JP2004245890A - 光走査装置 - Google Patents

光走査装置 Download PDF

Info

Publication number
JP2004245890A
JP2004245890A JP2003032709A JP2003032709A JP2004245890A JP 2004245890 A JP2004245890 A JP 2004245890A JP 2003032709 A JP2003032709 A JP 2003032709A JP 2003032709 A JP2003032709 A JP 2003032709A JP 2004245890 A JP2004245890 A JP 2004245890A
Authority
JP
Japan
Prior art keywords
movable
scanning device
optical scanning
detection
side electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003032709A
Other languages
English (en)
Inventor
Hideaki Nishikawa
英昭 西川
Takao Iwaki
隆雄 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003032709A priority Critical patent/JP2004245890A/ja
Publication of JP2004245890A publication Critical patent/JP2004245890A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

【課題】共振型の光走査装置において光ビームの出射方向を特定する。
【解決手段】マイクロスキャナ100は、レーザ光を反射するミラー116及び櫛歯状の電極としての可動櫛歯部112,114を有する可動部110と、この可動部110を回転方向に揺動可能に支持する固定部120とからなり、固定部120には、可動櫛歯部112,114と対向する櫛歯状の電極として、駆動用固定櫛歯部122a,124aと、検出用固定櫛歯部122b,124bとが設けられている。そして、可動櫛歯部112,114と駆動用固定櫛歯部122a,124aとの間にパルス電圧を印加することで、静電引力により可動部110を上記回転方向に往復振動させてレーザ光を走査すると共に、可動櫛歯部112,114と検出用固定櫛歯部122b,124bとの間の静電容量の変化に基づき可動部110の回転角度を検出して、レーザ光の出射方向を特定する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、光ビームを走査する光走査装置に関するものである。
【0002】
【従来の技術】
近年、小型の光走査装置として、マイクロマシニング技術を用いて製作するマイクロスキャナが広く研究されている。
例えば、非特許文献1には、光ビームを反射して出射するミラープレートを2本のねじりバネによってフレームの内側に支持した構造のマイクロスキャナが開示されている。そして、このマイクロスキャナでは、ミラープレートの両側に櫛歯状の電極が形成されていると共に、この電極と対向してフレームの内側にも櫛歯状の電極が形成されており、その両電極間に駆動信号としてのパルス電圧が印加されて静電引力による周期的加振力が与えられることにより、ミラープレートが共振して光ビームが走査されるようになっている。
【0003】
【非特許文献1】
Harald Schenk,Peter Durr,Detlef Kunze,Hubert Lakner,Heinz Kuck,「AN ELECTROSTATICALLY EXCITED 2D−MICRO―SCANNING―MIRROR WITH AN IN−PLANE CONFIGURATION OF THE DRIVING ELECTRODES」,「The Thirteenth Annual International Conference on Micro Electro MechanicalSystems」(IEEE Catalog Number:00CH36308),Sponsored by the IEEE Robotics and Automation Society in Cooperation with the Micromachine Center,Miyazaki,Japan,January23−27,2000,p.473−478
【0004】
【発明が解決しようとする課題】
しかしながら、前述したようなミラープレートを共振させる共振型の装置では、駆動信号とミラープレートの角度(向き)との位相関係が不確定であり、駆動信号の位相からミラープレートの角度を把握することができず、その結果、光ビームの出射方向が特定できないという問題があった。
【0005】
すなわち、振動系を共振させるためには、駆動信号の周波数を振動系の共振周波数に合わせる必要がある。具体的には、ミラープレートが一往復する間にミラープレート側の櫛歯状電極がフレーム側の櫛歯状電極を2回通過することから、駆動信号の周波数を振動系の共振周波数の2倍となるようにする。一方、駆動信号の周波数とミラープレートの角度との位相角は、駆動信号の周波数と振動系の共振周波数との比によって変化し、特に、駆動信号の周波数が振動系の共振周波数の2倍となる付近で急激に変化する。具体的には、駆動信号の周波数が振動系の共振周波数のちょうど2倍となる関係では位相角が90度となるが、この関係より駆動信号の周波数が小さくなると位相角が急激に0度に近づき、逆に、駆動信号の周波数が大きくなると位相角が急激に180度に近づく。したがって、ミラープレートを共振周波数近傍で駆動する場合、駆動信号の位相からミラープレートの角度を把握することが困難となるのである。
【0006】
こうして光ビームの出射方向が特定できないと、例えば、レーザ走査により物体を認識する装置に適用しても物体の存在する方向が特定できず、また、レーザ走査により描画を行う装置に適用しても正確な画像の描画を行うことができない。
【0007】
本発明は、こうした問題に鑑みなされたものであり、共振型の光走査装置において光ビームの出射方向を特定することを目的としている。
【0008】
【課題を解決するための手段及び発明の効果】
上記目的を達成するためになされた請求項1に記載の光走査装置は、光ビームを出射する光出射部及び櫛歯状の電極部を有する可動部と、弾性変形可能な支持部により可動部を回転方向に揺動可能に支持すると共に、その可動部が有する電極部(可動側電極部)と対向する櫛歯状の電極部(固定側電極部)を有する固定部とを備えている。そして、本光走査装置では、駆動手段が、可動側電極部と固定側電極部との間に電圧を印加して両電極部間に静電引力を生じさせることにより、可動部を上記回転方向に所定周波数で振動させて、光出射部から出射される光ビームを走査する。そして更に、本光走査装置では、変位量検出手段が、可動部の回転方向に沿った変位量を検出する。
【0009】
このような請求項1の光走査装置によれば、可動部の回転方向に沿った変位量の検出値に基づき、光出射部から出射される光ビームの出射方向を特定することができる。
ところで、光ビームを出射する光出射部としては、光ビームの発光源を備えた構成も考えられるが、例えば請求項2に記載のように、光出射部が、外部からの光ビームを反射することで光ビームを出射するミラーであれば、光走査装置を小型化するのに有利である。
【0010】
一方、可動部の回転方向に沿った変位量を検出する変位量検出手段は、例えば請求項3のように構成することができる。
すなわち、請求項3に記載の光走査装置では、変位量検出手段が、固定側電極部とは別に固定部と一体的に設けられ、可動側電極部と対向する櫛歯状の電極部(検出用電極部)を有すると共に、この検出用電極部と可動側電極部との間の静電容量の変化に基づき可動部の回転方向に沿った変位量を検出する。この構成によれば、可動部の変位量をその可動部と非接触で検出するため、可動部の振動を阻害しないようにすることができる。
【0011】
ここで、静電容量の変化に基づく可動部の変位量の検出は、例えば請求項4のように行うことができる。
すなわち、請求項4に記載の光走査装置では、変位量検出手段が、検出用電極部を2つ有しており、この2つの検出用電極部の一方(第1検出用電極部)及び他方(第2検出用電極部)が、当該第1検出用電極部と可動側電極部との間の静電容量(第1静電容量)が最大となる可動部の回転方向に沿った変位量と、当該第2検出用電極部と可動側電極部との間の静電容量(第2静電容量)が最大となる可動部の回転方向に沿った変位量とが異なるように配置されている。そして更に、本光走査装置では、変位量検出手段が、第1静電容量が最大となるタイミングと、第2静電容量が最大となるタイミングとに基づき、可動部の回転方向に沿った変位量を検出する。この構成によれば、可動部の振幅を大きくとることができる。なぜなら、例えば静電容量の検出値の大きさから可動部の変位量を判断する構成を考えた場合、静電容量の検出値は可動部の変位量が判断可能なレベル以上に常に保たれていなければならないため、可動側電極部と検出用電極部との距離を余り大きくすることができず、可動部の振幅を大きくとることができないが、本請求項4の光走査装置では、第1静電容量及び第2静電容量が最大となるタイミングさえ把握できればよいため、可動部の振幅を大きくとることができるのである。
【0012】
そして、第1静電容量が最大となる可動部の変位量と第2静電容量が最大となる可動部の変位量とが異なるように、第1検出用電極部及び第2検出用電極部を配置するためには、例えば請求項5や請求項6のように構成するとよい。
すなわち、請求項5に記載の光走査装置では、可動側電極部が、可動部が回転方向に振動する際に当該可動部にてその振動の回転軸となる部分を挟む両側に設けられており、第1検出用電極部及び第2検出用電極部が、可動部を挟む両側のうちの一方及び他方で可動側電極部と対向するようにそれぞれ設けられていると共に、可動側電極部と同一平面に沿って並ばないように設けられている。
【0013】
また、請求項6に記載の光走査装置では、可動側電極部が、可動部が回転方向に振動する際に当該可動部にてその振動の回転軸となる部分を挟む両側のうち、少なくとも片側に設けられており、第1検出用電極部及び第2検出用電極部が、可動部を挟む両側のうちの片側で可動側電極部と対向するように設けられていると共に、可動部の回転方向に沿って相異なる位置に設けられている。
【0014】
そして特に、請求項6の装置において、請求項7に記載のように、可動側電極部が、可動部が回転方向に振動する際に当該可動部にてその振動の回転軸となる部分を挟む両側に設けられており、固定側電極部が、可動部を挟む両側で可動側電極部と対向するように設けられていれば、可動部を振動させるための駆動力を大きくすることができる。
【0015】
一方、第1静電容量が最大となるタイミングと第2静電容量が最大となるタイミングとに基づく可動部の変位量の検出は、例えば請求項8のように行うとよい。
すなわち、変位量検出手段は、第1静電容量が最大となってから第2静電容量が最大となるまでに要する時間(特定変位時間)を求め、第1静電容量が最大となるタイミングからの経過時間と特定変位時間との比を用いて、可動部の回転方向に沿った変位量を検出すればよい。
【0016】
そして特に、請求項9に記載のように、駆動手段が、変位量検出手段により求められる特定変位時間が一定の値となるように可動側電極部と固定側電極部との間に印加する電圧の大きさを制御するようにすれば、可動部の振幅を一定に保つことができ、その結果、光ビームの走査角度を一定に保つことができる。
【0017】
ところで、可動部の回転方向に沿った変位量を検出する変位量検出手段は、例えば請求項10のように構成することもできる。
すなわち、請求項10に記載の光走査装置では、変位量検出手段が、支持部の弾性変形の度合いを検出する変形検出手段を有すると共に、この変形検出手段の検出値に基づき可動部の回転方向に沿った変位量を検出する。この構成によれば、上述したような検出用電極部を固定部に設ける必要がない分、固定側電極部を多く設けることができ、その結果、可動部を振動させるための駆動力を大きくすることができる。
【0018】
具体的には、例えば請求項11に記載のように、支持部が、可動部に一端が接続される軸部と、この軸部の他端を支持する両持ち梁状部(両持ち梁状の部分)とを有しており、変形検出手段が、両持ち梁状部の弾性変形の度合いを検出するように構成することができる。
【0019】
また、例えば請求項12に記載のように、支持部が、可動部に一端が接続される軸部と、この軸部の他端を支持する片持ち梁状部(片持ち梁状の部分)とを有しており、変形検出手段が、片持ち梁状部の弾性変形の度合いを検出するように構成することもできる。この構成によれば、片持ち梁状部が大きく変形するため、弾性変形の度合いを検出しやすくすることができる。
【0020】
ここで、変形検出手段としては、例えば、請求項13に記載のように歪ゲージを用いてもよく、また、請求項14に記載のように圧電センサを用いてもよい。
一方、変形検出手段の検出値に基づく可動部の変位量の検出は、例えば請求項15のように行うことができる。
【0021】
すなわち、請求項15に記載の光走査装置では、変位量検出手段が、変形検出手段の検出値が第1の閾値を通過するタイミングと第2の閾値を通過するタイミングとに基づき、可動部の回転方向に沿った変位量を検出する。
具体的には、例えば請求項16に記載のように、変位量検出手段は、変形検出手段の検出値が第1の閾値を通過してから第2の閾値を通過するまでに要する時間(特定閾値通過時間)を求め、変形検出手段の検出値が第1の閾値を通過するタイミングからの経過時間と特定閾値通過時間との比を用いて、可動部の回転方向に沿った変位量を検出すればよい。
【0022】
そして特に、請求項17に記載のように、駆動手段が、変位量検出手段により求められる特定閾値通過時間が一定の値となるように可動側電極部と固定側電極部との間に印加する電圧の大きさを制御するようにすれば、可動部の振幅を一定に保つことができ、その結果、光ビームの走査角度を一定に保つことができる。
【0023】
【発明の実施の形態】
以下、本発明が適用された実施形態について、図面を用いて説明する。
まず図1は、第1実施形態の光走査装置としてのマイクロスキャナ100の主要部の構造を表わす説明図である。なお、図1の(a)はマイクロスキャナ100の平面図、(b)はマイクロスキャナ100の側面図、(c)はマイクロスキャナ100のA−A断面図をそれぞれ表わしている。
【0024】
図1に示すように、このマイクロスキャナ100は、マイクロマシニング技術を用いてSOIウエハを加工することにより製作されたものであり、その中央部分を両側から囲むように形成された溝102,104によって、中央の可動部110と、その周囲の固定部120とに大別されている。
【0025】
可動部110は、図1(c)に示すように、シリコン層Si(導電層)、二酸化ケイ素層SiO(絶縁層)及びアルミニウム層Al(導電層)の3層構造となっている。
そして、可動部110のシリコン層Siは、図1(a)に示すように、長方形の向かい合う一組の辺のそれぞれに櫛歯状の凹凸を設けたような形状となっている。なお、以下の説明では、可動部110における上記凹凸部分のうち、図1(a)上、左側の部分を「左側可動櫛歯部112」といい、右側の部分を「右側可動櫛歯部114」という。
【0026】
また、可動部110の二酸化ケイ素層SiO及びアルミニウム層Alは、シリコン層Siより一回り小さい長方形状となっており、このうち、アルミニウム層Alが、光ビームとしてのレーザ光を反射するためのミラー116となっている。
【0027】
一方、固定部120には、可動部110の左側可動櫛歯部112と対向する位置に、この左側可動櫛歯部112と一定間隔を空けて噛み合う櫛歯状の凹凸部(以下、左側固定櫛歯部122という。)が形成されており、同様に、可動部110の右側可動櫛歯部114と対向する位置にも、この右側可動櫛歯部114と一定間隔を空けて噛み合う櫛歯状の凹凸部(以下、右側固定櫛歯部124という。)が形成されている。
【0028】
左側固定櫛歯部122及び右側固定櫛歯部124は、図1(c)に示すように、シリコン層Si、二酸化ケイ素層SiO及びポリシリコン層Poly−Si(導電層)の3層構造となっており、このうち、ポリシリコン層Poly−Siが、図1(a),(b)でいう上下方向にそれぞれ分割されている。そして、各固定櫛歯部122,124において、図1(a),(b)でいう上側のポリシリコン層Poly−Siの延長上には、アルミニウムを蒸着して形成された駆動用パッド126,128がそれぞれ設けられており、同様に、図1(a),(b)でいう下側のポリシリコン層Poly−Siの延長上には、アルミニウムを蒸着して形成された検出用パッド130,132がそれぞれ設けられている。なお、以下の説明では、左側固定櫛歯部122において、駆動用パッド126が設けられた側のポリシリコン層Poly−Siを有する部分を「第1左側固定櫛歯部122a」といい、検出用パッド130が設けられた側のポリシリコン層Poly−Siを有する部分を「第2左側固定櫛歯部122b」という。同様に、右側固定櫛歯部124において、駆動用パッド128が設けられた側のポリシリコン層Poly−Siを有する部分を「第1右側固定櫛歯部124a」といい、検出用パッド132が設けられた側のポリシリコン層Poly−Siを有する部分を「第2右側固定櫛歯部124b」という。
【0029】
また、固定部120のシリコン層Siには、可動部110を支持する2本の支持梁134,136が形成されている。この2本の支持梁134,136は、同一直線上に形成されていると共に、可動部110のシリコン層Siにおける各可動櫛歯部112,114が形成されていない側の一組の辺の各中央部にそれぞれ連結されている。また、このシリコン層Siには、アルミニウムを蒸着して形成され、グランド(接地電位=0V)に接続されるGNDパッド138,140,142,144が設けられている。
【0030】
なお、固定部120は、土台としてのベース部146,148を有している。
次に、本マイクロスキャナ100の電気的構成について説明する。
図2に示すように、マイクロスキャナ100は、駆動信号としてのパルス電圧を出力する駆動信号発生回路160と、駆動信号発生回路160により出力された駆動信号の電圧値を目標値まで増幅して駆動用パッド126,128に印加する増幅回路162と、検出用パッド130に接続され、第2左側固定櫛歯部122bと左側可動櫛歯部112との間の静電容量を電圧値に変換するC−V変換回路164と、検出用パッド132に接続され、第2右側固定櫛歯部124bと右側可動櫛歯部114との間の静電容量を電圧値に変換するC−V変換回路166と、各C−V変換回路164,166から出力される電圧をモニタし、この電圧値に基づく処理を行う信号処理部168とを備えている。
【0031】
次に、本マイクロスキャナ100の動作について説明する。
駆動信号発生回路160から駆動信号が出力されると、増幅回路162によりこの駆動信号の電圧値が目標値(例えば0−60V)まで増幅されて各駆動用パッド126,128に印加される。これにより、第1左側固定櫛歯部122a及び第1右側固定櫛歯部124aの各ポリシリコン層Poly−Siと、各可動櫛歯部112,114との間にパルス電圧が印加されて周期的に変化する静電引力が生じ、支持梁134,136が弾性変形してねじれることにより、可動部110が支持梁134,136を回転軸として往復振動する。このように、第1左側固定櫛歯部122a及び第1右側固定櫛歯部124aのそれぞれにおけるポリシリコン層Poly−Siが、可動部110を回転方向に往復振動させるための電極として機能する。
【0032】
ここで、駆動信号発生回路160は、可動部110の慣性モーメントと支持梁134,136のバネ定数とにより決まるねじり振動子の共振周波数の2倍の周波数の駆動信号を出力するようになっており、これにより、可動部110と支持梁134,136とからなる振動系が共振し、可動部110が共振周波数で往復振動する。
【0033】
そして、この状態でミラー116にレーザ光が照射されると、そのレーザ光がミラー116で反射されることにより出射されると共に、可動部110の往復振動に伴い、可動部110の回転角度(回転方向に沿った変位量)に応じた方向に走査される。
【0034】
一方、可動部110の往復振動に伴い、左側可動櫛歯部112と第2左側固定櫛歯部122bとの距離、及び、右側可動櫛歯部114と第2右側固定櫛歯部124bとの距離も周期的に変化する。ここで、左側可動櫛歯部112と第2左側固定櫛歯部122bのポリシリコン層Poly−Siとは絶縁されているため、コンデンサとしての性質を有し、その静電容量は可動部110の回転角度に応じて変化する。同様に、右側可動櫛歯部114と第2右側固定櫛歯部124bのポリシリコン層Poly−Siとの間の静電容量も、可動部110の回転角度に応じて変化する。そして、本マイクロスキャナ100では、これらの静電容量に基づき、可動部110の回転角度を検出する。つまり、第2左側固定櫛歯部122b及び第2右側固定櫛歯部124bの各ポリシリコン層Poly−Siが、可動部110の回転角度を検出するための電極として機能する。
【0035】
具体的には、図3(a)に示すように、可動部110の回転角度が初期回転角度(支持梁134,136がねじれていない状態での回転角度)となっている状態では、各可動櫛歯部112,114が形成されるシリコン層Siと、第2左側固定櫛歯部122b及び第2右側固定櫛歯部124bにおける各ポリシリコン層Poly−Siとの間で、厚み方向の位置が異なっている(段差がある)分、左側可動櫛歯部112と第2左側固定櫛歯部122bとの距離、及び、右側可動櫛歯部114と第2右側固定櫛歯部124bとの距離が共に離れており、各静電容量は0に近い値となる。
【0036】
一方、図3(b)に示すように、可動部110の回転角度が、左側可動櫛歯部112と第2左側固定櫛歯部122bのポリシリコン層Poly−Siとの距離が最短となる回転角度(以下、第1回転角度という。)となっている状態では、左側可動櫛歯部112と第2左側固定櫛歯部122bのポリシリコン層Poly−Siとの間の静電容量が最大となり、この静電容量が、C−V変換回路164により電圧値に変換されて信号処理部168へ出力される。
【0037】
また、図3(c)に示すように、可動部110の回転角度が、右側可動櫛歯部114と第2右側固定櫛歯部124bのポリシリコン層Poly−Siとの距離が最短となる回転角度(以下、第2回転角度という。)となっている状態では、右側可動櫛歯部114と第2右側固定櫛歯部124bのポリシリコン層Poly−Siとの間の静電容量が最大となり、この静電容量が、C−V変換回路166により電圧値に変換されて信号処理部168へ出力される。
【0038】
このため、図4に示すように、可動部110の回転角度の変化に伴い、可動部110の回転角度が第1回転角度となったタイミングでC−V変換回路164の出力電圧(図4において「A」と表す。)が瞬間的に上昇し、また、可動部110の回転角度が第2回転角度となったタイミングでC−V変換回路166の出力電圧(図4において「B」と表す。)が瞬間的に上昇する。このため、信号処理部168には「AABBAABBA…」という順に信号が入力されることになる。
【0039】
そして、信号処理部168は、このうちの信号「AB」間の時間T1を計測し、この時間T1が一定となるように増幅回路162による電圧の増幅量を制御する。すなわち、可動部110は共振周波数で振動するが、その際の振幅は各可動櫛歯部112,114と第1左側固定櫛歯部122a及び第1右側固定櫛歯部124aの各ポリシリコン層Poly−Siとの間に印加される電圧に応じて変化する。ここで、時間T1は可動部110の振幅に応じて変化するため、時間T1が一定となるように電圧値を制御することで、可動部110の振幅を一定にしているのである。
【0040】
そして、信号処理部168は、信号「A」が入力されてからの経過時間Taを計測し、経過時間Taと時間T1との比から、その経過時間Taにおける可動部110の回転角度を求める。すなわち、信号「A」が入力された時点での可動部110の回転角度(第1回転角度)と、信号「B」が入力された時点での可動部110の回転角度(第2回転角度)と、可動部110が第1回転角度から第2回転角度まで変位するのに要する時間T1とが特定されていることから、これらの値に基づき、任意の経過時間Taにおける可動部110の回転角度を一義的に特定することができるのである。
【0041】
なお、本第1実施形態のマイクロスキャナ100では、左側可動櫛歯部112及び右側可動櫛歯部114が、可動側電極部に相当し、第1左側固定櫛歯部122a及び第1右側固定櫛歯部124aのそれぞれにおけるポリシリコン層Poly−Siが、固定側電極部に相当し、第2左側固定櫛歯部122b及び第2右側固定櫛歯部124bのそれぞれにおけるポリシリコン層Poly−Siが、検出用電極部に相当している。また、支持梁134,136が、支持部に相当し、駆動信号発生回路160と、増幅回路162とが、駆動手段に相当し、第2左側固定櫛歯部122b及び第2右側固定櫛歯部124bの各ポリシリコン層Poly−Siと、C−V変換回路164,166と、信号処理部168とが、変位量検出手段に相当している。
【0042】
以上のように、本第1実施形態のマイクロスキャナ100によれば、任意の時点における可動部110の回転角度を検出することができ、その結果、ミラー116から出射されるレーザ光の出射方向を確実に特定することができる。また、本マイクロスキャナ100では、可動部110の往復振動の振幅が一定となるように制御しているため、レーザ光を一定角度で走査することができる。さらに、本マイクロスキャナ100では、可動部110の回転角度を静電容量に基づき非接触で検出するようにしているため、可動部110の振動を阻害しないようにすることができると共に、温度等の環境変化に対しても常に安定した検出を行うことができる。加えて、本マイクロスキャナ100では、可動部110の回転角度が第1回転角度及び第2回転角度になったことのみを検出しており、それ以外の回転角度では静電容量の検出値が0となってもよいため、可動部110の振幅を大きくとることができる。
【0043】
次に、第2実施形態のマイクロスキャナ200について、図5を用いて説明する。なお、図5において、第1実施形態のマイクロスキャナ100(図1)と同じ構成要素については、同一の符号を付しているため説明は省略する。
図5に示すように、このマイクロスキャナ200の固定部220(第1実施形態のマイクロスキャナ100の固定部120に対応する部分)には、可動部110の左側可動櫛歯部112と対向する位置に、この左側可動櫛歯部112と一定間隔を空けて噛み合う櫛歯状の凹凸部(以下、左側固定櫛歯部222という。)が形成されており、同様に、可動部110の右側可動櫛歯部114と対向する位置にも、この右側可動櫛歯部114と一定間隔を空けて噛み合う櫛歯状の凹凸部(以下、右側固定櫛歯部224という。)が形成されている。
【0044】
左側固定櫛歯部222は、図5(c)に示すように、シリコン層Si、二酸化ケイ素層SiO及びポリシリコン層Poly−Siの3層構造となっている。そして、ポリシリコン層Poly−Siの延長上には、図5(a)に示すように、アルミニウムを蒸着して形成された駆動用パッド126が設けられており、第1実施形態(図2)と同様、増幅回路162によって駆動信号としてのパルス電圧が駆動用パッド126に印加されるようになっている。つまり、本マイクロスキャナ200では、左側固定櫛歯部222全域のポリシリコン層Poly−Siが、可動部110を回転方向に往復振動させるための電極として機能する。
【0045】
一方、右側固定櫛歯部224は、図5(a),(b)でいう上下方向の2つの部分に大別される。そして、図5(a),(b)でいう上側の部分である第1右側固定櫛歯部224aは、図5(c)に示すように、左側固定櫛歯部222と同様のシリコン層Si、二酸化ケイ素層SiO及びポリシリコン層Poly−Siに加え、二酸化ケイ素層SiO及びポリシリコン層Poly−Siを更に積層した5層構造となっている。一方、図5(a),(b)でいう下側の部分である第2右側固定櫛歯部224bは、左側固定櫛歯部222と同様に、シリコン層Si、二酸化ケイ素層SiO及びポリシリコン層Poly−Siの3層構造となっている。なお、図5(b)に示すように、各部分のポリシリコン層Poly−Siは分離されている。
【0046】
そして、図5(a),(b)に示すように、第1右側固定櫛歯部224aの最上層のポリシリコン層Poly−Siの延長上には、アルミニウムを蒸着して形成された検出用パッド130が設けられており、同様に、第2右側固定櫛歯部224bのポリシリコン層Poly−Siの延長上にも、アルミニウムを蒸着して形成された検出用パッド132が設けられている。そして、本マイクロスキャナ200においても、第1実施形態(図2)と同様、検出用パッド130にC−V変換回路164が、また、検出用パッド132にC−V変換回路166が、それぞれ接続されており、第1右側固定櫛歯部224aの最上層のポリシリコン層Poly−Siと右側可動櫛歯部114との間の静電容量、及び、第2右側固定櫛歯部224bのポリシリコン層Poly−Siと右側可動櫛歯部114との間の静電容量に基づき、可動部110の回転角度を検出するようになっている。つまり、本マイクロスキャナ200では、第1右側固定櫛歯部224aの最上層のポリシリコン層Poly−Siと、第2右側固定櫛歯部224bのポリシリコン層Poly−Siとが、可動部110の回転角度を検出するための電極として機能する。
【0047】
ここで、第1右側固定櫛歯部224aの最上層のポリシリコン層Poly−Siと、第2右側固定櫛歯部224bのポリシリコン層Poly−Siとは、厚み方向の位置が異なっている。このため、第1右側固定櫛歯部224aの最上層のポリシリコン層Poly−Siと右側可動櫛歯部114との距離が最短となる可動部110の回転角度と、第2右側固定櫛歯部224bのポリシリコン層Poly−Siと右側可動櫛歯部114との距離が最短となる可動部110の回転角度とが異なることとなり、第1実施形態と同様の方法で可動部110の回転位置を検出することができる。
【0048】
なお、本第2実施形態のマイクロスキャナ200では、左側固定櫛歯部222のポリシリコン層Poly−Siが、固定側電極部に相当し、第1右側固定櫛歯部224aの最上層のポリシリコン層Poly−Siと、第2右側固定櫛歯部224bのポリシリコン層Poly−Siとが、検出用電極部に相当している。
【0049】
このような本第2実施形態のマイクロスキャナ200によれば、第1実施形態のマイクロスキャナ100と同じ効果を得ることができる。
次に、第3実施形態のマイクロスキャナ300について、図6を用いて説明する。なお、図6において、第2実施形態のマイクロスキャナ200(図5)と同じ構成要素については、同一の符号を付しているため説明は省略する。
【0050】
図6に示すように、このマイクロスキャナ300の固定部320(第2実施形態のマイクロスキャナ200の固定部220に対応する部分)には、可動部110の左側可動櫛歯部112と対向する位置に、第2実施形態と同様の左側固定櫛歯部222が形成されており、また、可動部110の右側可動櫛歯部114と対向する位置に、この右側可動櫛歯部114と一定間隔を空けて噛み合う櫛歯状の凹凸部(以下、右側固定櫛歯部324という。)が形成されている。
【0051】
右側固定櫛歯部324は、図6(a),(b)でいう上下方向の3つの部分に大別される。そして、図6(a),(b)でいう上側の部分である第1右側固定櫛歯部324aは、図6(c)に示すように、左側固定櫛歯部222と同様のシリコン層Si、二酸化ケイ素層SiO及びポリシリコン層Poly−Siに加え、二酸化ケイ素層SiO及びポリシリコン層Poly−Siを更に積層した5層構造となっている。一方、図6(a),(b)でいう上下方向中央の部分である第2右側固定櫛歯部324b、及び、下側の部分である第3右側固定櫛歯部324cは、左側固定櫛歯部222と同様に、シリコン層Si、二酸化ケイ素層SiO及びポリシリコン層Poly−Siの3層構造となっている。なお、図6(b)に示すように、各部分のポリシリコン層Poly−Siは分離されている。
【0052】
そして、図6(a),(b)に示すように、第2右側固定櫛歯部324bのポリシリコン層Poly−Siの延長上には、アルミニウムを蒸着して形成された駆動用パッド128が設けられており、第1実施形態(図2)と同様、増幅回路162によって駆動信号としてのパルス電圧が駆動用パッド126,128に印加されるようになっている。つまり、本マイクロスキャナ300では、左側固定櫛歯部222及び第2右側固定櫛歯部324bのそれぞれにおけるポリシリコン層Poly−Siが、可動部110を回転方向に往復振動させるための電極として機能する。
【0053】
一方、第1右側固定櫛歯部324aの最上層のポリシリコン層Poly−Siの延長上には、アルミニウムを蒸着して形成された検出用パッド130が、また、第3右側固定櫛歯部324cのポリシリコン層Poly−Siの延長上には、アルミニウムを蒸着して形成された検出用パッド132が、それぞれ設けられている。そして、本マイクロスキャナ300においても、第1実施形態(図2)と同様、検出用パッド130にC−V変換回路164が、また、検出用パッド132にC−V変換回路166が、それぞれ接続されており、第1右側固定櫛歯部324aの最上層のポリシリコン層Poly−Siと右側可動櫛歯部114との間の静電容量、及び、第3右側固定櫛歯部324cのポリシリコン層Poly−Siと右側可動櫛歯部114との間の静電容量に基づき、可動部110の回転角度を検出するようになっている。つまり、本マイクロスキャナ300では、第1右側固定櫛歯部324aの最上層のポリシリコン層Poly−Siと、第3右側固定櫛歯部324cのポリシリコン層Poly−Siとが、可動部110の回転角度を検出するための電極として機能する。
【0054】
ここで、第1右側固定櫛歯部324aの最上層のポリシリコン層Poly−Siと、第3右側固定櫛歯部324cのポリシリコン層Poly−Siとは、厚み方向の位置が異なっている。このため、第1右側固定櫛歯部324aの最上層のポリシリコン層Poly−Siと右側可動櫛歯部114との距離が最短となる可動部110の回転角度と、第3右側固定櫛歯部324cのポリシリコン層Poly−Siと右側可動櫛歯部114との距離が最短となる可動部110の回転角度とが異なることとなり、第1実施形態と同様の方法で可動部110の回転位置を検出することができる。
【0055】
なお、本第3実施形態のマイクロスキャナ300では、左側固定櫛歯部222及び第2右側固定櫛歯部324bのそれぞれにおけるポリシリコン層Poly−Siが、固定側電極部に相当し、第1右側固定櫛歯部324aの最上層のポリシリコン層Poly−Siと、第3右側固定櫛歯部324cのポリシリコン層Poly−Siとが、検出用電極部に相当している。
【0056】
このような本第3実施形態のマイクロスキャナ300によれば、第2実施形態のマイクロスキャナ200と同じ効果を得ることができる。そして特に、本第3実施形態のマイクロスキャナ300では、可動部110の両側から駆動力を与えることができるため、第2実施形態のマイクロスキャナ200に比べ大きい駆動力を可動部110に与えることができる。
【0057】
次に、第4実施形態のマイクロスキャナ400について、図7を用いて説明する。なお、図7において、第2実施形態のマイクロスキャナ200(図5)と同じ構成要素については、同一の符号を付しているため説明は省略する。
図7に示すように、このマイクロスキャナ400の固定部420(第2実施形態のマイクロスキャナ200の固定部220に対応する部分)には、可動部110の左側可動櫛歯部112と対向する位置に、第2実施形態と同様の左側固定櫛歯部222が形成されており、また、可動部110の右側可動櫛歯部114と対向する位置に、この右側可動櫛歯部114と一定間隔を空けて噛み合う櫛歯状の凹凸部(以下、右側固定櫛歯部424という。)が形成されている。
【0058】
右側固定櫛歯部424は、図7(c)に示すように、シリコン層Si、二酸化ケイ素層SiO及びポリシリコン層Poly−Siの3層構造となっている。そして、ポリシリコン層Poly−Siの延長上には、図7(a),(b)に示すように、アルミニウムを蒸着して形成された駆動用パッド128が設けられている。
【0059】
また、本第4実施形態のマイクロスキャナ400では、可動部110を取り囲む溝402,404(第1実施形態のマイクロスキャナ100の溝102,104に対応する部分)と、溝406とによって、片側の支持梁434(第1実施形態のマイクロスキャナ100の支持梁134に対応する部分)が、回転軸となる軸部分434aの一端を両持ち梁状部分434bで支持する形状(T字形状)となっている。そして、この両持ち梁状部分434bにおける軸部分434aを中心とする片側には、歪ゲージ470が設けられており、さらに、その近傍には、歪ゲージ470の抵抗変化を検出するための検出用パッド472,474が設けられている。なお、歪ゲージ470を両持ち梁状部分434bにおける軸部分434aを中心とする片側に設けているのは、両持ち梁状部分434bが軸部分434aを中心する両側で逆向きに弾性変形するからである。つまり、仮に歪ゲージ470を両持ち梁状部分434b全域に設けたとすると、軸部分434aの両側で歪ゲージ470の伸縮が相殺されてしまうからである。
【0060】
次に、本マイクロスキャナ400の電気的構成について説明する。
図8に示すように、マイクロスキャナ400は、第1実施形態と同様の駆動信号発生回路160及び増幅回路162と、検出用パッド472,474間の抵抗値をモニタし、この抵抗値に基づく処理を行う信号処理部476とを備えている。
【0061】
次に、本マイクロスキャナ400の動作について説明する。
駆動信号発生回路160から駆動信号が出力されると、増幅回路162によりこの駆動信号の電圧値が目標値まで増幅されて各駆動用パッド126,128に印加される。これにより、左側固定櫛歯部222及び右側固定櫛歯部424の各ポリシリコン層Poly−Siと、各可動櫛歯部112,114との間にパルス電圧が印加されて周期的に変化する静電引力が生じ、支持梁434,136が弾性変形してねじれることにより、可動部110が支持梁434の軸部分434a及び支持梁136を回転軸として往復振動する。このように、左側固定櫛歯部222及び右側固定櫛歯部424のそれぞれにおけるポリシリコン層Poly−Siが、可動部110を回転方向に往復振動させるための電極として機能する。
【0062】
ここで、駆動信号発生回路160は、可動部110の慣性モーメントと支持梁434,136のバネ定数とにより決まるねじり振動子の共振周波数の2倍の周波数の駆動信号を出力するようになっており、これにより、可動部110と支持梁434,136とからなる振動系が共振し、可動部110が共振周波数で往復振動する。
【0063】
そして、この状態でミラー116にレーザ光が照射されると、そのレーザ光がミラー116で反射されることにより出射されると共に、可動部110の往復振動に伴い、可動部110の回転角度に応じた方向に走査される。
一方、可動部110の往復振動に伴い、支持梁434の両持ち梁状部分434bが弾性変形し、これにより歪ゲージ470の抵抗値が可動部110の回転角度に応じて変化する。そして、本マイクロスキャナ400では、この抵抗値に基づき、可動部110の回転角度を検出する。
【0064】
具体的には、図9に示すように、信号処理部476が、歪ゲージ470の抵抗値を電圧信号に変換してAC成分を取り出し、このAC成分が第1基準電圧値となるタイミングC、及び、第2基準電圧値となるタイミングDを検出する。ここで、タイミングC,Dは、「CCDDCCDDC…」という順に検出されるため、信号処理部476は、このうちの「CD」間の時間T2を計測し、この時間T2が一定となるように増幅回路162による電圧の増幅量を制御することで、第1実施形態と同様に、可動部110の振幅を一定にする。
【0065】
そして、信号処理部476は、タイミングCからの経過時間Tcを計測し、第1実施形態と同様に、経過時間Tcと時間T2との比から、その経過時間Tcにおける可動部110の回転角度を求める。
なお、本第4実施形態のマイクロスキャナ400では、左側固定櫛歯部222及び右側固定櫛歯部424のそれぞれにおけるポリシリコン層Poly−Siが、固定側電極部に相当し、支持梁434,136が、支持部に相当し、歪ゲージ470と、信号処理部476とが、変位量検出手段に相当している。
【0066】
このような本第4実施形態のマイクロスキャナ400によれば、上記第1〜第3実施形態と同様に、可動部110の回転角度に基づきミラー116から出射されるレーザ光の出射方向を確実に特定することができる。そして特に、本第4実施形態のマイクロスキャナ400では、左側固定櫛歯部222及び右側固定櫛歯部424の全域のポリシリコン層Poly−Siを、可動部110を往復振動させるための電極として用いることができるため、大きな駆動力を得ることができる。
【0067】
次に、第5実施形態のマイクロスキャナ500について、図10を用いて説明する。なお、図10において、第4実施形態のマイクロスキャナ400(図7)と同じ構成要素については、同一の符号を付しているため説明は省略する。
図10に示すように、このマイクロスキャナ500の固定部520(第4実施形態のマイクロスキャナ400の固定部420に対応する部分)においては、可動部110を取り囲む溝402,504によって、片側の支持梁534(第4実施形態のマイクロスキャナ400の支持梁434に対応する部分)が、回転軸となる軸部分534aの一端を片持ち梁状部分534bで支持する形状(L字形状)となっており、この片持ち梁状部分534bに歪ゲージ470が設けられている。そして、本マイクロスキャナ500では、この片持ち梁状部分534bの弾性変形に伴う歪ゲージ470の抵抗変化に基づき、第4実施形態のマイクロスキャナ400と同様に、可動部110の回転角度を検出する。
【0068】
なお、本第5実施形態のマイクロスキャナ500では、支持梁534,136が、支持部に相当している。
このような本第5実施形態のマイクロスキャナ500によれば、第4実施形態のマイクロスキャナ400と同じ効果を得ることができる。そして特に、本第5実施形態のマイクロスキャナ500では、両持ち梁構造に比べ弾性変形の大きい片持ち梁構造の支持梁534に歪ゲージ470を設けているため、可動部110の変位に対する歪ゲージ470の抵抗変化を大きくすることができ、その結果、可動部110の回転角度を精度よく検出することができる。
【0069】
以上、本発明の一実施形態について説明したが、本発明は、種々の形態を採り得ることは言うまでもない。
例えば、上記第4,第5実施形態のマイクロスキャナ400,500では、支持梁434,534の弾性変形の度合いを歪ゲージ470を用いて検出するようにしているが、これに限ったものではなく、歪ゲージ470に代えて圧電センサ(圧電素子(ZnO等)の薄膜)を設け、この圧電センサの出力電圧に基づき弾性変形の度合いを検出するようにしてもよい。
【図面の簡単な説明】
【図1】第1実施形態のマイクロスキャナの構造を表わす説明図である。
【図2】第1実施形態のマイクロスキャナの電気的構成を表わすブロック図である。
【図3】可動部の回転角度の検出方法を説明するための説明図である。
【図4】可動部の回転角度の変化を表わすグラフである。
【図5】第2実施形態のマイクロスキャナの構造を表わす説明図である。
【図6】第3実施形態のマイクロスキャナの構造を表わす説明図である。
【図7】第4実施形態のマイクロスキャナの構造を表わす説明図である。
【図8】第4実施形態のマイクロスキャナの電気的構成を表わすブロック図である。
【図9】歪ゲージ出力のAC成分の変化を表わすグラフである。
【図10】第5実施形態のマイクロスキャナの構造を表わす説明図である。
【符号の説明】
100…マイクロスキャナ、102,104…溝、110…可動部、112…左側可動櫛歯部、114…右側可動櫛歯部、116…ミラー、120…固定部、122…左側固定櫛歯部、122a…第1左側固定櫛歯部、122b…第2左側固定櫛歯部、124…右側固定櫛歯部、124a…第1右側固定櫛歯部、124b…第2右側固定櫛歯部、126…駆動用パッド、128…駆動用パッド、130…検出用パッド、132…検出用パッド、134…支持梁、136…支持梁、138〜144…GNDパッド、146,148…ベース部、160…駆動信号発生回路、162…増幅回路、164…C−V変換回路、166…C−V変換回路、168…信号処理部、200…マイクロスキャナ、220…固定部、222…左側固定櫛歯部、224…右側固定櫛歯部、224a…第1右側固定櫛歯部、224b…第2右側固定櫛歯部、300…マイクロスキャナ、320…固定部、324…右側固定櫛歯部、324a…第1右側固定櫛歯部、324b…第2右側固定櫛歯部、324c…第3右側固定櫛歯部、400…マイクロスキャナ、402,404,406…溝、420…固定部、424…右側固定櫛歯部、434…支持梁、434a…軸部分、434b…梁状部分、470…歪ゲージ、472,474…検出用パッド、476…信号処理部、500…マイクロスキャナ、520…固定部、504…溝、520…固定部、534…支持梁、534a…軸部分、534b…梁状部分

Claims (17)

  1. 光ビームを出射する光出射部及び櫛歯状の電極部を有する可動部と、
    弾性変形可能な支持部により前記可動部を回転方向に揺動可能に支持すると共に、該可動部が有する電極部(以下、可動側電極部という。)と対向する櫛歯状の電極部(以下、固定側電極部という。)を有する固定部と、
    前記可動側電極部と前記固定側電極部との間に電圧を印加して両電極部間に静電引力を生じさせることにより、前記可動部を前記回転方向に所定周波数で振動させる駆動手段と、
    を備えた光走査装置において、
    前記可動部の前記回転方向に沿った変位量を検出する変位量検出手段を備えたこと、
    を特徴とする光走査装置。
  2. 請求項1に記載の光走査装置において、
    前記光出射部は、外部からの光ビームを反射することで光ビームを出射するミラーであること、
    を特徴とする光走査装置。
  3. 請求項1又は請求項2に記載の光走査装置において、
    前記変位量検出手段は、
    前記固定側電極部とは別に前記固定部と一体的に設けられ、前記可動側電極部と対向する櫛歯状の電極部(以下、検出用電極部という。)を有し、
    該検出用電極部と前記可動側電極部との間の静電容量の変化に基づき前記可動部の前記回転方向に沿った変位量を検出すること、
    を特徴とする光走査装置。
  4. 請求項3に記載の光走査装置において、
    前記変位量検出手段は、前記検出用電極部を2つ有しており、
    前記2つの検出用電極部の一方(以下、第1検出用電極部という。)及び他方(以下、第2検出用電極部という。)は、当該第1検出用電極部と前記可動側電極部との間の静電容量(以下、第1静電容量という。)が最大となる前記可動部の前記回転方向に沿った変位量と、当該第2検出用電極部と前記可動側電極部との間の静電容量(以下、第2静電容量という。)が最大となる前記可動部の前記回転方向に沿った変位量とが異なるように配置されており、
    更に、前記変位量検出手段は、前記第1静電容量が最大となるタイミングと、前記第2静電容量が最大となるタイミングとに基づき、前記可動部の前記回転方向に沿った変位量を検出すること、
    を特徴とする光走査装置。
  5. 請求項4に記載の光走査装置において、
    前記可動側電極部は、前記可動部が前記回転方向に振動する際に当該可動部にて前記振動の回転軸となる部分を挟む両側に設けられており、
    前記第1検出用電極部及び前記第2検出用電極部は、前記可動部を挟む両側のうちの一方及び他方で前記可動側電極部と対向するようにそれぞれ設けられていると共に、前記可動側電極部と同一平面に沿って並ばないように設けられていること、
    を特徴とする光走査装置。
  6. 請求項4に記載の光走査装置において、
    前記可動側電極部は、前記可動部が前記回転方向に振動する際に当該可動部にて前記振動の回転軸となる部分を挟む両側のうち、少なくとも片側に設けられており、
    前記第1検出用電極部及び前記第2検出用電極部は、前記可動部を挟む両側のうちの片側で前記可動側電極部と対向するように設けられていると共に、前記可動部の前記回転方向に沿って相異なる位置に設けられていること、
    を特徴とする光走査装置。
  7. 請求項6に記載の光走査装置において、
    前記可動側電極部は、前記可動部が前記回転方向に振動する際に当該可動部にて前記振動の回転軸となる部分を挟む両側に設けられており、
    前記固定側電極部は、前記可動部を挟む両側で前記可動側電極部と対向するように設けられていること、
    を特徴とする光走査装置。
  8. 請求項4ないし請求項7の何れか1項に記載の光走査装置において、
    前記変位量検出手段は、前記第1静電容量が最大となってから前記第2静電容量が最大となるまでに要する時間(以下、特定変位時間という。)を求め、前記第1静電容量が最大となるタイミングからの経過時間と前記特定変位時間との比を用いて、前記可動部の前記回転方向に沿った変位量を検出すること、
    を特徴とする光走査装置。
  9. 請求項8に記載の光走査装置において、
    前記駆動手段は、前記変位量検出手段により求められる特定変位時間が一定の値となるように前記可動側電極部と前記固定側電極部との間に印加する電圧の大きさを制御すること、
    を特徴とする光走査装置。
  10. 請求項1又は請求項2に記載の光走査装置において、
    前記変位量検出手段は、
    前記支持部の弾性変形の度合いを検出する変形検出手段を有し、
    該変形検出手段の検出値に基づき前記可動部の前記回転方向に沿った変位量を検出すること、
    を特徴とする光走査装置。
  11. 請求項10に記載の光走査装置において、
    前記支持部は、前記可動部に一端が接続される軸部と、該軸部の他端を支持する両持ち梁状部とを有しており、
    前記変形検出手段は、前記両持ち梁状部の弾性変形の度合いを検出すること、
    を特徴とする光走査装置。
  12. 請求項10に記載の光走査装置において、
    前記支持部は、前記可動部に一端が接続される軸部と、該軸部の他端を支持する片持ち梁状部とを有しており、
    前記変形検出手段は、前記片持ち梁状部の弾性変形の度合いを検出すること、
    を特徴とする光走査装置。
  13. 請求項10ないし請求項12の何れか1項に記載の光走査装置において、
    前記変形検出手段として、歪ゲージを用いたこと、
    を特徴とする光走査装置。
  14. 請求項10ないし請求項12の何れか1項に記載の光走査装置において、
    前記変形検出手段として、圧電センサを用いたこと、
    を特徴とする光走査装置。
  15. 請求項10ないし請求項14の何れか1項に記載の光走査装置において、
    前記変位量検出手段は、前記変形検出手段の検出値が第1の閾値を通過するタイミングと第2の閾値を通過するタイミングとに基づき、前記可動部の前記回転方向に沿った変位量を検出すること、
    を特徴とする光走査装置。
  16. 請求項15に記載の光走査装置において、
    前記変位量検出手段は、前記変形検出手段の検出値が前記第1の閾値を通過してから前記第2の閾値を通過するまでに要する時間(以下、特定閾値通過時間という。)を求め、前記変形検出手段の検出値が前記第1の閾値を通過するタイミングからの経過時間と前記特定閾値通過時間との比を用いて、前記可動部の前記回転方向に沿った変位量を検出すること、
    を特徴とする光走査装置。
  17. 請求項16に記載の光走査装置において、
    前記駆動手段は、前記変位量検出手段により求められる特定閾値通過時間が一定の値となるように前記可動側電極部と前記固定側電極部との間に印加する電圧の大きさを制御すること、
    を特徴とする光走査装置。
JP2003032709A 2003-02-10 2003-02-10 光走査装置 Pending JP2004245890A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003032709A JP2004245890A (ja) 2003-02-10 2003-02-10 光走査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003032709A JP2004245890A (ja) 2003-02-10 2003-02-10 光走査装置

Publications (1)

Publication Number Publication Date
JP2004245890A true JP2004245890A (ja) 2004-09-02

Family

ID=33018973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003032709A Pending JP2004245890A (ja) 2003-02-10 2003-02-10 光走査装置

Country Status (1)

Country Link
JP (1) JP2004245890A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184603A (ja) * 2004-12-28 2006-07-13 Olympus Corp 偏向器
JP2008129069A (ja) * 2006-11-16 2008-06-05 Denso Corp 2次元光走査装置
WO2010136356A3 (de) * 2009-05-27 2011-04-14 Robert Bosch Gmbh Mikromechanisches bauteil und herstellungsverfahren für ein mikromechanisches bauteil
CN102269869A (zh) * 2011-07-08 2011-12-07 西安励德微系统科技有限公司 一种沟槽隔离锚点梳齿的微扭转镜及其制作方法
JP2013154261A (ja) * 2012-01-26 2013-08-15 Toyota Motor Corp 排ガス浄化用助触媒及びその製造方法
JP2014160140A (ja) * 2013-02-19 2014-09-04 Olympus Corp 光走査装置
JP2017058418A (ja) * 2015-09-14 2017-03-23 富士電機株式会社 光走査装置および内視鏡
CN111208642A (zh) * 2020-01-09 2020-05-29 西安知象光电科技有限公司 一种集成线性角度传感器的微镜
WO2022259912A1 (ja) 2021-06-10 2022-12-15 スタンレー電気株式会社 光走査装置、電子機器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211218A (ja) * 1990-01-18 1992-08-03 Fuji Electric Co Ltd ねじり振動子およびその応用素子
JPH0545603A (ja) * 1991-08-13 1993-02-26 Fujitsu Ltd 共振型スキヤナ
JPH08327927A (ja) * 1995-04-25 1996-12-13 Omron Corp 光走査装置
JPH09101474A (ja) * 1995-10-06 1997-04-15 Denso Corp 光スキャナ装置
JPH1152278A (ja) * 1997-07-31 1999-02-26 Nec Corp 光スキャナとその駆動方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211218A (ja) * 1990-01-18 1992-08-03 Fuji Electric Co Ltd ねじり振動子およびその応用素子
JPH0545603A (ja) * 1991-08-13 1993-02-26 Fujitsu Ltd 共振型スキヤナ
JPH08327927A (ja) * 1995-04-25 1996-12-13 Omron Corp 光走査装置
JPH09101474A (ja) * 1995-10-06 1997-04-15 Denso Corp 光スキャナ装置
JPH1152278A (ja) * 1997-07-31 1999-02-26 Nec Corp 光スキャナとその駆動方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4694196B2 (ja) * 2004-12-28 2011-06-08 オリンパス株式会社 光偏向器
JP2006184603A (ja) * 2004-12-28 2006-07-13 Olympus Corp 偏向器
JP2008129069A (ja) * 2006-11-16 2008-06-05 Denso Corp 2次元光走査装置
US8813573B2 (en) 2009-05-27 2014-08-26 Robert Bosch Gmbh Micromechanical component and production method for a micromechanical component
WO2010136356A3 (de) * 2009-05-27 2011-04-14 Robert Bosch Gmbh Mikromechanisches bauteil und herstellungsverfahren für ein mikromechanisches bauteil
CN102448872A (zh) * 2009-05-27 2012-05-09 罗伯特·博世有限公司 微机械构件和用于微机械构件的制造方法
CN102269869A (zh) * 2011-07-08 2011-12-07 西安励德微系统科技有限公司 一种沟槽隔离锚点梳齿的微扭转镜及其制作方法
JP2013154261A (ja) * 2012-01-26 2013-08-15 Toyota Motor Corp 排ガス浄化用助触媒及びその製造方法
JP2014160140A (ja) * 2013-02-19 2014-09-04 Olympus Corp 光走査装置
JP2017058418A (ja) * 2015-09-14 2017-03-23 富士電機株式会社 光走査装置および内視鏡
CN111208642A (zh) * 2020-01-09 2020-05-29 西安知象光电科技有限公司 一种集成线性角度传感器的微镜
CN111208642B (zh) * 2020-01-09 2022-03-29 西安知象光电科技有限公司 一种集成线性角度传感器的微镜
WO2022259912A1 (ja) 2021-06-10 2022-12-15 スタンレー電気株式会社 光走査装置、電子機器

Similar Documents

Publication Publication Date Title
US6595055B1 (en) Micromechanical component comprising an oscillating body
US7659918B2 (en) Apparatus and methods for adjusting the rotational frequency of a scanning device
US8416484B2 (en) Vibrating mirror element
US7161275B2 (en) Actuator
US10101222B2 (en) Piezoelectric position sensor for piezoelectrically driven resonant micromirrors
CN107615133B (zh) 光扫描装置
JP6024269B2 (ja) 光走査装置
JP2008116678A (ja) 表示装置及び表示方法
TWI605013B (zh) 微光學機電掃描裝置與製造其之方法
US9360664B2 (en) Micromechanical component and method for producing a micromechanical component
CN111819486A (zh) 光扫描装置及其控制方法
JP2004245890A (ja) 光走査装置
JP5098319B2 (ja) 光スキャナ装置
Meinel et al. Piezoelectric scanning micromirror with large scan angle based on thin film aluminum nitride
JPH10104543A (ja) 光走査装置および方法
CN103097937A (zh) 振动反射镜器件
US20230139572A1 (en) Optical scanning device and method of driving micromirror device
JP5434668B2 (ja) 光走査装置
JPH0646207A (ja) 圧電駆動マイクロスキャナ
WO1999019689A1 (fr) Detecteur de vitesse angulaire
JP3114397B2 (ja) 光学装置
JP4973064B2 (ja) アクチュエータ、投光装置、光学デバイス、光スキャナ、および画像形成装置
Ishida et al. Wide angle and high frequency (> 120 degrees@ 10 KHZ/90 Degrees@ 30 KHZ) resonant Si-MEMS mirror using a novel tuning-fork driving
JP2001264676A (ja) 光スキャナ
JP2006081320A (ja) アクチュエータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805