JP2004294225A - 誘導型トランスデューサ用スケール - Google Patents

誘導型トランスデューサ用スケール Download PDF

Info

Publication number
JP2004294225A
JP2004294225A JP2003085957A JP2003085957A JP2004294225A JP 2004294225 A JP2004294225 A JP 2004294225A JP 2003085957 A JP2003085957 A JP 2003085957A JP 2003085957 A JP2003085957 A JP 2003085957A JP 2004294225 A JP2004294225 A JP 2004294225A
Authority
JP
Japan
Prior art keywords
scale
base
metal plate
magnetic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003085957A
Other languages
English (en)
Other versions
JP4202800B2 (ja
Inventor
Tetsuto Takahashi
哲人 高橋
Fujio Maeda
不二雄 前田
Masahiko Togashi
理彦 冨樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2003085957A priority Critical patent/JP4202800B2/ja
Publication of JP2004294225A publication Critical patent/JP2004294225A/ja
Application granted granted Critical
Publication of JP4202800B2 publication Critical patent/JP4202800B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

【課題】長尺のスケールの性能品質を低下させること無く、容易かつ効率的に搬送や取り扱いを行うことのできる誘導型トランスデューサ用スケールを提供する。
【解決手段】スケール20は、少なくともグリッドの発生する磁束に応じた誘導電流を発生するスケールコイル14と、スケールコイル14を表面に支持する基台22と、基台22の裏面に配置される金属プレート24とで構成される巻き取り可能な長尺の薄帯積層構造であり、かつ、基台22の金属プレート24側には、磁性特性を有する層が形成される。この層は、金属プレート24を磁性金属で構成することにより得られる。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、誘導型トランスデューサ用スケール、特に長尺形状のスケールの改良に関する。
【0002】
【従来の技術】
物体の厚さや他の物理的寸法を測定する測定機器には、誘導型トランスデューサを用いたものがある。小型なものとしては、電子ノギス等への適用があり、大型なものとしては、工作機械や測定機器等への適用がある。この場合、誘導型トランスデューサは機器の一部として一体的に搭載される場合が多い。
【0003】
図4には、誘導型トランスデューサの測定原理が示されている。図4(b)に示されるように、グリッド(スライダ)10及びスケール12が対向配置される。グリッド10には励磁コイル10a,10bが設けられ、この励磁コイル10a,10bの間に検出コイル10cが配置される。一方、スケール12にはスケールコイル14が形成されている。グリッド10上の励磁コイル10a,10bに通電することにより磁束が発生し、その結果、スケール12上のスケールコイル14には電磁誘導により誘導電流が流れる。そして、スケールコイル14の誘導電流によって磁束が発生し、この磁束によりグリッド10上の検出コイル10cに誘導電流(誘起電圧)が生ずる。誘導電流(誘起電圧)は励磁コイル10a,10bとスケールコイル14との相対位置に応じて変化するため、スケール12に対してグリッド10を図中矢印方向に移動させると、図4(a)に示されるように検出コイル10cには周期的な誘起電圧Vが発生する。従って、誘起電圧値を検出することで、グリッド10とスケール12との相対位置を検出することができる。
【0004】
一方、図5には、このような原理を用いてグリッド10とスケール12との絶対的変位位置を検出する原理が示されている。ここで、絶対的変位位置とは、ある基準点(ゼロ点)からの変位量のことである。図5(a)に示されるように、グリッド10上には複数の励磁コイル10aを設け、またこれらの励磁コイル10aに対応して複数の検出コイル10cが設けられている。スケール12には中央部のピッチがλ1、端部のピッチがλ2のスケールコイル14a,14bが形成されている。中央部と端部でピッチが異なるため、グリッド10上の中央部及び端部に形成された検出コイル10cにもピッチがλ1、λ2の2つの誘起電圧が生じる。2つの信号の1周期は異なるため、スケール12に対するグリッド10の全ての位置で、ある誘起電圧値における2波長間の誘起電圧の関係は同一とならない。すなわち、図5(b)に示されるように、ピッチλ1の誘起電圧における電圧値V1aが同じとなる位置XaとXbにおいて、ピッチλ2の誘起電圧値は等しくない。よって、2波長の誘起電圧の関係から位置を換算することで、グリッド10の絶対位置を検出することができる(例えば、特許文献1参照)。
【0005】
ところで、通常スケール12はガラスエポキシ基板等で構成されるが、ガラスエポキシ基板は温度や湿度の影響を受け易く、使用環境により伸縮し、スケールコイル14のピッチが変化し、側長精度の低下を招く虞がある。そのため、通常、ガラスエポキシ基板の裏側前面には、使用環境の影響を受けにくいもの、例えば、金属プレート等を貼り付けて、強度補強を行うと共に、伸縮の発生を抑制してる。
【0006】
ところが、誘導型トランスデューサの場合、グリッド10上の励磁コイル10aで発生した磁束がスケールコイル14a,14bに向かい、スケールコイル14a,14bのおいて、誘導電流を発生させるが、この時、スケール12の厚みが薄いと、磁束がスケール12の裏側に存在する金属プレートや測定装置や工作機械の定盤等まで達し、そこで渦電流損が発生し、スケールコイル14a,14bの誘導電流による磁束強度を低下させてしまう場合がある。このような場合、グリッド10の検出コイル10cにおける感度が低下して、測定の信頼性低下を招く虞があった。そのため、従来磁束通過による渦電流損が発生しない程度にスケール12の基台(例えばガラスエポキシ基板)の厚みを厚くしていた(例えば0.5mm以上)。
【0007】
このような対策を施すことにより、誘導型トランスデューサの測定精度の維持を行っていた。
【0008】
【特許文献1】
特開2001−255108号公報
【0009】
【発明が解決しようとする課題】
誘導型トランスデューサの場合、グリッド10とスケール12間の電磁誘導に基づき、相対位置を検出するため、グリッド10とスケール12とを相対配置する場合に、その間のクリーン度合いを厳しく問わない。そのため、測定機器の組み立て現場にグリッド10とスケール12とが個別に搬入され、組み立て作業が行われる場合が多い。特に大型の物体を測定対象とする場合、誘導型トランスデューサのスケール12が大型化(長尺化)し、中には、3mを越えるスケール12が利用される場合がある。ところが、前述したように、スケールに12の裏面側に金属プレートを貼り付けたり、基台の厚みを厚くした場合、長尺のスケール12は、長い直線形状のまま搬送されることになる。この場合、取り扱いが著しく悪く、搬送コストの増加を招くと共に、取り扱い時の破損の原因にもなるという問題があった。
【0010】
本発明は、上記課題に鑑みなされたものであり、長尺のスケールの性能品質を低下させること無く、容易かつ効率的に搬送や取り扱いを行うことのできる誘導型トランスデューサ用スケールを提供することを目的とする。
【0011】
【課題を解決するための手段】
上記のような目的を達成するために、本発明は、移動自在に配置されるグリッドの変位量に応じた電気信号を出力する誘導型トランスデューサにおいて、前記グリッドに対向配置されるスケールであって、前記スケールは、少なくとも前記グリッドの発生する磁束に応じた誘導電流を発生する誘導コイルと、当該誘導コイルを表面に担持する基台と、当該基台の裏面に配置される金属プレートとで構成される巻き取り可能な長尺の薄帯積層構造を呈し、かつ、前記基台の金属プレート側は、磁性特性を有することを特徴とする。
【0012】
ここで、基台は例えばガラスエポキシ、ポリイミド、液晶ポリマー等により構成される。また、金属プレートは基台の温度や湿度の変化による変形(伸縮等)を抑制可能な特性を有するものが選択される。
【0013】
この構成によれば、基台を薄くしても、また基台の変形防止用の金属プレートを設けても、グリッド側で発生した磁束が金属プレート側に存在する透磁率の高い磁性体部分で回り、金属プレートにおける渦電流の発生を抑制する。つまり、スケールの形状を長尺の薄帯積層構造としても、変形や渦電流の発生を抑制しつつ、長尺のスケールを任意に湾曲させることができる。その結果、長尺のスケールを巻き取り状態のコンパクトな形態で搬送や取り扱いを行うことができる。
【0014】
上記のような目的を達成するために、本発明は、上記構成において、前記薄帯積層構造のスケールの総厚は、0.6mm以下であることを特徴とする。
【0015】
この構成によれば、長尺スケールを容易に巻き取りコンパクト化することができる。
【0016】
上記のような目的を達成するために、本発明は、上記構成において、前記磁性特性は、金属プレートを磁性金属で形成することにより確保することを特徴とする。
【0017】
ここで、磁性金属とは、例えば、マルテンサイト系のステンレスやフェライト系のステンレス等である。
【0018】
この構成によれば、渦電流を回避する磁性特性を容易に得ることができると共に、基台の支持を良好に行うことができる。
【0019】
上記のような目的を達成するために、本発明は、上記構成において、前記磁性特性は、前記金属プレートと基台との間に磁性体層を介在させることにより確保することを特徴とする。
【0020】
ここで、磁性体層とは、例えば磁性を有するシート状のものである。
【0021】
この構成によれば、金属プレートの種類を任意に選択することができるので、基台の伸縮特性に応じた金属プレート材料の選択を行うことができる。また、スケール全体の材料選択も任意に行うことができる。その結果、渦電流の発生を回避する磁性特性を容易に得つつ、設計の自由度を向上することができる。
【0022】
上記のような目的を達成するために、本発明は、上記構成において、前記磁性体層は、前記金属プレートと基台とを接合する接着層であることを特徴とする。
【0023】
ここで、接着層は、例えばエポキシ系接着剤に、磁性粉を混入したものであり、接着層の厚みは例えば、0.2mm以下、現実的には、0.14mm程度にすることができる。
【0024】
この構成によれば、基台や金属プレートの材料選択を自由に行えると共に、スケールの組み立て工数を増加することなく渦電流回避可能な長尺の薄帯積層構造を得ることができる。
【0025】
上記のような目的を達成するために、本発明は、上記構成において、前記磁性体層は、前記金属プレートと基台とを接合する接着層内に磁性体を含有する層を介在させて得ることを特徴とする。
【0026】
ここで、磁性体を含有する層とは、磁性粉の層や磁性体を含むシートを接着剤の任意の層にサンドイッチして形成することができる。
【0027】
この構成によれば、基台や金属プレートの材料選択を自由に行えると共に、接着剤の材料選択も自由に行えるので、さらに設計の自由度を向上することができる。
【0028】
上記のような目的を達成するために、本発明は、上記構成において、前記基台の表面側には、少なくとも前記誘導コイルを覆う保護層が形成されていることを特徴とする。
【0029】
ここで、保護層とは、例えば紫外線硬化型の樹脂で構成される。この構成によれば、スケールの巻き取り時の相互の接触や摩擦によるスケール表面のダメージ及びスケール取り付け時の接触や摩擦によるダメージを防止することができると共に、スケール使用時には誘導コイルの酸化や腐食防止に寄与することができる。
【0030】
【発明の実施の形態】
以下、本発明の好適な実施の形態(以下、実施形態という)を図面に基づき説明する。
【0031】
図1には、本実施形態のスケール20を長手方向に巻き取り、コンパクトに丸めた状態が示されている。なお、スケール20上に配置されるスケールコイル14a,14bの構成や配列形態は、図4、図5で説明したものと同等である。また、スケール20に対向配置されるグリッド10も図4、図5に示すグリッド10と同様なものが使用可能であり、グリッド10のスライドに基づくスケールコイル14a,14bの挙動に関しても、図4、図5で説明したものと同一であり、その説明は省略する。
【0032】
本実施形態の特徴的事項は、図1に示すように、スケール20が巻き取り可能な程度に薄帯形状を呈しつつ、かつ動作時の渦電流の発生抑制や温度・湿度の変化による伸縮影響を受けない構造にするために、スケール20の裏面側(スケールコイルの無い側)に磁性特性を有する金属プレートを有しているところである。
【0033】
図2には、スケール20の概略断面図が示されている。図2から明らかなようにスケール20は積層構造を呈している。スケール20の主たる構成物は、基台22と、当該基台22の上面にパターン印刷等により配置されるスケールコイル(誘導コイル)14と、基台22の裏面側に接着固定される金属プレート24である。
【0034】
基台22は、例えば、ガラスエポキシやポリイミド、液晶ポリマー等で構成され、本実施形態において、その厚みは例えば、0.2mm以下、現実的には、0.1mm程度までとすることができる。
【0035】
また、金属プレート24は、基台22が温度や湿度の変化に伴って伸縮してしまうことを防止するための裏打ち(補強)的機能を有するが、渦電流の発生原因になりスケールコイル14が発生する磁束を低減させてしまう。そのため、本実施形態では、金属プレート24における渦電流の発生を抑制するために、基台22の裏面側に磁性特性を有する層を形成している。この場合、例えば、金属プレート24をマルテンサイト系のステンレスやフェライト系のステンレス等で形成することにより、金属プレート24自体に磁性特性を持たせ、金属プレート24における渦電流の発生を抑制することができる。この時の金属プレート24の厚みは、基台22と同様に例えば、0.2mm以下、現実的には、0.1mm程度までとすることができる。なお、スケールコイル14は、銅等で形成され、その厚みは、例えば18μm程度である。
【0036】
図2に示すように、金属プレート24が磁性を有するステンレス等で形成される場合、基台22と金属プレート24は任意の接着層26、例えばエポキシ系接着剤により接着固定され、温度や湿度が変化する場合でも、金属プレート24により基台22が伸縮変形しないようにしている。なお、接着層26の厚みは、例えば、0.2mm以下、現実的には、0.14mm程度までにすることができる。
【0037】
従って、本実施形態において、スケール20の総厚は、0.6mm以下とすることが可能であり、容易に巻き取り可能な薄帯積層構造とすることができる。なお、現実的には、スケール20の総厚を0.34mm程度まで薄くすることができる。
【0038】
なお、図2の構成においては、スケールコイル14の配置側である基台22の表面側には、少なくともスケールコイル14を覆う保護層28が配置されている。本実施形態のような長尺のスケール20は、加工機械や測定器械の定盤に直接貼り付ける場合が多い。前述したように、スケールコイル14は銅等で構成されるので、酸化や腐食等が発生しないように耐環境対策を施すことが望ましい。本実施形態において、保護層28は、例えば紫外線硬化型の樹脂を用いることができる。この場合、テープ状の基材に担持された未硬化の樹脂を基台22に粘付し、その後硬化させることにより、ボイド等のない均一な保護層28を形成することが可能であり、上述の耐環境対策やダメージ対策を容易に行うことができる。
【0039】
なお、保護層28を形成することにより、スケール20を図1のように丸めた場合でも直接金属プレート24とスケールコイル14が接触することが回避され、スケールコイル14の断線防止等も併せて行うことが可能になる。同様に、スケール20を加工機械や測定器械の定盤に取り付ける時の接触や摩擦によるダメージを防止することが可能になり、スケール20の品質維持にも寄与することができる。
【0040】
図2では、金属プレート24を磁性金属で形成することにより所望の磁性特性を得る例を示したが、図3に示すように、基台22と金属プレート30とを接着する接着層32に磁性を持たせてもよい。例えば、接着層32を構成するエポキシ系接着剤にコバルト等の強磁性粉32aを混ぜ込むことにより、基台22の裏面側に磁性特性を有する層を形成し、前述したようにグリッド10が発生する磁束が金属プレート30に達しないようにして、渦電流の発生を抑制することができる。
【0041】
なお、この場合、金属プレート30は、任意の材料が使用可能となり、基台22に使用する材料の線膨張係数に応じた金属プレート30の選択やスケール20全体の線膨張係数の調整等が可能になり、スケール20の設計の自由度向上に寄与することができる。また、この場合、接着剤を変更するのみで従来のスケール製造手順に変更を加える必要がないため、製造工数の増加も伴わない。
【0042】
また、図3において、エポキシ系接着剤に強磁性粉32aを混入させて、接着層全体を磁性体層とする例を示したが、接着層全体を磁性体層とする必要はなく、例えば、磁性体シートを接着層中にサンドイッチしたり、接着層中の任意の層に強磁性粉の層をサンドイッチしても図3の構成と同様な効果を得ることができる。この場合、基台22や金属プレート30の材料選択を自由に行えると共に、接着剤の材料選択も自由に行えるので、さらに設計の自由度を向上することができる。
【0043】
本実施形態において、長尺のスケール20は、誘導型トランスデューサとして使用する場合、多くの場合、直線状に延ばしてそのまま使用するが、例えば、所望の長さに適宜切断して小型の電子ノギス等に使用することもできる。また、スケールの製造効率及び搬送効率等を考慮し、予め短尺に切断することを前提に長尺のスケールを作成してもよい。
【0044】
なお、図1におけるスケール20の巻き取り状態は、一例であり、搬送や取り扱いに適した状態に丸めることが可能で、例えば、1巻のみでもよし、湾曲状態でもよい。また、図1は、スケール20の巻き取りイメージを示すものであり、例えば、スケール20が総層が0.6mm、幅が20mm程度である場合、その巻き取り直径は、300mm程度になる。
【0045】
【発明の効果】
本発明によれば、基台を薄くしても、また基台の変形防止用の金属プレートを設けても、グリッド側で発生した磁束が金属プレート側に存在する透磁率の高い磁性体部分で回り、金属プレートにおける渦電流の発生を抑制することができる。そのため、スケールの形状を長尺の薄帯積層構造としても、変形や渦電流の発生を抑制しつつ、長尺のスケールを任意に湾曲させることが可能になり、長尺のスケールを巻き取り状態でコンパクトな形態で搬送や取り扱いを行うことができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る誘導型トランスデューサ用スケールの巻き取り状態を説明する説明図である。
【図2】本発明の実施形態に係る誘導型トランスデューサ用スケールの断面図である。
【図3】本発明の実施形態に係る誘導型トランスデューサ用スケールで接着層に磁性特性を持たせる場合を説明する断面図である。
【図4】誘導型トランスデューサの原理説明図である。
【図5】誘導型トランスデューサの原理説明図である。
【符号の説明】
10 グリッド、10a,10b 励磁コイル、10c 検出コイル、12,20 スケール、14 スケールコイル、14a,14b スケールコイル、22 基台、24,30 金属プレート、26,32 接着層、28 保護層、32a 強磁性粉。

Claims (7)

  1. 移動自在に配置されるグリッドの変位量に応じた電気信号を出力する誘導型トランスデューサにおいて、前記グリッドに対向配置されるスケールであって、
    前記スケールは、少なくとも前記グリッドの発生する磁束に応じた誘導電流を発生する誘導コイルと、当該誘導コイルを表面に担持する基台と、当該基台の裏面に配置される金属プレートとで構成される巻き取り可能な長尺の薄帯積層構造を呈し、かつ、前記基台の金属プレート側は、磁性特性を有することを特徴とする誘導型トランスデューサ用スケール。
  2. 請求項1記載のスケールにおいて、
    前記薄帯積層構造のスケールの総厚は、0.6mm以下であることを特徴とする誘導型トランスデューサ用スケール。
  3. 請求項1または請求項2記載のスケールにおいて、
    前記磁性特性は、金属プレートを磁性金属で形成することにより確保することを特徴とする誘導型トランスデューサ用スケール。
  4. 請求項1または請求項2記載のスケールにおいて、
    前記磁性特性は、前記金属プレートと基台との間に磁性体層を介在させることにより確保することを特徴とする誘導型トランスデューサ用スケール。
  5. 請求項4記載のスケールにおいて、
    前記磁性体層は、前記金属プレートと基台とを接合する接着層であることを特徴とする誘導型トランスデューサ用スケール。
  6. 請求項4記載のスケールにおいて、
    前記磁性体層は、前記金属プレートと基台とを接合する接着層内に磁性体を含有する層を介在させて得ることを特徴とする誘導型トランスデューサ用スケール。
  7. 請求項1から請求項6のいずれか1つに記載のスケールにおいて、
    前記基台の表面側には、少なくとも前記誘導コイルを覆う保護層が形成されていることを特徴とする誘導型トランスデューサ用スケール。
JP2003085957A 2003-03-26 2003-03-26 誘導型トランスデューサ用スケール Expired - Fee Related JP4202800B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003085957A JP4202800B2 (ja) 2003-03-26 2003-03-26 誘導型トランスデューサ用スケール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085957A JP4202800B2 (ja) 2003-03-26 2003-03-26 誘導型トランスデューサ用スケール

Publications (2)

Publication Number Publication Date
JP2004294225A true JP2004294225A (ja) 2004-10-21
JP4202800B2 JP4202800B2 (ja) 2008-12-24

Family

ID=33400738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085957A Expired - Fee Related JP4202800B2 (ja) 2003-03-26 2003-03-26 誘導型トランスデューサ用スケール

Country Status (1)

Country Link
JP (1) JP4202800B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025087A (ja) * 2007-07-18 2009-02-05 Uchiyama Mfg Corp 磁気エンコーダ
JP2013019899A (ja) * 2011-07-11 2013-01-31 Dr Johannes Heidenhain Gmbh エンコーダ用の目盛キャリア及びこの目盛キャリアを製造するための方法
JP2015059934A (ja) * 2013-09-19 2015-03-30 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングDr. Johannes Heidenhain Gesellschaft Mitbeschrankter Haftung 誘導式エンコーダ
DE102021122185A1 (de) 2020-09-14 2022-03-17 Mitutoyo Corporation Skala
DE102022102338A1 (de) 2021-02-16 2022-08-18 Mitutoyo Corporation Skala und Verfahren zu ihrer Herstellung
WO2023086490A1 (en) * 2021-11-11 2023-05-19 KSR IP Holdings, LLC Magneto-inductive position sensor assemblies

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025087A (ja) * 2007-07-18 2009-02-05 Uchiyama Mfg Corp 磁気エンコーダ
JP2013019899A (ja) * 2011-07-11 2013-01-31 Dr Johannes Heidenhain Gmbh エンコーダ用の目盛キャリア及びこの目盛キャリアを製造するための方法
JP2015059934A (ja) * 2013-09-19 2015-03-30 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングDr. Johannes Heidenhain Gesellschaft Mitbeschrankter Haftung 誘導式エンコーダ
DE102021122185A1 (de) 2020-09-14 2022-03-17 Mitutoyo Corporation Skala
DE102022102338A1 (de) 2021-02-16 2022-08-18 Mitutoyo Corporation Skala und Verfahren zu ihrer Herstellung
US11747173B2 (en) 2021-02-16 2023-09-05 Mitutoyo Corporation Scale and manufacturing method of the same
WO2023086490A1 (en) * 2021-11-11 2023-05-19 KSR IP Holdings, LLC Magneto-inductive position sensor assemblies

Also Published As

Publication number Publication date
JP4202800B2 (ja) 2008-12-24

Similar Documents

Publication Publication Date Title
JP2011163832A5 (ja)
US6650112B2 (en) Magnetics impedance element having a thin film magnetics core
CN107966671B (zh) 磁传感器用电感元件以及具备其的电流传感器
EP3117195B1 (en) Non-contact magnetostrictive current sensor
JP2012225912A5 (ja)
JP3341237B2 (ja) 磁気センサ素子
JP2007303860A (ja) 磁気デバイス
JP4202800B2 (ja) 誘導型トランスデューサ用スケール
JP3360168B2 (ja) 磁気インピーダンス素子
JP2012042273A (ja) 多重冗長型リニアセンサ
JP2011022070A (ja) 磁界センサ
JP5133758B2 (ja) 磁気軸受用位置センサ装置及び磁気軸受装置
JP2001221838A (ja) 磁気インピーダンス効果素子及びその製造方法
Ding et al. Development of thin-slice fiber Bragg grating-giant magnetostrictive material sensors used for measuring magnetic field of magnetic bearings
JP2009231806A (ja) 磁気検出素子および磁気センサ用コアならびにこれらの製造方法
JP2003156364A (ja) スライド位置検出装置を備えた直動装置
JP5542480B2 (ja) 磁気素子およびその製造方法
WO2022030501A1 (ja) 磁気センサ及びその製造方法
JP2002202152A (ja) 磁気式エンコーダー
JP7026517B2 (ja) 磁気式リニアエンコーダ
Pfützner et al. Magnetic Detector Bands for interior 3D-Analyses of laminated machine cores
JP2009253543A (ja) 積層アンテナ
JP7066132B2 (ja) 磁気センサ及びこれを用いた材料評価方法、磁気センサの製造方法
Saito et al. Cantilever‐Type FePd/PZT Stacked‐Layer Magnetic Sensors with High Sensitivity
JPH0648433Y2 (ja) 測定器の磁電変換素子付倹出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4202800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141017

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees