JP2004258869A - 実装回路設計方法、実装回路設計システムおよび実装回路設計プログラム - Google Patents

実装回路設計方法、実装回路設計システムおよび実装回路設計プログラム Download PDF

Info

Publication number
JP2004258869A
JP2004258869A JP2003047473A JP2003047473A JP2004258869A JP 2004258869 A JP2004258869 A JP 2004258869A JP 2003047473 A JP2003047473 A JP 2003047473A JP 2003047473 A JP2003047473 A JP 2003047473A JP 2004258869 A JP2004258869 A JP 2004258869A
Authority
JP
Japan
Prior art keywords
impedance
bypass capacitor
noise current
circuit design
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003047473A
Other languages
English (en)
Inventor
Yasuyuki Ishikawa
靖之 石川
Koji Ichikawa
浩司 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003047473A priority Critical patent/JP2004258869A/ja
Priority to US10/778,136 priority patent/US7203921B2/en
Priority to DE102004008886A priority patent/DE102004008886A1/de
Publication of JP2004258869A publication Critical patent/JP2004258869A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0231Capacitors or dielectric substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0005Apparatus or processes for manufacturing printed circuits for designing circuits by computer

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

【課題】ICにバイパスコンデンサを設ける場合、その最適な容量値および最適な配置位置を容易に且つ精度良く決定する。
【解決手段】IC1の外部におけるバイパスコンデンサ4を介した電流経路(P1、P2)のインピーダンスと、IC1の電源端子2、3から見たIC内部のインピーダンスとに基づいて、バイパスコンデンサ4の容量値および配置位置に対するIC1の外部に流れるノイズ電流を計算し、その計算結果に基づいてバイパスコンデンサ4の容量値および配置位置を決定する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、実装されるICに対しバイパスコンデンサを設ける場合の当該バイパスコンデンサの実装回路設計方法、実装回路設計システムおよび実装回路設計プログラムに関する。
【0002】
【従来の技術】
特許文献1には、ICにバイパスコンデンサを設けた回路を設計する方法が開示されている。この回路設計方法は、バイパスコンデンサの容量および配置場所を予め設定した後、当該コンデンサを含む電流経路におけるインピーダンス‐周波数特性に基づいて評価し、最適化されるまでこれを繰り返すようにしたものである。
【0003】
【特許文献1】
特開2001−175702号公報
【0004】
【発明が解決しようとする課題】
プリント配線基板にICを実装する場合、外部から電源パターンを通してICに侵入するノイズおよびICから電源パターンを通して外部に出力されるノイズを低減するため、ICの電源端子間にバイパスコンデンサ(以下、コンデンサと称す)を設けている。
【0005】
図5は、コンデンサの実装回路設計をする上で従来から用いられているノイズ解析モデルの一例を示している。図中、Zcap はIC1の電源端子2、3間に接続されたコンデンサ4のインピーダンス、Zpcb はコンデンサ4から反IC1側を見た場合の電源パターン5、6間に接続された外部回路7のインピーダンス、Zptnv1 はIC1の電源端子2からコンデンサ4に至る電源パターン5のインピーダンス、Zptng1 はIC1の電源端子3からコンデンサ4に至る電源パターン6のインピーダンス、Zptnv2 はコンデンサ4から外部回路7に至る電源パターン5のインピーダンス、Zptng2 はコンデンサ4から外部回路7に至る電源パターン6のインピーダンスである。
【0006】
このノイズ解析モデルを用いて計算すると、コンデンサ4の一端子から電源パターン5、外部回路7、電源パターン6を介してコンデンサ4の他端子に戻る電流経路P2のインピーダンスに対し、IC1の電源端子2から電源パターン5、コンデンサ4、電源パターン6を通ってIC1の電源端子3に至る電流経路P1のインピーダンスを下げれば、IC1から外部回路7に流出するノイズ電流が低減するという結果が得られる。すなわち、従来から考えられていたように、コンデンサ4を極力IC1の近くに配置すればノイズ電流の低減効果が大きいことになる。
【0007】
しかしながら、実際にプリント配線基板に実装してノイズ特性を測定してみると、必ずしもコンデンサ4をIC1に近接配置すればよいという結果は得られない。これは、図5の等価回路で表されるノイズ解析モデルが、実回路を正確に表していないことに原因する。このため、これまでの実装回路設計者は、上記計算結果を一つの目安としながらも、最終的には経験的にコンデンサ4の容量値と配置位置とを設定して評価し、最適な評価結果が得られるまで設計と評価とを繰り返す手間のかかる作業が必要であった。
【0008】
本発明は上記事情に鑑みてなされたもので、その目的は、実装されるICに対しバイパスコンデンサを設ける場合、そのバイパスコンデンサの最適な容量値および最適な配置位置を容易に且つ精度良く決定できるバイパスコンデンサの実装回路設計方法、実装回路設計システムおよび実装回路設計プログラムを提供することにある。
【0009】
【課題を解決するための手段】
請求項1に記載した手段は、実装回路設計において、従来から考慮されていたIC外部におけるバイパスコンデンサを介した電流経路のインピーダンスに加え、新たにバイパスコンデンサが接続されるIC端子から見たIC内部のインピーダンスも考慮した点に特徴を有している。この実装回路設計方法によれば、例えばIC内部で発生したノイズ電流の経路として、IC外部におけるバイパスコンデンサを介した経路に加え、IC内部のインピーダンスを介した経路が考慮される。
【0010】
その結果、IC端子とバイパスコンデンサとの間のインピーダンスを下げて当該ICとバイパスコンデンサとの間の電流経路にノイズ電流を還流させることが有効と考えられていた従来の設計思想に対し、本実装回路設計では、IC内部のインピーダンスを介した経路にノイズ電流を還流させることが有効であるという新たな設計思想が得られる。この実装回路設計方法によれば、実際の実装回路により近いノイズ電流を計算することができるので、ノイズ電流を低減する上で最適なバイパスコンデンサの容量値および配置位置を精度良く且つ何度も試行を繰り返すことなく決定することができる。
【0011】
請求項2に記載した手段によれば、ICの外部において主要な回路要素であるバイパスコンデンサのインピーダンス、ICの外部接続回路のインピーダンスおよびこれらを繋ぐ配線のインピーダンスが考慮される。そして、これらのインピーダンスを用いれば、たとえ複雑な配置構成であっても一般化した等価回路として表すことができる。また、計算されるノイズ電流ひいてはバイパスコンデンサの容量値および配置位置について十分な精度を得ることができる。
【0012】
請求項3に記載した手段によれば、最初にバイパスコンデンサのインピーダンス(端的には容量値)を設定し、IC内部のインピーダンスの値およびIC端子とバイパスコンデンサとの間の配線距離をパラメータとして順に変えながら、IC内部にノイズ源を仮定したときのICから外部接続回路に流れるノイズ電流の大きさを計算する。この計算は、上記各インピーダンスに基づく電圧・電流方程式を解析的に解いたり、あるいは数値計算を行えばよい。
【0013】
一旦計算しておけば、その後上記特定のバイパスコンデンサを用いる限り再計算する必要はなく、計算結果に実際のIC内部のインピーダンスの値を当てはめれば、ノイズ電流が最小となる配置位置を直ちに決定できる。また、必要に応じてバイパスコンデンサの容量値(インピーダンス)を変えて計算しておけば、バイパスコンデンサの容量値も決定することができる。
【0014】
請求項4に記載した手段によれば、計算して得られたノイズ電流をノイズ電流特性図として表すので、実装回路設計者による上記当てはめ作業や評価が容易になり、作業効率を高められる。また、バイパスコンデンサの容量値も、各容量値に対して生成された複数のノイズ電流特性図を比較することにより容易に決定できる。
【0015】
請求項5に記載した手段によれば、ノイズ電流特性図は、第1の軸をIC内部のインピーダンスとし、第2の軸をバイパスコンデンサの配置位置とし、第3の軸をノイズ電流の大きさとして三次元表示され、あるいは色彩または階調表現を用いて二次元表示されるので、実装回路設計者にとって非常に見易く、設計効率を高められる。
【0016】
請求項6に記載した手段によれば、最初にIC内部のインピーダンスを設定し、バイパスコンデンサのインピーダンスの値(容量値)およびIC端子とバイパスコンデンサとの間の配線距離をパラメータとして順に変えながら、IC内部にノイズ源を仮定したときのICから外部接続回路に流れるノイズ電流の大きさを計算する。
【0017】
この方法によっても、一旦計算しておけば、その後上記特定のICを用いる限り再計算する必要はなく、計算結果に実際のバイパスコンデンサのインピーダンスの値を当てはめれば、ノイズ電流が最小となるバイパスコンデンサの配置位置を直ちに決定できる。また、計算結果に実際のバイパスコンデンサの配置位置を当てはめれば、ノイズ電流に応じたバイパスコンデンサの容量値を直ちに決定できる。さらに、必要に応じてIC内部のインピーダンスを変えて計算しておけば、種々のICに対して次々に適用でき、作業効率が一層向上する。なお、計算して得られたノイズ電流をノイズ電流特性図として表しても良い。
【0018】
請求項7に記載した手段によれば、IC内部のインピーダンスに、ボンディングワイヤとリードフレームのインピーダンスを含めるので、より精度の高い設計が可能となる。
【0019】
請求項8に記載した手段によれば、ICとバイパスコンデンサは、プリント配線基板に実装されている。このような形態は最も一般的と考えられ、広く実装回路設計に利用できる。
【0020】
請求項9に記載した手段は、請求項1に記載した実装回路設計方法を具体化したシステムであって、データ入出力手段と演算手段とデータ蓄積手段とを備えたコンピュータを設計支援装置として用いることにより、実装回路設計の効率化、設計時間の短縮を図るものである。この場合、少なくともノイズ電流の計算段階までを行えばよい。得られた計算結果への実回路の当てはめ作業は、コンピュータに限らず実装回路設計者が行ってもよい。
【0021】
請求項10に記載した手段は、請求項2に記載した実装回路設計方法を具体化したシステムである。配線距離に対する配線パターンなどのインピーダンスのデータは、例えば回路接続データとしてデータ蓄積手段に格納されている。
【0022】
請求項11に記載した手段は、請求項3に記載した実装回路設計方法を具体化したシステムである。IC内部のインピーダンスの値およびIC端子とバイパスコンデンサとの間の配線距離を順に変えながらのノイズ電流の計算は計算量が多くなるため、コンピュータを用いることにより実装回路設計の効率化、設計時間の短縮を図ることができる。
【0023】
請求項12、13に記載した手段は、それぞれ請求項4、5に記載した実装回路設計方法を具体化したシステムである。生成されたノイズ電流特性図は、データ入出力手段(表示装置、印刷装置など)を介して出力される。
【0024】
請求項14に記載した手段によれば、演算手段は、ノイズ電流に関する計算結果に基づいて、ICに入出力するノイズ電流が極力小さくなるようにバイパスコンデンサの容量値および配置位置を決定するので、実装回路設計の一層の効率化が図られる。
【0025】
請求項15、16に記載した手段は、それぞれ請求項9、14に記載した実装回路設計システムにおいて演算手段により用いられる実装回路設計プログラムである。
【0026】
【発明の実施の形態】
以下、本発明の一実施形態について図1ないし図4を参照しながら説明する。
図2は、プリント配線基板の実装回路設計システムの概略的な構成を示している。この実装回路設計システムは、コンピュータ11から構成されている。コンピュータ11は、中央演算処理装置12(演算手段に相当、以下演算装置12と称す)、キーボードやCD−ROMドライブ装置からなる入力装置13(データ入出力手段に相当)、CRTなどの表示装置やカラープリンタなどの印刷装置からなる出力装置14(データ入出力手段に相当)、およびメモリやハードディスク装置からなるデータ記憶装置15(データ蓄積手段に相当)から構成されている。入力装置13と出力装置14には、ネットワークを介してデータの送受信を行う通信手段も含まれている。
【0027】
演算装置12は、予めメモリに記憶されている実装回路設計プログラムを実行することにより、プリント配線基板(図示せず)に搭載される複数のICのそれぞれに対しノイズ電流を計算し、その計算結果に基づいてノイズ電流の低減に最適なバイパスコンデンサの容量値と配置位置とを決定するようになっている。データ記憶装置15には、上記実装回路設計プログラムの実行に先立って、ICに関する情報およびノイズ対策部品に関する情報がライブラリファイルとして記憶されるようになっている。なお、これらの情報として、例えば通信手段を通して入力したCADの設計データを利用することもできる。
【0028】
図1は、実装回路設計で用いるノイズ解析モデルを示しており、図5と同一構成部分には同一符号を付している。プリント配線基板に実装されるIC1の外部において、その電源端子2、3(IC端子に相当)には、それぞれ電源パターン5、6を通して電源電圧(例えば5V)が与えられるようになっている。IC1の近傍に位置して、電源パターン5、6間にはバイパスコンデンサ4(以下、コンデンサ4と称す)が接続されている。
【0029】
外部回路7は、IC1の電源端子2、3に電源パターン5、6を通して接続されている回路を等価的に示したもので、電源回路、他の機能回路、他のIC、当該IC1の他の電源端子などを表している。パターン5、6が電源パターンであることから、一般的には外部回路7は容量性を示している。図中のインピーダンスZcap 、Zpcb 、Zptnv1 、Zptng1 、Zptnv2 、Zptng2 は、「発明が解決しようとする課題」で説明した通りである。
【0030】
本実装回路設計システムのノイズ解析モデルでは、IC1の電源端子2、3から見た当該IC1内部のインピーダンスも考慮されている。すなわち、電源端子2、3間には、ボンディングワイヤとリードフレームからなる配線8、9を介してバイパスコンデンサその他の内部回路10が接続されている。図中のZintv1 、Zintg1 は、それぞれ配線8、9のインピーダンスであり、Zintcapは内部回路10のインピーダンス(容量性)である。
【0031】
また、ノイズ電流を計算する上で、電源端子2、3間にノイズ電流源19(ノイズ源に相当)が接続されている。このノイズ電流源19が出力するノイズ電流Jの周波数成分は、実際のIC1から出力されるノイズ電流の周波数成分に近似している。このようにIC1内部のインピーダンスを考慮すると、ノイズ電流源19と内部回路10とからなる新たな電流経路P0が現れる。
【0032】
次に、図1に示すノイズ解析モデルに基づいてコンピュータ11が実行する実装回路設計処理について説明する。
図3は、演算装置12が実行する実装回路設計処理のフローチャートである。この実装回路設計処理は、容量値の異なる複数のコンデンサ4に対しそれぞれ図4に示すノイズ電流特性図を生成する特性計算処理ステップS1〜S7と、得られたノイズ電流特性図を用いてプリント配線基板上のICごとにコンデンサ4の容量値と配置位置とを決定する特性適用処理ステップS8〜S12とから構成されている。
【0033】
まず、特性計算処理ステップについて説明する。
演算装置12は、ステップS1で特性計算に必要なデータを入力装置13から入力し、それに基づいてデータ記憶装置15内にライブラリファイルを作成する。このライブラリファイルは、IC情報ファイル16とノイズ対策部品情報ファイル17とからなる。
【0034】
IC情報ファイル16には、プリント配線基板上に配置されるICの品名、品番、ピン情報、電源端子2、3から見たIC内部の回路定数、IC内で生じるノイズ電流の大きさと周波数成分などのデータが含まれている。ICに複数の電源端子対が存在する場合には、各対ごとのデータが含まれている。これらのデータのうち回路定数については、上述した配線8、9および内部回路10のそれぞれについて、ネットワークアナライザなどを用いて測定した容量成分、抵抗成分、インダクタンス成分の値で表されている。一方、ノイズ対策部品情報ファイル17には、バイパスコンデンサ、リアクトル(図示せず)などのノイズ対策部品の種類、品番、形状、回路定数(容量成分、抵抗成分、インダクタンス成分の値)が含まれている。
【0035】
ライブラリを生成した後、演算装置12は、ステップS2でプリント配線基板上に実際に配置されたIC相互の接続情報を入力装置13から入力し、それに基づいて回路接続情報ファイル18を作成する。この回路接続情報ファイル18には、プリント配線基板上に配置されている各ICについて、他回路(他の機能回路、他のIC、当該IC1の他の電源端子)との接続情報すなわち各ICから見た外部回路7の回路定数、配線パターンの単位長あたりの回路定数が含まれている。
【0036】
演算装置12は、ステップS3において、入力装置13から入力された設定条件に従ってノイズ対策部品情報ファイル17から1つのバイパスコンデンサ4を選択し、ステップS4において、図1に示したノイズ解析モデルを所定周波数について作成する。この周波数は、IC1の種類、機能などによって異なる。例えばクロック周波数が数MHz〜数十MHzのマイコンの場合には、その主要な高調波が現れるFM帯(76MHz〜90MHz)やTV放送帯(90MHz〜108MHz)などが用いられる。
【0037】
この段階では、ノイズ解析モデルにおいて、IC1の内部回路10のインピーダンスZintcap、電源パターン5のインピーダンスZptnv1 、Zptnv2 、電源パターン6のインピーダンスZptng1 、Zptng2 は未定である。ノイズ電流源19のノイズ電流J、IC1の配線8、9のインピーダンスZintv1 、Zintg1 、外部回路7のインピーダンスZpcb およびIC1と外部回路7との配線距離は標準的な値に設定されている(これらは実装状態に応じて適宜設定すればよい)。
【0038】
なお、解析に用いる周波数が予め定まっている場合には、IC情報ファイル16、ノイズ対策部品情報ファイル17および回路接続情報ファイル18に含まれる回路定数データを、当該周波数におけるインピーダンスデータとしてもよい。この場合には、IC情報ファイル16にはIC内部のインピーダンスのデータが含まれ、ノイズ対策部品情報ファイル17にはコンデンサのインピーダンスのデータが含まれ、回路接続情報ファイル18には外部回路のインピーダンスのデータおよびICとコンデンサとの間の配線距離に対する配線インピーダンスのデータが含まれる。
【0039】
その後、演算装置12は、ステップS5において、IC1から外部回路7に流れるノイズ電流、具体的にはコンデンサ4から外部回路7に至る電源パターン5のインピーダンスZptnv2 に流れるノイズ電流を計算する。このとき、IC1の内部インピーダンスZintcapおよびIC1とコンデンサ4との間のインピーダンスをパラメータとして順に変えながら、電圧・電流方程式の解析解にインピーダンス値を代入したり、あるいは数値計算を行う。計算が終了すると、ステップS6に移行してノイズ電流特性図を作成し、それを出力装置4に画面表示するとともに印刷する。
【0040】
図4は、周波数が96MHzのときのノイズ電流特性図の一例を示している。横軸(第1の軸に相当)はIC1の内部インピーダンスZintcap[Ω]を示し、縦軸(第2の軸に相当)はIC1の電源端子2からコンデンサ4に至る電源パターン5のインピーダンスZptnv1 [Ω]を示している。ノイズ電流の大きさの違いは、図において3dBごとに仕切られた各領域A1〜A11で表されている。すなわち、ノイズ電流は、図の右上の領域A1が最も大きく、左下側の領域A2、A3、…にいくほど順に小さくなり、図の左端の領域A11が最小となっている。実際の画面表示では、カラー表示されている。図中にやや右下がりで引かれた最小値指示ラインBは、各インピーダンスZintcapに対し、ノイズ電流が最小となるインピーダンスZptnv1 を示している。
【0041】
1つのコンデンサ4を用いた場合の計算が修了すると、演算装置12は、ステップS7において、上述した設定条件に従って他の容量を持つコンデンサ4についても計算するか否かを判断する。ここで、「YES」と判断すると、ステップS3に移行し、別の容量値を持つコンデンサ4を選択してノイズ電流特性図を作成する。また、「NO」と判断すると、特性計算処理ステップを終えて、次の特性適用処理ステップに進む。
【0042】
特性適用処理ステップは、以下のように処理される。
演算装置12は、ステップS8において、プリント配線基板に搭載されたIC1を選択する。そして、データ記憶装置15に記憶されたIC情報ファイル16の中から当該IC1の内部回路10の回路定数を読み出し、96MHzの周波数におけるインピーダンスZintcapを計算する。続いて、ステップS9において、コンデンサ4の容量値を予め標準値として決められた値に設定する。そして、ステップS10において、この容量値を持つコンデンサ4についてのノイズ電流特性図に対し、当該IC1の内部インピーダンスZintcapを当てはめ、そのときの最小値指示ラインBに対応したインピーダンスZptnv1 を得る。このインピーダンスZptnv1 は、IC1とコンデンサ4との間の配線距離と等価なため、ノイズ電流が最小となるコンデンサ4の配置位置を一義的に決定できる。
【0043】
その後、演算装置12は、ステップS11において、ノイズ電流の絶対的な値が設計仕様値を満たしているかについて判断する。ここで、満たしていない(NO)と判断するとステップS9に移行し、コンデンサ4の容量値を現在の値(標準値)から所定値だけ増やして再度ステップS10以降の処理が行われる。一方、ステップS11においてノイズ電流値が設計仕様値を満たしている(YES)と判断するとステップS12に移行し、プリント配線基板に搭載された全てのICについて処理が終了したか否かを判断する。終了した場合には「YES」と判断して特性適用処理ステップを終了し、終了していない場合には「NO」と判断してステップS8に戻り、次のIC1を選択して処理を続行する。
【0044】
ところで、図4に示すノイズ電流特性図は、従来から行われてきた設計方法により得られるものとは異なる特性を示している。従来は、コンデンサ4をIC1に近づけて配置するほど、図1に示す電流経路P1のインピーダンスが下がり、電流経路P2に流れるノイズ電流が低減すると考えられていた。つまり、コンデンサ4の最適な配置位置は、IC1の直近ということになる。
【0045】
これに対し、図4に示すノイズ電流特性図においては、例えばIC1の内部インピーダンスZintcapが1[Ω]の場合に着目すると、ノイズ電流が最小となる最小値指示ラインBの配線インピーダンスZptnv1 は7[Ω]となっている。これは、IC1の直近部分(Zptnv1 =0[Ω])が領域A6に含まれているのに対し、Zptnv1 =7[Ω]付近がそれよりもノイズ電流の3dB小さい領域A7に含まれていることからも明らかとなる。
【0046】
また、別の例としてIC1の内部インピーダンスZintcapが3[Ω]の場合に着目しても、ノイズ電流が最小となる配置位置はIC1の直近部分ではなく、IC1とコンデンサ4との配線距離が配線インピーダンスZptnv1 =5[Ω]に相当する距離となる位置であることが分かる。この結果に基づいて実際のプリント配線基板を用いて実測したところ、コンデンサ4をIC1の直近に配置した場合に比べて2.4dBのノイズの低減が確認できた。
【0047】
このような結果は、IC1の外部回路のインピーダンスに加え内部回路10のインピーダンスを考慮したノイズ解析モデルを用いたことにより得られるものである。当該モデルによれば、図1に示すようにIC1の内部にインピーダンスZintcapを還流する電流経路P0が形成され、この内部の電流経路P0と上記外部の電流経路P1、P2との関係によりノイズ電流が定まる。ここで、電流経路P2のインピーダンスに対し電流経路P1のインピーダンスを下げることは必要である。しかし、下げ過ぎると、電流経路P0のインピーダンスが電流経路P1のインピーダンスに対し相対的に高くなり、本来電流経路P0を還流させるべきノイズ電流が、インピーダンスの低い電流経路P1(IC1の外部)に流れ出る量が多くなってしまう。
【0048】
つまり、ノイズ電流はインピーダンスの低い電流経路に流れ易いため、電流経路P1のインピーダンスを下げ過ぎるとIC1の外部にノイズ電流が流れ出易くなり、電流経路P1のインピーダンスを上げ過ぎるとノイズ電流が電流経路P2に流れ易くなる。図4に示すノイズ電流特性図において、最小値指示ラインBがIC1の直近でもなく遠方でもなく、その中間的な位置を示しているのはこのためである。
【0049】
以上説明したように、本実施形態の実装回路設計システムは、従来から考慮されていたIC1の外部におけるコンデンサ4を介した電流経路のインピーダンスに加え、コンデンサ4が接続されるIC1の電源端子2、3から見た内部回路10のインピーダンスZintcapも考慮したノイズ解析モデルを用いた点に特徴を有している。これにより、IC1の内部で発生したノイズ電流の経路として、IC1の外部における電流経路P1、P2と、IC1の内部の電流経路P0とが考慮されることになる。
【0050】
その結果、IC1の電源端子2、3とコンデンサ4との間のインピーダンスZptnv1 、Zptng1を下げて電流経路P1にノイズ電流を還流させることが有効と考えられていた従来の設計思想に対し、本実装回路設計方法では、IC1の内部インピーダンスZintcapを介した電流経路P0にノイズ電流を還流させることが有効であるという新たな設計思想が得られる。
【0051】
この実装回路設計によれば、実際の実装回路により近いノイズ電流を計算することができるので、ノイズ電流を低減する上でコンデンサ4の最適な容量値および最適な配置位置を精度良く且つ何度も試行を繰り返すことなく決定することができる。なお、IC1から外部回路7に流れるノイズ電流が低減すれば、外部からIC1内部に侵入するノイズ電流も低減すると考えられる。この点についてより正確に評価するならば、ノイズ電流源を外部に設けて上述した設計方法を適用すればよい。
【0052】
ノイズ電流の計算には、IC1の外部にあってはコンデンサ4のインピーダンスZcap 、IC1の外部回路7のインピーダンスZpcb およびこれらを繋ぐ配線のインピーダンスZptnv1 、Zptng1 、Zptnv2 、Zptng2 が考慮され、IC1の内部にあっては内部回路10のインピーダンスZintcapが考慮される。これらのインピーダンスを用いれば、たとえ複雑な配置構成であっても一般化した等価回路として表すことができる。従って、計算されるノイズ電流ひいてはコンデンサ4の容量値および配置位置について十分な精度を得ることができる。
【0053】
ノイズ電流の計算は、実装回路設計の効率化、設計時間の短縮を図るためにコンピュータ11を用いている。ノイズ電流の値は、特定のコンデンサ4のインピーダンスZcap に対し、IC1の内部インピーダンスZintcapおよびIC1とコンデンサ4との間の配線インピーダンスZptnv1 の値をパラメータとしたノイズ電流特性図として出力されるので、実装回路設計者による作業や評価が容易になる。また、ノイズ電流特性図は、ノイズ電流の大きさが色彩の段階的変化により二次元表示されるので、実装回路設計者にとって非常に見易く、設計効率を高められる。
【0054】
ノイズ電流を一旦計算しておけば、その後当該コンデンサ4を用いる限り再計算する必要はなく、計算結果に実際のIC1の内部インピーダンスZintcapを当てはめれば、ノイズ電流が最小となる配置位置を直ちに決定できる。また、複数種類のコンデンサ4について予めノイズ電流を計算しノイズ電流特性図を作成したので、ノイズ電流の絶対的な値を評価しながらコンデンサ4の配置位置のみならず容量値も決定することができる。
【0055】
IC1内部のインピーダンスには、ボンディングワイヤとリードフレームの配線8、9のインピーダンスZintv1 、Zintg1 まで考慮されているため、より精度の高い設計が可能となる。
【0056】
なお、本発明は上記し且つ図面に示す実施形態に限定されるものではなく、例えば以下のように変形または拡張が可能である。
ノイズ電流特性図は、カラー表示に替えて階調表現を用いて表してもよい。また、第1の軸をIC1の内部インピーダンスZintcapとし、第2の軸をIC1とコンデンサ4との間の配線インピーダンスZptnv1 とし、第3の軸をノイズ電流の大きさとする三次元表示により表してもよい。
ノイズ電流の計算およびノイズ電流特性図の作成において、IC1とコンデンサ4との間のインピーダンスZptnv1 に替えて、IC1とコンデンサ4との間の配線距離を用いても良い。
【0057】
IC1の内部インピーダンスZintcapを設定し、コンデンサ4のインピーダンスZcap およびIC1とコンデンサ4との間の配線インピーダンスZptnv1 をパラメータとして順に変えながらノイズ電流の大きさを計算してもよい。この場合のノイズ電流特性図は、第1の軸をコンデンサ4のインピーダンスZcap とし、第2の軸をIC1とコンデンサ4との間の配線インピーダンスZptnv1 とし、ノイズ電流の大きさを第3の軸、色彩の変化または階調表現を用いて表せばよい。これにより、バイパスコンデンサの容量値および配置位置を決定できる。
【0058】
特性適用処理ステップは、ノイズ電流特性図に対して、予め測定されているIC1の内部インピーダンスZintcapを当てはめるだけの比較的容易な作業であるため、実装回路設計者が行っても良い。
上述した実装回路設計方法は、IC1の電源端子2、3のみならず、基準電圧端子、電圧入出力端子などにも適用できる。
ボンディングワイヤとリードフレームからなる配線8、9のインピーダンスZintv1 、Zintg1 は、設計精度などから必要に応じて考慮すればよい。
【図面の簡単な説明】
【図1】本発明の一実施形態である実装回路設計で用いるノイズ解析モデルを表す図
【図2】実装回路設計システムの概略的な構成図
【図3】実装回路設計処理を示すフローチャート
【図4】ノイズ電流特性図
【図5】従来技術を示す図1相当図
【符号の説明】
1はIC、2、3は電源端子(IC端子)、4はバイパスコンデンサ、7は外部回路(外部接続回路)、19はノイズ電流源(ノイズ源)、11はコンピュータ(実装回路設計システム)、12は中央演算処理装置(演算手段)、13は入力装置(データ入出力手段)、14は出力装置(データ入出力手段)、15はデータ記憶装置(データ蓄積手段)である。

Claims (16)

  1. 実装されるICに対しバイパスコンデンサを設ける場合の当該バイパスコンデンサの実装回路設計方法において、
    前記ICの外部における前記バイパスコンデンサを介した電流経路のインピーダンスと、前記バイパスコンデンサが接続されるIC端子から見た前記IC内部のインピーダンスとに基づいて、前記バイパスコンデンサの容量値および配置位置に対する前記ICの外部に流れるノイズ電流を計算し、その計算結果に基づいて前記バイパスコンデンサの容量値および配置位置を決定することを特徴とする実装回路設計方法。
  2. 前記ICの外部において、少なくとも、前記IC端子から前記バイパスコンデンサに至る回路のインピーダンスと、前記バイパスコンデンサのインピーダンスと、前記バイパスコンデンサから前記ICの外部接続回路側を見た場合のインピーダンスとを考慮して、前記ノイズ電流を計算することを特徴とする請求項1記載の実装回路設計方法。
  3. 前記バイパスコンデンサのインピーダンスを特定し、前記IC内部のインピーダンスの値および前記IC端子と前記バイパスコンデンサとの間の配線距離を順に変えながら、前記IC内部にノイズ源を仮定したときの前記ICからその外部接続回路に流れるノイズ電流の大きさを計算し、その計算結果と実際のIC内部のインピーダンスとに基づいて当該ICに対するバイパスコンデンサの配置位置を決定することを特徴とする請求項2記載の実装回路設計方法。
  4. 前記計算して得られたノイズ電流を表したノイズ電流特性図を作成することを特徴とする請求項3記載の実装回路設計方法。
  5. 前記ノイズ電流特性図は、第1の軸を前記IC内部のインピーダンスとし、第2の軸を前記IC端子と前記バイパスコンデンサとの間のインピーダンスまたは配線距離とし、前記ノイズ電流の大きさを第3の軸、色彩の変化または階調表現を用いて表したものであることを特徴とする請求項4記載の実装回路設計方法。
  6. 前記IC内部のインピーダンスを特定し、前記バイパスコンデンサのインピーダンスの値および前記IC端子と前記バイパスコンデンサとの間の配線距離を順に変えながら、前記IC内部にノイズ源を仮定したときの前記ICからその外部接続回路に流れるノイズ電流の大きさを計算し、その計算結果と実際のバイパスコンデンサのインピーダンスとに基づいて前記ICに対するバイパスコンデンサの容量値または配置位置を決定することを特徴とする請求項2記載の実装回路設計方法。
  7. 前記IC内部のインピーダンスに、ボンディングワイヤとリードフレームのインピーダンスを含めることを特徴とする請求項1ないし6の何れかに記載の実装回路設計方法。
  8. 前記ICとバイパスコンデンサは、プリント配線基板に実装されていることを特徴とする請求項1ないし7の何れかに記載の実装回路設計方法。
  9. データ入出力手段と演算手段とデータ蓄積手段とを備え、実装されるICに対しバイパスコンデンサを設ける場合の当該バイパスコンデンサの実装回路設計を行う実装回路設計システムにおいて、
    前記演算手段は、前記ICの外部における前記バイパスコンデンサを介した電流経路のインピーダンスと、前記バイパスコンデンサが接続されるIC端子から見た前記IC内部のインピーダンスとに基づいて、前記バイパスコンデンサの容量値および配置位置に対する前記ICの外部に流れるノイズ電流を計算することを特徴とする実装回路設計システム。
  10. 前記データ蓄積手段には、前記IC端子と前記バイパスコンデンサとの間の配線距離に対する前記IC端子から前記バイパスコンデンサに至る回路のインピーダンスのデータと、前記バイパスコンデンサのインピーダンスのデータと、前記IC端子と前記バイパスコンデンサとの間の配線距離に対する前記バイパスコンデンサから前記ICの外部接続回路側を見た場合のインピーダンスのデータと、前記IC内部のインピーダンスのデータとが格納されており、
    前記演算手段は、少なくともこれら格納されたデータを用いて前記ノイズ電流を計算することを特徴とする請求項9記載の実装回路設計システム。
  11. 前記演算手段は、前記バイパスコンデンサのインピーダンスが設定された下で、前記IC内部のインピーダンスおよび前記IC端子と前記バイパスコンデンサとの間の配線距離を順に変えながら、前記データ蓄積手段の格納データを用いて、前記IC内部にノイズ源を仮定したときの前記ICから前記外部接続回路に流れるノイズ電流の大きさを計算することを特徴とする請求項10記載の実装回路設計システム。
  12. 前記演算手段は、前記計算して得られたノイズ電流を表したノイズ電流特性図を作成することを特徴とする請求項11記載の実装回路設計システム。
  13. 前記データ入出力手段は、第1の軸を前記IC内部のインピーダンスとし、第2の軸を前記IC端子と前記バイパスコンデンサとの間のインピーダンスまたは配線距離とし、前記ノイズ電流の大きさを第3の軸、色彩の変化または階調表現を用いて表したノイズ電流特性図を出力することを特徴とする請求項12記載の実装回路設計システム。
  14. 前記演算手段は、前記ノイズ電流に関する計算結果に基づいて、当該ICに対するバイパスコンデンサの容量値および配置位置を決定することを特徴とする請求項9ないし13の何れかに記載の実装回路設計システム。
  15. コンピュータを用いて、実装されるICに対しバイパスコンデンサを設ける場合の当該バイパスコンデンサに関する実装回路設計を実行する実装回路設計プログラムにおいて、
    前記ICの外部における前記バイパスコンデンサを介した電流経路のインピーダンスのデータと、前記バイパスコンデンサが接続されるIC端子から見た前記IC内部のインピーダンスのデータとを入力するステップと、
    これら入力したインピーダンスのデータに基づいて、前記バイパスコンデンサの容量値および配置位置に対する前記ICの外部に流れるノイズ電流を計算するステップとから構成されていることを特徴とする実装回路設計プログラム。
  16. 前記ノイズ電流を計算する計算ステップの後に、その計算結果に基づいて前記バイパスコンデンサの容量値および配置位置を決定するステップを設けたことを特徴とする請求項15記載の実装回路設計プログラム。
JP2003047473A 2003-02-25 2003-02-25 実装回路設計方法、実装回路設計システムおよび実装回路設計プログラム Pending JP2004258869A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003047473A JP2004258869A (ja) 2003-02-25 2003-02-25 実装回路設計方法、実装回路設計システムおよび実装回路設計プログラム
US10/778,136 US7203921B2 (en) 2003-02-25 2004-02-17 Method and system for designing an integrated circuit with reduced noise
DE102004008886A DE102004008886A1 (de) 2003-02-25 2004-02-24 Verfahren und System zum Entwerfen einer integrierten Schaltung mit reduziertem Rauschen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047473A JP2004258869A (ja) 2003-02-25 2003-02-25 実装回路設計方法、実装回路設計システムおよび実装回路設計プログラム

Publications (1)

Publication Number Publication Date
JP2004258869A true JP2004258869A (ja) 2004-09-16

Family

ID=32866567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047473A Pending JP2004258869A (ja) 2003-02-25 2003-02-25 実装回路設計方法、実装回路設計システムおよび実装回路設計プログラム

Country Status (3)

Country Link
US (1) US7203921B2 (ja)
JP (1) JP2004258869A (ja)
DE (1) DE102004008886A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066223A (ja) * 2005-09-02 2007-03-15 Matsushita Electric Ind Co Ltd 回路基板の設計方法および設計支援装置
JP2008116555A (ja) * 2006-11-01 2008-05-22 Sharp Corp 液晶表示装置
US7647566B2 (en) 2006-01-09 2010-01-12 Himax Technologies Limited Method for creating new via
US8484606B2 (en) 2008-12-05 2013-07-09 Fujitsu Limited Method and system for voltage fluctuation amount calculation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4408082B2 (ja) * 2005-01-14 2010-02-03 シャープ株式会社 集積回路パッケージの設計方法および製造方法
US7818704B1 (en) * 2007-05-16 2010-10-19 Altera Corporation Capacitive decoupling method and module
WO2008146356A1 (ja) * 2007-05-28 2008-12-04 Fujitsu Limited 自動配線装置,自動配線方法,自動配線プログラム,及び同プログラムを記録したコンピュータ読取可能な記録媒体
JP5029351B2 (ja) * 2007-12-28 2012-09-19 富士通株式会社 解析モデル作成技術および基板モデル作成技術
JP5347839B2 (ja) * 2009-03-25 2013-11-20 富士ゼロックス株式会社 電源ノイズ解析装置
US8539426B2 (en) * 2011-02-22 2013-09-17 International Business Machines Corporation Method and system for extracting compact models for circuit simulation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054751A (en) * 1996-09-18 2000-04-25 Denso Corporation Semiconductor integrated circuit
JP2000183286A (ja) * 1998-12-10 2000-06-30 Nec Corp 半導体集積回路
JP2001175702A (ja) 1999-12-22 2001-06-29 Sanyo Electric Co Ltd 回路設計方法
US7139989B2 (en) * 2002-06-27 2006-11-21 Matsushita Electric Industrial Co., Ltd. Semiconductor integrated circuit designing apparatus, semiconductor integrated circuit designing method, semiconductor integrated circuit manufacturing method, and readable recording media

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066223A (ja) * 2005-09-02 2007-03-15 Matsushita Electric Ind Co Ltd 回路基板の設計方法および設計支援装置
JP4588589B2 (ja) * 2005-09-02 2010-12-01 パナソニック株式会社 回路基板の設計方法および設計支援装置
US7647566B2 (en) 2006-01-09 2010-01-12 Himax Technologies Limited Method for creating new via
JP2008116555A (ja) * 2006-11-01 2008-05-22 Sharp Corp 液晶表示装置
US8484606B2 (en) 2008-12-05 2013-07-09 Fujitsu Limited Method and system for voltage fluctuation amount calculation

Also Published As

Publication number Publication date
US7203921B2 (en) 2007-04-10
US20040168142A1 (en) 2004-08-26
DE102004008886A1 (de) 2004-11-11

Similar Documents

Publication Publication Date Title
US8355258B2 (en) Support method and apparatus for printed circuit board
US7643980B2 (en) Electromagnetic field analysis apparatus, method and computer program
JP4389224B2 (ja) 半導体装置の設計方法、設計支援システム及びプログラム、並びに、半導体パッケージ
US8166447B1 (en) Power delivery network calculator tool for printed circuit board capacitors
JP3838328B2 (ja) 設計支援装置および設計支援装置に含まれるコンピュータに実行させるためのプログラムを記録したコンピュータ読みとり可能な記録媒体
US8479140B2 (en) Automatically creating vias in a circuit design
US20050197817A1 (en) Interference analysis method, interference analysis device, interference analysis program and recording medium with interference analysis program recorded thereon
JP5035039B2 (ja) 電子回路基板の電源雑音解析方法とシステム並びにプログラム
JP2004258869A (ja) 実装回路設計方法、実装回路設計システムおよび実装回路設計プログラム
US20070245274A1 (en) Integrated circuit design apparatus and method thereof
JP4156274B2 (ja) 対話型フロアプランナ装置
US8132140B2 (en) Analyzing device for circuit device, circuit device analyzing method, analyzing program, and electronic medium
US5877942A (en) Circuit card assembly footprint providing reworkable interconnection paths for use with a surface mount device
US20100250224A1 (en) Power source noise analysis device and analysis method
JP2001175702A (ja) 回路設計方法
JPH11161690A (ja) 電磁界強度算出装置、電磁界強度算出方法、及び電磁界強度算出手段を有するプログラムを格納した記録媒体
JP2008071204A (ja) 半導体チップを含む装置の設計方法、設計支援システム及びプログラム
US20070198173A1 (en) Return route search device, circuit design apparatus and circuit design program storage medium
JP4575326B2 (ja) 基板レイアウトチェックシステムおよび方法
CN113939091A (zh) 链路静电阻抗器的阻抗匹配设计方法、装置、印制电路板
JP4283647B2 (ja) レイアウトチェックシステム
JP6878992B2 (ja) 部品位置検出プログラム、部品位置検出方法および情報処理装置
JP2010140279A (ja) 電子システム設計手法
JP3662722B2 (ja) プリント配線基板設計開発支援方法
JP2009099047A (ja) プリント回路基板設計システム、プリント回路基板設計方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617