JP2004251705A - 光スペクトラムアナライザ - Google Patents

光スペクトラムアナライザ Download PDF

Info

Publication number
JP2004251705A
JP2004251705A JP2003041232A JP2003041232A JP2004251705A JP 2004251705 A JP2004251705 A JP 2004251705A JP 2003041232 A JP2003041232 A JP 2003041232A JP 2003041232 A JP2003041232 A JP 2003041232A JP 2004251705 A JP2004251705 A JP 2004251705A
Authority
JP
Japan
Prior art keywords
wavelength
optical
measured
output
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003041232A
Other languages
English (en)
Inventor
Kenji Kuroda
憲治 黒田
Hideki Takakura
秀基 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2003041232A priority Critical patent/JP2004251705A/ja
Publication of JP2004251705A publication Critical patent/JP2004251705A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】高速かつ高精度で波長スペクトラム分析を実施する。
【解決手段】測定すべき光信号aを、サーキュレータ9、ファイバグレーティング(FBG)10及び温度調整器11が組込まれたn個の可変波長帯域光フィルタ8にそれぞれ入力し、このn個の可変波長帯域光フィルタからそれぞれ出力される通過波長制限されたn個の光信号を測定し、合成して測定すべき光信号の波長スペクトラム(k)を得る光スペクトラムアナライザである。そして、測定すべき光信号aの測定波長幅の1/nの波長幅Wだけ各可変波長帯域光フィルタから出力される光信号dの波長λが、測定すべき光信号の測定波長範囲内のn分割された互いに異なる波長範囲R内で掃引されるように、温度調節器を介して各可変波長帯域光フィルタのFBGの温度を掃引する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、サーキュレータ、ファイバグレーティング(FBG Fiber Bragg Grating 以下FBGと略記する)及び温度調整器が組込まれた複数の可変波長帯域光フィルタを用いて光信号の波長分析を行う光スペクトラムアナライザに関する。
【0002】
【従来の技術】
光通信システムで用いられる光信号にどのような波長成分が含まれるかを調べる波長分析を行う光スペクトラムアナライザとして、従来、図13に示す機械的駆動方式の光スペクトラムアナライザが用いられていた。
【0003】
図13において、入射ファイバからの入射光は第1の放物面鏡で平行光となり、回折格子に照射される。回折格子では波長により反射方向の差を生じるため、波長選択された光が第2の放物面鏡に入射する。ここで、回折格子の角度を機械的に駆動して変えることにより波長掃引ができる。なお、この基本的な構成を元にして、光を回折格子に複数回入射させるようにして波長分解能を高めることも行われている。第2の放物面鏡でこの分光された光をスリット上に集光させ、スリットで必要な帯域だけ切り出し、出射光を得る。
【0004】
この機械的駆動方式では、回折格子またはそれ以外の光学系を機械的に駆動することにより波長掃引を行う。そのため、掃引速度は駆動系の性能により決まり、分解能は回折格子とスリットの性能により決まる。
【0005】
例えばこの回折格子の溝数は1000本/mm程度である。高い分解能にするためには光路長を大きく取ればよいが装置が大型になり、高速掃引を行うことが難しくなる。また、スリット幅はビーム径により数μm程度の限界があり、ここでも制限を受ける。現状の性能としては、光通信システムで用いられる光信号の通常の波長範囲1540〜1560nmの波長幅20nmを掃引する際に、分解能50pmで、掃引時間500ms程度を要する。また、掃引波長幅が20nmより狭くなると精密な機構制御が必要になるため掃引時間が1000msと長くなってしまう技術上の問題があった。
【0006】
これとは別に、アレイ導波路回折格子(Array Waveguide Grating AWG)を採用した光スペクトラムアナライザが特許文献1に提唱されている。
【0007】
アレイ導波路回折格子は、周知のように、入力ポートから入力された光信号を、複数の出力ポートから、出力ポート毎に割付けられた波長範囲内の波長を有する複数の光信号に分割して出力する機能を有する。
【0008】
この光スペクトラムアナライザにおいていは、図14に示すように、ペルチェ素子上にアレイ導波路回折格子を取付けて構成された一種の可変波長フィルタを用いる。アレイ導波路回折格子のアレイ導波路はポリマ導波路で形成されている。ペルチェ素子で温度制御することにより可変波長フィルタの中心波長を変化させ、分光する波長を掃引する。また、波長分光出力を光検出器で受けて処理することにより波長スペクトラムを得る。
【0009】
しかしながら、この特許文献1に記載された光スペクトラムアナライザにおいては、アレイ導波路回折格子が有する複数の出力ポートのうち、単一の出力ポートで光スペクトラムを観測する。単一の出力ポートによる分光では例えば波長幅20nmを温度掃引する時に要する時間は120msであり、高速分光は期待できない。
【0010】
この光スペクトラムアナライザでは、光検出器から後の処理は示されておらず、温度が安定してから光検出器の出力を取出すことになり、高速な処理は期待できない。
【0011】
また、波長分解能はアレイ導波路回折格子のフィルタ特性により決まる。一般に、アレイ導波路回折格子においては、半値幅を数十pmまで実現できるが、波長幅を広く取り、かつ高分解能にすると、処理速度がさらに遅くなるために高速、高分解能の分光を実現することは難しい。
【0012】
【特許文献】
特開2002―214459号公報
【0013】
【発明が解決しようとする課題】
このように機械的駆動方式による波長掃引では回折格子を機械的に駆動するために、光信号の解析に必要な波長範囲1540〜1560nmの波長幅20nmを掃引するための必要な掃引時間は0.5s程度が下限であった。また、アレイ導波路回折格子を波長可変フィルタとして用いた方式では単一の出力ポートの出力による波長掃引であるため、掃引時間は120msが下限であった。波長分解能を高くするとさらに必要な掃引時間が長くなる課題があった。
【0014】
本発明はこのような事情に鑑みてなされたものであり、サーキュレータ、FBG及び温度調整器が組込まれた複数の可変波長帯域光フィルタから出力されるそれぞれ波長範囲の異なる光信号を測定し、合成することによって、入力された光信号に対して、高速でかつ高精度で波長分析を実施できる光スペクトラムアナライザを提供することを目的とする。
【0015】
【課題を解決するための手段】
上記課題を解消するために、本発明の光スペクトラムアナライザにおいては、測定すべき光信号を、サーキュレータ、FBG及び温度調整器が組込まれたn個(n;2以上の整数)の可変波長帯域光フィルタにそれぞれ入力し、このn個の可変波長帯域光フィルタからそれぞれ出力される通過波長制限されたn個の光信号を測定し、合成して測定すべき光信号の波長スペクトラムを得る。
【0016】
この場合、測定すべき光信号の測定波長幅の1/nの波長幅だけ各可変波長帯域光フィルタから出力される光信号の波長が、測定すべき光信号の測定波長範囲内のn分割された互いに異なる波長範囲内で掃引されるように、温度調節器を介して各可変波長帯域光フィルタのFGBの温度を掃引する。
【0017】
このように構成された光スペクトラムアナライザにおいては、サーキュレータ、FBG及び温度調整器が組込まれたn個の可変波長帯域光フィルタが組込まれている。周知のようにFBGの温度を変化すると、この可変波長帯域光フィルタの通過波長が変化する。
【0018】
そして、測定すべき光信号をn個の可変波長帯域光フィルタに入力すると、n個の可変波長帯域光フィルタから、n個の互いに異なる波長範囲R内の波長λを有するn個の光信号が出力される。そして、n個の可変波長帯域光フィルタから出力されるn個の光信号の各波長λを、各可変波長帯域光フィルタのFBGの温度制御によって掃引して、n個の光信号を測定し、合成することによって、測定すべき光信号の波長スペクトラムを得ることができる。
【0019】
この場合、実際の必要な波長掃引幅は、測定すべき光信号の測定波長幅Bでなくて、測定波長幅の1/nのみでよい。例えば、光信号の広範囲の解析に必要な波長範囲1270〜1600nmの波長幅(測定波長幅)B=330nmを掃引するために実際に必要な波長掃引幅Wは、可変波長帯域光フィルタの設置数を100(n=100)とすれば、W=330nm/100=3.3nmとなり、必要な波長掃引時間も大幅に短縮できる。
【0020】
また別の発明の光スペクトラムアナライザにおいては、入力した測定すべき光信号をn(n;2以上の整数)個の光信号に分岐してそれぞれ出力ポートから出力する光分岐器と、サーキュレータ、FBB及び温度調整器が組込まれ、FBGの温度を変化させることにより、各出力ポートから出力された光信号の通過波長を、測定すべき光信号の測定波長範囲内のn分割された互いに異なる波長範囲内で変化させる複数の可変波長帯域光フィルタと、この複数の可変波長帯域光フィルタから出力される光信号を電気信号に変換する複数の光検出器と、この複数の光検出器から出力された各電気信号をデジタルの光検出信号データに変換する複数のA/D変換器と、測定すべき光信号の測定波長幅の1/nの波長幅だけ各可変波長帯域光フィルタから出力される光信号の波長が波長範囲内で掃引されるように、温度調節器を介して前記各可変波長帯域光フィルタのFBGの温度を掃引する波長掃引制御部と、各光検出信号データを一時記憶するためのデータメモリと、波長掃引制御部からの掃引情報及び各A/D変換器から出力された各光検出信号データが入力され、各光検出信号データを出力された可変波長帯域光フィルタの波長範囲の各波長に対応させて前記データメモリに書込む複数の第1のデータ処理部と、データメモリに記憶された各波長の光検出信号データを読出して、測定すべき光信号の波長スペクトラムとして出力する第2のデータ処理部とを備えている。
【0021】
このように構成された光スペクトラムアナライザにおいては、測定すべき光信号は光分岐器で分岐されたのち各可変波長帯域光フィルタに入力される。各可変波長帯域光フィルタは、波長掃引制御部の温度掃引制御に基づいて、入力された光信号の波長λを、測定すべき光信号の測定波長範囲内のn分割された互いに異なる自己に割付られた波長範囲R内で変化させる。
【0022】
第1のデータ処理部にて、各可変波長帯域光フィルタの出力端に設置した光検出器により検出したアナログ値をA/D変換した光検出信号データと波長掃引制御部からの掃引情報を元に算出した波長を対応させた光検出信号データをデータメモリに書込む。また、第2のデータ処理部にて、データメモリから光検出信号データを読出して、波長スペクトラムとして出力する。
したがって、先の発明とほぼ同じ作用効果を奏することができる。
【0023】
さらに、別の発明は、入力した測定すべき光信号をn(n;2以上の整数)個の光信号に分岐してそれぞれ出力ポートから出力する光分岐器と、通過波長範囲がそれぞれ測定すべき光信号の測定波長範囲内のn分割された互いに異なる波長範囲に設定され、光分岐器の各出力ポートから出力された光信号の波長を制限する複数の帯域通過光フィルタと、サーキュレータ、FBG及び温度調整器が組込まれ、FBGの温度を変化させることにより、各帯域通過光フィルタから出力された光信号の通過波長を、各帯域通過光フィルタで制限された波長範囲内で変化させる複数の可変波長帯域光フィルタと、この複数の可変波長帯域光フィルタから出力される光信号を電気信号に変換する複数の光検出器と、この複数の光検出器から出力された各電気信号をデジタルの光検出信号データに変換する複数のA/D変換器と、測定すべき光信号の測定波長幅の1/nの波長幅だけ各可変波長帯域光フィルタから出力される光信号の波長が波長範囲内で掃引されるように、温度調節器を介して各可変波長帯域光フィルタのFBGの温度を掃引する波長掃引制御部と、各光検出信号データを一時記憶するためのデータメモリと、波長掃引制御部からの掃引情報及び前記各A/D変換器から出力された各光検出信号データが入力され、各光検出信号データを出力された可変波長帯域光フィルタの波長範囲の各波長に対応させてデータメモリに書込む複数の第1のデータ処理部と、データメモリに記憶された各波長の光検出信号データを読出して、測定すべき光信号の波長スペクトラムとして出力する第2のデータ処理部とを備えている。
【0024】
このように構成された光スペクトラムアナライザにおいては、上述した発明の光スペクトラムアナライザにおける光分岐器からそれぞれ光信号が入力されるn個の可変波長帯域光フィルタの前段に、それぞれ帯域通過光フィルタを設けている。各帯域通過光フィルタの通過波長範囲は、それぞれ測定すべき光信号の測定波長範囲内のn分割された互いに異なる波長範囲Rに設定されている。
【0025】
このように、入力された光信号の波長λを割付られた波長範囲R内で変化させる可変波長帯域光フィルタの前段に、入力された光信号の通過波長範囲を波長範囲Rに制限する帯域通過光フィルタを設けることによって、可変波長帯域光フィルタから出力される波長λの光信号のS/N比を向上でき、最終的に得られる波長スペクトラムの精度を向上できる。
【0026】
さらに、別の発明においては、上述した発明の光スペクトラムアナライザにおける第1のデータ処理部は、入力された掃引情報が示す掃引開始時刻からの経過時間から波長範囲の波長に対応するアドレスを生成し、各光検出信号データを、データメモリ内の生成されたアドレスに書込む。また、第2のデータ処理部は、データメモリにおける各波長に対応するアドレスに記憶された光検出信号データを読出す。
【0027】
このように、波長掃引制御部からの掃引情報を波長に対応するアドレスに変換することにより、データメモリの各アドレスには波長に対応した各光検出信号データが記憶されていることになり、第2のデータ処理部の処理負担を軽減できる。
【0028】
【発明の実施の形態】
以下、本発明の各実施形態を図面を用いて説明する。
(第1実施形態)
図1は本発明の第1実施形態に係る光スペクトラムアナライザの概略構成を示すブロック図である。
【0029】
測定すべき光信号aは光分岐器1の入力ポート2に入力される。この光分岐器1は例えば100個(n=100)の出力ポート3を有しており、入力された光信号aを100個の光信号aに分岐して、各出力ポート3から出力する。
【0030】
図2(a)、(b)はこの光分岐器1の概略構成図である。図2(a)は、1本の光路1cに複数の光カプラ1aを取付け、光路1cの他端に終端器1bを取付けた光分岐器1を示す。図2(a)は、光路1cに複数の光カプラ1aをツリー状に取付けた光分岐器1を示す。
【0031】
n個(n=100)の出力ポート3から出力された各光信号aは、それぞれ帯域通過光フィルタ4に入力される。各帯域通過光フィルタ4は、サーキュレータ5とこのサーキュレータ5に一端が接続されたFBG6とで構成されている。FBG6は、サーキュレータ5を介して入力された光信号aのうちこのFBG6に設定された波長範囲Rの光成分をサーキュレータ5側へ反射する。サーキュレータ5は、FBG6から反射され波長範囲Rの光成分を出力する。したがって、各帯域通過光フィルタ4は、入力された光信号aの波長をFBG6にて設定された波長範囲Rに制限する。
【0032】
n個の各帯域通過光フィルタ4の通過波長範囲は、それぞれ測定すべき光信号aの測定波長範囲内のn分割された互いに異なる波長範囲Rに設定されている。この実施形態においては、測定すべき光信号aの測定波長範囲は図3に示すように1270〜1600nmであり、測定波長幅Bは330nmとなり、n=100とすると、n分割した各波長範囲Rの波長幅W=3.3nmとなる。したがって、先頭の帯域通過光フィルタ4の波長範囲Rは1270〜1273.3nmとなり、2番目の帯域通過光フィルタ4の波長範囲Rは1273.4〜1276.7nmとなる。
【0033】
各帯域通過光フィルタ4から出力された光信号bは、光増幅器7で増幅されて新たな光信号cとして、次の可変波長帯域光フィルタ8へ入力される。
【0034】
各帯域通過光フィルタ4に入力される光信号aは光分岐器1でn(=100)分割されているので、各帯域通過光フィルタ4から出力さる各光信号bの信号レベルは減衰する。これを補う目的で光増幅器7を用いる。光増幅器7には半導体光増幅器やファイバアンプなど通過帯域で利得を持つ光増幅器が利用できる。半導体光増幅器の場合、利得は十数dBであり、1/n(n=100の場合 ―20dB)になったパワーを補償するには適当な利得である。
【0035】
各可変波長帯域光フィルタ8は、サーキュレータ9と、このサーキュレータ9に一端が接続されたFBG10と、このFBG10の温度を調整する例えばペルチェ素子からなる温度調節器11とで構成されている。そして、波長掃引制御部12から印加された温度制御信号eにて温度調節器11がFBG10の温度を変化させると、FBG10で反射されてサーキュレータ9から出力される光信号dの波長λが変化する。
【0036】
なお、各可変波長帯域光フィルタ8から出力される波長λの光信号dの帯域幅は、最終的に得られ光スペクトラムの分解能25pm以下で切出すために狭帯域に設定されている。さらに、前段の帯域通過フィルタ4との組合せでもって、通過帯域以外の減衰量を大きくして、出力される波長λの光信号dのS/N比を向上させている。
【0037】
各可変波長帯域光フィルタ8における光信号dの波長λの変化範囲は、図3に示すように、各可変波長帯域光フィルタ8の前段に位置する帯域通過フィルタ4の波長幅W(=3.3nm)を有した各波長範囲Rである。逆に、各可変波長帯域光フィルタ8から出力される光信号dの波長λが、各波長範囲R内で、波長幅W(=3.3nm)だけ掃引するように、波長掃引制御部12から温度制御信号eで温度調節器11を制御する。
【0038】
図4は温度制御が行われていない初期状態を示し、図5は温度制御を加えて波長λが変化した状態を示す。具体的には、図5の状態は図4の初期状態に比較して加熱した状態である。このようにFBG10の温度を上昇させると各可変波長帯域光フィルタ8から出力される光信号dの波長λを上昇できる。
【0039】
図6に各可変波長帯域光フィルタ8のFBG10に対する温度制御の詳細を示す。
波長掃引制御部12は、図6(a)に示すように、温度制御開始から3.5msだけ温度上昇制御(信号オン)し、続いて3.5msだけ温度下降制御(信号オフ)する温度制御信号eを、各可変波長帯域光フィルタ8の温度調整器11へ印加する。すると、各可変波長帯域光フィルタ8のFBG10の温度は、図6(b)に示すように変化する。それにより、可変波長帯域光フィルタ8から出力される各光信号dの波長λは、それぞれ自己の波長範囲R内で図6(c)に示すように変化する。
【0040】
温度変化によるFBG10の波長変化はガラスで0.0092nm/℃であり、ポリマーではガラスに比べて1桁大きい波長変化が見込まれている。よってFBG10にポリマーを使用すれば0.1nm/℃の波長変化が見込め、波長幅W=3.3nm変化では33℃の温度掃引制御をすればよい。ポリマーを用いたFBG10の熱容量から類推して3.3nmを波長掃引するに必要な掃引時間は図6(a)で示したように3.5ms程度となる。
【0041】
波長掃引制御部12は、タイマ13の時間を用いて、各可変波長帯域光フィルタ8の温度調整器11に図6(a)で示した温度制御信号eを送出する。
n個の各可変波長帯域光フィルタ8から出力される各光信号dは、それぞれ光検出器14で電気信号fに変換された後、A/D変換器15でデジタルの光検出信号データgへ変換されて、それぞれ第1のデータ処理部16へ入力される。この各第1のデータ処理部16には、波長掃引制御部7から各種の指示jが入力されている。
【0042】
各第1のデータ処理部16は、波長掃引制御部12からの指示jに含まれる掃引情報に基づいて、自己に入力される光検出信号データgに割付られた3.3nmの波長幅Wを有す波長範囲R内の波長λに対応するアドレスを生成する。具体的には、指示jに含まれる掃引情報が示す掃引開始時刻からの経過時間と温度から換算された各波長λに対応する各アドレスとの関係を示すテーブルが設けられている。
【0043】
そして、自己に入力された各光検出信号データgを、各波長の光検出信号データhとして、データメモリ17内の掃引開始時刻からの経過時間にて生成されたアドレスに書込む。
【0044】
したがって、データメモリ17内の各アドレスは、図7に示すように、測定すべき光信号aの330nmの波長幅Bを有する1270nm〜1600nmの測定波長範囲内の各波長λに対応する。そして、各波長λに対応する各アドレスには、該当波長λの光検出信号データhが記憶される。
【0045】
第2のデータ処理部18は、波長掃引制御部7からの指示jに基づいて、データメモリ17における各波長λに対応するアドレスに記憶された光検出信号データiを読出して、測定すべき光信号aの波長スペクトラムkとして、表示器19に表示出力する。この場合、指定された測定分解能に応じて、データメモリ17から読出した光検出信号データiに対して統計処理を実施して、波長スペクトラムkを算出して、表示器19に表示出力することも可能である。
【0046】
なお、書込と読出しとを同時に実施可能とするために、データメモリ17は2ポートメモリで構成されている。又は、書込と読出しの競合回避処理機能を持たせた他の構成としてもよい。
【0047】
図8に、測定すべき光信号aが有する波長特性と、データメモリ17上のデータ(光検出信号データi)と、表示器19に表示された波長スペクトラムkとの対比を示す。
【0048】
そして、波長掃引制御部12は、図9に示す流れ図に従って各部に対する制御を実施する。
まず、タイマ13に対して掃引時間(3.3nm掃引するのに必要な時間3.5ms)を設定して、タイマ13を起動する(S1)。各第1のデータ処理部16と第2のデータ処理部18に対して温度制御掃引(波長掃引)の開始を指示jする(S2)。そして、各可変波長帯域光フィルタ8の温度調整器11に温度上昇の温度制御信号eを送出する(S3)。タイマ13がタイムアップしたか判定する(S4)。タイムアップしていなければFBG10に対する温度上昇の温度制御信号eの送出に戻る(S3)。
【0049】
タイマ13がタイムアップしたならば(S4)、タイマ13に対して掃引を元に戻すのに必要な時間(3.3nm掃引した場合、3.5ms)を設定して、タイマ13を起動する(S5)。そして、各可変波長帯域光フィルタ8の温度調整器11に温度下降の温度制御信号eを送出する(S6)。タイマ13がタイムアップしたか判定する(S7)。タイムアップしていなければFBG10に対する温度下降の温度制御信号eの送出に戻る(S6)。
【0050】
タイマ13がタイムアップしたならば(S7)、測定すべき光信号aに対する測定終了かどうか判断し(S8)、終了でなければ、S1へ戻り、タイマ13に対して掃引時間(3.3nm掃引するのに必要な時間3.5ms)を設定して、タイマ13を起動する。そして、これ以降の処理を繰り返す。終了の場合は(S8)、今回の処理を終了する。
【0051】
また、各第1のデータ処理部17は、図10に示す流れ図に従って、入力された各光検出信号データgに対する処理を実施する。
【0052】
まず、波長掃引制御部12から指示jを受ける(P1)。指示jが温度制御掃引(波長掃引)の開始であるかを判定し(P2)、開始指示でなかった場合は、波長掃引制御部13から指示jを受ける状態に戻る(P1)。開始指示があった場合には(P2)、内部タイマに対して掃引時間(3.3nm掃引するのに必要な時間3.5ms)を設定して、この内部タイマを起動する(P3)。
【0053】
内部タイマがタイムアップしたかを判定する(P4)。タイムアップしていなければ、掃引開始時刻からの経過時間を内部タイマから読取って、この時点で入力されている光検出信号データgに対応させて記憶する(P5)。そして、内部タイマがタイムアップしたかを判定する(P4)。
【0054】
内部タイマがタイムアップすると(P4)、自己内部に記憶した各掃引開始時刻からの経過時間から温度に対応する波長λを求め、さらに自己内部に記憶した各光検出信号データgをデータメモリ17に書込む際のアドレスに変換する。そして、データメモリ17内のこのアドレスに自己内部に記憶した光検出信号データg(h)を書込む(P6)。
【0055】
この場合、図7を用いて説明したように、光検出信号データg(h)を書込むアドレスは複数ある第1のデータ処理部16毎に異なるアドレス範囲が割当てられており、第2のデータ処理部18で、光検出信号データg(h)を読出す際には全ての第1のデータ処理部16からの波長λが連続して読出せる配列とする。
【0056】
さらに、第2のデータ処理部18は、図11に示す流れ図に従って、データメモリ17から各光検出信号データiを読取って波長スペクトラムkとして表示器19に表示出力する処理を実施する。
【0057】
はじめに、操作者の指示に基づいて測定分解能の設定を行う(Q1)。波長掃引制御部12から指示jを受ける(Q2)。指示jが温度制御掃引(波長掃引)の開始であるかを判定し(Q3)、開始指示でなかった場合は、波長掃引制御部7から指示jを受ける状態に戻る(Q2)。
【0058】
開始指示があった場合には(Q3)、データメモリ17から各光検出信号データiを読出す(Q4)。そして先に設定した測定分解能で各光検出信号データiを波長スペクトラムkとして表示器19に出力する(Q5)。
【0059】
また、第2のデータ処理部18は、必要に応じて、表示器19に数値表示を行う。
【0060】
このように構成された光スペクトラムアナライザにおいては、測定すべき光信号aを光分岐器1の入力ポート2に入力すると、n=100個の可変波長帯域光フィルタ8から、100個の互いに異なる波長範囲Rに分割された100個の光信号dが出力される。各可変波長帯域光フィルタ8のFBG10を一つの波長掃引制御部12で共通に温度掃引(波長掃引)して100個の可変波長帯域光フィルタ8から出力された100個の光信号dの各波長λを掃引して、第1、第2のデータ処理部16、18で信号処理(データ処理)することにより表示器19に波長スペクトラムkが表示される。
【0061】
この場合、実際の必要な波長掃引幅Wは、測定すべき光信号aの測定波長幅Bでなくて、測定波長幅の1/100のみでよい。具体的には、測定すべき光信号aの測定波長範囲1270〜1600nmの波長幅B=330nmの1/100(n=100)の波長幅W=3.3nm分だけ各可変波長帯域光フィルタ8から出力される光信号dの波長λが、各可変波長帯域光フィルタ8に割当られた波長幅W=3.3nmの波長範囲R内で掃引されるように、各FBG10の温度を掃引するのみでよい。
【0062】
前述したように、波長幅W=3.3nmの所要波長掃引時間は3.5msとなり、掃引を元に戻す時間も3.5msとなる。結果的に、測定すべき光信号aの測定波長範囲1270nm〜1600nmを1回掃引するのに要する掃引所要時間は10ms以下となり、高速掃引が可能である。また、3.3nmを10Msamples/sでA/D変換処理を行なえば、3.3nm/(3.5ms×10Msamples/s)=0.18pmの波長分解能で処理可能なため、各可変波長帯域光フィルタ8の帯域幅による、例えば25pmの高精度の波長分解能で分光可能である。
【0063】
このように機械的駆動部を用いた従来の波長掃引方法(測定波長範囲1540nm〜1560nmにて掃引所要時間500ms、分解能50pm)よりも高速で高分解能な光スペクトラム分光を実現する。
【0064】
(第2実施形態)
図12は本発明の第2実施形態に係る光スペクトラムアナライザの概略構成を示すブロック図である。図1に示す第1実施形態の光スペクトラムアナライザと同一部分には同一符号を付して重複する部分の詳細説明を省略する。
【0065】
この第2実施形態の光スペクトラムアナライザにおいては、測定すべき光信号aは、光分岐器1でn=100個の光信号aに分岐されて、各出力ポート3から出力される。光分岐器1の各出力ポート3から出力された各光信号aは、それぞれ直接各可変波長帯域光フィルタ8に入力される。各可変波長帯域光フィルタ8は、入力された測定波長範囲1270nm〜1600nmを有する光信号aの通過波長λを、自己に割付けられた波長幅W=3.3nmの波長範囲R内で変化させる。
したがって、図1に示す第1実施形態の光スペクトラムアナライザとほぼ同じ作用効果を奏することが可能である。
【0066】
【発明の効果】
以上説明したように、本発明の光スペクトラムアナライザにおいては、測定すべき光信号の測定波長幅の1/nの波長幅だけ各可変波長帯域光フィルタから出力される光信号の波長が、各可変波長帯域光フィルタに割当られた長範囲内で掃引されるように、可変波長帯域光フィルタのFBGの温度を掃引している。したがって、入力された光信号に対して、高速でかつ高精度で波長分析を実施できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係わる光スペクトラムアナライザの概略構成を示すブロック図
【図2】同実施形態の光スペクトラムアナライザに組込まれた光分岐器の概略構成を示す模式図
【図3】同実施形態の光スペクトラムアナライザに組込まれた各帯域通過フィルタと各可変波長帯域フィルタの各フィルタ特性を示す図
【図4】同実施形態の光スペクトラムアナライザに組込まれた各可変波長帯域フィルタから出力される各光信号の波長分布を示す図
【図5】同じく各可変波長帯域フィルタから出力される各光信号の波長分布を示す図
【図6】各可変波長帯域フィルタのFBGに加える温度の変化と各可変波長帯域フィルタから出力される各光信号の波長の変化との関係を示す図
【図7】各可変波長帯域フィルタから出力される各光信号の波長と、データメモリ内のアドレスとの関係を示す図
【図8】測定すべき光信号とデータメモリ上のデータと波長スペクトラムとの関係を示す図
【図9】同実施形態の光スペクトラムアナライザに組込まれた波長掃引制御部の動作を示す流れ図
【図10】同実施形態の光スペクトラムアナライザに組込まれた第1のデータ処理部の動作を示す流れ図
【図11】同実施形態の光スペクトラムアナライザに組込まれた第2のデータ処理部の動作を示す流れ図
【図12】本発明の第2実施形態に係わる光スペクトラムアナライザの概略構成を示すブロック図
【図13】機械的駆動方式を採用した従来の光スペクトラムアナライザの概略構成を示すブロック図
【図14】AWGを採用した従来の光スペクトラムアナライザの概略構成を示すブロック図
【符号の説明】
1…光分岐器、2…入力ポート、3…出力ポート、4…帯域通過光フィルタ、5,9…サーキュレータ、6,10…ファイバグレーティング(FBG)、7…光増幅器、8…可変波長帯域光フィルタ、11…温度調整器、12…波長掃引制御部、13…タイマ、14…光検出器、15…A/D変換器、16…第1のデータ処理部、17…データメモリ、18…第2のデータ処理部、19…表示器

Claims (4)

  1. 測定すべき光信号(a)を、サーキュレータ(9)、ファイバグレーティング(10)及び温度調整器(11)が組込まれたn個(n;2以上の整数)の可変波長帯域光フィルタ(8)にそれぞれ入力し、このn個の可変波長帯域光フィルタからそれぞれ出力される通過波長制限されたn個の光信号を測定し合成して前記測定すべき光信号の波長スペクトラム(k)を得る光スペクトラムアナライザであって、
    前記測定すべき光信号(a)の測定波長幅の1/nの波長幅(W)だけ前記各可変波長帯域光フィルタから出力される光信号(d)の波長(λ)が、前記測定すべき光信号の測定波長範囲内のn分割された互いに異なる波長範囲(R)内で掃引されるように、前記温度調節器を介して前記各可変波長帯域光フィルタのファイバグレーティングの温度を掃引することを特徴とする光スペクトラムアナライザ。
  2. 入力した測定すべき光信号(a)をn(n;2以上の整数)個の光信号に分岐してそれぞれ出力ポートから出力する光分岐器(1)と、
    サーキュレータ(9)、ファイバグレーティング(10)及び温度調整器(11)が組込まれ、前記ファイバグレーティングの温度を変化させることにより、前記各出力ポートから出力された光信号の通過波長を、前記測定すべき光信号の測定波長範囲内のn分割された互いに異なる波長範囲(R)内で変化させる複数の可変波長帯域光フィルタ(8)と、
    この複数の可変波長帯域光フィルタから出力される光信号を電気信号に変換する複数の光検出器(14)と、
    この複数の光検出器から出力された各電気信号をデジタルの光検出信号データに変換する複数のA/D変換器(15)と、
    前記測定すべき光信号の測定波長幅の1/nの波長幅だけ前記各可変波長帯域光フィルタから出力される光信号の波長が前記波長範囲内で掃引されるように、前記温度調節器を介して前記各可変波長帯域光フィルタのファイバグレーティングの温度を掃引する波長掃引制御部(12)と、
    前記各光検出信号データを一時記憶するためのデータメモリ(17)と、
    前記波長掃引制御部からの掃引情報及び前記各A/D変換器から出力された各光検出信号データが入力され、各光検出信号データを出力された可変波長帯域光フィルタの波長範囲の各波長に対応させて前記データメモリに書込む複数の第1のデータ処理部(16)と、
    前記データメモリに記憶された各波長の光検出信号データを読出して、前記測定すべき光信号の波長スペクトラムとして出力する第2のデータ処理部(18)と
    を備えたことを特徴とする光スペクトラムアナライザ。
  3. 入力した測定すべき光信号(a)をn(n;2以上の整数)個の光信号に分岐してそれぞれ出力ポートから出力する光分岐器(1)と、
    通過波長範囲がそれぞれ前記測定すべき光信号の測定波長範囲内のn分割された互いに異なる波長範囲(R)に設定され、前記光分岐器の各出力ポートから出力された光信号の波長を制限する複数の帯域通過光フィルタ(4)と、
    サーキュレータ、ファイバグレーティング及び温度調整器が組込まれ、前記ファイバグレーティングの温度を変化させることにより、前記各帯域通過光フィルタから出力された光信号の通過波長を、前記各帯域通過光フィルタで制限された波長範囲内で変化させる複数の可変波長帯域光フィルタ(8)と、
    この複数の可変波長帯域光フィルタから出力される光信号を電気信号に変換する複数の光検出器(14)と、
    この複数の光検出器から出力された各電気信号をデジタルの光検出信号データに変換する複数のA/D変換器(15)と、
    前記測定すべき光信号の測定波長幅の1/nの波長幅だけ前記各可変波長帯域光フィルタから出力される光信号の波長が前記波長範囲内で掃引されるように、前記温度調節器を介して前記各可変波長帯域光フィルタのファイバグレーティングの温度を掃引する波長掃引制御部(12)と、
    前記各光検出信号データを一時記憶するためのデータメモリ(17)と、
    前記波長掃引制御部からの掃引情報及び前記各A/D変換器から出力された各光検出信号データが入力され、各光検出信号データを出力された可変波長帯域光フィルタの波長範囲の各波長に対応させて前記データメモリに書込む複数の第1のデータ処理部(16)と、
    前記データメモリに記憶された各波長の光検出信号データを読出して、前記測定すべき光信号の波長スペクトラムとして出力する第2のデータ処理部(18)と
    を備えたことを特徴とする光スペクトラムアナライザ。
  4. 前記第1のデータ処理部は、入力された掃引情報が示す掃引開始時刻からの経過時間から前記波長範囲の波長に対応するアドレスを生成し、前記各光検出信号データを、前記データメモリ内の生成されたアドレスに書込み、
    前記第2のデータ処理部は、前記データメモリにおける各波長に対応するアドレスに記憶された光検出信号データを読出す
    ことを特徴とする請求項2又は3記載の光スペクトラムアナライザ。
JP2003041232A 2003-02-19 2003-02-19 光スペクトラムアナライザ Pending JP2004251705A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041232A JP2004251705A (ja) 2003-02-19 2003-02-19 光スペクトラムアナライザ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041232A JP2004251705A (ja) 2003-02-19 2003-02-19 光スペクトラムアナライザ

Publications (1)

Publication Number Publication Date
JP2004251705A true JP2004251705A (ja) 2004-09-09

Family

ID=33024876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041232A Pending JP2004251705A (ja) 2003-02-19 2003-02-19 光スペクトラムアナライザ

Country Status (1)

Country Link
JP (1) JP2004251705A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180098849A (ko) * 2017-02-27 2018-09-05 한국산업기술대학교산학협력단 광량을 이용한 파장 측정 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180098849A (ko) * 2017-02-27 2018-09-05 한국산업기술대학교산학협력단 광량을 이용한 파장 측정 장치
KR102028509B1 (ko) * 2017-02-27 2019-10-04 한국산업기술대학교 산학협력단 광량을 이용한 파장 측정 장치

Similar Documents

Publication Publication Date Title
JP3385898B2 (ja) 可変波長半導体レーザ光源
JP6491399B2 (ja) マルチチャンネル波長可変レーザの性能試験装置
JP3106979B2 (ja) 光スペクトル測定装置
US7499182B2 (en) Optical signal measurement system
US7589840B2 (en) Broad- and inter-band multi-wavelength-reference method and apparatus for wavelength measurement or monitoring systems
JP2001511895A (ja) 光波長測定装置
US6069697A (en) Optical transmission characteristic measuring apparatus and calibration method using the same
JPH11211571A (ja) 波長測定装置
JP2004251705A (ja) 光スペクトラムアナライザ
EP0735350B1 (en) Spectroscope comprising an optical fibre branching
JP2001308455A (ja) 波長可変光源及び光部品損失計測装置
JP2001174332A (ja) 光スペクトラムアナライザ
JP2004251704A (ja) 光スペクトラムアナライザ
US11781888B2 (en) Reflected light wavelength scanning device including silicon photonics interrogator
CN213932391U (zh) 一种用于行星齿轮周向应变测量的光纤光栅波长解调装置
JP4456225B2 (ja) 光源装置
WO2021232925A1 (zh) Lcos调节方法,光器件以及可重构光分插复用器
JP2001021415A (ja) 光波長検出方法及び光波長検出装置
JP2004251782A (ja) 光スペクトラムアナライザ
JP2000131144A (ja) 波長モニタおよび光源
KR100292809B1 (ko) 파장 분할 다중된 광신호의 파장과 광 세기와 광신호 대 잡음비를 측정하는 장치
Leckel et al. Impact of source spontaneous emission (SSE) on the measurement of DWDM components
JP2004205271A (ja) 波長計およびこれを用いたfbgセンシング装置
JPH11274643A (ja) 可変波長半導体レーザ光源
JP5901916B2 (ja) 光スペクトラム測定装置