電極240との間に、強誘電体層230と上部電極240の間の格子定数を有するバッファ層をさらに形成してもよい。これにより、強誘電体層230と上部電極240との格子不整合も低減させることができるため、電気特性がさらに良好なキャパシタ200を得ることができる。
【0040】
本実施形態によれば、下部電極210と強誘電体層230との格子不整合が大きい場合であっても、下部電極210と強誘電体層230との間にバッファ層220を設けることにより、強誘電体層230を形成するときの格子不整合を低減させることができる。これにより、例えばPZTを<111>方向に配向させる等、強誘電体層230を構成する結晶を下部電極の結晶方位に沿うように配向し易くすることができる。ひいては電気特性がきわめて良好なキャパシタ200及びメモリ装置100を提供することができる。
【0041】
また、本実施形態によれば、バッファ層220を、強誘電体特性を有する材料により形成することにより、キャパシタ200の強誘電体特性を低下させることなく、格子不整合の少ない強誘電体層230を形成することができる。これにより、キャパシタ200の面積を低減させることができるため、小型かつ安価なキャパシタ200及びメモリ装置100を提供することができる。
【0042】
また、本実施形態によれば、バッファ層220を、同一の結晶構造を有する複数の強誘電体材料により構成することにより、バッファ層220の格子定数を所望の値に容易に制御することができる。これにより、同一の結晶構造を有し、格子定数が異なる複数のバッファ層220を容易に形成することができる。また、バッファ層220の内部において容易に格子定数を制御することができる。
【0043】
図5は、本発明のメモリ装置を備えた電子機器の一例であるパーソナルコンピュータ1000の構成を示す斜視図である。図5において、パーソナルコンピュータ1000は、表示パネル1002と、キーボード1004を有する本体部1006とを備える。当該パーソナルコンピュータ1000の本体部1006の内蔵基板等において、本発明のメモリ装置が利用されている。
【0044】
上記発明の実施の形態を通じて説明された実施例や応用例は、用途に応じて適宜に組み合わせて、又は変更若しくは改良を加えて用いることができ、本発明は上述した実施形態の記載に限定されるものではない。そのような組み合わせ又は変更若しくは改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
【図面の簡単な説明】
【図1】本発明の一実施形態に係るメモリ装置100を示す図である。
【図2】キャパシタ200の一例を示す図である。
【図3】キャパシタ200の他の例を示す図である。
【図4】本実施形態におけるバッファ層220を構成する材料の組成比と格子定数との関係を示す図である。
【図5】本発明のメモリ装置を備えた電子機器の一例であるパーソナルコンピュータ1000の構成を示す斜視図である。
【符号の説明】
100・・・メモリ装置、110・・・トランジスタ、120・・・ワード線、130・・・ビット線、140・・・プレート線、200・・・キャパシタ、210・・・下部電極、220・・・バッファ層、230・・・強誘電体層、240・・・上部電極、1000・・・パーソナルコンピュータ、1002・・・表示パネル、1004・・・キーボード、1006・・・本体部

Claims (8)

  1. 金属層及び強誘電体層を有するキャパシタを製造するキャパシタ製造方法であって、
    前記金属層を形成する金属層形成ステップと、
    前記金属層の格子定数と前記強誘電体層の格子定数との間の格子定数を有する、強誘電体特性を示すバッファ層を、前記金属層上に形成するバッファ層形成ステップと、
    前記強誘電体層を、前記バッファ層上に形成する強誘電体層形成ステップと
    を備えたことを特徴とするキャパシタ製造方法。
  2. 前記強誘電体層形成ステップは、前記金属層より格子定数が小さい所定の強誘電体材料により前記強誘電体層を形成し、
    前記バッファ層形成ステップは、前記所定の強誘電体材料と、前記金属層より格子定数が大きく前記所定の強誘電体材料と同一の結晶構造を有する他の強誘電体材料との混晶材料により前記バッファ層を形成する
    ことを特徴とする請求項1に記載のキャパシタ製造方法。
  3. 前記強誘電体層形成ステップは、前記金属層より格子定数が大きい所定の強誘電体材料により前記強誘電体層を形成し、
    前記バッファ層形成ステップは、前記所定の強誘電体材料と、前記金属層より格子定数が小さく前記所定の強誘電体材料と同一の結晶構造を有する他の強誘電体材料との混晶材料により前記バッファ層を形成する
    ことを特徴とする請求項1に記載のキャパシタ製造方法。
  4. 前記所定の強誘電体材料は、チタン酸鉛とジルコン酸鉛との混晶材料であり、前記他の強誘電体材料は、チタン酸カルシウム又はチタン酸ストロンチウムであることを特徴とする請求項3に記載のキャパシタ製造方法。
  5. 前記バッファ層形成ステップは、前記金属層から前記強誘電体層に向かう方向において、格子定数が連続的に変化するように、前記バッファ層を形成することを特徴とする請求項1に記載のキャパシタ製造方法。
  6. 前記バッファ層形成ステップは、強誘電体特性を示す、格子定数が互いに異なる複数の層を、当該格子定数が前記金属層から前記強誘電体層に向かう方向において段階的に変化するように形成することにより、前記バッファ層を形成することを特徴とする請求項1に記載のキャパシタ製造方法。
  7. 請求項1から6のいずれか記載のキャパシタ製造方法により製造されたキャパシタを備えたことを特徴とするメモリ装置。
  8. 請求項7に記載のキャパシタを備えたことを特徴とする電子機器。
JP2003089112A 2003-03-27 2003-03-27 キャパシタ製造方法、メモリ装置、及び電子機器 Pending JP2004296919A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089112A JP2004296919A (ja) 2003-03-27 2003-03-27 キャパシタ製造方法、メモリ装置、及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089112A JP2004296919A (ja) 2003-03-27 2003-03-27 キャパシタ製造方法、メモリ装置、及び電子機器

Publications (1)

Publication Number Publication Date
JP2004296919A true JP2004296919A (ja) 2004-10-21

Family

ID=33403068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089112A Pending JP2004296919A (ja) 2003-03-27 2003-03-27 キャパシタ製造方法、メモリ装置、及び電子機器

Country Status (1)

Country Link
JP (1) JP2004296919A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042983A (ja) * 2005-08-05 2007-02-15 Seiko Epson Corp アクチュエータ装置、液体噴射ヘッド及び液体噴射装置並びにアクチュエータ装置の製造方法
JP2007042984A (ja) * 2005-08-05 2007-02-15 Seiko Epson Corp アクチュエータ装置及び液体噴射ヘッド並びに液体噴射装置
US7718487B2 (en) 2005-06-02 2010-05-18 Seiko Epson Corporation Method of manufacturing ferroelectric layer and method of manufacturing electronic instrument
JP2011029532A (ja) * 2009-07-29 2011-02-10 Fujitsu Ltd 強誘電体キャパシタ及び強誘電体メモリ装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718487B2 (en) 2005-06-02 2010-05-18 Seiko Epson Corporation Method of manufacturing ferroelectric layer and method of manufacturing electronic instrument
JP2007042983A (ja) * 2005-08-05 2007-02-15 Seiko Epson Corp アクチュエータ装置、液体噴射ヘッド及び液体噴射装置並びにアクチュエータ装置の製造方法
JP2007042984A (ja) * 2005-08-05 2007-02-15 Seiko Epson Corp アクチュエータ装置及び液体噴射ヘッド並びに液体噴射装置
JP2011029532A (ja) * 2009-07-29 2011-02-10 Fujitsu Ltd 強誘電体キャパシタ及び強誘電体メモリ装置

Similar Documents

Publication Publication Date Title
JP3103916B2 (ja) 強誘電体キャパシタおよびその製造方法並びにそれを用いたメモリセル
CN100388497C (zh) 金属薄膜及其制造方法、电介质电容器及其制造方法及半导体装置
JP3162718B2 (ja) 集積回路メモリー
US5796648A (en) Nonvolatile semiconductor memory device and method for manufacturing same
US6690599B2 (en) Ferroelectric memory device
Eshita et al. Ferroelectric random access memory (FRAM) devices
JP3576788B2 (ja) 電子部品及びその製造方法
JP4058971B2 (ja) 強誘電体メモリ及び電子機器
US20040109280A1 (en) Ferroelectric capacitor and process for its manufacture
WO2012033106A1 (ja) メモリーセルブロック及びその製造方法、メモリー装置並びにメモリー装置の駆動方法
JP2004296929A (ja) 強誘電体キャパシタの製造方法、強誘電体キャパシタ、記憶素子、電子素子、メモリ装置及び電子機器
JP2006278550A (ja) 半導体装置の製造方法
JP2004296919A (ja) キャパシタ製造方法、メモリ装置、及び電子機器
WO2011138941A1 (ja) 電界効果トランジスター及びメモリー装置
JP2004296681A (ja) 強誘電体膜、強誘電体膜の製造方法、強誘電体キャパシタおよび強誘電体キャパシタの製造方法ならびに強誘電体メモリ
JP4823895B2 (ja) 半導体装置及びその製造方法
JP2004311512A (ja) 多値情報記憶素子、その使用方法およびその製造方法
JP2002087819A (ja) ビスマスランタンチタネート、ビスマスランタンチタネート薄膜及びその製造方法、並びにこの薄膜を用いた電子素子
JP4315676B2 (ja) 半導体記憶装置およびその製造方法
JP3606367B2 (ja) メモリデバイス及びその製造方法並びに電子機器
US20050199924A1 (en) Optimized ferroelectric material crystallographic texture for enhanced high density feram
KR100967110B1 (ko) 하부층의 배향성을 따르는 강유전체막 형성 방법 및 그를이용한 강유전체 캐패시터 형성 방법
JP2001094065A (ja) 強誘電体メモリ及びその製造方法
JP2001028426A (ja) 半導体装置およびその製造方法
JPH09213899A (ja) 強誘電体膜を有する不揮発性メモリ装置