JP2004241421A - 半導体膜の結晶化方法およびその装置 - Google Patents

半導体膜の結晶化方法およびその装置 Download PDF

Info

Publication number
JP2004241421A
JP2004241421A JP2003026187A JP2003026187A JP2004241421A JP 2004241421 A JP2004241421 A JP 2004241421A JP 2003026187 A JP2003026187 A JP 2003026187A JP 2003026187 A JP2003026187 A JP 2003026187A JP 2004241421 A JP2004241421 A JP 2004241421A
Authority
JP
Japan
Prior art keywords
laser
thin film
laser beam
stage
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003026187A
Other languages
English (en)
Inventor
Arichika Ishida
有親 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Central Inc
Original Assignee
Toshiba Matsushita Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Matsushita Display Technology Co Ltd filed Critical Toshiba Matsushita Display Technology Co Ltd
Priority to JP2003026187A priority Critical patent/JP2004241421A/ja
Publication of JP2004241421A publication Critical patent/JP2004241421A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

【課題】小型化できるレーザアニール装置を提供する。
【解決手段】レーザ発振器21からのレーザビームBを、ステージ24上のガラス基板16のアモルファスシリコン薄膜17に照射する。アモルファスシリコン薄膜17へのレーザビームBの照射点を、スキャンミラー23にてガラス基板16上のデバイス18のスクライブライン19まで直線状に移動する。レーザビームBの照射点の移動方向に垂直な方向にステージ24を移動する。アモルファスシリコン薄膜17をレーザアニールして結晶化させてポリシリコン薄膜にする。レーザビームBの照射点の移動範囲が小さくなる。集光レンズ22に極端な長焦点のレンズを用いずに済む。レーザビームBの照射点の移動毎に、ステージ24をレーザビームBのビーム幅だけ移動する。ステージ24の移動を低速にできる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、基板の一主面に形成された非晶質半導体膜にレーザを照射して結晶化させる半導体膜の結晶化方法およびその結晶化装置に関する。
【0002】
【従来の技術】
近年、液晶表示素子などに用いられる薄膜トランジスタ(TFT)のチャネル層には、従来の非晶質半導体膜であるアモルファスシリコン薄膜に代わり、多結晶半導体膜であるポリシリコン薄膜が用いられる。そして、この薄膜トランジスタのチャネル層としてポリシリコン薄膜を用いた場合には、このポリシリコン薄膜のキャリア移動度が高いため、薄膜トランジスタが形成されるガラス基板の表面に高度な回路を組み込むことが可能となる。
【0003】
また、この種の半導体膜の結晶化装置であるレーザアニール装置としては、レーザ発振器からパルス発振されたエキシマレーザビームなどのレーザビームの光路を反射鏡にて屈曲させた後に、このレーザビームを集光レンズにて集光させてから、このレーザビームをビームホモジナイザにて線状のレーザビームに成形させる。
【0004】
そして、この線状のレーザビームを、ステージに設置されたガラス基板上のアモルファスシリコン薄膜に照射させるとともに、ステージを移動させて、このガラス基板上のアモルファスシリコン薄膜を線状のレーザビームにてスキャンさせて、このレーザビームのパルス毎にガラス基板への照射位置を変えて、このガラス基板上のアモルファスシリコン薄膜を結晶化させる。
【0005】
ところが、上記レーザアニール装置では、ガラス基板が設置されたステージを移動させて、このガラス基板上のアモルファスシリコン薄膜を線状のレーザビームにてスキャンさせる際に、このレーザビームのエネルギが過剰になると、ガラス基板上のアモルファスシリコン薄膜がポリシリコン薄膜とならず非晶質化してしまう。
【0006】
これは、レーザビームをアモルファスシリコン薄膜に照射させて、このアモルファスシリコン薄膜をアニールして成長させるときに、ガラス基板とアモルファスシリコン薄膜との界面に残った核から結晶が成長するからである。また、過剰なエネルギを有するレーザビームを照射して、アモルファスシリコン薄膜を完全に溶融させた場合には、このアモルファスシリコン薄膜から結晶化されたポリシリコン薄膜が急激に冷却されるため、核発生する前に固化してしまい、結晶質にならない。
【0007】
これに対し、近年ポリシリコン薄膜の粒径を拡大させ、このポリシリコン薄膜中のキャリア移動度を向上させるために、アモルファスシリコン薄膜を完全溶融させる方法の研究が進められている。そして、この種のレーザアニール装置のレーザ発振器から発振されるレーザビームとしては、連続発振が可能であり、かつアモルファスシリコン薄膜に効率よく吸収されることが必要で、第二高調波を用いたYAGレーザなどが利用されている(例えば、特許文献1参照。)。
【0008】
さらに、この種のレーザアニール装置としては、レーザ発振器から連続発振されるレーザビームの光路を反射鏡にて屈曲させて、この反射鏡にて光路が屈曲されたレーザビームを集光レンズにて集光させた後、このレーザビームの光路に対して垂直な方向に向けて直線状に移動可能なステージに設置されたガラス基板上のアモルファスシリコン薄膜に照射させる。
【0009】
そして、ガラス基板上のアモルファスシリコン薄膜に対して、このアモルファスシリコン薄膜が完全に溶融する程度のエネルギを有するレーザビームをレーザ発振器から連続発振させて照射させるとともに、このガラス基板が設置されたステージを直線状に移動させて、このガラス基板上のアモルファスシリコン薄膜をスキャンさせる。このとき、このガラス基板上の隣接している溶融していないアモルファスシリコン薄膜の部分を核として、このガラス基板の方向に直交した横方向に向けてポリシリコン薄膜の結晶が成長するため、アモルファスシリコン薄膜が完全に溶融されていても、このアモルファスシリコン薄膜が結晶化する。
【0010】
ところが、上記レーザアニール装置では、ガラス基板上のアモルファスシリコン薄膜を完全に溶融させるために、レーザ発振器から連続発振されるレーザビームを絞り込んで、このレーザビームの単位面積当りのエネルギ密度を大きくする必要があるため、ガラス基板上のアモルファスシリコン薄膜に照射されるレーザビームの面積が小さくなる。
【0011】
一方、溶融したアモルファスシリコン薄膜が再結晶化するスピードは、毎秒数m程度ある。このため、このアモルファスシリコン薄膜の処理速度を向上させる観点からは、このアモルファスシリコン薄膜の再結晶化の速度に近い速度でレーザビームを照射させて走査するのが望ましい。このような再結晶化方法を、例えば上記レーザアニール装置にて実現するためには、ガラス基板上のアモルファスシリコン薄膜の処理速度を向上させるために、このガラス基板が設置されたステージを高速で移動させなければならない。一般に液晶表示素子として用いられるガラス基板は、一辺の大きさが40cm以上2m程以下の範囲である。したがって、この範囲を数m/sで稼動するステージは、振動対策の観点から非常に重いものとなってしまう。
【0012】
これに対し、レーザ発振器から発振されたレーザビームの光路をスキャン光学系であるスキャンミラーの駆動にて変化させるレーザアニール装置も考えられる。そして、このレーザアニール装置では、レーザ発振器から発振されたレーザビームを、集光レンズを通過させて集光させた後、スキャンミラーにて反射させて光路を変換させて、ステージ上のガラス基板上で結像させる。また、スキャンミラーの角度を変化させることにより、ガラス基板上でのレーザビームの照射位置を変化させて、このレーザビームにてガラス基板上のアモルファスシリコン薄膜をスキャンさせる。
【0013】
【特許文献1】
特開2001−196597号公報(第4−5頁および図18)
【0014】
【発明が解決しようとする課題】
しかしながら、上記レーザアニール装置にて大型のガラス基板をスキャンさせた場合には、このガラス基板の一端から他端までをスキャンさせる際に、レーザビームの光路の長さ変化を無視できない。このため、このレーザビームの光路の長さ変化に見合った長い焦点距離を有する長焦点の集光レンズを用いなければならないから、この大型のガラス基板の全面をスキャンさせるための集光レンズが大型となってしまうという問題を有している。
【0015】
本発明は、このような点に鑑みたもので、小型化が可能な半導体膜の結晶化方法およびその結晶化装置を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明は、ステージに配設された基板の一主面に形成した非晶質半導体膜にレーザを照射させつつ、このレーザの前記非晶質半導体膜への照射点を光学系にて直線状に移動させる移動方向に対して分割された所定の位置まで、前記レーザの前記非晶質半導体膜への照射点を前記光学系にて直線状に移動させるとともに、この光学系による前記レーザの照射点の移動方向に交差する方向に前記ステージを移動させて、前記基板上の非晶質半導体膜を結晶化させるものである。
【0017】
そして、ステージに配設された基板の一主面に形成した非晶質半導体膜にレーザを照射させつつ、このレーザの非晶質半導体膜への照射点を光学系にて直線状に移動させる移動方向に対して分割された所定の位置まで、このレーザの照射点を光学系にて直線状に移動させるとともに、この光学系によるレーザの照射点の移動方向に交差する方向にステージを移動させて、基板上の非晶質半導体膜を結晶化させる。この結果、レーザの照射点の移動範囲が小さくなるので、光学系に極端な長焦点のものを用いる必要がなくなり、この光学系の小型化が可能となる。また、レーザの照射点の直線状の移動が繰り返される毎に、ステージをレーザの幅だけ移動させればよいから、このステージの移動を低速にできるので、このステージの小型化が可能となる。
【0018】
【発明の実施の形態】
以下、本発明の一実施の形態の構成を図面を参照して説明する。
【0019】
図1に示す半導体膜の結晶化装置としてのレーザアニール装置1は、図2に示すアレイ基板12上の多結晶半導体膜であるポリシリコン(p−Si)薄膜13により形成されたチャネル層14を有する薄膜トランジスタ(Thin Film Transistor:TFT)15を形成させる液晶表示素子などの表示デバイスを製造させる。
【0020】
また、このレーザアニール装置1は、図2に示す透光性基板としてのガラス基板16の一主面である表面上に成膜した非晶質半導体膜としての非単結晶半導体薄膜である略矩形薄膜状のアモルファスシリコン(a−Si)薄膜17に向けて、レーザビームBを照射する。そして、このガラス基板16上のほぼ全面に位置するアモルファスシリコン薄膜17をレーザアニールして結晶化させて、このアモルファスシリコンをポリシリコン薄膜13にする。ここで、このアモルファスシリコン薄膜17は、ガラス基板16の長手方向に沿って、例えば3個分割形成され、かつこのガラス基板16の幅方向に沿って、例えば2個ほど分割形成されて、このガラス基板16の表面に計6個ほど形成されている。
【0021】
さらに、このレーザアニール装置1は、レーザビームBを発振するレーザ発振手段であるレーザ発振器21を備えている。このレーザ発振器21から発振されて出射されたレーザビームBは、ガラス基板16上のアモルファスシリコン薄膜17の面上では点状となる。さらに、このレーザビームBは、ガラス基板16の表面に成膜されたアモルファスシリコン薄膜17に照射され、このアモルファスシリコン薄膜17上で最終的に焦点が結ばれるように調整されている。
【0022】
また、このレーザビームBは、連続発振が可能な連続発振光であるとともに、ガラス基板16上のアモルファスシリコン薄膜17を完全に溶解さる強度のエネルギを有するレーザ光である。具体的に、このレーザビームBは、アモルファスシリコン薄膜17に効率よく吸収される必要があるため、第二高調波を用いたYAGレーザなどである。
【0023】
そして、このレーザ発振器21から発振されるレーザビームBの光路の前方には、このレーザビームBを集光させる集光光学系としてのコンデンサレンズである集光レンズ22が配設されている。この集光レンズ22は、レーザビームBの波形を補正して、このレーザビームBの焦点距離を微調整する。
【0024】
また、この集光レンズ22を通過して集光されたレーザビームBの光路の前方には、このレーザビームBを、例えば90°で全反射させて、このレーザビームBの光路を屈曲させて照射位置を変更させるスキャン光学系としてのスキャンミラー23が配設されている。このスキャンミラー23は、レーザ発振器21から発振されたレーザビームBの光軸を含む平面に沿って回動可能に設置されており、このスキャンミラー23を回動させることにより、ガラス基板16上でのレーザビームBの照射位置を変化させる。具体的に、このスキャンミラー23は、ガラス基板16上にアモルファスシリコン薄膜17として形成された各デバイス18の所定の位置である分割線としてのスクライブライン19間をレーザビームBにてスキャンさせるように設定されている。
【0025】
さらに、このスキャンミラー23は、レーザ発振器21から発振されたレーザビームBによるガラス基板16上のアモルファスシリコン薄膜17への照射点を、このガラス基板16の長手方向であるX方向に向けて一方向に沿って直線状に繰り返して移動させ移動方向に対して分割された所定の位置、すなわちガラス基板16上に形成された各デバイス18のスクライブライン19からスクライブライン19までの範囲を、このガラス基板16上のアモルファスシリコン薄膜17をレーザビームBにて直線方向にスキャンさせる。
【0026】
同時に、このスキャンミラー23の移動によるレーザビームBの照射範囲は、ガラス基板16上にアモルファスシリコン薄膜17として形成された各デバイス18のスクライブライン19からスクライブライン19までとされている。言い換えると、このスキャンミラー23によるレーザビームBの走査範囲の一回のスキャンの終了位置である終端が、ガラス基板16上に形成されるアモルファスシリコン薄膜17による各デバイス18のスクライブライン19の部分に位置するように構成されている。
【0027】
次いで、このスキャンミラー23にて全反射されたレーザビームBの光路の前方には、ガラス基板16が設置されている。このガラス基板16は、このガラス基板16上のアモルファスシリコン薄膜17をレーザビームBの光路上に向けた状態で設置させるステージ24上に設置されている。このステージ24は、スキャンミラー23によるレーザビームBの照射点の移動方向であるスキャン方向に交差する方向、すなわち垂直な方向であるとともにガラス基板16の幅方向であるY方向に向けて直線状に往復されて繰り返して一定の速度で移動されて走査されて、このガラス基板16上のアモルファスシリコン薄膜17全面にレーザビームBを照射させる。具体的に、このステージ24は、このステージ24上に設置されたガラス基板16の一端から他端までレーザビームBの照射点をX方向に向けてスキャンミラー23にて直線状に移動させた後、このステージ24全体をY方向に沿ってレーザビームBの幅だけ移動させる。
【0028】
次に、上記レーザアニール装置で製造される液晶表示素子の構成を図2を参照して説明する。
【0029】
まず、液晶表示素子はアレイ基板12を有し、このアレイ基板12は略透明な絶縁性を有するガラス基板16を備えている。このガラス基板16の表面には、このガラス基板16からの不純物の拡散を防止する絶縁性のアンダーコート層31が成膜されている。このアンダーコート層31は、シリコン窒化膜(SiN)とシリコン酸化膜(SiO)とを有し、プラズマCVD法にて成膜されて形成されている。
【0030】
そして、このアンダーコート層31上には、島状のポリシリコン薄膜13が成膜されている。このポリシリコン薄膜13は、ガラス基板16上に堆積させたアモルファスシリコン薄膜17に向けてレーザビームBを照射して、このアモルファスシリコン薄膜17をレーザアニールして結晶化させることにより形成されている。
【0031】
また、このポリシリコン薄膜13およびアンダーコート層31上には、絶縁性を有するシリコン酸化膜などでゲート酸化膜32が成膜されている。このゲート酸化膜32上には、モリブデン−タングステン合金(MoW)などが成膜されて、ゲート電極33が形成されている。そして、ポリシリコン薄膜13、ゲート酸化膜32、およびゲート電極33により薄膜トランジスタ15が形成されている。
【0032】
さらに、ポリシリコン薄膜13の両側域には、ソース層34とドレイン層35とが形成されている。さらに、ドーピングされていないゲート電極33の下方に位置するポリシリコン薄膜13がチャネル層14となる。
【0033】
そして、ゲート酸化膜32およびゲート電極33上には、シリコン酸化膜などで形成された層間絶縁膜36が成膜されている。この層間絶縁膜36とゲート酸化膜32とには、これら層間絶縁膜36およびゲート酸化膜32を貫通し、ソース層34およびドレイン層35に連通する第1のコンタクトホール37,38が開口されている。
【0034】
さらに、層間絶縁膜36上には、第2の配線層として成膜されたソース電極41と、ドレイン電極42と、信号を供給する図示しない信号線とが形成されている。これらソース電極41、ドレイン電極42および信号線は、アルミニウム(Al)などの低抵抗金属などで成膜形成されている。そして、ソース電極41は、第1のコンタクトホール37を介してソース層34に導電接続されている。同様に、ドレイン電極42は、第1のコンタクトホール38を介してドレイン層35に導電接続されている。
【0035】
そして、層間絶縁膜36、ソース電極41およびドレイン電極42上には保護膜43が成膜されている。この保護膜43上には、各色、例えば赤青緑の3色のカラーフィルタ44が成膜されている。そして、これら保護膜43およびカラーフィルタ44には、ドレイン電極42とコンタクトする第2のコンタクトホール45が開口されている。
【0036】
さらに、カラーフィルタ44上には、透明導体層である画素電極46がマトリクス状に配設されている。この画素電極46は、第2のコンタクトホール45を介してソース電極41に導電接続されている。また、この画素電極46上には、保護膜としての配向膜47が成膜さている。
【0037】
そして、画素電極46に対向して対向基板51が配設されており、この画素電極46に対向した側に位置する対向基板51の一主面には、対向電極52が形成されている。さらに、アレイ基板12の画素電極46と、対向基板51の対向電極52との間には、液晶53が封入されている。
【0038】
次に、上記レーザアニール装置で製造される液晶表示素子の製造方法について説明する。
【0039】
まず、ガラス基板16の一主面に、シリコン酸化膜などをプラズマCVD法などで成膜形成してアンダーコート層31を形成し、連続して各デバイス18に対応させてアモルファスシリコン薄膜17を成膜する。
【0040】
そして、このアモルファスシリコン薄膜17を窒素雰囲気中で熱処理し、このアモルファスシリコン薄膜17中の水素濃度を低下させる。
【0041】
この後、このアモルファスシリコン薄膜17の水素濃度が低下されたガラス基板16を、レーザアニール装置1のステージ24に設置する。
【0042】
この状態で、このレーザアニール装置1のレーザ発振器21からガラス基板16上のアモルファスシリコン薄膜17を完全に溶解させる強度のエネルギを有するレーザビームBを発振させて、このレーザビームBによるガラス基板16上のアモルファスシリコン薄膜17への照射位置をスキャンミラー23の回動により調整して、このアモルファスシリコン薄膜17のA−A間であるスクライブライン19間をX方向に沿って一方向に向けて直線状にスキャンさせる。
【0043】
同時に、このスキャンミラー23の回動によるスキャン方向とは垂直な方向であるY方向に向けてステージ24を移動させて、このアモルファスシリコン薄膜17の全体をレーザアニールして結晶化させて、所望する結晶粒径のポリシリコン薄膜13にする。
【0044】
この後、ステージ24をガラス基板16のY方向における一端から他端まで移動させた後、このステージ24の全体をX方向に向けてA−Aの幅だけ移動させた後、同様のスキャンを繰り返して、このステージ24上のガラス基板16全面のアモルファスシリコン薄膜17を結晶化させる。
【0045】
ここで、レーザビームBにてガラス基板16上のアモルファスシリコン薄膜17をスキャンする際のステージ24の移動速度は、レーザビームBにてA−A間をスキャンする間に、このレーザビームBのビーム幅分だけ移動する速度である。したがって、このステージ24の移動速度は、隣接したスキャン箇所とのオーバーラップを考慮したビーム幅を有効ビーム幅とした場合に、(有効レーザビーム幅)/(A−A間の距離)×(レーザビームの走査速度)となるように設定されている。
【0046】
次いで、ポリシリコン薄膜13をパターニングした後、このポリシリコン薄膜13を含むガラス基板16上に、プラズマCVD法などでゲート酸化膜32を形成する。
【0047】
さらに、このゲート酸化膜32上に、第1配線層をスパッタリング法で成膜し、この第1配線層をエッチング加工して、ゲート電極33を形成する。
【0048】
この後、フォトリソグラフィ技術を用いて、ポリシリコン薄膜13の両側域にソース層34およびドレイン層35を形成して薄膜トランジスタ15を作製する。そして、これらソース層34およびドレイン層35は、ゲート電極33をエッチング加工する際におけるレジストをマスクとして、ボロン(B)やリン(P)などの不純物をイオンドーピング法などで、ポリシリコン薄膜13の両側域をドーピングすることにより形成されている。
【0049】
このとき、ゲート電極33の下方に位置するポリシリコン薄膜13がチャネル層14となる。
【0050】
次いで、ゲート酸化膜32およびゲート電極33上に層間絶縁膜36を形成し、この層間絶縁膜36およびゲート酸化膜32に第1のコンタクトホール37,38を形成する。そして、これら第1のコンタクトホール37,38を含む層間絶縁膜36上に低抵抗金属をスパッタリング法などで成膜しパターニングしてソース電極41、ドレイン電極42および信号線を形成する。
【0051】
そして、層間絶縁膜36、ソース電極41およびドレイン電極42上に保護膜43を形成し、この保護膜43上にカラーフィルタ44を形成する。
【0052】
さらに、このカラーフィルタ44上にITO(Indium Tin Oxide)などの透明導電体層を成膜する。
【0053】
そして、このカラーフィルタ44をエッチング加工して画素電極46を形成する。
【0054】
この後、対向基板51とアレイ基板12とを対向させて配設する。この対向基板51のアレイ基板12と対向する側の一主面には、対向電極52が形成されている。
【0055】
そして、これら対向基板51とアレイ基板12との間に液晶53を注入する。
【0056】
上述したように、上記一実施の形態によれば、ステージ24に設置したガラス基板16上のアモルファスシリコン薄膜17へのレーザビームBの照射点をスキャンミラー23の回動にてX方向に沿って一方向に繰り返して移動させて、このガラス基板16上のアモルファスシリコン薄膜17のA−A間をスキャンさせながら、このスキャンミラー23の回動によるレーザビームBのスキャン方向に垂直な方向であるY方向に向けてステージ24を移動させて、このガラス基板16上のアモルファスシリコン薄膜17全体を結晶化させてポリシリコン薄膜13とさせる。
【0057】
したがって、液晶表示素子の作成に用いられるような大型なガラス基板16上のアモルファスシリコン薄膜17を完全に溶融させる方式のレーザアニールを実現するレーザアニール装置1であっても、このレーザアニール装置1のレーザ発振器21から発振されるレーザビームBによるガラス基板16上のアモルファスシリコン薄膜17への照射点の移動範囲、すなわち走査範囲が小さくなるので、集光レンズ22に極端な長い焦点距離を有する長焦点のレンズを用いる必要がなくなるから、この集光レンズ22を小型化できる。
【0058】
また、レーザビームBの照射点の直線状の移動が繰り返される毎に、ステージ24をレーザビームBの幅だけ移動させるだけで、このステージ24に設置したガラス基板16上のアモルファスシリコン薄膜17全体を効率良くポリシリコン薄膜13に結晶化できる。このため、このステージ24の移動速度がより低速になるので、振動対策などのためにステージ24の重量を大きくする必要がなくなり、このステージ24を小型化できるため、これらステージ24および集光レンズ22を備えたレーザアニール装置1を小型化できる。
【0059】
さらに、ステージ24に設置されるガラス基板16を、液晶表示素子などの表示デバイスに用いられるものに適用させた場合には、レーザビームBとの継ぎ目の位置、すなわち図1中の点Aの位置を、スクライブライン19の部分のデバイス18のない領域に置くことができる。この結果、ガラス基板16の大きさを表示デバイスに適用させた場合であっても、この表示デバイスの表示部にレーザビームBの継ぎ目の影響が出なくなるので、この表示デバイスから製造される液晶表示装置などの歩留まりを向上できる。
【0060】
なお、上記一実施の形態では、ガラス基板16の表面にX方向に2個およびY方向に3個である計6個の複数のアモルファスシリコン薄膜17を形成し、これらアモルファスシリコン薄膜17のそれぞれにレーザビームBを照射させて、これらアモルファスシリコン薄膜17のそれぞれをポリシリコン薄膜13にするレーザアニール装置1について説明したが、このガラス基板16の表面に形成されるアモルファスシリコン薄膜17の個数や面積を必要に応じて変更させても対応させて用いることができる。
【0061】
【発明の効果】
本発明によれば、光学系によるレーザの照射点の移動方向に対して分割された所定の位置まで、このレーザの照射点を光学系にて直線状に移動させるとともに、この光学系によるレーザの照射点の移動方向に交差する方向にステージを移動させることにより、レーザの照射点の移動範囲が小さくなるので、光学系に極端な長焦点のものを用いる必要がなくなり、この光学系の小型化が可能となるとともに、レーザの照射点の直線状の移動が繰り返される毎に、ステージをレーザの幅だけ移動させればよいから、このステージの移動を低速にでき、このステージを小型化できる。
【図面の簡単な説明】
【図1】本発明の半導体膜の結晶化装置の一実施の形態を示す説明図である。
【図2】同上半導体膜の結晶化装置にて製造される液晶表示素子を示す断面図である。
【符号の説明】
1 半導体膜の結晶化装置としてのレーザアニール装置
16 基板としてのガラス基板
17 非晶質半導体膜としてのアモルファスシリコン薄膜
18 デバイス
19 所定の位置としての分割線であるスクライブライン
21 レーザ発振手段としてのレーザ発振器
22 光学系としての集光レンズ
23 光学系としてのスキャンミラー
24 ステージ
B レーザとしてのレーザビーム

Claims (4)

  1. ステージに配設された基板の一主面に形成した非晶質半導体膜にレーザを照射させつつ、
    このレーザの前記非晶質半導体膜への照射点を光学系にて直線状に移動させる移動方向に対して分割された所定の位置まで、前記レーザの前記非晶質半導体膜への照射点を前記光学系にて直線状に移動させるとともに、この光学系による前記レーザの照射点の移動方向に交差する方向に前記ステージを移動させて、前記基板上の非晶質半導体膜を結晶化させることを特徴とする半導体膜の結晶化方法。
  2. 光学系によりレーザが照射される分割された所定の位置は、基板上の非晶質半導体膜に形成されたデバイスの分割線までであることを特徴とする請求項1記載の半導体膜の結晶化方法。
  3. 非晶質半導体膜が一主面に形成された基板が配設されるステージと、
    このステージに配設された前記基板上の非晶質半導体膜にレーザを照射して、前記非晶質半導体膜を結晶化させるレーザ発振手段と、
    このレーザ発振手段から発振されたレーザによる前記非晶質半導体膜への照射点を直線状に移動させる移動方向に対して分割された所定の位置まで、前記レーザの前記非晶質半導体膜への照射点を直線状に移動させる光学系とを具備し、
    前記ステージは、前記光学系による前記レーザの照射点の移動方向に交差する方向に移動されることを特徴とした半導体膜の結晶化装置。
  4. 光学系によりレーザが照射される分割された所定の位置は、基板上の非晶質半導体膜に形成されたデバイスの分割線までであることを特徴とした請求項3記載の半導体膜の結晶化装置。
JP2003026187A 2003-02-03 2003-02-03 半導体膜の結晶化方法およびその装置 Pending JP2004241421A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003026187A JP2004241421A (ja) 2003-02-03 2003-02-03 半導体膜の結晶化方法およびその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003026187A JP2004241421A (ja) 2003-02-03 2003-02-03 半導体膜の結晶化方法およびその装置

Publications (1)

Publication Number Publication Date
JP2004241421A true JP2004241421A (ja) 2004-08-26

Family

ID=32954266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003026187A Pending JP2004241421A (ja) 2003-02-03 2003-02-03 半導体膜の結晶化方法およびその装置

Country Status (1)

Country Link
JP (1) JP2004241421A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343092A (ja) * 2003-04-21 2004-12-02 Semiconductor Energy Lab Co Ltd ビーム照射装置、ビーム照射方法、及び薄膜トランジスタの作製方法
JP2006134986A (ja) * 2004-11-04 2006-05-25 Sony Corp レーザ処理装置
JP2009206386A (ja) * 2008-02-29 2009-09-10 Hitachi Computer Peripherals Co Ltd レーザ照射装置及び該レーザ照射装置の焦点制御方法及びチルト制御方法
US7915099B2 (en) 2003-04-21 2011-03-29 Semiconductor Energy Laboratory Co., Ltd. Beam irradiation apparatus, beam irradiation method, and method for manufacturing semiconductor device
US8853062B2 (en) 2011-10-18 2014-10-07 Samsung Display Co., Ltd. Laser crystallization apparatus and laser crystallization method using the apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343092A (ja) * 2003-04-21 2004-12-02 Semiconductor Energy Lab Co Ltd ビーム照射装置、ビーム照射方法、及び薄膜トランジスタの作製方法
JP4503343B2 (ja) * 2003-04-21 2010-07-14 株式会社半導体エネルギー研究所 ビーム照射装置、ビーム照射方法、及び薄膜トランジスタの作製方法
US7915099B2 (en) 2003-04-21 2011-03-29 Semiconductor Energy Laboratory Co., Ltd. Beam irradiation apparatus, beam irradiation method, and method for manufacturing semiconductor device
JP2006134986A (ja) * 2004-11-04 2006-05-25 Sony Corp レーザ処理装置
JP2009206386A (ja) * 2008-02-29 2009-09-10 Hitachi Computer Peripherals Co Ltd レーザ照射装置及び該レーザ照射装置の焦点制御方法及びチルト制御方法
US8853062B2 (en) 2011-10-18 2014-10-07 Samsung Display Co., Ltd. Laser crystallization apparatus and laser crystallization method using the apparatus

Similar Documents

Publication Publication Date Title
JP4474108B2 (ja) 表示装置とその製造方法および製造装置
JP4413569B2 (ja) 表示パネルの製造方法及び表示パネル
JP4127565B2 (ja) 半導体装置の作製方法
JP5063660B2 (ja) 半導体装置の作製方法
JP5427753B2 (ja) 半導体装置の作製方法
KR100703111B1 (ko) 레이저 어닐링 방법 및 레이저 어닐링 장치
US7033434B2 (en) Mask for crystallizing, method of crystallizing amorphous silicon and method of manufacturing array substrate using the same
JP2003022969A (ja) マスクを利用したシリコンの結晶化方法
JP2004179474A6 (ja) レーザー照射装置
WO2007067541A2 (en) Systems and methods for processing a film, and thin films
KR20040062084A (ko) 실리콘 결정화방법
JP2008053394A (ja) 表示装置の製造方法
US20030148566A1 (en) Production method for flat panel display
JP2011165717A (ja) 表示装置及び表示装置の製造方法
KR100916656B1 (ko) 레이저 조사 장치 및 이를 이용한 다결정 규소 박막트랜지스터의 제조 방법
JP2004241421A (ja) 半導体膜の結晶化方法およびその装置
JP2003243304A (ja) 半導体装置の作製方法
JP4293414B2 (ja) 半導体膜の結晶化方法及びそれを用いた半導体装置の作製方法
JP4035019B2 (ja) 半導体装置の製造方法
JP2003249448A (ja) 半導体装置の製造方法、半導体装置の製造装置、半導体膜の製造装置、および半導体装置
JP2005276996A (ja) 平面表示装置の製造方法
JP2011216665A (ja) 結晶性半導体膜の形成方法、および、半導体デバイスの製造方法
JP2009152224A (ja) 半導体素子の製造方法、アクティブマトリクス基板の製造方法、表示装置の製造方法、及び、レーザー結晶化装置
JP2004193201A (ja) レーザー照射方法
JP3845566B2 (ja) 薄膜半導体装置及びその製造方法並びに当該装置を備える電子デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060117

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081022