JP2004289971A - 電動機の制御装置 - Google Patents

電動機の制御装置 Download PDF

Info

Publication number
JP2004289971A
JP2004289971A JP2003081166A JP2003081166A JP2004289971A JP 2004289971 A JP2004289971 A JP 2004289971A JP 2003081166 A JP2003081166 A JP 2003081166A JP 2003081166 A JP2003081166 A JP 2003081166A JP 2004289971 A JP2004289971 A JP 2004289971A
Authority
JP
Japan
Prior art keywords
current
motor
zero
phase
detection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003081166A
Other languages
English (en)
Inventor
Akira Sakai
顕 酒井
Makoto Hirano
誠 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003081166A priority Critical patent/JP2004289971A/ja
Publication of JP2004289971A publication Critical patent/JP2004289971A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

【課題】安価な構成で、安定した動作性を有し、低損失で信頼性の高い電動機の制御装置を得ること。
【解決手段】直流電圧を交流電圧に変換し、電動機に供給する電圧を調整するスイッチング素子で構成されたインバータと、電動機に流れる電流をACCTにより検出する電流検出部と、インバータの母線電流をシャント抵抗により検出すると共に、検出した母線電流により電動機に流れる相電流のゼロクロス点を検出するゼロクロス検出部と、電流検出部の検出結果に基づいてインバータを制御すると共に、ゼロクロス検出部の検出値により電流検出部の位相誤差を補正し電動機を制御するインバータ制御部と、を備えたことを特徴とする。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明はインバータを用いた電動機の制御装置およびそれを用いた製品に関する。
【0002】
【従来の技術】
一般に、インバータを用いた電動機の電流検出において、電流検出部の電流検出素子にACカレントトランス(以下、ACCT)を使用する方法があるが、この場合、モータの実電流値とACCTによる検出値の間にはACCTの磁気飽和による位相ズレが生ずる。そして、モータの実電流の周波数が小さい時に位相誤差が大きくなる。
【0003】
また、電流検出部の電流検出素子に、ACCTの代わりにDCカレントトランス(以下、DCCT)を使用することも可能であり、この場合ACCTのような位相誤差がなく正確な電流検出が可能になり安定した制御が可能となる。
【0004】
さらに、電流検出部にシャント抵抗を使用してモータを制御することも可能である。
【0005】
【特許文献1】
特開平3−230767号公報
【0006】
【発明が解決しようとする課題】
従来の電動機の電流検出装置は、電流検出部にACCTを使用した場合、モータの実電流値とACCTによる検出値の間にはACCTの磁気飽和による位相誤差が生じ、特にモータの相電流周波数が低い、すなわちモータの回転数が低いほど位相誤差が大きくなり、検出結果に誤差が生じ正確な制御ができなくなる。
【0007】
また電流検出部にACCTの代わりにDCCTを使用した場合、非常に高価な構成となり実用的で無くなる。
【0008】
また、電流検出にシャント抵抗を使用する電流検出回路を使用する場合、モータの負荷が小さい時や直流電源電圧(母線電圧)が大きい時などの条件では、シャント抵抗に発生する電流情報を含んだ電圧信号は非常に小さくなり、シャント抵抗値が小さいとS/N比が小さくなり正確な電流検出が困難となる。
【0009】
逆にシャント抵抗値をある程度大きめに設定すると、より正確に電流検出ができるようになる反面、シャント抵抗での損失が大きくなり機器の省エネに反することとなる。
【0010】
さらに、シャント抵抗に発生する電流情報を含んだ電圧信号は、スイッチング素子のON信号に同期したパルス状の信号となり電流検出はこのパルスの二つの立ち上がりの時間内で行う必要がある。しかし、二つの立ち上がりの時間の一方が短くなるため、モータの負荷や直流電源電圧Vdcの大きさに関わらず電流検出が困難になる。正確な電流検出を行ためには処理速度の速い高価なマイコンやDSP(Digital Signal Processor)を使用する必要があった。
【0011】
この発明は、上記のような問題点を解決するためになされたもので、安価な構成で、安定した動作性を有し、低損失で信頼性の高い電動機の制御装置を得ることを目的とする。
【0012】
【課題を解決するための手段】
この発明に係る電動機の制御装置は、直流電圧を交流電圧に変換し、電動機に供給する電圧を調整するスイッチング素子で構成されたインバータと、電動機に流れる電流をACCTにより検出する電流検出部と、インバータの母線電流をシャント抵抗により検出すると共に、検出した母線電流により電動機に流れる相電流のゼロクロス点を検出するゼロクロス検出部と、電流検出部の検出結果に基づいてインバータを制御すると共に、ゼロクロス検出部の検出値により電流検出部の位相誤差を補正し電動機を制御するインバータ制御部と、を備えたことを特徴とする。
【0013】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づいて説明する。
実施の形態1.
図1〜6は実施の形態1を示す図で、図1はモータの制御装置の構成図、図2はモータの相電流および相電流検出値を示す説明図、図3、4は空間ベクトル制御法の説明図、図5は電流検出方法を示すフローチャート、図6は空間ベクトル制御法における位相と電圧ベクトルの関係を示す説明図である。
【0014】
図1において、モータ11の制御装置の電源は直流電源7であり、インバータは駆動部スイッチング素子1〜6で構成される。インバータ制御部8は駆動部スイッチング素子1〜6の駆動信号を出力する。電流検出部9bはモータの相電流を検出する。ゼロクロス検出部10は相電流のゼロクロスを検出するとともに、シャント抵抗12によりインバータの母線電流を検出する。母線電圧検出部13により母線電圧を検出してインバータ制御部8に出力する。
【0015】
電流検出部9bにACCTを使用した場合の、モータ電流15と、ACCTによるモータ電流検出値16の例を図2に示す。モータ電流15の符号が反転する点をモータ電流のゼロクロス点14、ACCTによるモータ電流検出値16の符号が反転する点をACCTによるモータ電流検出値のゼロクロス点18とする。
【0016】
電流検出部9bにACCTを使用した場合、ACCTによるモータ電流検出値16と実モータ電流15に位相誤差17が生じ、電流の周波数が小さいほど位相誤差17は大きくなる傾向にある。ACCTの2次電流(検出値)は1次電流(モータ実電流)に対して位相が進む特性があり、1次電流と2次電流の位相誤差17は、1次側と2次側の漏れインダクタンスや鉄損が無視される場合下式(1)により算出できる。
(位相誤差)=π/2−arctan(2πfL/(r+L)) …(1)
ここで、LはACCTのインダクタンス、rはACCTの2次側に接続された負荷抵抗値、RはACCTの内部抵抗値、fは1次側電流の周波数である。この(1)式から1次側の電流周波数fが小さい時すなわちモータの実電流の周波数が小さい時に位相誤差が大きくなる。
【0017】
次にゼロクロス検出部10について説明する。図3はインバータによるモータ駆動を行う場合の空間電圧ベクトル法によるスイッチング素子の駆動信号と、その時の電流検出部のシャント抵抗に発生する電流信号を含んだ電圧信号の例を示した図であり、図4は図3のAの区間の波形の様子を示した図である。
【0018】
図3の(100)などの数字は左からU相、V相、W相を示しており、1は上アームのスイッチング素子がON、下アームのスイッチング素子がOFF、0は下アームのスイッチング素子がON、上アームのスイッチング素子がOFFすることを示す。ただし、図3、4は説明を簡単にするためにスイッチング素子の上下アーム短絡を防止するデッドタイム(Td)は省略している。
【0019】
図3において、Vkのベクトルが時計回りに回る方向を正とすると、一般的にモータをある方向、例えば時計方向に回転させるには、A→B→…→F→Aの区間を移動するようにθを増加させてVkベクトルを回転させればよい。例えば図4ではVkベクトルは(100)のベクトルと(110)のベクトルの合成で生成され、θとt1,t2,t3,t4の関係は次式の計算により求めることができる。
K=Vin/Vdc
a1=t1×2+t4=(1−Ksin(θ+60°))・T …(2)
a2=t2×2=KTsin(60°−θ) …(3)
a3=t3×2=KTsinθ …(4)
ここで、Vinはモータへの印加電圧、Vdcは母線電圧、Tはキャリア周期である。
【0020】
図4でUp,Vn,Wn相の駆動部スイッチング素子1,5,6がONする区間、これはインバータ制御部8からの指令値であるが、この区間t2ではU相電流が検出でき、Up,Vp,Wn相の駆動部スイッチング素子1,2,6がONする区間t3ではW相電流が検出できる。U,V,W相の3相分の電流を検出するためには前記のように1キャリア周期中にt2間でU相電流Iuを検出し、t3間でW相電流Iwを検出し、V相はIu+Iv+Iw=0の式とU、W相の検出結果からV相電流Ivを算出する。
【0021】
出力電圧Vkの角度θ(A〜F)により、隣接する60°ずれた2本のベクトルを合成することでVkを生成するのであるが、3相電流のうち1相の電流の符号が反転する点すなわちモータ電流のゼロクロス点14は、(100)のベクトルをθ=0°とした場合、θ=30,90,150,210,270,330°となる。これらの角度では隣接する60°ずれた2本のベクトルの比すなわち電流検出時間t2、t3の比は1:1、もしくは極めて1:1に近くなりt2とt3共にある程度の時間が確保できるため電流検出や演算も容易になるため高価なマイコンやDSPなどを使用する必要がなくなる。
【0022】
ベクトルの比が1:1となった時点を1相のゼロクロス点と判断するように制御すると、t2での電流検出値とt3での電流検出値の絶対値が等しい時をゼロクロス点とすることができ、抵抗値の誤差が大きな安価なシャントでも、損失を小さくするためにシャント抵抗値を小さくしても1相のゼロクロス点を確実に検出できる。
【0023】
図5のフローチャートに従って以上の位相誤差補正のある一例について説明する。まずステップ0(以下:S0)にて図3におけるθやモータへの印加電圧Vin、母線電圧Vdc、キャリア周期Tによりt1〜t4の演算を行う。
【0024】
続いてステップ1(以下:S1)にて、S0にて求められたt1〜t4を基に波形生成を行い、かつシャント抵抗12を用いたゼロクロス検出部10により図3のステージA〜Fに対応したモータの2相の電流もしくは3相の電流を検出する。
【0025】
この時検出されるモータのU,V,W相電流をそれぞれIu’、Iv’、Iw’とすると、ステージA〜Fに対応したモータの2相の電流とは、ステージAの時Iu’とIw’、ステージBの時Iv’とIw’、ステージCの時Iv’とIu’、ステージDの時Iw’とIu’、ステージEの時Iw’とIv’、ステージFの時Iu’とIv’のことである。
【0026】
続いて、ステップ2(以下:S2)にて、ACCTを用いた電流検出部9bにてモータの2相電流を検出し、演算にて残り1相の電流を検出する。
【0027】
続いて、ステップ3(以下:S3)にて、S1にて検出した2相の電流の絶対値を比較し、2相の電流の絶対値が等しい時は、図2のモータ電流のゼロクロス点14と判断し、ゼロクロス点での位相をθ’とするとステージAの時θ’=30°、ステージBの時θ’=90°、ステージCの時θ’=150°、ステージDの時θ’=210°、ステージEの時θ’=270°、ステージFの時θ’=330°に設定する(ステップ4:S4)。
【0028】
続いて、ステップ5(以下:S5)にてθ=θ’とすることで位相ズレの補正を行い、位相を進めるためにθを制御の周期やモータの回転数などに応じた適当な位相増加分Δθ進め(ステップ:S6)、S1から同様の制御を繰り返す。S3にてゼロクロス点と判断しない場合は補正を行わずS6に進める。
【0029】
図5のフローチャートによる電流補正では、ゼロクロス点の位相θ’と波形生成に使用したθを等しいとすることで位相誤差の補正を行うとしたが、図5のS2におけるACCTでの電流検出結果をインバータ制御部8内のメモリーに蓄え、波形生成のための位相にはメモリー内のデータにおいて位相ズレ分(θ−θ’)前の値を使用するといった制御を行うことで位相誤差の補正を行うことも可能である。
【0030】
以上のように、ACCT検出値の位相誤差を補正することで、正確な電流検出ができ安定した電動機の制御が可能となる。また、シャント抵抗値の誤差が大きくてもよいため安価な部品を選定できる。また、シャント抵抗値を小さくすることが出来るため損失を小さくすることが出来る。
【0031】
実施の形態2.
本実施の形態は、モータの回転数により、電流検出部9bの位相誤差の補正の有無を切換えるものである。図2は、電流検出部9bにACCTを使用した場合のモータ電流15と、モータ電流15をACCTによるモータ電流検出値16の例を示したものである。点14はモータ電流15の符号が反転する点、すなわちゼロクロス点、点18はモータ電流15をACCTによるモータ電流検出値16の符号が反転する点を示している。
【0032】
電流検出部9bにACCTを使用した場合、ACCTによるモータ電流検出値16とモータ電流15に位相誤差17が生じ、この位相誤差17は電流の周波数が小さいほど大きくなる傾向にあるのは前に述べた通りである。
【0033】
電流の周波数とモータの回転数は比例の関係にあるため、モータの回転数が高いほど位相誤差17が小さくなるため、モータの制御が不安定にならない程度の位相誤差になるある値以上のモータ回転数、例えば20rps以上の回転数では位相誤差補正を行わないようにすれば、ゼロクロス検出部10での電流検出および相電流値の演算が減り、インバータ制御部内の処理が簡素化できる。
【0034】
また、回転数によりゼロクロス検出部10の電流検出周期を変化させ、ある回転数以上ではゼロクロス検出部、位相誤差補正を行わないようにするといった制御も可能であり、インバータ制御部8内の処理が簡素化できるため、位相誤差補正のためのインバータ制御部8をより安価な部品で構成することが出来る。
【0035】
実施の形態3.
図7は実施の形態3を示す図で、モータの制御装置のACCT位相誤差補正のフローを示したものである。図1においてゼロクロス検出部10にて電流検出を行う時間t2およびt3は、インバータ制御部8に使用する制御回路の遅れ(T5)および駆動部スイッチング素子1〜6の上下アーム短絡を防止するデッドタイム(Td)の関係から、ある一定時間以上確保できないと正確に電流が検出できず、正確に電流を検出するためには、例えばT5+Td=t6とした時、t2およびt3はt6以上必要となる。
【0036】
t2およびt3がt6未満の場合、検出電流値が誤っている可能性が大きいため、誤ったACCTの位相誤差補正を行ってしまう可能性がある。そこで図7のステップ7(以下:S7)のようにt2およびt3がある値t6未満の場合はゼロクロス検出部10による電流検出およびACCT位相誤差補正を行わないようにすると、ACCT位相誤差補正が正確に行われ、またゼロクロス検出部10での電流検出および相電流値の演算回数を削減することができるため、インバータ制御部8での処理が簡素化できる。すなわちt6を大きめに設定でき、それによりインバータ制御部8に使用する制御回路の遅れT5を大きくすることができるため、応答時間が遅い安価な部品で制御回路を構成することができる。
【0037】
【発明の効果】
この発明に係る電動機の制御装置は、ACCTによる電流検出値の位相誤差をゼロクロス検出部の検出結果により補正することで正確な電流検出が可能となり、安定したモータ制御が可能となる。
【図面の簡単な説明】
【図1】実施の形態1を示す図で、モータの制御装置の構成図である。
【図2】実施の形態1を示す図で、モータの相電流および相電流検出値を示す説明図である。
【図3】実施の形態1を示す図で、空間ベクトル制御法の説明図である。
【図4】実施の形態1を示す図で、空間ベクトル制御法の説明図である。
【図5】実施の形態1を示す図で、電流検出方法を示すフローチャート図である。
【図6】実施の形態1を示す図で、空間ベクトル制御法における位相と電圧ベクトルの関係を示す説明図である。
【図7】実施の形態3を示す図で、モータの制御装置のACCT位相誤差補正のフローチャート図である。
【符号の説明】
1〜6 駆動部スイッチング素子、7 直流電源、8 インバータ制御部、9b 電流検出部、10 ゼロクロス検出部、11 モータ、12 シャント抵抗、13 母線電圧検出部、14 モータ電流のゼロクロス点、15 モータ電流、16 ACCTによるモータ電流検出値、17 位相誤差、18 ACCTによるモータ電流検出値のゼロクロス点。

Claims (5)

  1. 直流電圧を交流電圧に変換し、電動機に供給する電圧を調整するスイッチング素子で構成されたインバータと、
    前記電動機に流れる電流をACカレントトランス(以下、ACCT)により検出する電流検出部と、
    前記インバータの母線電流をシャント抵抗により検出すると共に、検出した母線電流により前記電動機に流れる相電流のゼロクロス点を検出するゼロクロス検出部と、
    前記電流検出部の検出結果に基づいて前記インバータを制御すると共に、前記ゼロクロス検出部の検出値により前記電流検出部の位相誤差を補正し電動機を制御するインバータ制御部と、
    を備えたことを特徴とする電動機の制御装置。
  2. 前記ゼロクロス検出部のシャント抵抗に発生する電流信号の発生区間t1〜t4の中、相電流の検出できる区間t2及びt3の時間の比がほぼ等しくなる時点を相電流のゼロクロス点とすることを請求項1に記載の電動機の制御装置。
  3. 前記電動機の回転数により、前記電流検出部の位相誤差の補正の有無を切換えることを特徴とする請求項1に記載の電動機の制御装置。
  4. 前記電動機の起動を含む低回転数運転時は、前記電流検出部の位相誤差を補正し電動機を制御することを特徴とする請求項1に記載の電動機の制御装置。
  5. 前記電流検出部の位相誤差の補正を行うために利用される前記ゼロクロス検出部の検出値は、前記インバータのスイッチング素子のON時間がある値以上である場合に検出された値であることを特徴とする請求項1の記載の電動機の制御装置。
JP2003081166A 2003-03-24 2003-03-24 電動機の制御装置 Pending JP2004289971A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003081166A JP2004289971A (ja) 2003-03-24 2003-03-24 電動機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003081166A JP2004289971A (ja) 2003-03-24 2003-03-24 電動機の制御装置

Publications (1)

Publication Number Publication Date
JP2004289971A true JP2004289971A (ja) 2004-10-14

Family

ID=33294817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003081166A Pending JP2004289971A (ja) 2003-03-24 2003-03-24 電動機の制御装置

Country Status (1)

Country Link
JP (1) JP2004289971A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090189575A1 (en) * 2006-04-13 2009-07-30 SIEMENS AKTIENGESELLSCHAFT öSTERREICH Method for Measuring an Alternating Current which is Generated Using Inverters, and Arrangement for Carrying out the Method
US8106622B2 (en) * 2007-04-05 2012-01-31 Denso Corporation Control system for multiphase rotary machines
JPWO2014049867A1 (ja) * 2012-09-28 2016-08-22 三菱電機株式会社 ヒートポンプ装置、空気調和機及び冷凍機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090189575A1 (en) * 2006-04-13 2009-07-30 SIEMENS AKTIENGESELLSCHAFT öSTERREICH Method for Measuring an Alternating Current which is Generated Using Inverters, and Arrangement for Carrying out the Method
US8705255B2 (en) * 2006-04-13 2014-04-22 Siemens Aktiengesellschaft Method for measuring an alternating current which is generated using inverters, and arrangement for carrying out the method
US8106622B2 (en) * 2007-04-05 2012-01-31 Denso Corporation Control system for multiphase rotary machines
JPWO2014049867A1 (ja) * 2012-09-28 2016-08-22 三菱電機株式会社 ヒートポンプ装置、空気調和機及び冷凍機

Similar Documents

Publication Publication Date Title
JP5446324B2 (ja) インバータ装置
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
JP4575547B2 (ja) モータの制御装置
JP6416414B2 (ja) 交流回転機の制御装置
JP2010011540A (ja) モータ制御装置
JP2008220117A (ja) 交流電動機の制御装置
JP6826928B2 (ja) インバータ装置、空気調和機、インバータ装置の制御方法及びプログラム
CN109964402B (zh) 旋转电机控制装置及具备该旋转电机控制装置的电动助力转向装置
WO2020059814A1 (ja) モータ制御装置、モータシステム及びインバータ制御方法
JP2019208329A (ja) センサレスベクトル制御装置及びセンサレスベクトル制御方法
JP6407175B2 (ja) 電力変換器制御装置
JP5500189B2 (ja) モータインバータの制御方法、及び制御装置
JP2018007390A (ja) モータ制御装置
JP6173003B2 (ja) 電力変換装置
WO2021200389A1 (ja) モータ制御装置、モータシステム及びモータ制御方法
JP2011087395A (ja) 車両のモータ制御装置
JP2004289971A (ja) 電動機の制御装置
JPH05300785A (ja) 同期電動機の制御装置
JP2014054076A (ja) モータ制御装置
JP2011142752A (ja) ゲートドライブ回路
JP2010239834A (ja) 同期モータ用インバータ制御回路及びこれを備える同期モータ制御装置
JP6493135B2 (ja) 車載用電動圧縮機
JPH08196096A (ja) インバータ装置
JP2020031469A (ja) モータ駆動制御装置
JP3552380B2 (ja) ブラシレスモータ駆動装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041026