JP2004284422A - 乗員保護装置 - Google Patents

乗員保護装置 Download PDF

Info

Publication number
JP2004284422A
JP2004284422A JP2003076539A JP2003076539A JP2004284422A JP 2004284422 A JP2004284422 A JP 2004284422A JP 2003076539 A JP2003076539 A JP 2003076539A JP 2003076539 A JP2003076539 A JP 2003076539A JP 2004284422 A JP2004284422 A JP 2004284422A
Authority
JP
Japan
Prior art keywords
power consumption
collision
microcomputer
consumption mode
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003076539A
Other languages
English (en)
Inventor
Takashi Mihara
孝 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003076539A priority Critical patent/JP2004284422A/ja
Publication of JP2004284422A publication Critical patent/JP2004284422A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】乗員保護を適切に行ないつつ、消費電力を低減することが可能な乗員保護装置を提供すること。
【解決手段】エアバッグ装置30の制御部14を構成する衝突判定用マイコン16とダイアグ用マイコン22は、車両の衝突を予測する衝突予測信号を受信している場合、通常電力消費モードにて動作し、衝突予測信号を受信していない場合には、低消費電力モードにて動作する。従って、制御部14において、衝突判定処理やスクイブ28への点火電流の通電処理を行なうのは、衝突発生が予測されたときに限られることになる。このため、衝突の発生の危険がない間は、衝突判定用マイコン16及びダイアグ用マイコン22における電力消費量を抑えることができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、車両の乗員を衝突による衝撃から保護する乗員保護装置に関する。
【0002】
【従来の技術】
従来の乗員保護装置としては、例えば、エアバッグ装置がある。このエアバッグ装置は、車両の衝突時に、インフレータ内においてスクイブによりガス発生剤に点火し、インフレータよりガスを発生させ、そのガスによってエアバッグを膨らませて、乗員を保護する。
【0003】
このようなエアバッグ装置においては、車両の各部に配設されたサテライトセンサによって、車両に加わる衝撃を加速度として検出すると共に、例えば、フロアトンネルに配設されたマイコン(以下、エアバッグECUという)が、その検出した加速度に基づいて車両の衝突判定を行なう。そして、車両が衝突したと判定された場合に、上記スクイブに点火電流を通電する。
【0004】
【発明が解決しようとする課題】
上述したエアバッグ装置では、いつ何時車両が衝突してもエアバッグを確実に展開する必要があるため、ECUは常にサテライトセンサから加速度信号を入力し、その加速度信号の大きさに基づいて車両の衝突の発生を判定していた。このため、ECUを常時作動させることによって消費電力が大きくなってしまう問題があった。
【0005】
本発明は、上述した点に鑑みてなされたものであり、乗員保護を適切に行ないつつ、消費電力を低減することが可能な乗員保護装置を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の乗員保護装置は、
車両の衝突による衝撃から乗員を保護する保護手段と、
衝突発生前に、衝突の発生を予測する衝突予測手段と、
保護手段の起動を制御する制御手段とを備える乗員保護装置であって、
制御手段は、衝突予測手段によって衝突発生が予測されるまで、低消費電力モードに設定され、衝突発生が予測された後は通常消費電力モードにて動作することを特徴とする。
【0007】
このように、請求項1に記載の乗員保護装置では、車両の衝突を予測する予測手段を備え、衝突発生が予測されるまでは制御手段を低消費電力モードに設定する。すなわち、通常消費電力モードにおいて制御手段が通常の動作を行なうのは、衝突発生が予測されたときに限られる。このため、制御手段が常時、車両の衝突の発生を監視する場合に比較して乗員保護装置の消費電力を低減することができる。
【0008】
請求項2に記載したように、車両に加わる衝撃を加速度として検出する加速度検出手段を備え、制御手段は、加速度検出手段によって検出される衝撃加速度に基づいて車両の衝突を判定し、車両の衝突と判定した際に保護手段を起動する起動制御手段と、少なくとも前記保護手段が正常に動作するか否かを診断する診断手段とを備え、起動制御手段と診断手段とは別個のマイコンによって構成されるとともに、衝突発生が予測されるまで、低消費電力モードとして、起動制御手段を構成するマイコンはその動作が停止され、診断手段を構成するマイコンは、通常消費電力モードにおける通常クロック信号よりも周波数の低い低クロック信号を基準として動作することが好ましい。
【0009】
衝突の判定及び保護手段の起動に関しては、衝突の発生が予測された後に行なえば十分に対応することが可能である。このため、衝突の発生が予測されるまで起動制御手段を構成するマイコンの動作を停止することにより、消費電力を効果的に低減することができる。一方、保護手段が正常に動作するか否かは事前に診断しておくことが好ましい。このため、診断手段を構成するマイコンに関しては動作を停止するのではなく、低クロック信号にて消費電力を抑えながら継続的に動作させることが望ましい。
【0010】
請求項3に記載したように、衝突予測手段により、衝突発生が予測された後に、その衝突発生の予測が取り消された場合、制御手段は、動作モードを通常消費電力モードから低消費電力モードに移行させることが好ましい。これにより、制御手段を、衝突発生が予測される間のみ、通常消費電力モードで動作させることができ、一層の消費電力の低減を図ることができる。
【0011】
請求項4に記載の乗員保護装置は、
車両の衝突による衝撃から乗員を保護する保護手段と、
車両に加わる衝撃を加速度として検出する加速度検出手段と、
加速度検出手段によって検出される加速度に基づいて保護手段の起動を制御する制御手段とを備える乗員保護装置であって、
制御手段は、加速度検出手段によって検出される加速度が第1の閾値を超えるまで、低消費電力モードに設定され、第1の閾値を越えたとき、通常消費電力モードにて動作を開始し、さらに、第1の閾値よりも大きい第2の閾値を越えた場合に、保護手段を起動することを特徴とする。
【0012】
このように、保護手段を起動するための条件となる第2の閾値よりも小さい第1の閾値を加速度が超えたときに、制御手段の動作モードを低消費電力モードから通常消費電力モードに変更することも可能である。これにより、保護手段を起動すべき時点では、制御手段を通常消費電力モードにて動作させることができるので、消費電力を低減しつつ、保護手段の起動制御を適切に実行することができる。
【0013】
請求項5に記載したように、制御手段は、加速度検出手段によって検出される加速度と第2の閾値との比較結果に基づいて車両の衝突を判定し、車両の衝突と判定した際に保護手段を起動する起動制御手段と、少なくとも前記保護手段が正常に動作するか否かを診断する診断手段とを備え、起動制御手段と診断手段とは別個のマイコンによって構成されるとともに、加速度が第1の閾値を超えるまで、低消費電力モードとして、起動制御手段を構成するマイコンはその動作が停止され、診断手段を構成するマイコンは、通常消費電力モードにおける通常クロック信号よりも低周波数の低クロック信号を基準として動作することが好ましい。
【0014】
起動制御手段を構成するマイコンに関しては、衝突判定及び起動制御を実行するのは、加速度が第1の閾値を超えた後で十分であるのに対し、診断手段を構成するマイコンに関しては、継続的に保護手段が正常に動作するか否かを監視することが好ましいためである。
【0015】
請求項6に記載したように、加速度検出手段によって検出される加速度が第1の閾値を超えたか否かを診断手段を構成するマイコンにて監視し、加速度が第1の閾値を超えたと判定した場合、診断手段を構成するマイコンによって起動制御手段を構成するマイコンを低消費電力モードから通常消費電力モードに移行させることが好ましい。診断手段を構成するマイコンは、低クロック信号を基準として動作しているため、加速度と第1の閾値との比較処理及び加速度が第1の閾値を超えた場合に、起動制御手段を構成するマイコンに対して通常消費電力モードにて動作を開始させるための制御信号の出力処理を行なうことが可能なためである。
【0016】
請求項7に記載したように、制御手段は、加速度検出手段によって検出される加速度と第2の閾値との比較結果に基づいて車両の衝突を判定し、車両の衝突と判定した際に保護手段を起動する起動制御手段と、少なくとも保護手段が正常に動作するか否かを診断する診断手段とを備え、起動制御手段と診断手段とは別個のマイコンによって構成されるとともに、加速度が第1の閾値を超えるまで、低消費電力モードとして、起動制御手段を構成するマイコンは加速度が第1の閾値を超えたか否かを監視することを含む制限された機能のみを実行可能に設定され、診断手段を構成するマイコンは、通常消費電力モードにおける通常クロック信号よりも低周波数の低クロック信号を基準として動作するように構成することもできる。
【0017】
すなわち、請求項6に記載したように、起動制御手段を構成するマイコンは、診断手段を構成するマイコンによってその動作モードが変更されるのではなく、起動制御手段を構成するマイコン自身が、加速度が第1の閾値を超えたか否かを監視するものであっても良い。
【0018】
また、請求項8に記載したように、加速度が第1の閾値を超えてから所定時間経過した時に、制御手段は、動作モードを通常消費電力モードから低消費電力モードに移行させるように構成することが好ましい。加速度が第1の閾値を超えてから所定時間経過しても保護手段が起動されない場合には、第1の閾値を超えた加速度は衝突によって発生したものではないとみなしえる。このため、再び、制御手段の動作モードを低消費電力モードに移行させ、消費電力の低減を図ることが好ましいためである。
【0019】
【発明の実施の形態】
以下、本発明による乗員保護装置の実施の形態について説明する。なお、本実施形態においては、本発明による乗員保護装置がエアバッグ装置として構成された例について説明するが、衝突の発生時にシートベルトを引き込むシートベルトプリテンショナー等の他の乗員保護装置として構成することも可能である。
【0020】
(第1の実施形態)
図1は、第1の実施形態によるエアバッグ装置30の全体構成を示すブロック図である。図1に示すエアバッグ装置30は、車両に加わる衝撃を検出するための加速度(G)センサを有し、車両の各部に配設されたサテライトセンサ10を備えている。このサテライトセンサ10は、例えば図2に示すように、フロントサテライトセンサ10a,10bとBピラーサテライトセンサ10c,10dを含む。フロントサテライトセンサ10a,10bは、車両の前部の両側に配設され、車両の前後方向の衝撃加速度を検出する。Bピラーサテライトセンサ10c,10dは、車両の両側のBピラーに配設され、車両の側方からの衝撃加速度を検出する。
【0021】
ここで、サテライトセンサ10の内部構成について図3に基づいて説明する。図3に示すように、サテライトセンサ10は、電源の供給と信号の伝送に共用される信号線に接続される電源/通信端子とグランド信号線に接続されるGND端子とを有している。電源/通信端子には5Vの電源電圧を発生するDC−DCコンバータ5が接続され、サテライトセンサ10内部の各回路に駆動電圧を供給している。
【0022】
サテライトセンサ10は、車両に加わる衝撃による加速度を測定し、その衝撃加速度の大きさに応じた測定値を出力するGセンサ6を備えている。Gセンサ6が出力する測定値はCPU7に入力される。CPU7は、A/D変換機能を有し、Gセンサ6から出力される衝撃加速度に応じた測定値(アナログ値)をデジタル値(G信号)に変換する。また、このCPU7は、Gセンサ6等に異常がないかどうかを診断する診断機能も有する。この診断機能によりGセンサ6等に異常が発生していることが検出された場合には、その旨を示す異常信号を出力する。
【0023】
通信インターフェース(I/F)8は、CPU7から出力されるG信号もしくは異常信号に対応するデジタル信号を、電源/通信端子に接続される信号線を介して送信する。例えば、通信I/F8はCPU7からシリアルに出力されるデジタル信号のレベルに応じて、電源/通信端子を流れる電流値を低電流と高電流とに変化させ、この電流変化を利用して、上述したデジタル値を送信することができる。
【0024】
なお、図2に示されるように、エアバッグ装置30は、例えば、車両の衝突
から乗員を保護する保護手段として、運転席及び助手席用フロントエアバッグ1,2、及び運転席及び助手席用サイドエアバッグ3,4を備えている。これらのエアバッグ1〜4は、図示しないインフレータ内において、スクイブ28によってガス発生剤が点火されたときに展開される。
【0025】
エアバッグ装置30は、図1に示すように、上述したサテライトセンサ10からのG信号に基づいて車両が衝突したか否かを判定する衝突判定処理や、スクイブ28への点火電流の通電処理、並びに各部の異常診断処理等を行なう制御部14を備えている。この制御部14は主に衝突判定用マイコン16とダイアグ用マイコン22とから構成される。なお、衝突判定用マイコン16とダイアグ用マイコン22とは、相互に通信を行なうことができるように通信ラインによって接続されている。
【0026】
衝突判定用マイコン16は、上述したサテライトセンサ10と信号線を介して接続され、サテライトセンサ10への電源供給の制御を行なうとともに、サテライトセンサ10のGセンサ6によって検出された衝撃加速度に応じたG信号や異常信号を受信する。さらに、衝突判定用マイコン16は、受信したG信号に基づいて、車両に衝突が発生したか否かを判定する衝突判定処理を実行する。その衝突判定処理における判定結果や、サテライトセンサ10から受信した異常信号は、ダイアグ用マイコン22に送信される。
【0027】
ダイアグ用マイコン22は、スクイブ28に断線等の異常が生じていないか、また点火電流を通電するための点火回路20が正常に動作するか等について診断処理を行なう。この診断処理において異常が発見された場合や、衝突判定用マイコン16からサテライトセンサ10の異常信号を受信した場合には、その異常箇所や異常の種類を図示しないメモリに記憶するとともに、ウオ−ニングランプ(W/L)26を点灯させる。また、ダイアグ用マイコン22は、衝突判定用マイコン16において衝突の発生が判定された場合に、その判定結果を受信し、それに基づいて、点火回路20を駆動する通電処理を行なう。点火回路20は、ダイアグ用マイコン22によって駆動されることにより、展開すべきエアバッグ1〜4に対応するスクイブ28に点火電流を通電する。
【0028】
なお、衝突判定用マイコン16及びダイアグ用マイコン22は、それぞれ発振子18,24を有しており、これらの発振子18,24からクロック信号が入力される。また、衝突判定用マイコン16及びダイアグ用マイコン22は、発振子18,24から入力されたクロック信号を逓倍する逓倍回路を内蔵している。各マイコン16,22は、その逓倍回路によって周波数が増加されたクロック信号を基準として動作する。
【0029】
さらに、本実施形態におけるエアバッグ装置30は、プリクラッシュセーフティシステム12を備え、制御部14を構成する衝突判定用マイコン16とダイアグ用マイコン22の割込みポートに衝突予測信号を入力している。
【0030】
このプリクラッシュセーフティシステム12は、例えばレーザレーダやミリ波レーダとマイコンを備え、車両前方の障害物との距離及び相対速度を測定することが可能なものである。プリクラッシュセーフティシステム12においては、障害物との距離及び相対速度に基づいて、その障害物との衝突の可能性について判定する。このとき、障害物との衝突の可能性が高くなった場合には、上述した衝突予測信号を制御部14に出力するとともに、衝突が発生した際に乗員への危害を極力軽減できるように、シートベルトを巻き取ってシートへの拘束力を高めたり、シートの背もたれの角度を適正角度に修正したり、ブレーキが操作された際の制動力を高めるためにブレーキアシスト制御等を行なう。
【0031】
次に、本実施形態における特徴に係わる、制御部14の動作モード決定処理に関して、図4のフローチャートを用いて説明する。
【0032】
まず、ステップS100において、制御部14の初期診断処理が実施される。すなわち、制御部14の衝突判定用マイコン16は、サテライトセンサ16に対して電源の供給を開始するとともに、サテライトセンサ10は、Gセンサ6等の異常診断処理を実施する。この異常診断処理において、何らかの異常が発見された場合には、サテライトセンサ10は衝突判定用マイコン16に異常信号を出力する。衝突判定用マイコン16は、さらに内部のROM,RAM等の自身の動作に関するチェックも行なう。サテライトセンサ10から異常信号を受信したり、自身の動作チェックにおいて異常を発見したりした場合には、その旨を示す信号が衝突判定用マイコン16からダイアグ用マイコン22に送信される。一方、ダイアグ用マイコン22においては、点火回路20やスクイブ28、さらに自身の動作に関する診断を行なう。この診断において、何らかの異常を発見したり、衝突判定用マイコン16から異常信号が送信されたりしている場合には、その異常の記憶とW/L26の点灯を行なう。
【0033】
次にステップS110において、プリクラッシュセーフティシステム12から衝突予測信号(プリクラッシュ信号)を受信しているか否かを判定する。衝突予測信号を受信している場合には、ステップS120に進み、制御部14の動作モードを通常消費電力モードに設定する。一方、衝突予測信号を受信していない場合には、ステップS130に進み、制御部14の動作モードを低消費電力モードに設定する。
【0034】
ここで、通常電力消費モードとは、衝突判定用マイコン16及びダイアグ用マイコン22とも、それぞれ実行すべきプログラムを高速処理可能な動作モードをいう。なお、通常電力消費モードにおける、衝突判定用マイコン16とダイアグ用マイコン22のクロック信号の周波数は同じ周波数に設定される。また、低消費電力モードとは、衝突判定マイコン16に関しては、外部割込みは受付可能であるが、CPUやその他の周辺機能は動作を停止した状態となり、ダイアグ用マイコン22に関しては、逓倍回路における逓倍率を変更し、通常電力消費モードよりも低速にて動作する動作モードをいう。
【0035】
なお、プリクラッシュセーフティシステム12からの衝突予測信号は、衝突判定用マイコン16の割込みポートに入力されるので、衝突判定用マイコン16が動作を停止していても、衝突予測信号を受信した時点で動作を再開し、その後は通常電力消費モードにて動作することができる。また、低周波数クロック信号を基準として動作しているダイアグ用マイコン22も、衝突予測信号を割込みポートに入力された時点で、その動作モードが通常消費電力消費モードに移行される。
【0036】
また、低消費電力モードにおいて、ダイアグ用マイコン22は、衝突判定用マイコン16のように動作が停止するのではなく、低周波数クロック信号を基準として継続して動作する。このため、点火回路20やスクイブ28の異常診断を繰り返し実行することができ、それらに異常が生じた場合には、即座に発見することができる。
【0037】
このように、本実施形態におけるエアバッグ装置30では、車両の衝突を予測する衝突予測信号を受信している場合には、制御部14を通常電力消費モードにて動作させるが、衝突予測信号を受信していない場合には、低消費電力モードにて動作させる。従って、制御部14において、衝突判定処理やスクイブ28への点火電流の通電処理を行なうのは、衝突発生が予測されたときに限られることになる。このため、衝突の発生の危険がない間は、衝突判定用マイコン16及びダイアグ用マイコン22における電力消費量は僅かなものとなる。この結果、エアバッグ装置30の消費電力を著しく低減することができる。
【0038】
なお、本実施形態においては、衝突判定用マイコン16がサテライトセンサ10への電源供給を制御しており、衝突判定用マイコン16が動作を停止した場合には、サテライトセンサ10への電源供給も停止される。このため、サテライトセンサ10での消費電力も合わせて低減することができる。また、サテライトセンサ10の動作を停止することにより、サテライトセンサ10から衝突判定用マイコン16へのG信号等の送信も行なわれないため、その信号の送信によるノイズの発生を防止することができる。さらに、ノイズは、マイコンが動作することによっても発生するが、低消費電力モードにおいて、衝突判定用マイコン16はその動作を停止し、ダイアグ用マイコン22は低い動作クロック周波数にて動作するため、各マイコン16,22からのノイズの発生も抑えることができる。
【0039】
(第1実施形態の変形例)
上述した第1実施形態では、サテライトセンサ10を衝突判定用マイコン16に接続し、衝突判定用マイコン16によって電源供給を制御していた。しかしながら、サテライトセンサ10をダイアグ用マイコン22のみもしくは衝突判定用マイコン16との両方に接続することにより、ダイアグ用マイコン22によってサテライトセンサへの電源供給が可能となるように構成しても良い。この場合、例えば、間欠的にサテライトセンサ10に電源を供給することにより、初期診断時以外にも、サテライトセンサ10において異常診断を実行させることが可能になる。
【0040】
また、衝突予測信号は、衝突判定用マイコン16とダイアグ用マイコン22のいずれか一方のみに与えて、その衝突予測信号を受信した一方のマイコンが他方のマイコンの動作モードを低消費電力モードから通常電力消費モードに移行させても良い。
【0041】
さらに、サテライトセンサ10は、検出した衝撃加速度をデジタル値に変換せずにアナログ値として衝突判定用マイコン16に送信し、衝突判定用マイコン16にてデジタル値に変換するものであっても良い。また、サテライトセンサ10は、G信号そのものではなく、そのG信号と所定値との比較結果を衝突判定用マイコン16に送信するものであっても良い。
【0042】
(第2の実施形態)
次に本発明の第2の実施形態によるエアバッグ装置について説明する。図5は、第2の実施形態によるエアバッグ装置40の全体構成を示すブロック図である。なお、前述の第1の実施形態によるエアバッグ装置30と同様の構成については同じ参照番号を付すことにより説明を省略する。
【0043】
図5に示すように、第2の実施形態によるエアバッグ装置40は、プリクラッシュセーフティシステム12からの衝突予測信号ではなく、サテライトセンサ10からのG信号に基づいて、衝突判定用マイコン36及びダイアグ用マイコン32を通常消費電力モードにて動作させるタイミングを決定する点に特徴がある。
【0044】
図6に、本実施形態における制御部34の動作モード決定処理に関するフローチャートを示す。
【0045】
まず、ステップS100の初期診断に関する処理は前述の第1実施形態と同様である。
【0046】
本実施形態では、ステップS115において、サテライトセンサ10から送信されたG信号(Gセンサ出力)が、衝突の初期に検出されるべき大きさを有しているか否かを所定の第1の閾値と比較することによって判定する。このとき、G信号が所定の第1の閾値以上の大きさを有していれば、制御部14の動作モードは通常消費電力モードに設定され(ステップS120)、所定の第1の閾値未満であれば、低消費電力モードに設定される(ステップS135)。
【0047】
なお、通常電力消費モードに設定された場合、衝突判定用マイコン36は、サテライトセンサ10から送信されるG信号を、前述の第1の閾値よりも大きい、車両の衝突が発生したことを判定するための第2の閾値と比較する。そして、G信号が第2の閾値よりも大きい場合、スクイブ28への通電処理を行なう。但し、G信号と第2の閾値との比較のみに基づくのではなく、他の条件(例えば、他の加速度センサによっても所定値以上の加速度が検出されていることや、G信号の積分値が所定値以上となったこと)も加味して、スクイブ28への通電処理を行なっても良い。
【0048】
また、低消費電力モードにおいて、衝突判定用マイコン36はサテライトセンサ10から送信されたG信号の大きさを判定する必要がある。そのため、衝突判定用マイコン36に関して、少なくともG信号と第1の閾値との比較処理ルーチンを含む制限された機能のみを実行する動作モードを設定し、これを衝突判定用マイコン36の低消費電力モードとする。さらに、実行する機能を制限するのみでなく、ダイアグ用マイコン32と同様に、クロック信号の周波数を低下させても良い。これにより、衝突判定用マイコン36の消費電力は、少なくとも通常消費電力モードに比較して低消費電力モードにおいて低減することができる。
【0049】
ステップS140では、G信号が第1の閾値を超えてから所定時間が経過したか否かを判定する。そして、所定時間が経過していなければ、ステップS120において通常消費電力モードでの制御処理を継続して実施し、所定時間が経過していれば、ステップS115に戻る。加速度が第1の閾値を超えてから所定時間経過してもエアバッグ1〜4が展開されない場合、第1の閾値を超えた加速度は衝突によって発生したものではない可能性が高い。このため、再びステップS115の比較処理を行い、加速度が第1の閾値未満であれば、通常消費電力モードから低消費電力モードに移行する。
【0050】
(第2実施形態の変形例)
上述した第2の実施形態においては、サテライトセンサ10のG信号により、衝突判定用マイコン36とダイアグ用マイコン32がそれぞれ自身の動作モードを通常消費電力モードと低消費電力モードとのいずれかに切り換えていた。しかしながら、低消費電力モードにおいて、ダイアグ用マイコン32のみが、G信号と第1の閾値との比較処理を行い、G信号が第1の閾値以上である場合に、ダイアグ用マイコン32が衝突判定用マイコン36を低消費電力モードから通常電力消費モードに移行させるようにしても良い。このようにすると、衝突判定用マイコン36に関して、第1の実施形態と同様に、低消費電力モードの際、動作を停止させることが可能となり、一層の消費電力の低減を図ることができる。
【図面の簡単な説明】
【図1】第1の実施形態によるエアバッグ装置の全体構成を示すブロック図である。
【図2】車両におけるサテライトセンサの配設位置の一例を示す説明図である。
【図3】サテライトセンサの内部構成を示すブロック図である。
【図4】第1の実施形態における、制御部の動作モード決定処理に関するフローチャートである。
【図5】第2の実施形態によるエアバッグ装置の全体構成を示すブロック図である。
【図6】第2の実施形態における、制御部の動作モード決定処理に関するフローチャートである。
【符号の説明】
10…サテライトセンサ
12…プリクラッシュセーフティシステム
14…制御部
16…衝突判定用マイコン
18…発振子
20…点火回路
22…ダイアグ用マイコン
24…発振子
26…ウオ−ニングランプ(W/L)
28…スクイブ

Claims (8)

  1. 車両の衝突による衝撃から乗員を保護する保護手段と、
    衝突発生前に、衝突の発生を予測する衝突予測手段と、
    前記保護手段の起動を制御する制御手段とを備える乗員保護装置であって、
    前記制御手段は、前記衝突予測手段によって衝突発生が予測されるまで、低消費電力モードに設定され、衝突発生が予測された後は通常消費電力モードにて動作することを特徴とする乗員保護装置。
  2. 車両に加わる衝撃を加速度として検出する加速度検出手段を備え、
    前記制御手段は、前記加速度検出手段によって検出される衝撃加速度に基づいて車両の衝突を判定し、車両の衝突と判定した際に前記保護手段を起動する起動制御手段と、少なくとも前記保護手段が正常に動作するか否かを診断する診断手段とを備え、
    前記起動制御手段と前記診断手段とは別個のマイコンによって構成されるとともに、前記衝突発生が予測されるまで、前記低消費電力モードとして、前記起動制御手段を構成するマイコンはその動作が停止され、前記診断手段を構成するマイコンは、前記通常消費電力モードにおける通常クロック信号よりも周波数の低い低クロック信号を基準として動作することを特徴とする請求項1に記載の乗員保護装置。
  3. 前記衝突予測手段により、衝突発生が予測された後に、その衝突発生の予測が取り消された場合、前記制御手段は、動作モードを通常消費電力モードから低消費電力モードに移行させることを特徴とする請求項1または請求項2に記載の乗員保護装置。
  4. 車両の衝突による衝撃から乗員を保護する保護手段と、
    車両に加わる衝撃を加速度として検出する加速度検出手段と、
    前記加速度検出手段によって検出される加速度に基づいて前記保護手段の起動を制御する制御手段とを備える乗員保護装置であって、
    前記制御手段は、前記加速度検出手段によって検出される加速度が第1の閾値を超えるまで、低消費電力モードに設定され、前記第1の閾値を越えたとき、通常消費電力モードにて動作を開始し、さらに、前記第1の閾値よりも大きい第2の閾値を越えた場合に、前記保護手段を起動することを特徴とする乗員保護装置。
  5. 前記制御手段は、前記加速度検出手段によって検出される加速度と前記第2の閾値との比較結果に基づいて車両の衝突を判定し、車両の衝突と判定した際に前記保護手段を起動する起動制御手段と、少なくとも前記保護手段が正常に動作するか否かを診断する診断手段とを備え、
    前記起動制御手段と前記診断手段とは別個のマイコンによって構成されるとともに、前記加速度が第1の閾値を超えるまで、前記低消費電力モードとして、前記起動制御手段を構成するマイコンはその動作が停止され、前記診断手段を構成するマイコンは、前記通常消費電力モードにおける通常クロック信号よりも低周波数の低クロック信号を基準として動作することを特徴とする請求項4に記載の乗員保護装置。
  6. 前記加速度検出手段によって検出される加速度が前記第1の閾値を超えたか否かを前記診断手段を構成するマイコンにて監視し、前記加速度が前記第1の閾値を超えたと判定した場合、前記診断手段を構成するマイコンによって前記起動制御手段を構成するマイコンを低消費電力モードから通常消費電力モードに移行させることを特徴とする請求項5に記載の乗員保護装置。
  7. 前記制御手段は、前記加速度検出手段によって検出される加速度と前記第2の閾値との比較結果に基づいて車両の衝突を判定し、車両の衝突と判定した際に前記保護手段を起動する起動制御手段と、少なくとも前記保護手段が正常に動作するか否かを診断する診断手段とを備え、
    前記起動制御手段と前記診断手段とは別個のマイコンによって構成されるとともに、前記加速度が第1の閾値を超えるまで、前記低消費電力モードとして、前記起動制御手段を構成するマイコンは前記加速度が前記第1の閾値を超えたか否かを監視することを含む制限された機能のみを実行可能に設定され、前記診断手段を構成するマイコンは、前記通常消費電力モードにおける通常クロック信号よりも低周波数の低クロック信号を基準として動作することを特徴とする請求項4に記載の乗員保護装置。
  8. 前記加速度が前記第1の閾値を超えてから所定時間経過した時に、前記制御手段は、動作モードを通常消費電力モードから低消費電力モードに移行させることを特徴とする請求項4乃至請求項7のいずれかに記載の乗員保護装置。
JP2003076539A 2003-03-19 2003-03-19 乗員保護装置 Pending JP2004284422A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003076539A JP2004284422A (ja) 2003-03-19 2003-03-19 乗員保護装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076539A JP2004284422A (ja) 2003-03-19 2003-03-19 乗員保護装置

Publications (1)

Publication Number Publication Date
JP2004284422A true JP2004284422A (ja) 2004-10-14

Family

ID=33291567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076539A Pending JP2004284422A (ja) 2003-03-19 2003-03-19 乗員保護装置

Country Status (1)

Country Link
JP (1) JP2004284422A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007004689A (ja) * 2005-06-27 2007-01-11 Fujitsu Ten Ltd 画像処理装置及び画像処理方法
DE102008040255A1 (de) 2007-07-12 2009-01-15 Denso Corp., Kariya-shi Kraftfahrzeug-Kollisionsminderungsvorrichtung
DE102010042088A1 (de) 2009-11-09 2011-05-12 Denso Corporation, Kariya-City Vorrichtung zur Erfassung einer dynamischen Grösse
JP2016107844A (ja) * 2014-12-08 2016-06-20 本田技研工業株式会社 車両制動制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007004689A (ja) * 2005-06-27 2007-01-11 Fujitsu Ten Ltd 画像処理装置及び画像処理方法
DE102008040255A1 (de) 2007-07-12 2009-01-15 Denso Corp., Kariya-shi Kraftfahrzeug-Kollisionsminderungsvorrichtung
US7565234B2 (en) 2007-07-12 2009-07-21 Denso Corporation Automotive collision mitigation apparatus
DE102008040255B4 (de) 2007-07-12 2018-10-04 Denso Corporation Kraftfahrzeug-Kollisionsminderungsvorrichtung
DE102010042088A1 (de) 2009-11-09 2011-05-12 Denso Corporation, Kariya-City Vorrichtung zur Erfassung einer dynamischen Grösse
US8547119B2 (en) 2009-11-09 2013-10-01 Denso Corporation Dynamic quantity detection device
JP2016107844A (ja) * 2014-12-08 2016-06-20 本田技研工業株式会社 車両制動制御装置

Similar Documents

Publication Publication Date Title
EP1258400B1 (en) Collision severity determining system
JP3064923B2 (ja) 作動可能抑制デバイスを制御するための装置及び方法
CA2416422C (en) Airbag trigger control system
US10668895B2 (en) Variable force limiter control system for vehicle
JP2007069711A (ja) エアバッグ装置
US6209910B1 (en) Ignition control system for a passive safety device
JP4258726B2 (ja) 乗員保護システム
JP2002362301A (ja) 乗員保護装置の起動装置
JP2004284422A (ja) 乗員保護装置
JP4030990B2 (ja) 乗員保護装置の通信制御装置
JP3487270B2 (ja) エアバッグ装置の起動制御装置
JP2004284382A (ja) 乗員保護装置
KR102557187B1 (ko) 차량용 에어백 구동장치 및 그 제어방법
JP6072507B2 (ja) 制御装置
JP2004284381A (ja) 乗員保護装置
JPH10166993A (ja) 乗員保護装置の起動制御装置及び車両における処理装置
JP3512058B2 (ja) 乗員保護装置
JP6551746B2 (ja) 車両用センサ装置及び車両用センサシステム
JP2004284421A (ja) 乗員保護装置
JP4203814B2 (ja) 車両用乗員保護装置
JP2003175797A (ja) 乗員保護システム
JP2013154838A (ja) 乗員保護制御装置
JPH10175503A (ja) 車両用エアバッグシステム
JP2004268775A (ja) 乗員保護装置
KR19980038807A (ko) 보조 ecu를 구비한 에어 백 시스템