JP2004263775A - 状態検出装置及び状態検出方法並びに状態検出用プログラム及び情報記録媒体 - Google Patents

状態検出装置及び状態検出方法並びに状態検出用プログラム及び情報記録媒体 Download PDF

Info

Publication number
JP2004263775A
JP2004263775A JP2003054293A JP2003054293A JP2004263775A JP 2004263775 A JP2004263775 A JP 2004263775A JP 2003054293 A JP2003054293 A JP 2003054293A JP 2003054293 A JP2003054293 A JP 2003054293A JP 2004263775 A JP2004263775 A JP 2004263775A
Authority
JP
Japan
Prior art keywords
detected
maximum value
state
detection signal
periodicity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003054293A
Other languages
English (en)
Other versions
JP4430316B2 (ja
Inventor
Takeo Yoshioka
武雄 吉岡
Yoshiyuki Honjo
善之 本所
Shigeo Watanabe
茂雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THK Co Ltd
Original Assignee
THK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THK Co Ltd filed Critical THK Co Ltd
Priority to JP2003054293A priority Critical patent/JP4430316B2/ja
Priority to TW93104897A priority patent/TW200427975A/zh
Priority to EP20040715466 priority patent/EP1598569B1/en
Priority to CNB200480005548XA priority patent/CN100458394C/zh
Priority to AT04715466T priority patent/ATE522734T1/de
Priority to KR1020057015893A priority patent/KR100993048B1/ko
Priority to US10/547,356 priority patent/US7555953B2/en
Priority to PCT/JP2004/002398 priority patent/WO2004076874A1/ja
Publication of JP2004263775A publication Critical patent/JP2004263775A/ja
Application granted granted Critical
Publication of JP4430316B2 publication Critical patent/JP4430316B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • F16C29/0635Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/667Details of supply of the liquid to the bearing, e.g. passages or nozzles related to conditioning, e.g. cooling, filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/01Monitoring wear or stress of gearing elements, e.g. for triggering maintenance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Rolling Contact Bearings (AREA)
  • Transmission Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

【課題】直動転がり案内装置における故障の発生を予知を可能とし、且つ、当該直動転がり案内装置の使用者における整備性を向上させ、更にその長寿命化及び当該直動転がり案内装置を用いて製造された装置又は機器の品質向上に資することが可能な状態検出装置等を提供する。
【解決手段】直動転がり案内装置における現在の動作状態を検出する状態検出装置であって、直動転がり案内装置に含まれる複数のボール各々の転がり及び当該ボール相互の衝突に少なくとも起因して弾性的に発生する波動を検出し、当該検出した波動に対応する電気的な検出信号を生成するAEセンサ1、波形整形部2及びA/Dコンバータ3と、生成された検出信号Sseに基づいて、動作状態の内容を判定する信号処理部4と、を備える。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、状態検出装置及び状態検出方法並びに状態検出用プログラム及び情報記録媒体の技術分野に属し、より詳細には、直動転がり案内装置の稼動中における当該直動転がり案内装置の動作状態を検出する状態検出装置及び状態検出方法並びに当該動作状態検出のための状態検出用プログラム及び当該状態検出用プログラムがコンピュータで読取可能に記録された情報記録媒体の技術分野に属する。
【0002】
【従来の技術】
従来、レールと、当該レール上をその長手方向に移動する移動ブロックと、当該レールと当該移動ブロックとの間に介在してそれ自体が回転(自転)しつつ循環(公転)して当該移動ブロックを高精度に移動させる複数のボール(転動体)と、を含む、いわゆる直動転がり案内装置が広く一般化しており、具体的には、工作機械の作業台の三次元運動や、振り子電車における振り子運動を支持する部材、更には建物の免震構造にまで活用範囲が広がっている。
【0003】
そして、このような活用範囲の広がりに伴い、直動転がり案内装置における故障予防についても要求が高まっており、そのための動作状態の診断法についても高精度のものが求められている。
【0004】
ここで、直動転がり案内装置を除く従来の一般的な機械システム(例えばボールベアリングを含む回転用転がり軸受装置等)における動作状態の診断方法としては、その機械システムにおける振動の発生状態を監視して動作状態の診断を行う振動検出法、その機械システムに用いられている潤滑油を取り出してその質を評価することで動作状態の診断を行う油評価法、その機械システム内において潤滑油を介して駆動されている部材間の電気抵抗を測定して動作状態の診断を行う電気抵抗法、又はその機械システム内において潤滑油を介して駆動されている部材の温度を熱電対等を用いて測定して動作状態の診断を行う温度測定法等がある。
【0005】
【発明が解決しようとする課題】
しかしながら、これらの診断方法を直動転がり案内装置に適用した場合、以下の如き問題点があった。
【0006】
すなわち、振動検出法を用いた場合は、直動転がり案内装置においては転動体としてのボールが自ら自転しつつ循環部内を公転することから、異常を示す振動以外の振動発生源が多く、本来検出すべき振動を正確に検出できないという問題点があった。
【0007】
また、油評価法を用いた場合は、診断対象である直動転がり案内装置における使用前の潤滑油と使用後の潤滑油を夫々にその装置自体から取り出して検査する必要があり、診断結果が得られるまでに余分な時間が必要となると共に直動転がり案内装置自体を一旦停止させて潤滑油の取り出し作業を行う必要があり、稼動効率が低下するという問題点があった。
【0008】
更に、電気抵抗法及び温度測定法を用いた場合は、共に電気的な雑音に対して脆弱であると共に上記移動ブロックの移動速度が遅いときは測定ができない場合があるという問題点があった。
【0009】
従って、従来では、直動転がり案内装置の動作状態を実時間で正確に診断することは困難だった。
【0010】
そこで、本発明は、上記の問題点に鑑みて為されたもので、その課題は、直動転がり案内装置における動作状態を実時間で正確に検出することにより、当該直動転がり案内装置における故障の発生予知を可能とし、且つ、当該直動転がり案内装置の使用者における整備性を向上させ、更にその長寿命化及び当該直動転がり案内装置を組み込んだ装置又は機器の品質向上に資することが可能な状態検出装置及び状態検出方法並びに当該動作状態検出のための状態検出用プログラム及び当該状態検出用プログラムがコンピュータで読取可能に記録された情報記録媒体を提供することにある。
【0011】
【課題を解決するための手段】
上記の課題を解決するために、請求項1に記載の発明は、直動転がり案内装置における現在の動作状態を検出する状態検出装置であって、前記直動転がり案内装置に含まれる複数の転動体が循環部内を公転する際に生じる、当該直動転がり案内装置に含まれる移動部材又は軌道部材と前記転動体との接触又は衝突、当該直動転がり案内装置に含まれる転動面と前記転動体との接触、或いは当該転動体同士の衝突のいずれかに少なくとも起因して弾性的に発生する波動を検出し、当該検出した波動に対応する電気的な検出信号を生成するAE(Acoustic Emission)センサ等の検出手段と、前記生成された検出信号に基づいて、前記動作状態の内容を判定する信号処理部等の判定手段と、を備える。
【0012】
よって、直動転がり案内装置の稼動により弾性的に発生する上記波動を検出して当該直動転がり案内装置の現在の動作状態を検出するので、当該直動転がり案内装置の稼動中に、実時間で、当該直動転がり案内装置を分解することなく、当該稼動に起因する振動の影響を排除しつつ、その動作状態を検出することができる。
【0013】
上記の課題を解決するために、請求項2に記載の発明は、請求項1に記載の状態検出装置において、前記判定手段は、前記生成された検出信号における周期性の有無を判定する信号処理部等の周期性判定手段と、前記周期性があると判定されたとき、前記生成された検出信号における最大値を検出する信号処理部等の最大値検出手段と、前記検出された最大値が予め設定された最大値閾値以上か否かを判定する信号処理部等の最大値判定手段と、前記検出された最大値が前記最大値閾値以上であるとき、前記直動転がり案内装置が潤滑不良状態に陥っていると判定し、その旨を告知する信号処理部等の状態判定手段と、により構成されている。
【0014】
よって、生成された検出信号に周期性があり、且つ、当該検出信号における最大値が最大値閾値以上であるとき、直動転がり案内装置が潤滑不良状態に陥っていると判定してその旨を告知するので、直動転がり案内装置における潤滑不良状態の発生を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0015】
上記の課題を解決するために、請求項3に記載の発明は、請求項1に記載の状態検出装置において、前記判定手段は、前記生成された検出信号における周期性の有無を判定する信号処理部等の周期性判定手段と、前記周期性があると判定されたとき、前記生成された検出信号の最大値を検出する信号処理部等の最大値検出手段と、前記検出された最大値が予め設定された最大値閾値以上か否かを判定する信号処理部等の最大値判定手段と、前記検出された最大値が前記最大値閾値未満であるとき、前記生成された検出信号における事象率を検出する信号処理部等の事象率検出手段と、前記検出された事象率が予め設定された事象率閾値以上か否かを判定する信号処理部等の事象率判定手段と、前記検出された事象率が前記事象率閾値未満であるとき、前記直動転がり案内装置が潤滑不良状態に陥っている可能性があると判定し、その旨を告知する信号処理部等の状態判定手段と、により構成されている。
【0016】
よって、生成された検出信号に周期性があり、且つ、当該検出信号における最大値が最大値閾値未満であり、且つ、当該検出信号における事象率が事象率閾値未満であるとき、直動転がり案内装置が潤滑不良状態に陥っている可能性があると判定してその旨を告知するので、直動転がり案内装置における潤滑不良状態の発生の可能性を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0017】
上記の課題を解決するために、請求項4に記載の発明は、請求項1に記載の状態検出装置において、前記判定手段は、前記生成された検出信号における周期性の有無を判定する信号処理部等の周期性判定手段と、前記周期性があると判定されたとき、前記生成された検出信号の最大値を検出する信号処理部等の最大値検出手段と、前記検出された最大値が予め設定された最大値閾値以上か否かを判定する信号処理部等の最大値判定手段と、前記検出された最大値が前記最大値閾値未満であるとき、前記生成された検出信号における事象率を検出する信号処理部等の事象率検出手段と、前記検出された事象率が予め設定された事象率閾値以上か否かを判定する信号処理部等の事象率判定手段と、前記検出された事象率が前記事象率閾値以上であるとき、前記直動転がり案内装置においてフレーキングが発生していると判定し、その旨を告知する信号処理部等の状態判定手段と、により構成されている。
【0018】
よって、生成された検出信号に周期性があり、且つ、当該検出信号における最大値が最大値閾値未満であり、且つ、当該検出信号における事象率が事象率閾値以上であるとき、直動転がり案内装置においてフレーキングが発生していると判定してその旨を告知するので、直動転がり案内装置におけるフレーキングの発生を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0019】
上記の課題を解決するために、請求項5に記載の発明は、請求項1に記載の状態検出装置において、前記判定手段は、前記検出された検出信号における周期性の有無を判定する信号処理部等の周期性判定手段と、前記周期性がないと判定されたとき、前記検出された検出信号の実効値を検出する信号処理部等の実効値検出手段と、前記検出された実効値が予め設定された実効値閾値以上か否かを判定する信号処理部等の実効値判定手段と、前記検出された実効値が前記実効値閾値以上であるとき、前記直動転がり案内装置内に異物が混入していると判定し、その旨を告知する信号処理部等の状態判定手段と、により構成されている。
【0020】
よって、生成された検出信号に周期性がなく、且つ、当該検出信号における実効値が実効値閾値以上であるとき、直動転がり案内装置に異物が混入していると判定してその旨を告知するので、直動転がり案内装置における異物混入の発生を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0021】
上記の課題を解決するために、請求項6に記載の発明は、請求項1に記載の状態検出装置において、前記判定手段は、前記検出された検出信号における周期性の有無を判定する信号処理部等の周期性判定手段と、前記周期性がないと判定されたとき、前記検出された検出信号の実効値を検出する信号処理部等の実効値検出手段と、前記検出された実効値が予め設定された実効値閾値以上か否かを判定する信号処理部等の実効値判定手段と、前記検出された実効値が前記実効値閾値未満であるとき、前記現在の動作状態が正常であると判定し、その旨を告知する信号処理部等の状態判定手段と、により構成されている。
【0022】
よって、生成された検出信号に周期性がなく、且つ、当該検出信号における実効値が実効値閾値未満であるとき、直動転がり案内装置の現在の動作状態が正常であると判定してその旨を告知するので、直動転がり案内装置における動作状態が正常であるか否かを、その稼動中に実時間で簡易且つ正確に検出することができる。
【0023】
上記の課題を解決するために、請求項7に記載の発明は、直動転がり案内装置における現在の動作状態を検出する状態検出方法であって、前記直動転がり案内装置に含まれる複数の転動体が循環部内を公転する際に生じる、当該直動転がり案内装置に含まれる移動部材又は軌道部材と前記転動体との接触又は衝突、当該直動転がり案内装置に含まれる転動面と前記転動体との接触、或いは当該転動体同士の衝突のいずれかに少なくとも起因して弾性的に発生する波動を検出し、当該検出した波動に対応する電気的な検出信号を生成する検出工程と、前記生成された検出信号に基づいて、前記動作状態の内容を判定する判定工程と、を備える。
【0024】
よって、直動転がり案内装置の稼動により弾性的に発生する上記波動を検出して当該直動転がり案内装置の現在の動作状態を検出するので、当該直動転がり案内装置の稼動中に、実時間で、当該直動転がり案内装置を分解することなく、当該稼動に起因する振動の影響を排除しつつ、その動作状態を検出することができる。
【0025】
上記の課題を解決するために、請求項8に記載の発明は、請求項7に記載の状態検出方法において、前記判定工程は、前記生成された検出信号における周期性の有無を判定する周期性判定工程と、前記周期性があると判定されたとき、前記生成された検出信号における最大値を検出する最大値検出工程と、前記検出された最大値が予め設定された最大値閾値以上か否かを判定する最大値判定工程と、前記検出された最大値が前記最大値閾値以上であるとき、前記直動転がり案内装置が潤滑不良状態に陥っていると判定し、その旨を告知する状態判定工程と、により構成されている。
【0026】
よって、生成された検出信号に周期性があり、且つ、当該検出信号における最大値が最大値閾値以上であるとき、直動転がり案内装置が潤滑不良状態に陥っていると判定してその旨を告知するので、直動転がり案内装置における潤滑不良状態の発生を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0027】
上記の課題を解決するために、請求項9に記載の発明は、請求項7に記載の状態検出方法において、前記判定工程は、前記生成された検出信号における周期性の有無を判定する周期性判定工程と、前記周期性があると判定されたとき、前記生成された検出信号の最大値を検出する最大値検出工程と、前記検出された最大値が予め設定された最大値閾値以上か否かを判定する最大値判定工程と、前記検出された最大値が前記最大値閾値未満であるとき、前記生成された検出信号における事象率を検出する事象率検出工程と、前記検出された事象率が予め設定された事象率閾値以上か否かを判定する事象率判定工程と、前記検出された事象率が前記事象率閾値未満であるとき、前記直動転がり案内装置が潤滑不良状態に陥っている可能性があると判定し、その旨を告知する状態判定工程と、により構成されている。
【0028】
よって、生成された検出信号に周期性があり、且つ、当該検出信号における最大値が最大値閾値未満であり、且つ、当該検出信号における事象率が事象率閾値未満であるとき、直動転がり案内装置が潤滑不良状態に陥っている可能性があると判定してその旨を告知するので、直動転がり案内装置における潤滑不良状態の発生の可能性を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0029】
上記の課題を解決するために、請求項10に記載の発明は、請求項7に記載の状態検出方法において、前記判定工程は、前記生成された検出信号における周期性の有無を判定する周期性判定工程と、前記周期性があると判定されたとき、前記生成された検出信号の最大値を検出する最大値検出工程と、前記検出された最大値が予め設定された最大値閾値以上か否かを判定する最大値判定工程と、前記検出された最大値が前記最大値閾値未満であるとき、前記生成された検出信号における事象率を検出する事象率検出工程と、前記検出された事象率が予め設定された事象率閾値以上か否かを判定する事象率判定工程と、前記検出された事象率が前記事象率閾値以上であるとき、前記直動転がり案内装置においてフレーキングが発生していると判定し、その旨を告知する状態判定工程と、により構成されている。
【0030】
よって、生成された検出信号に周期性があり、且つ、当該検出信号における最大値が最大値閾値未満であり、且つ、当該検出信号における事象率が事象率閾値以上であるとき、直動転がり案内装置においてフレーキングが発生していると判定してその旨を告知するので、直動転がり案内装置におけるフレーキングの発生を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0031】
上記の課題を解決するために、請求項11に記載の発明は、請求項7に記載の状態検出方法において、前記判定工程は、前記検出された検出信号における周期性の有無を判定する周期性判定工程と、前記周期性がないと判定されたとき、前記検出された検出信号の実効値を検出する実効値検出工程と、前記検出された実効値が予め設定された実効値閾値以上か否かを判定する実効値判定工程と、前記検出された実効値が前記実効値閾値以上であるとき、前記直動転がり案内装置内に異物が混入していると判定し、その旨を告知する状態判定工程と、により構成されている。
【0032】
よって、生成された検出信号に周期性がなく、且つ、当該検出信号における実効値が実効値閾値以上であるとき、直動転がり案内装置に異物が混入していると判定してその旨を告知するので、直動転がり案内装置における異物混入の発生を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0033】
上記の課題を解決するために、請求項12に記載の発明は、請求項7に記載の状態検出方法において、前記判定工程は、前記検出された検出信号における周期性の有無を判定する周期性判定工程と、前記周期性がないと判定されたとき、前記検出された検出信号の実効値を検出する実効値検出工程と、前記検出された実効値が予め設定された実効値閾値以上か否かを判定する実効値判定工程と、前記検出された実効値が前記実効値閾値未満であるとき、前記現在の動作状態が正常であると判定し、その旨を告知する状態判定工程と、により構成されている。
【0034】
よって、生成された検出信号に周期性がなく、且つ、当該検出信号における実効値が実効値閾値未満であるとき、直動転がり案内装置の現在の動作状態が正常であると判定してその旨を告知するので、直動転がり案内装置における動作状態が正常であるか否かを、その稼動中に実時間で簡易且つ正確に検出することができる。
【0035】
上記の課題を解決するために、請求項13に記載の発明は、直動転がり案内装置における現在の動作状態を検出する状態検出装置であって、当該直動転がり案内装置に含まれる複数の転動体が循環部内を公転する際に生じる、当該直動転がり案内装置に含まれる移動部材又は軌道部材と前記転動体との接触又は衝突、当該直動転がり案内装置に含まれる転動面と前記転動体との接触、或いは当該転動体同士の衝突のいずれかに少なくとも起因して弾性的に発生する波動を検出し、当該検出した波動に対応する電気的な検出信号を生成する検出手段を備える状態検出装置に含まれるコンピュータを、前記生成された検出信号に基づいて、前記動作状態の内容を判定する判定手段として機能させる。
【0036】
よって、直動転がり案内装置の稼動により弾性的に発生する上記波動を検出して当該直動転がり案内装置の現在の動作状態を検出するようにコンピュータが機能するので、当該直動転がり案内装置の稼動中に、実時間で、当該直動転がり案内装置を分解することなく、当該稼動に起因する振動の影響を排除しつつ、その動作状態を検出することができる。
【0037】
上記の課題を解決するために、請求項14に記載の発明は、請求項13に記載の状態検出用プログラムが前記コンピュータにより読取可能に記録されている。
【0038】
よって、当該状態検出用プログラムをコンピュータで読み出して実行することにより、直動転がり案内装置の稼動により弾性的に発生する上記波動を検出して当該直動転がり案内装置の現在の動作状態を検出するように当該コンピュータが機能するので、当該直動転がり案内装置の稼動中に、実時間で、当該直動転がり案内装置を分解することなく、当該稼動に起因する振動の影響を排除しつつ、その動作状態を検出することができる。
【0039】
【発明の実施の形態】
次に、本発明に好適な実施の形態について、図面に基づいて説明する。
【0040】
なお、以下に説明する実施の形態は、直動転がり案内装置(以下、単にLM(Linear Motion)システムと称し、具体的にはいわゆるLMガイド、ボールスプライン等の直動システムを含むものとする)における動作状態の検出及び診断について本発明を適用した場合の実施形態である。
【0041】
(I)本発明の原理
先ず、本発明の実施形態について具体的に説明する前に、本発明の原理について、図1を用いて説明する。
【0042】
上述した如きLMシステムの動作状態の診断方法を研究するに当たり、本発明の発明者は、従来から回転用転がり軸受け装置に対する故障診断等に用いられている、いわゆるAE現象を、当該LMシステムの動作状態の診断にも用いることが可能であることを発見した。
【0043】
すなわち、LMシステムにおいて発生する種々の異常動作状態(具体的には、潤滑不良、フレーキング(すなわち、LMシステムに含まれる転動体としてのボール表面又はそのボールが接触する軌道部材としてのガイド表面における剥がれ現象)の発生及び異物混入を言う。)の夫々につき、異なった態様のAE現象が生起し、これにより夫々の異常動作状態が発生した場合に相互に異なったAE波が発生することを、本発明の発明者は実験的に確認したのである。
【0044】
ここで、当該AE現象については、従来では、「固体材料の破壊や変形に伴って、弾性エネルギーが解放され音波(AE波)が発生する現象」或いは「材料内部での塑性変形又はクラック等の発生に付随して弾性波が発生する現象」と定義付けられていたのであるが、本発明の発明者は、これらに加えて、ボール又はガイド面には塑性変形やクラック等が発生していないが、LMシステムが正常に動作することにより生起するボール同士の衝突のみによってもAE波が発生することを確認している。
【0045】
より具体的には、移動ブロックを用いたLMシステムの場合について図1(a)に示すように、移動ブロックC内に形成されている転走路内をボールBが自転しつつ公転する場合に、そのボールB同士が接触部位P1において衝突する場合、又はボールBと移動ブロックCとが接触部位P2において衝突する場合、或いはボールBと転動面Gとが接触部位P3において接触する場合の夫々においてAE波が発生することが確認されている。なお、図1(b)に示すように、移動ブロックを用いたLMシステムの場合について、その転走路内にボールBだけでなくいわゆるリテーナRが設けられている場合であっても、その移動ブロックC内の転走路内をボールBが自転しつつ公転する場合に、ボールBと移動ブロックCとが接触部位P5において衝突する場合、又はボールBと転動面Gとが接触部位P4において接触する場合の夫々においてAE波が発生することが確認されている。
【0046】
そして、本発明の発明者は、このAE波の発生態様が、上述した異常動作状態の種類によって相互に異なっていることを発見したのである。
【0047】
なお、上述した如く、本発明においては、従来からの定義に則ったAE現象よりも広い範囲でのAE現象の発生を前提とするため、以下の説明においては、特に本発明に適用されるAE現象を拡張AE現象と称し、当該拡張AE現象により発生するAE波を拡張AE波と称する。
【0048】
このとき、拡張AE波に対応する電気信号は、LMシステムが動作する際に一般的に発生する振動よりも高い周波数を有するものであるため、例えば図1(c)に示すように、いわゆる包絡線検波の方法によりこれを当該振動から分離して検出することが可能であり、これによりLMシステムの稼動中に実時間でその動作状態を検出することが可能となったのである。
【0049】
(II)実施形態
次に、上述した原理に基づいた本発明の実施形態について、具体的に図2乃至図7を用いて説明する。
【0050】
なお、図2は実施形態に係る状態診断装置の概要構成を示すブロック図であり、図3は実施形態に係る拡張AE波を検出するAEセンサの概要構成を示す縦断面図であり、図4乃至図6は本発明が適用されるLMシステムを説明するための図であり、図7は実施形態に係る状態診断装置において実行される動作状態の検出処理を示すフローチャートである。
【0051】
図2に示すように、実施形態に係る状態診断装置Sは、AEセンサ1と、BPF(Band Pass Filter)2A及び包絡線検波部2Bを含む波形整形部2と、A/D(Analog/Digital)コンバータ3と、周期性判定手段、最大値検出手段、最大値判定手段、状態判定手段、事象率検出手段、事象率判定手段、実行値検出手段及び実行値判定手段としての信号処理部4と、液晶ディスプレイ等よりなる表示部5と、により構成されている。
【0052】
次に動作を説明する。
【0053】
先ず、AEセンサ1は、診断対象となるLMシステムの任意の場所、例えば、レールの末端部又は移動部材としての移動ブロック上等に設置されるものであり、後述する接触部を上記いずれかの場所に接触させて配置される。そして、当該LMシステムの動作により発生する上記拡張AE波を検出し、これをアナログ信号である検出信号Saeに変換して波形整形部2へ出力する。
【0054】
次に、波形整形部2内のBPF2Aは、当該検出信号Saeから拡張AE波以外の周波数成分を除去して包絡線検波部2Bへ出力する。ここで、当該BPF2Aにおける検出信号Saeに対する通過周波数帯域として具体的には、例えば100kHz以上1MHz以下の周波数成分を通過させるBPFを、BPF2Aとして用いることが望ましい。
【0055】
そして、包絡線検波部2Bは、当該検出信号Saeに基づいてその包絡線成分を抽出し、包絡線信号Swを生成してADコンバータ3へ出力する。
【0056】
次に、ADコンバータ3は、アナログ信号である包絡線信号Swをディジタル化し、ディジタル包絡線信号Sdwを生成して信号処理部4へ出力する。
【0057】
そして、信号処理部4は、当該ディジタル包絡線信号Sdwに基づいて図7に示す後述の動作状態検出処理により診断対象のLMシステムにおける現在の動作状態を判定し、その結果を示す判定信号Sdpを生成して表示部5へ出力する。
【0058】
これにより、表示部5は、当該判定信号Sdpに基づいてその内容を示す表示を行う。この表示により、LMシステムの使用者がその動作状態を把握することが可能となる。
【0059】
次に、上記AEセンサ1の構造等並びに診断対象であるLMシステムへのその設置態様について、具体的に図3乃至図6を用いて説明する。
【0060】
先ず、AEセンサ1の内部構造について、図3を用いて説明する。
【0061】
図3に示すように、AEセンサ1は、全体としては円筒形状を成しており、具体的には、LMシステム内のレールLM等に接触して配置される接触部10と、筺体11と、ピエゾ素子等より成る圧電素子13と、当該圧電素子13の上面及び下面に形成された銀蒸着膜12及び14と、上記検出信号Saeを導通して波形整形部2へ出力する外部線15と、により構成されている。
【0062】
そして、LMシステム内で発生した拡張AE波が接触部10及び銀薄膜14を介して圧電素子13に伝送されると、当該拡張AE波により圧電素子13の形状が微小ながら変形し、これにより銀薄膜12と14との間に電位差が発生することで外部線15上に上記検出信号Saeが発生することとなる。
【0063】
次に、図3に示す内部構造を備えるAEセンサ1のLMシステムへの設置態様について、図4乃至図6を用いて説明する。なお、図4及び図5は、診断対象であるLMシステムとして移動ブロックが用いられているLMシステムにAEセンサ1を設置する場合のその態様を示す図であり、図6は、診断対象であるLMシステムとしていわゆるボールねじが用いられているLMシステムにAEセンサ1を設置する場合のその態様を示す図である。
【0064】
始めに、移動ブロックを用いたLMシステムに対してAEセンサ1を設置する場合について、図4及び図5を用いて説明する。
【0065】
図4(a)に示すLMシステムは、長手方向に沿って後述のボール22を転走させるボール転走溝20a及び20bが形成されたレール20と、多数の上記ボール22を介してこのレール20に係合すると共に内部にボール22の無限循環路を備えた移動ブロック21と、この移動ブロック21の移動方向の前後両端面に装着されると共にレール20の上面及び両側面に密着するシール部材23とから構成されており、かかるボール22の循環に伴って上記移動ブロック21がレール20上を往復運動するように構成されている。
【0066】
これらの図に示されるように、上記レール20は断面略矩形状に形成されており、固定ボルトを挿通させるための取り付け孔24が長手方向に適宜間隔をおいて貫通形成されている。また、レール20の上面には上記取り付け孔24を挟むようにして2条のボール転走溝20aが形成される一方、両側面にも2条のボール転走溝20bが夫々形成されており、これら4条のボール転走溝はボール22の球面の曲率よりも僅かに大きな曲率で深溝状に形成されている。
【0067】
一方、上記移動ブロック21は、後述するテーブル30等の可動体の取付け面25を備えたブロック本体26と、このブロック本体26の前後両端面に固定された一対のエンドプレート27,27とから構成されており、軌道レール20の上部が遊嵌する凹所を下面側に備えて断面略サドル状に形成されている。
【0068】
このとき、図5に示すように、上記ブロック本体26は、上記取り付け面25が形成された基部及びこの基部の両端から垂下する一対のスカート部を備えて断面略サドル状に形成されており、各スカート部の内側面及び基部の下面側にはレール20のボール転走溝20a及び20bと夫々対向する4条の負荷転走溝28が形成されている。ボール22はこの負荷転走溝28とレール20のボール転走溝20a及び20bとの間で荷重を負荷しながら転走し、これによって移動ブロック21がレール20上を移動することになる。
【0069】
次に図4(a)に戻って、ブロック本体26の基部及び各スカート部には各負荷転走溝28に対応するボール戻し孔29が夫々穿設されており、これらボール戻し孔29は上記エンドプレート27に形成された略U字型の方向転換路(図示せず)によって負荷転走溝28と連通連結されている。すなわち、この方向転換路はブロック本体26の負荷転走溝28を転走し終えたボール22を掬い上げて上記ボール戻し孔29へ送り込む一方、このボール戻し孔29から負荷転走溝28へボール22を送り出すように構成されている。従って、これらエンドプレート27を取付ボルト27aを用いてブロック本体26に固定することにより、上記移動ブロック21にボール22の無限循環路が形成されるようになっている。
【0070】
そして、図4(a)に示したLMシステムに対して実施形態のAEセンサ1を設置する場合には、図4(b)にその外観側面図を示すように、例えば軌道レール20上を直線運動する複数の移動ブロック21上に上記テーブル30が設置されているとき、その軌道レール20における移動ブロック21の移動範囲外の位置に設置される。
【0071】
次に、ボールねじを用いたLMシステムに対してAEセンサ1を設置する場合について、図6を用いて説明する。
【0072】
図6(a)に示すように、ボールねじ40は、外周面に螺旋状のボール転走溝41aを有するねじ軸41と、内周面にボール転走溝41aと対向する螺旋状の負荷転走溝42aを有するナット部材42と、ボール転走溝41aと負荷転走溝42a間を転動するボール43…とを備える。ねじ軸41のボール転走溝41aとナット部材42の負荷転走溝42aとの間で負荷転走路が構成される。ナット部材42には、例えば2つの循環部品としてのリターンパイプ44が取り付けられる。リターンパイプ44は、負荷転走路の一端と他端を連結して無負荷戻し通路を構成する。リターンパイプ44は略門形に形成され、中央部44aと中央部44aの両側に設けられた一対の脚部44b,44bとを有する。一対の脚部44b,44bは負荷転走路内に数ピッチの間隔を開けて、嵌入される。リターンパイプ44は、ボルト45等の結合手段によってナット部材42に固定される。
【0073】
ねじ軸41には、その周囲に螺旋状の一定のリードを備えた略断面半円状のボール転走溝41aが研削加工または転造加工等によって形成される。ナット部材42は略円筒状をなし、その端面にボールねじ40を機械等に取付けるためのフランジ46を有する。ナット部材42の内周面には、ねじ軸41のボール転走溝41aに対向する略断面半円状の負荷転走溝42aが形成される。ナット部材42には、その上面が一部平取りされた平面部47が形成される。平面部47には、リターンパイプ44の脚部44b,44bが挿入されるリターンパイプ嵌合穴が数箇所開けられる。
【0074】
そして、図6(a)に示したLMシステムに対して実施形態のAEセンサ1を設定する場合には、図6(b)にその外観側面図を示すように、例えば台49に回転可能に支持されたねじ軸41がモータ48により回転されるボールねじ40に対してブラケット50を介してテーブル51が固定されているとき、そのボールねじ40における上記フランジ46の、ボールねじ40の中心軸に垂直な面に設置される。
【0075】
次に、主として信号処理部4を中心として実行される実施形態に係る動作状態検出処理について、図1及び図2並びに図7を用いて説明する。
【0076】
図7に示すように、診断対象であるLMシステムの稼動中において実施形態に係る動作状態検出処理を実行する場合には、初めに、必要な初期設定処理等を行い、次に、AEセンサ1において当該LMシステムの稼動中に生じる拡張AE現象に起因して発生する拡張AE波を検出し(ステップS1)、これに対応する検出信号Saeを波形整形部2において波形整形し(ステップS2)、上記包絡線信号Swを生成してA/Dコンバータ3を介してディジタル包絡線信号Sdwとして信号処理部4へ出力する。その後、当該拡張AE波の検出処理(ステップS1)及び波形整形処理(ステップS2)を必要な検査時間だけ繰返して上記ディジタル包絡線信号Sdwの値(データ)を信号処理部4内の図示しないメモリに蓄積し(ステップS3)、その蓄積したデータに基づいて後述する各判断に用いるパラメータを演算して上記メモリ内に蓄積する(ステップS4)。
【0077】
ここで、当該パラメータとして具体的には、ディジタル包絡線信号Sdwの値における周期性の有無、診断対象であるLMシステムに含まれている例えば移動ブロックの往復運動における一方向の移動距離とその移動速度により予め設定される検出期間内におけるディジタル包絡線信号Sdwの値の最大値、当該検出期間内における実効値、及び当該検出期間内における事象率、の四つのパラメータが用いられる。
【0078】
より具体的には、ディジタル包絡線信号Sdwの値における周期性とは、LMシステムの動作に伴ってボールが公転する場合にレール面への接触とレール面からの離脱とを繰返す周期を周波数解析の手法により検出するものであり、LMシステムの動作状態を検出する場合に独特のものである。
【0079】
また、上記実効値は、ディジタル包絡線信号Sdwの値をその検出期間について二乗平均する(すなわち積分する)ことにより求められる。
【0080】
更に、上記事象率は、ディジタル包絡線信号Sdwの値が予め設定された閾値以上となった回数が上記一検出期間内に何回あったかをあらわすパラメータである。
【0081】
各パラメータの演算並びにその蓄積が終了すると、次に、信号処理部4において、ディジタル包絡線信号Sdwの値についての周期性があるか否かが、予め設定されている周波数解析値を基準として判定される(ステップS5)。
【0082】
ステップS5の判定において周期性が検出されないときは(ステップS5;NO)、次に、ディジタル包絡線信号Sdwにおける上記実効値を上記メモリから呼び出す(ステップS6)。
【0083】
そして、その呼び出された実効値が、異物が混入しているか又は正常に動作しているかを判定するために予め実験的に設定された閾値である実効値閾値以上であるか否かが判定される(ステップS7)。
【0084】
次に、ステップS7の判定において、その呼び出された実効値が上記実効値閾値未満であるときは(ステップS7;NO)、診断対象となっているLMシステムは現在は正常に動作していると判定し(ステップS8)、表示部5を用いてその旨を表示して(ステップS10)一連の動作状態検出処理を終了する。
【0085】
一方、ステップS7の判定において、その呼び出された実効値が上記実効値閾値以上であるときは(ステップS7;YES)、診断対象となっているLMシステムには現在異物が混入していると判定し(ステップS9)、表示部5を用いてその旨を表示して(ステップS10)一連の動作状態検出処理を終了する。
【0086】
他方、ステップS5の判定において周期性が検出されたときは(ステップS5;YES)、次に、ディジタル包絡線信号Sdwにおける上記最大値を上記メモリから呼び出し(ステップS11)、その呼び出された最大値が、潤滑不良が現実に発生しているか否かを判定するために予め実験的に設定された閾値である最大値閾値以上であるか否かが判定される(ステップS12)。
【0087】
そして、その呼び出された最大値が上記最大値閾値以上であるときは(ステップS12;YES)、診断対象となっているLMシステムにおいて現在潤滑不良が発生していると判定し(ステップS13)、表示部5を用いてその旨を表示して(ステップS10)一連の動作状態検出処理を終了する。
【0088】
次に、ステップS12の判定において、呼び出された最大値が上記最大値閾値未満であるときは(ステップS12;NO)、次に、ディジタル包絡線信号Sdwにおける上記事象率を上記メモリ内から呼び出す(ステップS14)。
【0089】
そして、その呼び出された事象率が、診断対象のLMシステムにおいてフレーキングが発生しているか又は潤滑不良の可能性があるかを判定するために予め実験的に設定された閾値である事象率閾値以上であるか否かが判定される(ステップS15)。
【0090】
次に、ステップS15の判定において、その呼び出された事象率が上記事象率閾値未満であるときは(ステップS15;NO)、診断対象となっているLMシステムにおいては現在潤滑不良が発生している可能性が高いと判定し(ステップS17)、表示部5を用いてその旨を表示して(ステップS10)一連の動作状態検出処理を終了する。なお、ステップS17にて判定される潤滑不良の程度は上述したステップS13において判定された潤滑不良の程度とは異なるものであり、前者(ステップS17の場合)は潤滑不良発生の可能性としてのみ判定できるものであり、一方、後者(ステップS13の場合)は実際に確実に潤滑不良が発生していると判定できるものである。
【0091】
他方、ステップS15の判定において、その呼び出された事象率が上記事象率閾値以上であるときは(ステップS15;YES)、診断対象となっているLMシステムにおいて現在フレーキングが発生していると判定し(ステップS16)、表示部5を用いてその旨を表示して(ステップS10)一連の動作状態検出処理を終了する。
【0092】
なお、上述した一連の動作状態の検出結果については、これを表示すると共に信号処理部4内の上記メモリに蓄積して統計的に処理することで、動作状態の悪化を検出して故障の発生を未然に防ぐことができることとなる。
【0093】
以上説明したように、実施形態に係る状態診断装置Sの動作によれば、LMシステムの動作により発生する拡張AE波を検出して当該LMシステムの現在の動作状態を検出するので、当該LMシステムの稼動中に、実時間で、当該LMシステムを分解することなく、当該稼動に起因する振動の影響を排除しつつ、その動作状態を検出することができる。
【0094】
従って、LMシステムにおける故障の発生を予知できることともなり、当該LMシステムの使用者における整備性が向上すると共に、その長寿命化及び当該LMシステムを用いて製造された装置又は機器の品質向上に資することもできる。
【0095】
また、生成されたディジタル包絡線信号Sdwに周期性があり、且つ、当該ディジタル包絡線信号Sdwにおける上記最大値が最大値閾値以上であるとき、LMシステムが現在潤滑不良状態に陥っていると判定してその旨を告知するので、LMシステムにおける潤滑不良状態の発生を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0096】
更に、生成されたディジタル包絡線信号Sdwに周期性があり、且つ、当該ディジタル包絡線信号Sdwにおける上記最大値が最大値閾値未満であり、且つ、当該ディジタル包絡線信号Sdwにおける上記事象率が事象率閾値未満であるとき、LMシステムが潤滑不良状態に陥っている可能性があると判定してその旨を告知するので、LMシステムにおける潤滑不良状態の発生の可能性を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0097】
更にまた、生成されたディジタル包絡線信号Sdwに周期性があり、且つ、当該ディジタル包絡線信号Sdwにおける上記最大値が最大値閾値未満であり、且つ、当該ディジタル包絡線信号Sdwにおける上記事象率が事象率閾値以上であるとき、LMシステムにおいてフレーキングが発生していると判定してその旨を告知するので、LMシステムにおけるフレーキングの発生を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0098】
また、生成されたディジタル包絡線信号Sdwに周期性がなく、且つ、当該ディジタル包絡線信号Sdwにおける上記実効値が実効値閾値以上であるとき、LMシステムに異物が混入していると判定してその旨を告知するので、LMシステムにおける異物混入の発生を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0099】
更に、生成されたディジタル包絡線信号Sdwに周期性がなく、且つ、当該ディジタル包絡線信号Sdwにおける上記実効値が実効値閾値未満であるとき、LMシステムの現在の動作状態が正常であると判定してその旨を告知するので、ディジタル包絡線信号Sdwにおける動作状態が正常であるか否かを、その稼動中に実時間で簡易且つ正確に検出することができる。
【0100】
なお、上記図7に示すフローチャートに対応するプログラムを、フレキシブルディスク又はハードディスク等の情報記録媒体に記録しておき、或いはインターネット等のネットワークを介して取得して記録しておき、汎用のマイクロコンピュータによりこれらを読み出して実行することにより、当該マイクロコンピュータを実施形態の信号処理部4として機能させることも可能である。この場合には、上記AEセンサ1、波形整形部2及びA/Dコンバータ3は、当該マイクロコンピュータに対して外付けの装置により構成されることとなる。
【0101】
また、上述した実施形態では、図2に示す構成の状態検出装置Sを一つの装置として構成する場合について説明したが、この実施形態は、具体的には当該状態診断装置Sを診断対象であるLMシステムが設置・使用されている工場等に携行し、その場でそのLMシステムの動作状態を検出して診断する場合に適用されるものである。
【0102】
そして、実施形態の状態検出装置Sは、上述した態様以外に、状態診断装置Sをその診断対象となるLMシステムが設置・使用されている工場等に常備し、その状態診断装置Sを電話回線等により診断員が離隔した場所から遠隔操作することで、当該LMシステムの動作状態の検出及びその診断を行う場合に適用することもできる。
【0103】
更に、状態診断装置Sをその診断対象となるLMシステムが設置・使用されている工場等に常備し、その状態診断装置Sにおいて自動的に診断対象のLMシステムの動作状態の検出及びその診断を行い、これと並行してその検出結果を他の場所に伝送して蓄積し、累積的な故障診断をその蓄積した検出結果を元に行う場合に本発明を適用することも可能である。
【0104】
更にまた、上述した実施形態では、一のAEセンサ1に対して波形整形部2、ADコンバータ3、信号処理部4及び表示部5を夫々一ずつ用いて状態検出装置Sを構成する場合について説明したが、これ以外に、複数のAEセンサ1からの検出信号Saeをスイッチング回路を介して一の波形整形部2に入力させ、複数のAEセンサ1からの検出信号Saeを夫々一の波形整形部2、ADコンバータ3、信号処理部4及び表示部5を用いて処理するように構成することもできる。この場合は、波形整形部2、ADコンバータ3、信号処理部4及び表示部5を用いた検出処理の実行タイミングと、対応するAEセンサ1からの検出信号Saeの取り込みタイミングと、を同期させることが必要となる。
【0105】
【実施例】
次に、図7に示すフローチャートにおけるステップS5、S7、S12及びS15における判定の基準となる上記周波数解析値、上記実効値閾値、上記最大値閾値及び上記事象率閾値の夫々につき、具体的な例を示す。
【0106】
なお、以下に示す各閾値の実施例は、AEセンサ1が設置されるLMガイドとして出願人製造に係る型番SNS55LR型を用い、移動ブロックに対する外部加重を0.1C(14kN)とし、移動ブロックの移動距離であるストロークを250mmとし、その移動速度を24m/分とし、潤滑剤としてモービル石油有限会社製DTE26型潤滑油を定量間欠給油し、検出信号Saeに対するサンプルレートを10キロヘルツとし、計測時間として0.4秒計測した場合の実施例である。
【0107】
上記各条件に従うとき、上記周波数解析値の例としては、上記ディジタル包絡線信号SdwをFFT変換して周波数解析(パワースペクトラム)することにより得られる二乗電圧値(いわゆるV値)が1.0×10−9(V)を超えたときは周期性があると判定し、これを超えないときは周期性がないと判定される。
【0108】
また、同じく上記実効値閾値の例としては、上記ディジタル包絡線信号Sdwにおける実効値として1.0×10−4(V)が適切である。
【0109】
更に、同じく上記最大値閾値の例としては、上記ディジタル包絡線信号Sdwにおける最大値として2.0×10−3(V)が適切である。
【0110】
最後に、同じく上記事象率閾値の例としては、上記ディジタル包絡線信号Sdwにおいて5.0×10−4(V)より高い値を示す回数が5乃至7個であることが適切である。
【0111】
なお、上述した実施例における各値は、具体的には、上記した各条件から移動ブロックに対する外部加重及び移動ブロックのストロークを除いた条件の変化に則って変化するものである。
【0112】
【発明の効果】
以上説明したように、請求項1に記載の発明によれば、直動転がり案内装置の稼動により弾性的に発生する上記波動を検出して当該直動転がり案内装置の現在の動作状態を検出するので、当該直動転がり案内装置の稼動中に、実時間で、当該直動転がり案内装置を分解することなく、当該稼動に起因する振動の影響を排除しつつ、その動作状態を検出することができる。
【0113】
従って、直動転がり案内装置における故障の発生を予知できることともなり、当該直動転がり案内装置の使用者における整備性が向上すると共に、その長寿命化及び当該直動転がり案内装置を用いて製造された装置又は機器の品質向上に資することもできる。
【0114】
請求項2に記載の発明によれば、請求項1に記載の発明の効果に加えて、生成された検出信号に周期性があり、且つ、当該検出信号における最大値が最大値閾値以上であるとき、直動転がり案内装置が潤滑不良状態に陥っていると判定してその旨を告知するので、直動転がり案内装置における潤滑不良状態の発生を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0115】
請求項3に記載の発明によれば、請求項1に記載の発明の効果に加えて、生成された検出信号に周期性があり、且つ、当該検出信号における最大値が最大値閾値未満であり、且つ、当該検出信号における事象率が事象率閾値未満であるとき、直動転がり案内装置が潤滑不良状態に陥っている可能性があると判定してその旨を告知するので、直動転がり案内装置における潤滑不良状態の発生の可能性を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0116】
請求項4に記載の発明によれば、請求項1に記載の発明の効果に加えて、生成された検出信号に周期性があり、且つ、当該検出信号における最大値が最大値閾値未満であり、且つ、当該検出信号における事象率が事象率閾値以上であるとき、直動転がり案内装置においてフレーキングが発生していると判定してその旨を告知するので、直動転がり案内装置におけるフレーキングの発生を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0117】
請求項5に記載の発明によれば、請求項1に記載の発明の効果に加えて、生成された検出信号に周期性がなく、且つ、当該検出信号における実効値が実効値閾値以上であるとき、直動転がり案内装置に異物が混入していると判定してその旨を告知するので、直動転がり案内装置における異物混入の発生を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0118】
請求項6に記載の発明によれば、請求項1に記載の発明の効果に加えて、生成された検出信号に周期性がなく、且つ、当該検出信号における実効値が実効値閾値未満であるとき、直動転がり案内装置の現在の動作状態が正常であると判定してその旨を告知するので、直動転がり案内装置における動作状態が正常であるか否かを、その稼動中に実時間で簡易且つ正確に検出することができる。
【0119】
請求項7に記載の発明によれば、直動転がり案内装置の稼動により弾性的に発生する上記波動を検出して当該直動転がり案内装置の現在の動作状態を検出するので、当該直動転がり案内装置の稼動中に、実時間で、当該直動転がり案内装置を分解することなく、当該稼動に起因する振動の影響を排除しつつ、その動作状態を検出することができる。
【0120】
従って、直動転がり案内装置における故障の発生を予知できることともなり、当該直動転がり案内装置の使用者における整備性が向上すると共に、その長寿命化及び当該直動転がり案内装置を用いて製造された装置又は機器の品質向上に資することもできる。
【0121】
請求項8に記載の発明によれば、請求項7に記載の発明の効果に加えて、生成された検出信号に周期性があり、且つ、当該検出信号における最大値が最大値閾値以上であるとき、直動転がり案内装置が潤滑不良状態に陥っていると判定してその旨を告知するので、直動転がり案内装置における潤滑不良状態の発生を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0122】
請求項9に記載の発明によれば、請求項7に記載の発明の効果に加えて、生成された検出信号に周期性があり、且つ、当該検出信号における最大値が最大値閾値未満であり、且つ、当該検出信号における事象率が事象率閾値未満であるとき、直動転がり案内装置が潤滑不良状態に陥っている可能性があると判定してその旨を告知するので、直動転がり案内装置における潤滑不良状態の発生の可能性を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0123】
請求項10に記載の発明によれば、請求項7に記載の発明の効果に加えて、生成された検出信号に周期性があり、且つ、当該検出信号における最大値が最大値閾値未満であり、且つ、当該検出信号における事象率が事象率閾値以上であるとき、直動転がり案内装置においてフレーキングが発生していると判定してその旨を告知するので、直動転がり案内装置におけるフレーキングの発生を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0124】
請求項11に記載の発明によれば、請求項7に記載の発明の効果に加えて、生成された検出信号に周期性がなく、且つ、当該検出信号における実効値が実効値閾値以上であるとき、直動転がり案内装置に異物が混入していると判定してその旨を告知するので、直動転がり案内装置における異物混入の発生を、その稼動中に実時間で簡易且つ正確に検出することができる。
【0125】
請求項12に記載の発明によれば、請求項7に記載の発明の効果に加えて、生成された検出信号に周期性がなく、且つ、当該検出信号における実効値が実効値閾値未満であるとき、直動転がり案内装置の現在の動作状態が正常であると判定してその旨を告知するので、直動転がり案内装置における動作状態が正常であるか否かを、その稼動中に実時間で簡易且つ正確に検出することができる。
【0126】
請求項13に記載の発明によれば、状態検出用プログラムをコンピュータで読み出して実行することにより、直動転がり案内装置の稼動により弾性的に発生する上記波動を検出して当該直動転がり案内装置の現在の動作状態を検出するように当該コンピュータが機能するので、当該直動転がり案内装置の稼動中に、実時間で、当該直動転がり案内装置を分解することなく、当該稼動に起因する振動の影響を排除しつつ、その動作状態を検出することができる。
【0127】
従って、直動転がり案内装置における故障の発生を予知できることともなり、当該直動転がり案内装置の使用者における整備性が向上すると共に、その長寿命化及び当該直動転がり案内装置を用いて製造された装置又は機器の品質向上に資することもできる。
【0128】
請求項14に記載の発明によれば、請求項13に記載の状態検出用プログラムがコンピュータにより読取可能に記録されているので、当該状態検出用プログラムをコンピュータで読み出して実行することにより、直動転がり案内装置の稼動により弾性的に発生する上記波動を検出して当該直動転がり案内装置の現在の動作状態を検出するように当該コンピュータが機能するので、当該直動転がり案内装置の稼動中に、実時間で、当該直動転がり案内装置を分解することなく、当該稼動に起因する振動の影響を排除しつつ、その動作状態を検出することができる。
【図面の簡単な説明】
【図1】本発明の原理を説明する図であり、(a)及び(b)は実施形態に係る拡張AE波の発生を示し図であり、(c)は拡張AE波に対応する包絡線検波波形の例である。
【図2】実施形態の状態検出装置の構成を示すブロック図である。
【図3】実施形態のAEセンサの構成を示す縦断面図である。
【図4】実施形態のAEセンサの設置態様を示す図(I)であり、(a)は移動ブロックを含むLMセンサの構造を斜視図であり、(b)は当該LMセンサにAEセンサを設置する場合の位置の例を示す外観側面図である。
【図5】実施形態の移動ブロックを含むLMシステムの側面図である。
【図6】実施形態のAEセンサの設置態様を示す図(II)であり、(a)はボールねじを含むLMセンサの構造を斜視図であり、(b)は当該LMセンサにAEセンサを設置する場合の位置の例を示す外観側面図である。
【図7】実施形態の動作状態検出処理を示すフローチャートである。
【符号の説明】
1…AEセンサ
2A…BPF
2B…包絡線検波部
2…波形整形部
3…A/Dコンバータ
4…信号処理部
5…表示部
10…接触部
11…筺体
12、14…銀蒸着膜
13…圧電素子
15…外部線
20、LM…レール
21、C…移動ブロック
22、43、B…ボール
S…状態診断装置
G…転動面
R…リテーナ
Sae…検出信号
Sw…包絡線信号
Sdw…ディジタル包絡線信号
Sdp…判定信号

Claims (14)

  1. 直動転がり案内装置における現在の動作状態を検出する状態検出装置であって、
    前記直動転がり案内装置に含まれる複数の転動体が循環部内を公転する際に生じる、当該直動転がり案内装置に含まれる移動部材又は軌道部材と前記転動体との接触又は衝突、当該直動転がり案内装置に含まれる転動面と前記転動体との接触、或いは当該転動体同士の衝突のいずれかに少なくとも起因して弾性的に発生する波動を検出し、当該検出した波動に対応する電気的な検出信号を生成する検出手段と、
    前記生成された検出信号に基づいて、前記動作状態の内容を判定する判定手段と、
    を備えることを特徴とする状態検出装置。
  2. 請求項1に記載の状態検出装置において、
    前記判定手段は、
    前記生成された検出信号における周期性の有無を判定する周期性判定手段と、
    前記周期性があると判定されたとき、前記生成された検出信号における最大値を検出する最大値検出手段と、
    前記検出された最大値が予め設定された最大値閾値以上か否かを判定する最大値判定手段と、
    前記検出された最大値が前記最大値閾値以上であるとき、前記直動転がり案内装置が潤滑不良状態に陥っていると判定し、その旨を告知する状態判定手段と、
    により構成されていることを特徴とする状態検出装置。
  3. 請求項1に記載の状態検出装置において、
    前記判定手段は、
    前記生成された検出信号における周期性の有無を判定する周期性判定手段と、
    前記周期性があると判定されたとき、前記生成された検出信号の最大値を検出する最大値検出手段と、
    前記検出された最大値が予め設定された最大値閾値以上か否かを判定する最大値判定手段と、
    前記検出された最大値が前記最大値閾値未満であるとき、前記生成された検出信号における事象率を検出する事象率検出手段と、
    前記検出された事象率が予め設定された事象率閾値以上か否かを判定する事象率判定手段と、
    前記検出された事象率が前記事象率閾値未満であるとき、前記直動転がり案内装置が潤滑不良状態に陥っている可能性があると判定し、その旨を告知する状態判定手段と、
    により構成されていることを特徴とする状態検出装置。
  4. 請求項1に記載の状態検出装置において、
    前記判定手段は、
    前記生成された検出信号における周期性の有無を判定する周期性判定手段と、
    前記周期性があると判定されたとき、前記生成された検出信号の最大値を検出する最大値検出手段と、
    前記検出された最大値が予め設定された最大値閾値以上か否かを判定する最大値判定手段と、
    前記検出された最大値が前記最大値閾値未満であるとき、前記生成された検出信号における事象率を検出する事象率検出手段と、
    前記検出された事象率が予め設定された事象率閾値以上か否かを判定する事象率判定手段と、
    前記検出された事象率が前記事象率閾値以上であるとき、前記直動転がり案内装置においてフレーキングが発生していると判定し、その旨を告知する状態判定手段と、
    により構成されていることを特徴とする状態検出装置。
  5. 請求項1に記載の状態検出装置において、
    前記判定手段は、
    前記検出された検出信号における周期性の有無を判定する周期性判定手段と、
    前記周期性がないと判定されたとき、前記検出された検出信号の実効値を検出する実効値検出手段と、
    前記検出された実効値が予め設定された実効値閾値以上か否かを判定する実効値判定手段と、
    前記検出された実効値が前記実効値閾値以上であるとき、前記直動転がり案内装置内に異物が混入していると判定し、その旨を告知する状態判定手段と、
    により構成されていることを特徴とする状態検出装置。
  6. 請求項1に記載の状態検出装置において、
    前記判定手段は、
    前記検出された検出信号における周期性の有無を判定する周期性判定手段と、
    前記周期性がないと判定されたとき、前記検出された検出信号の実効値を検出する実効値検出手段と、
    前記検出された実効値が予め設定された実効値閾値以上か否かを判定する実効値判定手段と、
    前記検出された実効値が前記実効値閾値未満であるとき、前記現在の動作状態が正常であると判定し、その旨を告知する状態判定手段と、
    により構成されていることを特徴とする状態検出装置。
  7. 直動転がり案内装置における現在の動作状態を検出する状態検出方法であって、
    前記直動転がり案内装置に含まれる複数の転動体が循環部内を公転する際に生じる、当該直動転がり案内装置に含まれる移動部材又は軌道部材と前記転動体との接触又は衝突、当該直動転がり案内装置に含まれる転動面と前記転動体との接触、或いは当該転動体同士の衝突のいずれかに少なくとも起因して弾性的に発生する波動を検出し、当該検出した波動に対応する電気的な検出信号を生成する検出工程と、
    前記生成された検出信号に基づいて、前記動作状態の内容を判定する判定工程と、
    を備えることを特徴とする状態検出方法。
  8. 請求項7に記載の状態検出方法において、
    前記判定工程は、
    前記生成された検出信号における周期性の有無を判定する周期性判定工程と、
    前記周期性があると判定されたとき、前記生成された検出信号における最大値を検出する最大値検出工程と、
    前記検出された最大値が予め設定された最大値閾値以上か否かを判定する最大値判定工程と、
    前記検出された最大値が前記最大値閾値以上であるとき、前記直動転がり案内装置が潤滑不良状態に陥っていると判定し、その旨を告知する状態判定工程と、
    により構成されていることを特徴とする状態検出方法。
  9. 請求項7に記載の状態検出方法において、
    前記判定工程は、
    前記生成された検出信号における周期性の有無を判定する周期性判定工程と、
    前記周期性があると判定されたとき、前記生成された検出信号の最大値を検出する最大値検出工程と、
    前記検出された最大値が予め設定された最大値閾値以上か否かを判定する最大値判定工程と、
    前記検出された最大値が前記最大値閾値未満であるとき、前記生成された検出信号における事象率を検出する事象率検出工程と、
    前記検出された事象率が予め設定された事象率閾値以上か否かを判定する事象率判定工程と、
    前記検出された事象率が前記事象率閾値未満であるとき、前記直動転がり案内装置が潤滑不良状態に陥っている可能性があると判定し、その旨を告知する状態判定工程と、
    により構成されていることを特徴とする状態検出方法。
  10. 請求項7に記載の状態検出方法において、
    前記判定工程は、
    前記生成された検出信号における周期性の有無を判定する周期性判定工程と、
    前記周期性があると判定されたとき、前記生成された検出信号の最大値を検出する最大値検出工程と、
    前記検出された最大値が予め設定された最大値閾値以上か否かを判定する最大値判定工程と、
    前記検出された最大値が前記最大値閾値未満であるとき、前記生成された検出信号における事象率を検出する事象率検出工程と、
    前記検出された事象率が予め設定された事象率閾値以上か否かを判定する事象率判定工程と、
    前記検出された事象率が前記事象率閾値以上であるとき、前記直動転がり案内装置においてフレーキングが発生していると判定し、その旨を告知する状態判定工程と、
    により構成されていることを特徴とする状態検出方法。
  11. 請求項7に記載の状態検出方法において、
    前記判定工程は、
    前記検出された検出信号における周期性の有無を判定する周期性判定工程と、
    前記周期性がないと判定されたとき、前記検出された検出信号の実効値を検出する実効値検出工程と、
    前記検出された実効値が予め設定された実効値閾値以上か否かを判定する実効値判定工程と、
    前記検出された実効値が前記実効値閾値以上であるとき、前記直動転がり案内装置内に異物が混入していると判定し、その旨を告知する状態判定工程と、
    により構成されていることを特徴とする状態検出方法。
  12. 請求項7に記載の状態検出方法において、
    前記判定工程は、
    前記検出された検出信号における周期性の有無を判定する周期性判定工程と、
    前記周期性がないと判定されたとき、前記検出された検出信号の実効値を検出する実効値検出工程と、
    前記検出された実効値が予め設定された実効値閾値以上か否かを判定する実効値判定工程と、
    前記検出された実効値が前記実効値閾値未満であるとき、前記現在の動作状態が正常であると判定し、その旨を告知する状態判定工程と、
    により構成されていることを特徴とする状態検出方法。
  13. 直動転がり案内装置における現在の動作状態を検出する状態検出装置であって、当該直動転がり案内装置に含まれる複数の転動体が循環部内を公転する際に生じる、当該直動転がり案内装置に含まれる移動部材又は軌道部材と前記転動体との接触又は衝突、当該直動転がり案内装置に含まれる転動面と前記転動体との接触、或いは当該転動体同士の衝突のいずれかに少なくとも起因して弾性的に発生する波動を検出し、当該検出した波動に対応する電気的な検出信号を生成する検出手段を備える状態検出装置に含まれるコンピュータを、
    前記生成された検出信号に基づいて、前記動作状態の内容を判定する判定手段として機能させることを特徴とする状態検出用プログラム。
  14. 請求項13に記載の状態検出用プログラムが前記コンピュータにより読取可能に記録された情報記録媒体。
JP2003054293A 2003-02-28 2003-02-28 状態検出装置及び状態検出方法並びに状態検出用プログラム及び情報記録媒体 Expired - Lifetime JP4430316B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003054293A JP4430316B2 (ja) 2003-02-28 2003-02-28 状態検出装置及び状態検出方法並びに状態検出用プログラム及び情報記録媒体
TW93104897A TW200427975A (en) 2003-02-28 2004-02-26 State detecting device, state detecting method, state detecting program, and information recording medium
CNB200480005548XA CN100458394C (zh) 2003-02-28 2004-02-27 状态检测装置及状态检测方法、状态检测用程序及信息记录介质
AT04715466T ATE522734T1 (de) 2003-02-28 2004-02-27 Zustandserfassungsvorrichtung, -verfahren und - programm sowie datenaufzeichnungsmedium
EP20040715466 EP1598569B1 (en) 2003-02-28 2004-02-27 Condition-detecting device, method, and program, and information-recording medium
KR1020057015893A KR100993048B1 (ko) 2003-02-28 2004-02-27 상태 검출 장치, 상태 검출 방법 및 정보 기록 매체
US10/547,356 US7555953B2 (en) 2003-02-28 2004-02-27 Condition-detecting device, method, and program, and information-recording medium
PCT/JP2004/002398 WO2004076874A1 (ja) 2003-02-28 2004-02-27 状態検出装置及び状態検出方法並びに状態検出用プログラム及び情報記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003054293A JP4430316B2 (ja) 2003-02-28 2003-02-28 状態検出装置及び状態検出方法並びに状態検出用プログラム及び情報記録媒体

Publications (2)

Publication Number Publication Date
JP2004263775A true JP2004263775A (ja) 2004-09-24
JP4430316B2 JP4430316B2 (ja) 2010-03-10

Family

ID=32923458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003054293A Expired - Lifetime JP4430316B2 (ja) 2003-02-28 2003-02-28 状態検出装置及び状態検出方法並びに状態検出用プログラム及び情報記録媒体

Country Status (8)

Country Link
US (1) US7555953B2 (ja)
EP (1) EP1598569B1 (ja)
JP (1) JP4430316B2 (ja)
KR (1) KR100993048B1 (ja)
CN (1) CN100458394C (ja)
AT (1) ATE522734T1 (ja)
TW (1) TW200427975A (ja)
WO (1) WO2004076874A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101165078B1 (ko) * 2009-06-30 2012-07-12 주식회사 우신산업 프레스 공정 고장진단장치 및 그 방법
KR20160039916A (ko) * 2014-10-02 2016-04-12 현대자동차주식회사 프레스 판넬의 결함 검출 장치 및 그 방법
CN113092115A (zh) * 2021-04-09 2021-07-09 重庆大学 数模联合驱动的全寿命滚动轴承数字孪生模型构建方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101432611B (zh) 2006-02-28 2011-04-20 Thk株式会社 状态检测装置及状态检测方法以及状态检测用程序及信息记录介质
DE102006010847A1 (de) * 2006-03-09 2007-09-13 Schaeffler Kg Verfahren zum Untersuchen von Lagerschäden
DK2115323T3 (da) * 2006-12-31 2012-05-07 Linak As Aktuatorsystem
DE102007038890B4 (de) 2007-08-17 2016-09-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung der Lebensdauer von im Arbeitsbetrieb befindlichen Bauteilen
ES2456047T3 (es) * 2008-07-24 2014-04-21 Siemens Aktiengesellschaft Procedimiento y configuración para determinar el estado de un rodamiento
US20100063775A1 (en) * 2008-09-11 2010-03-11 Assembly & Test Worldwide, Inc. Method and apparatus for testing automotive components
US20100063674A1 (en) * 2008-09-11 2010-03-11 Assembly & Test Worldwide, Inc. Engine test method using structured test protocol
DE102010015207A1 (de) * 2010-04-16 2011-10-20 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Überwachung einer Linearführung
JP2012042338A (ja) * 2010-08-19 2012-03-01 Ntn Corp 転がり軸受の異常診断装置および歯車の異常診断装置
US8695405B2 (en) * 2010-09-17 2014-04-15 Bestsens Ag Bearing, arrangement for determining properties of a lubricant in a bearing and method for determining properties of a lubricant in a bearing
CN102554675A (zh) * 2010-12-08 2012-07-11 孙长顺 调速滑块
DE102013214031B4 (de) 2013-07-17 2023-08-03 Ifm Electronic Gmbh Kugelumlaufspindel-Antrieb mit Zustandsüberwachungseinheit, Verfahren zur Zustandserkennung einer Spindel eines Kugelumlaufspindel-Antriebs und Zustandsüberwachungseinheit für einen Kugelumlaufspindel-Antrieb
GB2521359A (en) * 2013-12-17 2015-06-24 Skf Ab Viscosity estimation from demodulated acoustic emission
CN104483121B (zh) * 2014-12-24 2017-02-01 重庆大学 往复式机械位置序列采样和诊断方法
DE102015000207A1 (de) * 2015-01-15 2016-07-21 Hella Kgaa Hueck & Co. Verfahren und Vorrichtung zur Erfassung eines Körperschallsignals, insbesondere zur Erfassung eines von einem Schadensereignis an einem zu überwachenden Bauteil ausgelösten Körperschallsignals
DE102015201121A1 (de) 2015-01-23 2016-07-28 Robert Bosch Gmbh Schadenszustandsermittlung bei einer Linearbewegungsvorrichtung
DE102015202130A1 (de) * 2015-02-06 2016-08-11 Schaeffler Technologies AG & Co. KG Baukasten für Lager und Lageranordnung
CN104819846B (zh) * 2015-04-10 2017-03-22 北京航空航天大学 一种基于短时傅里叶变换和稀疏层叠自动编码器的滚动轴承声音信号故障诊断方法
DE102016100835A1 (de) * 2016-01-19 2017-07-20 Hiwin Technologies Corp. Aufbau einer Sensorik
DE102016210109A1 (de) * 2016-06-08 2017-12-14 Robert Bosch Gmbh Führungswagen mit sensorischer Schicht an der Laufbahneinlage
CN106053074B (zh) * 2016-08-02 2019-12-20 北京航空航天大学 一种基于stft和转动惯量熵的滚动轴承声音信号故障特征提取方法
JP6403743B2 (ja) * 2016-11-21 2018-10-10 Thk株式会社 転がり案内装置の状態診断システム
JP6952465B2 (ja) * 2016-12-28 2021-10-20 Thk株式会社 管理システム、及び運動案内装置
JP6841558B2 (ja) * 2017-02-24 2021-03-10 Thk株式会社 転がり案内装置の状態診断システム及び状態診断方法
JP6673306B2 (ja) * 2017-03-03 2020-03-25 株式会社デンソー 診断システム
WO2019044493A1 (ja) 2017-08-29 2019-03-07 Thk株式会社 運動案内装置
JP7219877B2 (ja) * 2017-08-29 2023-02-09 Thk株式会社 運動案内装置
CZ2019112A3 (cs) * 2019-02-26 2020-03-11 Ĺ KODA AUTO a.s. Lineární valivé vedení s integrovaným diagnostickým zařízením
DE102020116624A1 (de) 2020-06-24 2021-12-30 Ifm Electronic Gmbh Überwachungseinrichtung für eine Wälzführung

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138616A (en) * 1979-04-16 1980-10-29 Kansai Electric Power Co Inc:The Bearing fault discriminating device
JPS57194331A (en) * 1981-05-26 1982-11-29 Nippon Seiko Kk Method and device for detecting fault of machine element having tumbling body
JPS5863832A (ja) * 1981-10-13 1983-04-15 Sumitomo Metal Ind Ltd 周期運動体の監視方法
JPS5863831A (ja) * 1981-10-13 1983-04-15 Sumitomo Metal Ind Ltd 周期運動体の監視方法
JPS6219755A (ja) * 1985-07-19 1987-01-28 Hitachi Ltd Ae方式回転機異常診断システム
JPH066761B2 (ja) 1985-12-03 1994-01-26 株式会社日立製作所 ジルコニウム製造用ハ−ス及びその製造方法
JPS62133023U (ja) * 1986-02-17 1987-08-21
US5140858A (en) * 1986-05-30 1992-08-25 Koyo Seiko Co. Ltd. Method for predicting destruction of a bearing utilizing a rolling-fatigue-related frequency range of AE signals
JPS63297813A (ja) * 1987-05-28 1988-12-05 Fuji Electric Co Ltd ころがり軸受異常診断装置
US4763523A (en) * 1987-08-26 1988-08-16 Womble Coy G Roller bearing testing device
JPH01172622A (ja) * 1987-12-26 1989-07-07 Tosoh Corp 転がり軸受けの異常検出方法
JPH01172621A (ja) * 1987-12-26 1989-07-07 Tosoh Corp 転がり軸受けの異常検出方法
GB8826640D0 (en) * 1988-11-15 1988-12-21 Sensotect Ltd Apparatus for determining surface roughness of material
GB2228088B (en) * 1988-12-16 1992-09-16 Nippon Seiko Kk Method and apparatus for detecting cracks in bearings
US5477730A (en) * 1993-09-07 1995-12-26 Carter; Duncan L. Rolling element bearing condition testing method and apparatus
JPH07217649A (ja) * 1994-02-04 1995-08-15 Nippon Seiko Kk 複列転がり軸受の予圧隙間を測定する方法と装置
JP2557201B2 (ja) * 1994-09-07 1996-11-27 インターナショナル・ビジネス・マシーンズ・コーポレイション 回転装置の検査装置及び回転装置の検査方法
JP3325449B2 (ja) * 1996-02-05 2002-09-17 株式会社日立ビルシステム アコースティック・エミッションを用いた回転機軸受診断装置
JPH11271181A (ja) * 1998-01-22 1999-10-05 Nippon Steel Corp ころがり軸受の異常診断方法および装置
US6170986B1 (en) * 1999-04-07 2001-01-09 Chieftech Precision Co., Ltd. Linear motion rolling guide device
JP2002022617A (ja) 2000-07-05 2002-01-23 Mitsubishi Electric Corp 軸受診断装置
JP2002340922A (ja) 2001-01-25 2002-11-27 Nsk Ltd 車輪用回転検出装置
JP2003056574A (ja) * 2001-08-20 2003-02-26 Koyo Seiko Co Ltd 固体潤滑軸受装置
GB0307312D0 (en) * 2003-03-28 2003-05-07 Univ Brunel Acoustic emission parameters based on inter-arrival times of acoustic emission events
US7182519B2 (en) * 2004-06-24 2007-02-27 General Electric Company Methods and apparatus for assembling a bearing assembly
JP4771334B2 (ja) * 2004-08-31 2011-09-14 Thk株式会社 状態検出装置及び状態検出方法並びに状態検出用プログラム及び情報記録媒体、状態表示装置及び状態表示方法並びに状態表示用プログラム及び情報記録媒体
US7458267B2 (en) * 2004-11-17 2008-12-02 Halliburton Energy Services, Inc. Acoustic emission inspection of coiled tubing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101165078B1 (ko) * 2009-06-30 2012-07-12 주식회사 우신산업 프레스 공정 고장진단장치 및 그 방법
KR20160039916A (ko) * 2014-10-02 2016-04-12 현대자동차주식회사 프레스 판넬의 결함 검출 장치 및 그 방법
KR101655214B1 (ko) * 2014-10-02 2016-09-07 현대자동차 주식회사 프레스 판넬의 결함 검출 장치 및 그 방법
US9846144B2 (en) 2014-10-02 2017-12-19 Hyundai Motor Company Apparatus and method for detecting defect of press panel
CN113092115A (zh) * 2021-04-09 2021-07-09 重庆大学 数模联合驱动的全寿命滚动轴承数字孪生模型构建方法

Also Published As

Publication number Publication date
CN100458394C (zh) 2009-02-04
EP1598569A4 (en) 2010-08-11
CN1756910A (zh) 2006-04-05
KR20050107461A (ko) 2005-11-11
KR100993048B1 (ko) 2010-11-08
TW200427975A (en) 2004-12-16
ATE522734T1 (de) 2011-09-15
US7555953B2 (en) 2009-07-07
EP1598569B1 (en) 2011-08-31
EP1598569A1 (en) 2005-11-23
JP4430316B2 (ja) 2010-03-10
US20060213272A1 (en) 2006-09-28
WO2004076874A1 (ja) 2004-09-10
TWI329735B (ja) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4430316B2 (ja) 状態検出装置及び状態検出方法並びに状態検出用プログラム及び情報記録媒体
JP4695185B2 (ja) 状態検出装置及び状態検出方法並びに状態検出用プログラム及び情報記録媒体
JP4771334B2 (ja) 状態検出装置及び状態検出方法並びに状態検出用プログラム及び情報記録媒体、状態表示装置及び状態表示方法並びに状態表示用プログラム及び情報記録媒体
US7813906B2 (en) Method of predicting residual service life for rolling bearings and a device for predicting residual service life for rolling bearings
CN107843426B (zh) 轴承剩余寿命的监测方法及监测装置
JP6714806B2 (ja) 状態監視装置及び状態監視方法
KR20150004852A (ko) 베어링 조립체의 음향 방출 측정
TWI676752B (zh) 滾動導引裝置的狀態診斷系統
JP2005017128A (ja) 機械設備の状態監視方法及び装置
JP2002188411A (ja) 異常診断装置
JP2011180082A (ja) すべり軸受の診断方法および診断装置
JP2013205048A (ja) 回転機械の健全性診断方法
JP2006189333A (ja) 軸受の異常診断装置
JP6243940B2 (ja) 風力発電システムの異常予兆診断システム
JPH01172621A (ja) 転がり軸受けの異常検出方法
JP2021032769A (ja) 転がり軸受の状態監視方法及び状態監視装置
JP2010112830A (ja) 等速自在継手の異常検出方法
JP7356956B2 (ja) 異常予兆診断装置およびその診断方法
Stancu et al. Acoustic emission-based similarity analysis: a baseline convergence algorithm
Bahaadini et al. Diagnosing the bearing of the electric motor related to the ID FAN in the steelmaking using ultrasonic sound technique
Bakhtiary-Nejad et al. Application of Vibration Analysis in Ball Bearing Fault Detection
Lim et al. Detection of a single rolling element bearings fault via relative shaft displacement measurement
KR19990026945A (ko) 베어링의 수명 예측방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4430316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term