JP2004238604A - ガスバリア層形成用塗料及び該塗料を用いて成るガスバリア性積層体 - Google Patents

ガスバリア層形成用塗料及び該塗料を用いて成るガスバリア性積層体 Download PDF

Info

Publication number
JP2004238604A
JP2004238604A JP2003105898A JP2003105898A JP2004238604A JP 2004238604 A JP2004238604 A JP 2004238604A JP 2003105898 A JP2003105898 A JP 2003105898A JP 2003105898 A JP2003105898 A JP 2003105898A JP 2004238604 A JP2004238604 A JP 2004238604A
Authority
JP
Japan
Prior art keywords
gas barrier
barrier layer
layer
forming
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003105898A
Other languages
English (en)
Inventor
Miyuki Kamoshita
深雪 鴨下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2003105898A priority Critical patent/JP2004238604A/ja
Publication of JP2004238604A publication Critical patent/JP2004238604A/ja
Pending legal-status Critical Current

Links

Abstract

【課題】本発明の課題は、構造中に塩素を含有せず、高湿度下での酸素ガスバリア性に優れるガスバリア性積層体を、従来よりも温和な条件で得ることにある。
【解決手段】水酸基及びエチレン性不飽和二重結合を有するモノマー(a1)と、カルボキシル基もしくは酸無水物基及びエチレン性不飽和二重結合を有するモノマー(a2)とを重合して成るコポリマー(A)を含有することを特徴とするガスバリア層形成用塗料。
【選択図】 なし

Description

【0001】
【発明の属する技術分野】
本発明は、高湿度下においても優れたガスバリア性を有するガスバリア性積層体を形成し得る塗料及び該塗料を用いて成るガスバリア性積層体に関するものである。
【0002】
【従来の技術】
ポリアミドフィルム、ポリエステルフィルム等の熱可塑性樹脂フィルムは、強度、透明性、成形性に優れていることから、包装材料として幅広い用途に使用されている。しかし、これらの熱可塑性樹脂フィルムは酸素等のガス透過性が大きいので、一般食品、レトルト処理食品、化粧品、医療用品、農薬等の包装に使用した場合、長期間保存する内にフィルムを透過した酸素等のガスにより内容物の変質が生じることがある。
【0003】
そこで、熱可塑性樹脂の表面にポリ塩化ビニリデン(以下PVDCと略記する)のエマルジョン等をコーティングし、ガスバリア性の高いPVDC層を形成せしめた積層フィルムが食品包装等に幅広く使用されてきた。しかし、PVDCは焼却時に酸性ガス等の有機物質を発生するため、近年環境への関心が高まるとともに他材料への移行が強く望まれている。
【0004】
PVDCに代わる材料としてポリビニルアルコール(以下PVAと略記する)は有毒ガスの発生もなく、低湿度雰囲気下でのガスバリア性も高いが、湿度が高くなるにつれて急激にガスバリア性が低下するので、水分を含む食品等の包装には用いることが出来ない場合が多い。
【0005】
PVAの高湿度下でのガスバリア性の低下を改善したポリマーとして、ビニルアルコールとエチレンの共重合体(EVOH)が知られている。しかし、高湿度でのガスバリア性を実用レベルに維持するためにはエチレンの共重合比をある程度高くする必要があり、このようなポリマーは水に難溶となる。
そこで、エチレンの共重合比の高いEVOHを用いてコーティング剤を得るには、有機溶媒または水と有機溶媒の混合溶媒を用いる必要があり、環境問題の観点からも望ましくなく、また有機溶媒の回収工程などを必要とするため、コスト高になるという問題がある。
【0006】
水溶性のポリマーからなる液状組成物をフィルムにコートし、高湿度下でも高いガスバリア性を発現させる方法として、PVAとポリアクリル酸またはポリメタクリル酸の部分中和物とからなる水溶液をフィルムにコートし熱処理することにより、両ポリマーをエステル結合により架橋する方法が提案されている(特許文献1:特開平06−220221号公報、特許文献2:同07−102083号公報、特許文献3:同07−205379号公報、特許文献4:同07−266441号公報、特許文献5:同08−041218号公報、特許文献6:同10−237180号公報、特許文献7:同特開2000−000931号公報等参照)。
しかし、上記公報に提案される方法では、高度なガスバリア性を発現させるためには高温での加熱処理もしくは長時間の加熱処理が必要であり、製造時に多量のエネルギーを要するため環境への負荷が少なくない。
また、高温で熱処理すると、バリア層を構成するPVA等の変色や分解の恐れが生じる他、バリア層を積層しているプラスチックフィルム等の基材に皺が生じるなどの変形が生じ、包装用材料として使用できなくなる。プラスチック基材の劣化を防ぐためには、高温加熱に十分耐え得るような特殊な耐熱性フィルムを基材とする必要があり、汎用性、経済性の点で難がある。
一方、熱処理温度が低いと、非常に長時間処理する必要があり、生産性が低下するという問題点が生じる。
【0007】
【特許文献1】
特開平06−220221号公報
【特許文献2】
特開平07−102083号公報
【特許文献3】
特開平07−205379号公報
【特許文献4】
特開平07−266441号公報
【特許文献5】
特開平08−041218号公報
【特許文献6】
特開平10−237180号公報
【特許文献7】
特開2000−000931号公報
【0008】
また、PVAに架橋構造を導入することで、上記PVAフィルムの問題点を解決するための検討がなされている。しかし、一般的に架橋密度の増加と共にPVAフィルムの酸素ガスバリア性の湿度依存性は小さくなるが、その反面PVAフィルムが本来有している乾燥条件下での酸素ガスバリア性が低下してしまい、結果として高湿度下での良好な酸素ガスバリア性を得ることは非常に困難である。尚、一般にポリマー分子を架橋することにより耐水性は向上するが、ガスバリア性は酸素等の比較的小さな分子の侵入や拡散を防ぐ性質であり、単にポリマーを架橋してもガスバリア性が得られるとは限らず、たとえば、エポキシ樹脂やフェノール樹脂などの三次元架橋性ポリマーはガスバリア性を有していない。
【0009】
PVAのような水溶性のポリマーを用いながらも高湿度下でも高いガスバリア性を有するガスバリア性積層体を、従来よりも低温もしくは短時間の加熱処理で提る方法が提案されている(特許文献8:特開2001−323204号公報、特許文献9:同2002−020677号公報、特許文献10:同2002−241671号公報参照)。
【0010】
【特許文献8】
特開2001−323204号公報
【特許文献9】
特開2002−020677号公報
【特許文献10】
特開2002−241671号公報
特許文献8〜10に記載されるコート剤は、水溶性のポリマーを用いながらも特許文献1〜7に記載されるコート剤よりも低温もしくは短時間の加熱で高湿度下で従来よりも高いガスバリア性を有するガスバリア性積層体を形成し得る。
しかし、特許文献1〜10に記載される、加熱によって、PVA中の水酸基とポリアクリル酸中もしくはエチレン−マレイン酸共重合体中のCOOHとをエステル化反応させたり、金属架橋構造を導入するという方法では、高湿度下におけるガスバリア性の向上には限界があった。過酷な加熱条件によって、プラスチック基材や形成されつつあるバリア層が熱劣化したためと考えられる。また、高温長時間という加熱条件は、プラスチック基材や形成されつつあるバリア層の着色やカールをも生起し、この点でも好ましくない。
以上の結果、高湿度下におけるガスバリア性のさらなる向上が益々要求されつつある今日、特許文献1〜10に記載されるコート剤を加熱、硬化するだけでは、より厳しい要求には応えられなかった。
【0011】
【発明が解決しようとする課題】
本発明の課題は、水溶性のポリマーを用いながらも高湿度下で従来よりも高いガスバリア性を有するガスバリア性積層体を、従来よりも温和な条件で提ることにある。
【0012】
【課題を解決するための手段】
本発明者らは、鋭意研究の結果、特定の樹脂組成を有する塗料をプラスチック基材上に積層することによって上記課題を解決出来ることを見出し本発明に到達した。
すなわち、第1の発明は、水酸基及びエチレン性不飽和二重結合を有するモノマー(a1)と、カルボキシル基もしくは酸無水物基及びエチレン性不飽和二重結合を有するモノマー(a2)とを、−COOH基/−OH基=0.05〜100のモル比で重合して成るコポリマー(A)を含有することを特徴とするガスバリア層形成用塗料に関する。
【0013】
第2の発明は、水酸基及びエチレン性不飽和二重結合を有するモノマー(a1)と、カルボキシル基もしくは酸無水物基及びエチレン性不飽和二重結合を有するモノマー(a2)の少なくともいずれか一方が(メタ)アクリロイル基を有することを特徴とする第1の発明に記載のガスバリア層形成用塗料に関し、
第3の発明は、水酸基及びエチレン性不飽和二重結合を有するモノマー(a1)がグリセリン(メタ)アクリレートであること特徴とする第1又は第2の発明に記載のガスバリア層形成用塗料に関する。
第4の発明は、コポリマー(A)が、エポキシ基及びエチレン性不飽和二重結合を有するモノマー(a3)をモノマー(a1)及びモノマー(a2)と共重合してなることを特徴とする第1ないし第3の発明のいずれか記載のガスバリア層形成用塗料に関し、第5の発明は、エポキシ基及びエチレン性不飽和二重結合を有するモノマー(a3)がグリシジル(メタ)アクリレートであること特徴とする第4の発明に記載のガスバリア層形成用塗料に関する。
【0014】
第6の発明は、無機層状化合物(B)を含有することを特徴とする第1ないし第5の発明のいずれかに記載のガスバリア層形成用塗料に関し、
第7の発明は、コポリマー(A)100重量部に対し、無機層状化合物(B)を多くとも100重量部含有することを特徴とする第6の発明に記載のガスバリア層形成用塗料に関する。
【0015】
第8の発明は、塩基性化合物もしくは塩基性以外の金属化合物を含有することを特徴とする第1ないし第7の発明のいずれか記載のガスバリア層形成用塗料に関する。
【0016】
第9の発明は、第1ないし第8の発明のいずれかに記載のガスバリア層形成用塗料から形成されるガスバリア層が、プラスチック基材上に直に、又はアンダーコート層を介してプラスチック基材上に積層されたことを特徴とするガスバリア性積層体に関し、
第10の発明は、プラスチック基材又はアンダーコート層とは接していないガスバリア層の他の面に、オーバーコート層が積層されたことを特徴とする第9の発明に記載のガスバリア性積層体に関する。
【0017】
第11の発明は、アンダーコート層及びオーバーコート層の少なくともいずれか一方が、ポリウレタン系ポリマーを含有することを特徴とする第9又は第10の発明に記載のガスバリア性積層体に関する。
【0018】
第12の発明は、アンダーコート層及びオーバーコート層の少なくともいずれか一方が、2価以上の金属化合物を含有することを特徴とする第9ないし第11の発明のいずれかに記載のガスバリア性積層体に関し、
第13の発明は、2価以上の金属化合物が、水酸基もしくはカルボキシル基と架橋し得ることを特徴とする第12の発明に記載のガスバリア性積層体に関し、
第14の発明は、2価以上の金属が、Mg又はCaであることを特徴とする第12又は第13の発明に記載のガスバリア性積層体に関する。
【0019】
【発明の実施の形態】
以下、本発明について詳細に説明する。本発明のガスバリア層形成塗料は、後述するプラスチック基材等に塗布し、ガスバリア性を付与するためのものであり、塗料中に水酸基及びエチレン性不飽和二重結合を有するモノマー(a1)(以下、モノマー(a1))と、カルボキシル基もしくは酸無水物基及びエチレン性不飽和二重結合を有するモノマー(a2)(以下、モノマー(a2))とを重合して成るコポリマー(A)を含有するものである。
【0020】
本発明において用いられる水酸基及びエチレン性不飽和二重結合を有するモノマー(a1)としては、エチレン性不飽和二重結合としてアクリロイル基もしくはメタクリロイル基(以下、両者を合わせて(メタ)アクリロイル基という)を有するものが好ましい。
例えば、2−ヒドロキシエチル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、3−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、グリセリン(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート(CHCHOユニットの繰り返しが1〜6のものが好ましい)n=1〜6)、水酸基末端ウレタン(メタ)アクリレート等が挙げられる。2−ヒドロキシエチル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、3−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、グリセリン(メタ)アクリレートが好ましく、2−ヒドロキシエチル(メタ)アクリレート、グリセリン(メタ)アクリレートがより好ましく、特にグリセリン(メタ)アクリレートが好ましい。
【0021】
本発明において用いられるカルボキシル基もしくは酸無水物基及びエチレン性不飽和二重結合を有するモノマー(a2)としては、エチレン性不飽和二重結合としてアクリロイル基もしくはメタクリロイル基(以下、両者を合わせて(メタ)アクリロイル基という)を有するものが好ましい。
例えば(メタ)アクリル酸、2−カルボキシエチル(メタ)アクリレート、ω−カルボキシ−ポリカプロラクトンモノアクリレート、マレイン酸、無水マレイン酸、フマル酸、無水フマル酸、シトラコン酸、無水シトラコン酸、イタコン酸、無水イタコン酸等が挙げられ、(メタ)アクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸が好ましい。
【0022】
本発明のガスバリア層形成用塗料に用いられるポリマー(A)は、−COOH基と−OH基とのモル比が、−COOH基/OH基=0.05〜100となるようにモノマー(a1)とモノマー(a2)等とを共重合することが重要であり、0.1〜90となるように共重合することが好ましく、0.2〜50となるように共重合することがより好ましく、0.5〜25となるように共重合することが最も好ましい。即ち−OH基1モルに対して−COOH基が0.05モルよりも少なかったり、逆に−COOH基が100モルよりも多かったりすると、バリア性向上の効果が小さい。
【0023】
本発明においてコポリマー(A)として、モノマー(a1)及びモノマー(a2)をエポキシ基及びエチレン性不飽和二重結合を有するモノマー(a3)と共重合してなるコポリマーを用いることができる。
本発明において用いられるエポキシ基及びエチレン性不飽和二重結合を有するモノマー(a3)としては、例えば、グリシジル(メタ)アクリレート、アリルグリシジルエーテル、脂環式グリシジル基とエチレン性二重結合とを併せ持つ重合性モノマー等、様々なものが挙げられ、グリシジル(メタ)アクリレート、アリルグリシジルエーテルが好ましく、グリシジル(メタ)アクリレートが最も好ましい。
尚、本発明において(メタ)アクリレートとは、アクリロイル基もしくはメタクリロイル基を有するという意であり、グリシジル(メタ)アクリレートとは、グリシジルメタクリレート、グリシジルアクリレートの略である。
【0024】
【0025】
グリシジル(メタ)アクリレートを共重合した場合、グリシジル(メタ)アクリレートに由来するコポリマー(A)中のエポキシ基が、ガスバリア層を形成する際に、コポリマー(A)中のモノマー(a2)に由来するカルボキシル基と反応する。その結果形成される構造は、グリセリン(メタ)アクリレート由来の水酸基とモノマー(a2)由来のカルボキシル基との反応によって形成される構造と同じである。水酸基とカルボキシル基との反応よりも、エポキシ基とカルボキシル基との反応の方が一般に生じやすい。従って、コポリマー(A)を形成する際に、モノマー(a3)、特にグリシジル(メタ)アクリレートをさらに共重合させる方が、モノマー(a3)を共重合させない場合よりも、より温和な条件でガスバリア層を形成し得る可能性がある。
例えば、グリセリン(メタ)アクリレートと(メタ)アクリル酸とグリシジル(メタ)アクリレートとのコポリマーとしては、(グリセリン(メタ)アクリレート+グリシジル(メタ)アクリレート)/(メタ)アクリル酸=50/50〜5/95(重量比)で共重合してなるものが好ましく、40/60〜10/90(重量比)で共重合してなるものがより好ましい。
【0026】
ポリマー(A)としては、これらモノマー(a1)、(a2)及び(a3)以外のモノマーも適宜共重合してなるものも使用することができる。
例えば、クロトン酸、(メタ)アクリル酸等の不飽和モノカルボン酸のエステル化物であって水酸基やエポキシ基を有しないモノマー、
(メタ)アクリルアミド、(メタ)アクリルニトリル、
スチレン、スチレンスルホン酸、ビニルトルエン、
エチレンなどの炭素数2〜30のα−オレフィン類、
アルキルビニルエーテル類、ビニルピロリドン等が挙げられる。
【0027】
尚、本発明のガスバリア層形成用塗料は水溶性とすることが好ましく、用いられるポリマー(A)も水溶性とすることが好ましい。即ち、従来の技術の欄でも述べたように有機溶剤を用いることは環境の面から好ましくなく、有機溶剤の回収装置を設置することはコストの面から好ましくないからである。従って、ポリマー(A)を水溶性とするためには、疎水性の共重合成分を多量に含有させると水溶性が損なわれるので好ましくない。
【0028】
モノマー(a1)とモノマー(a2)等の共重合は、重合開始剤の存在下、常法に従って不活性ガス気流下にて50〜150℃で2〜10時間かけて行われる。必要に応じて溶剤の存在下で行っても差し支えない。
【0029】
重合開始剤としては、ベンゾイルパーオキサイド、クメンヒドロパーオキサイド、t−ブチルヒドロパーオキサイド、ジイソプロピルパーオキシカーボネート、ジt−ブチルパーオキサイド、t−ブチルパーオキシベンゾエート等の有機過酸化物、2,2’−アゾビスイソブチロニトリル等のアゾ化合物等が挙げられる。重合開始剤はモノマー(a1)等の合計100重量部に対して好ましくは0.5〜20重量部使用される。
【0030】
上記コポリマー(A)とは、上記モノマー(a1)と上記モノマー(a2)とのコポリマー、複数のコポリマー混合物以外にも、必要に応じて水酸基やカルボキシル基を有しない他のモノマーとのコポリマー、およびこれらの混合物も含まれる。
【0031】
本発明のガスバリア層形成用塗料は、さらに無機層状化合物(B)を含有することもできる。無機層状化合物(B)を含有することにより、バリア層やガスバリア性積層体のガスバリア性をさらに向上させることができる。
ガスバリア性という観点からは、無機層状化合物(B)の含有量は多い方が好ましい。しかし、無機層状化合物(B)は、水親和性が強く吸湿しやすい。また無機層状化合物(B)を含有する塗料は、高粘度化しやすいので塗装性を損ないやすい。さらに無機層状化合物(B)の含有量が多いと、形成されるガスバリア層やガスバリア性積層体の透明性が低下する。
そこで、これらの観点から無機層状化合物(B)は、コポリマー(A)100重量部に対して、1〜300重量部であることが好ましく、2〜200重量部であることがより好ましく、多くとも100重量部であることがさらに好ましい。
【0032】
ここでいう無機層状化合物(B)とは、単位結晶層が重なって層状構造を形成する無機化合物であり、特に溶媒中で膨潤、劈開するものが好ましい。
無機層状化合物(B)の好ましい例としては、モンモリロナイト、バイデライト、サポナイト、ヘクトライト、ソーコナイト、バーミキュライト、フッ素雲母、白雲母、パラゴナイト、金雲母、黒雲母、レピドライト、マーガライト、クリントナイト、アナンダイト、緑泥石、ドンバサイト、スドーアイト、クッケアイト、クリノクロア、シャモサイト、ニマイト、テトラシリリックマイカ、タルク、パイロフィライト、ナクライト、カオリナイト、ハロイサイト、クリソタイル、ナトリウムテニオライト、ザンソフィライト、アンチゴライト、ディッカイト、ハイドロタルサイトなどがあり、膨潤性フッ素雲母又はモンモリロナイトが特に好ましい。
【0033】
これらの無機層状化合物は、天然に産するものであっても、人工的に合成あるいは変性されたものであってもよく、またそれらをオニウム塩などの有機物で処理したものであってもよい。
【0034】
膨潤性フッ素雲母系鉱物は白色度の点で最も好ましく、次式で示されるものである。
α(MF)・β(aMgF・bMgO)・γSiO(式中、Mはナトリウム又はリチウムを表し、α、β、γ、a及びbは各々係数を表し、0.1 ≦α≦2、2≦β≦3.5 、3≦γ≦4、0≦a≦1、0≦b≦1、a+b=1である。)
【0035】
このような膨潤性フッ素雲母系鉱物の製造法としては、例えば、酸化珪素と酸化マグネシウムと各種フッ化物とを混合し、その混合物を電気炉あるいはガス炉中で1400〜1500℃の温度範囲で完全に溶融し、その冷却過程で反応容器内にフッ素雲母系鉱物を結晶成長させる、いわゆる溶融法がある。
【0036】
また、タルクを出発物質として用い、これにアルカリ金属イオンをインターカレーションして膨潤性フッ素雲母系鉱物を得る方法がある(特開平2−149415号公報)。この方法では、タルクに珪フッ化アルカリあるいはフッ化アルカリを混合し、磁性ルツボ内で約 700〜1200℃で短時間加熱処理することによって膨潤性フッ素雲母系鉱物を得ることができる。
【0037】
この際、タルクと混合する珪フッ化アルカリあるいはフッ化アルカリの量は、混合物全体の10〜35重量%の範囲とすることが好ましく、この範囲を外れる場合には膨潤性フッ素雲母系鉱物の生成収率が低下するので好ましくない。
【0038】
珪フッ化アルカリ又はフッ化アルカリのアルカリ金属は、ナトリウムあるいはリチウムとすることが好ましい。これらのアルカリ金属は単独で用いてもよいし併用してもよい。また、アルカリ金属のうち、カリウムの場合には膨潤性フッ素雲母系鉱物が得られないが、ナトリウムあるいはリチウムと併用し、かつ限定された量であれば膨潤性を調節する目的で用いることも可能である。
【0039】
さらに、膨潤性フッ素雲母系鉱物を製造する工程において、アルミナを少量配合し、生成する膨潤性フッ素雲母系鉱物の膨潤性を調整することも可能である。
【0040】
モンモリロナイトは、次式で示されるもので、天然に産出するものを精製することにより得ることができる。
MaSi(AlMg)O10(OH)・nHO(式中、Mはナトリウムのカチオンを表し、aは0.25〜0.60である。また、層間のイオン交換性カチオンと結合している水分子の数は、カチオン種や湿度等の条件に応じて変わりうるので、式中ではnHOで表す。)
またモンモリロナイトには次式群で表される、マグネシアンモンモリロナイト、鉄モンモリロナイト、鉄マグネシアンモンモリロナイトの同型イオン置換体も存在し、これらを用いてもよい。
MaSi(Al1.67−aMg0.5+a)O10(OH)・nH
MaSi(Fe 3+Mg)O10(OH)・nH
MaSi(Fe1.67 3+Mg0.5+a)O10(OH)・nH
(式中、Mはナトリウムのカチオンを表し、aは0.25〜0.60である。)
【0041】
通常、モンモリロナイトはその層間にナトリウムやカルシウム等のイオン交換性カチオンを有するが、その含有比率は産地によって異なる。本発明においては、イオン交換処理等によって層間のイオン交換性カチオンがナトリウムに置換されていることが好ましい。また、水処理により精製したモンモリロナイトを用いることが好ましい。
【0042】
無機層状化合物(B)は、コポリマー(A)に直接混合することもできるが、混合する前に予め液状媒体に膨潤、分散しておくことが好ましい。膨潤、分散用の液状媒体としては、特に限定されないが、例えば天然の膨潤性粘土鉱物の場合、水、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール、ジエチレングリコール、等のアルコール類、ジメチルホルムアミド、ジメチルスルホキシド、アセトン等が挙げられ、水やメタノール等のアルコール類がより好ましい。
【0043】
本発明のガスバリア層形成用塗料は、コポリマー(A)の他に、塩基性化合物や塩基性以外の金属化合物を含有することが好ましい。これらがどのような作用機構を担うのか、その詳細はまだ不明ではあるが、これらを含有することによって、ガスバリア性が向上する。それぞれ単独で含有することもできるし、両者を併用することもできる。
【0044】
塩基性化合物としては、塩基性の金属化合物、種々のアミン化合物、アンモニア等が挙げられ、塩基性の金属化合物とアミン化合物、塩基性の金属化合物とアンモニア、アミン化合物とアンモニアを併用することもできるし、あるいは2種類以上の塩基性の金属化合物あるいは2種類以上のアミン化合物を併用することもできる。
塩基性の金属化合物としては、Li、K、Na、Mg、Ca、Zn、Cu、Co、Fe、Ni、Al,Zrなどの金属の水酸化物や酸化物、炭酸塩、リン酸塩、ポリリン酸塩、ピロリン酸塩、亜リン酸塩、次亜リン酸塩、有機酸塩等が挙げられ、有機酸塩としては、アスコルビン酸塩、酢酸塩、安息香酸塩、ステアリン酸塩、カプリル酸塩、クエン酸塩、プロピレン酸塩等を挙げることができる。
塩基性の金属化合物の具体例としては、水酸化リチウム、水酸化カリウム、水酸化ナトリウム、酸化リチウム、酸化カリウム、酸化ナトリウム、炭酸リチウム、炭酸カリウム、炭酸ナトリウム、水酸化マグネシウム、水酸化カルシウム、水酸化マグネシウム、酸化カルシウム、酸化マグネシウム、炭酸マグネシウム、炭酸カルシウム、次亜リン酸ナトリウム、次亜リン酸カルシウム、リン酸二水素ナトリウム、亜リン酸二水素ナトリウム、ポリリン酸ナトリウム、ピロリン酸ナトリウム、アスコルビン酸ナトリウム、酢酸ナトリウム、安息香酸ナトリウム等が挙げられる。
【0045】
種々のアミン化合物としては、モノエタノールアミン、エチルアミン、ジメチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、イソプロピルアミン、ジイソプロピルアミン、トリエタノールアミン、プチルアミン、ジブチルアミン、エチルヘキシルアミン、エチレンジアミン、プロピレンジアミン、メチルエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、モルホリン等が挙げられる。
【0046】
また、本発明のガスバリア層形成用塗料に含有し得る塩基性以外の金属化合物としては、Li、K、Na、Mg、Ca、Zn、Cu、Co、Fe、Ni、Al,Zrなどの金属の塩化物、硫酸塩、亜硫酸塩、次亜硫酸塩等が挙げられる。
塩基性以外の金属化合物の具体例としては、塩化リチウム、塩化カリウム、塩化ナトリウム、塩化マグネシウム、塩化カルシウム、硫酸マグネシウム、硫酸カルシウム、次亜硫酸ナトリウム等が挙げられる。
【0047】
本発明のガスバリア層形成用塗料には、その特性を大きく損わない限りにおいて、熱安定剤、酸化防止剤、強化材、顔料、劣化防止剤、耐候剤、難燃剤、可塑剤、離型剤、滑剤などを添加してもよい。
【0048】
熱安定剤、酸化防止剤及び劣化防止剤としては、例えばヒンダードフェノール類、リン化合物、ヒンダードアミン類、イオウ化合物、銅化合物、アルカリ金属のハロゲン化物あるいはこれらの混合物が挙げられる。
【0049】
塗料の濃度(=固形分)は、塗装装置や乾燥・加熱装置の仕様によって適宜変更され得るものであるが、あまりに希薄な溶液ではガスバリア性を発現するのに充分な厚みの層をコートすることが困難となり、また、その後の乾燥工程において長時間を要するという問題を生じやすい。他方、塗料の濃度が高すぎると、均一な塗料を得にくく、塗装性に問題を生じ易い。この様な観点から、塗料の濃度(=固形分)は、5〜50重量%の範囲にすることが好ましい。
【0050】
[ガスバリア性積層体]
次にガスバリア性積層体について説明する。
ガスバリア性積層体、上述のガスバリア層形成用塗料から形成されるガスバリア層が、プラスチック基材上に直に、又はアンダーコート層(以下、UC層ともいう)を介してプラスチック基材上に積層されたものである。
【0051】
<プラスチック基材>
ここで用いられるプラスチック基材は、熱成形可能な熱可塑性樹脂から押出成形、射出成形、ブロー成形、延伸ブロー成形或いは絞り成形等の手段で製造された、フィルム状基材の他、ボトル、カップ、トレイ等の各種容器形状を呈する基材であってもよく、フィルム状であることが好ましい。
また、プラスチック基材は、単一の層から構成されるものであってもよいし、あるいは例えば同時溶融押出しや、その他のラミネーションによって複数の層から構成されるものであってもよい。
【0052】
プラスチック基材を構成する熱可塑性樹脂としては、オレフィン系共重合体、ポリエステル、ポリアミド、スチレン系共重合体、塩化ビニル系共重合体、アクリル系共重合体、ポリカーボネート等が挙げられ、オレフィン系共重合体、ポリエステル、ポリアミドが好ましい。
【0053】
オレフィン系共重合体としては、低−、中−或いは高−密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−ブテン−共重合体、アイオノマー、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体等が、
ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンテレフタレート/イソフタレート、ポリエチレンナフタレート等が、
ポリアミドとしては、ナイロン6、ナイロン6,6、ナイロン6,10、メタキシリレンアジパミド等のポリアミド、
スチレン系共重合体としては、ポリスチレン、スチレン−ブタジエンブロック共重合体、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン−アクリロニトリル共重合体(ABS樹脂)等が、
塩化ビニル系共重合体としては、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体等が、
アクリル系共重合体としては、ポリメチルメタクリレート、メチルメタクリレート・エチルアクリレート共重合体等がそれぞれ挙げられる。
これらの熱可塑性樹脂は、単独で使用してもよいし、2種以上を混合し使用しても良い。
【0054】
前記の溶融成形可能な熱可塑性樹脂には、所望に応じて顔料、酸化防止剤、帯電防止剤、紫外線吸収剤、滑剤、防腐剤などの添加剤の1種或いは2種類以上を樹脂100重量部当りに合計量として0.001部乃至5.0部の範囲内で添加することもできる。
また、本発明のガスバリア性積層体を用いて後述するように包装材を形成する場合、包装材としての強度を確保するために、ガスバリア性積層体を構成するプラスチック基材として、各種補強材入りのものを使用することができる。即ち、ガラス繊維、芳香族ポリアミド繊維、カーボン繊維、パルプ、コットン・リンター等の繊維補強材、或いはカーボンブラック、ホワイトカーボン等の粉末補強材、或いはガラスフレーク、アルミフレーク等のフレーク状補強材の1種類或いは2種類以上を、前記熱可塑性樹脂100重量部当り合計量として2乃至150重量部の量で配合でき、更に増量の目的で、重質乃至軟質の炭酸カルシウム、雲母、滑石、カオリン、石膏、クレイ、硫酸バリウム、アルミナ粉、シリカ粉、炭酸マグネシウム等の1種類或いは2種類以上を前記熱可塑性樹脂100重量部当り合計量として5乃至100重量部の量でそれ自体公知の処方に従って配合しても何ら差支えない。
さらに、ガスバリアー性の向上を目指して、鱗片状の無機微粉末、例えば水膨潤性雲母、クレイ等を前記熱可塑性樹脂100重量部当り合計量として5乃至100重量部の量でそれ自体公知の処方に従って配合しても何ら差支えない。
【0055】
ガスバリア層形成用塗料からガスバリア層を形成する際には、塗料をプラスチック基材もしくはアンダーコート層(以下UC層という)上に塗布後直ちに加熱処理を行い乾燥皮膜の形成と加熱処理を同時に行っても良いし、又は塗布後ドライヤー等による熱風の吹き付けや赤外線照射等により水分等を蒸発させて乾燥皮膜を形成させた後に、加熱処理を行っても良い。ガスバリア層の状態やガスバリア性等の物性に特に障害が生じない限り、工程の短縮化等を考慮すると、塗布後直ちに加熱処理を行うことが好ましい。
加熱処理方法としては特に限定されず、オーブン等の乾燥雰囲気下で加熱処理を行うことが一般的に考えられるが、例えば熱ロールと接触させて加熱処理を行っても良い。
【0056】
<ガスバリア層>
本発明のガスバリア性積層体は、塗料から形成される層を加熱処理することによって高湿度下での良好な酸素ガスバリア性を発現する。これは、コポリマー(A)中のOH基とCOOH基とがエステル化反応するためと考えられる。また、後述するようにUC層やオーバーコート層(以下、OC層という)が2価以上の金属化合物(C)を含有する場合には、該金属化合物(C)とコポリマー(A)との反応が生起し、耐水性(耐レトルト性)に優れるもガスバリア性積層体が生成される。
尚、金属化合物(C)とコポリマー(A)との反応によって生じる架橋構造は、イオン結合、共有結合はもちろん配位的な結合であってもよい。
【0057】
コポリマー(A)中のCOOH基とOH基との比や、2価以上の金属化合物(C)の含有の有無、そして2価以上の金属化合物(C)を含有する場合にはその含有量等によっても影響を受け得るので、ガスバリア層形成の好ましい加熱処理条件は一概には言えないが、100℃以上300℃以下の温度で行うことが好ましく、120℃以上250℃以下がより好ましく、140℃以上240℃以下がさらに好ましく、160℃以上220℃以下が特に好ましい。
詳しくは、100℃以上140℃未満の温度範囲で90秒以上、または140℃以上180℃未満の温度範囲で1分以上、または180℃以上250℃未満の温度範囲で30秒以上の熱処理を行うことが好ましく、
100℃以上140℃未満の温度範囲で2分以上、または140℃以上180℃未満の温度範囲で90秒以上、または180℃以上240℃以上の温度範囲で1分以上の熱処理を行うことがより好ましく、
100℃以上140℃未満の温度範囲で4分以上、または140℃以上180℃未満の温度範囲で3分以上、または180℃以上220℃未満の温度範囲で2分程度の熱処理を行うことが特に好ましい。
【0058】
加熱処理の温度が低すぎるあるいは時間が短すぎると、エステル反応、そして金属化合物との架橋反応が不十分となり、ガスバリア性積層体の耐水性が不十分となる。また、加熱処理を300℃を超える温度で行うと、形成されるバリア層及びプラスチック基材に変形、皺熱分解等が生じ、その結果ガスバリア性等の物性低下が生じ易い。
また、加熱処理時間が長いほど、高湿度下でのガスバリア性は向上する傾向にあるが、生産性および基材フィルムの熱による変形、劣化等を考慮すると加熱処理時間は1時間以内であることが好ましく、30分以内であるとより好ましく、20分以内であることが特に好ましい。
【0059】
ガスバリア性積層体を構成するバリア層の厚みは、使用する用途に応じて適宜決めることが出来るが、0.1μm〜100μmの厚みであることが好ましく、0.5μm〜50μmの厚みであるとより好ましく、0.5μm〜10μmの厚みであると特に好ましい。0.1μm未満の厚みでは十分なガスバリア性を発現する事が困難となり、一方100μmを越える厚みになると塗工等の生産工程において困難を生じやすく、加熱処理に要するエネルギー量も多くなりすぎる。
【0060】
本発明のガスバリア性積層体は、ガスバリア層形成用塗料から形成されるガスバリア層をプラスチック基材上に直に積層した構成とすることができる他、ガスバリア層とプラスチック基材との間にUC層を設けた構成とすることもでき、ガスバリア層の上にOC層をさらに設けた構成とすることもできる。
即ち、本発明のガスバリア性積層体は、
基材/バリア層の2層構成、
基材/UC層/バリア層の3層構成、
基材/バリア層/OC層の3層構成、
基材/UC層/バリア層/OC層の4層構成のいずれであってもよく、密着性確保という観点からガスバリア層とプラスチック基材との間にUC層を設けた構成とすることが好ましい。また、バリア層を保護するという点でOC層を設けることが好ましい。
【0061】
<UC層、OC層>
以下、UC層、OC層について説明する。
UC層、OC層は、それぞれウレタン系、ポリエステル系、アクリル系、エポキシ系等種々のポリマーから形成され、ウレタン系のUC層が好ましい。
【0062】
例えば、ウレタン系のUC層の場合、
(1) ポリエスエルポリオールやポリエーテルポリオール等のポリオール成分とポリイソシアネート成分を含有するUC用組成物をプラスチック基材上に塗工、加熱し、ポリオール成分とポリイソシアネート成分とを反応させ、ウレタン系のUC層を形成することができる。該UC層上に、前記ガスバリア層形成用塗料を塗工し、これを加熱すれば基材/UC層/ガスバリア層からなる積層体を得ることができる。
(2) UC用組成物をプラスチック基材に塗工、乾燥し、ポリオール成分とポリイソシアネート成分との反応が完了していない状態にあるUC層前駆体を得、該前駆体上に前記ガスバリア層形成用塗料を塗工し、加熱することによってUC層の形成とガスバリア層の形成とを一度に行って、基材/UC層/ガスバリア層からなる積層体を得ることもできる。
(3) あるいは、UC用組成物をプラスチック基材上に塗工後、加熱せずに、前記ガスバリア層形成用塗料を塗工し、加熱することによってUC層の形成とガスバリア層の形成とを一度に行って、基材/UC層/ガスバリア層からなる積層体を得ることもできる。
UC用組成物に含まれるポリイソシアネートが,ガスバリア層との界面領域において,コポリマー(A)中の水酸基とも反応し、密着性向上に寄与する他、ガスバリア層の架橋を補助し、耐水性の向上に効果があると考えられるので、(2)、(3)の方法が好ましい。
また、後述するようにUC層中に2価以上の金属化合物(C)を含有する場合、バリア層中にUC層中の前記金属化合物が移行し易くなるという点で、(2)、(3)の方法が好ましい。
【0063】
UC層の形成に供されるポリオール成分としては、ポリエステルポリオールが好ましい。ポリエステルポリオールとしては、多価カルボン酸もしくはそれらのジアルキルエステルまたはそれらの混合物と、グリコール類もしくはそれらの混合物とを反応させて得られるポリエステルポリオールが挙げられる。
多価カルボン酸としては、例えばイソフタル酸、テレフタル酸、ナフタレンジカルボン酸等の芳香族多価カルボン酸、アジピン酸、アゼライン酸、セバシン酸,シクロヘキサンジカルボン酸の脂肪族多価カルボン酸が挙げられる。
グリコールとしては、例えばエチレングリコール、プロピレングリコール、ジエチレングリコール、ブチレングリコール、ネオペンチルグリコール、1,6ーヘキサンジオールなどが挙げられる。
【0064】
これらのポリエステルポリオールは,ガラス転移温度(以下Tgという)−50℃〜120℃のものが好ましく,−20℃〜100℃のものがより好ましく,−0℃〜90℃のものがさらに好ましい。ポリエステルポリオールの好適なTgは、塗料を塗布後加熱硬化する際の加熱硬化条件とも関係する。比較的低温で加熱硬化する場合には、比較的高Tgのポリエステルポリオールが好ましく、比較的高温で加熱硬化する場合には、低温から高温まで比較的幅広いTgのポリエステルポリオールが好適に使用できる。例えば、180℃で塗料を加熱硬化する場合には、70〜90℃程度のTgのポリエステルポリオールが好ましい。一方、200℃で塗料を加熱硬化する場合には、0〜90℃程度のTgのポリエステルポリオールを使用することができる。
また,これらのポリエステルポリオールの数平均分子量は1000〜10万のものが好ましく,3000〜5万のものがより好ましく,1万〜4万のものがさらに好ましい.
【0065】
UC層の形成に供されるポリイソシアネートとしては、
例えば、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、m−フェニレンジイソシアネート、p−フエニレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、2,4’−ジフェニルメタンジイソシアネート、2,2’−ジフェニルメタンジイソシアネート、3,3’−ジメチル−4,4’−ビフェニレンジイソシアネート、3,3’−ジメトキシ−4,4’−ビフエニレンジイソシアネート、3,3’−ジクロロ−4,4’−ビフェニレンジイソシアネート、1,5−ナフタレンジイソシアネート、1,5−テトラヒドロナフタレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネートなどの芳香族ポリイソシアネート、
テトラメチレンジイソシアネート、1,6−ヘキサメチレンジイソシアネート、ドデカメチレンジ イソシアネート、トリメチルヘキサメチレンジイソシアネート、1,3−シクロヘキシレンジイソシアネート、1,4−シクロヘキシレンジイソシアネート、水素添加キシリレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネート、3,3’−ジメチル−4,4’−ジシクロヘキシルメタンジイソシアネート等の脂肪族ポリイソシアネート、
上記ポリイソシアネート単量体から誘導されたイソシアヌレート、ビューレット、アロファネート等の多官能ポリイソシアネート化合物、あるいはトリメチロールプロパン、グリセリン等の3官能以上のポリオール化合物との反応により得られる末端イソシアネート基含有の多官能ポリイソシアネート化合物等を挙げることができる。ヘキサメチレンジイソシアネート(以下、HMDIともいう)の三量体である3官能イソシアヌレート体が好ましい。
【0066】
ポリエステルポリオールとポリイソシアネートの重量比は10:90〜99:1のものが好ましく,30:70〜90:10のものがより好ましく,50:50〜85:15のものがさらに好ましい。
【0067】
UC層の膜厚は使用する用途に応じて適宜決めることが出来るが、0.1μm〜10μmの厚みであることが好ましく、0.1μm〜5μmの厚みであるとより好ましく、0.1μm〜1μmの厚みであることが特に好ましい。0.1μm未満の厚みでは接着性を発現する事が困難となり、一方10μmを越える厚みになると塗工等の生産工程において困難を生じやすくなる。
【0068】
UC用組成物中のポリエステルオールとポリイソシアネートとの濃度は適切な溶剤を用いて調節することができ,その濃度は両者を足して0.5〜80重量%の範囲であることが好ましく、1〜70重量%の範囲であることがより好ましい。溶液の濃度が低すぎると,必要な膜厚の塗膜を形成することが困難となり,また,乾燥時に余分な熱量を必要としてしまうので好ましくない.溶液の濃度が高すぎると溶液粘度が高くなりすぎて,混合、塗工時などにおける操作性の悪化を招く問題が生じる。
【0069】
UC用組成物に使用できる溶剤としては、例えば,トルエン,MEK,シクロヘキサノン,ソルベッソ,イソホロン,キシレン,MIBK,酢酸エチル,酢酸ブチルがあげられるが,これらに限定されるものではない.
UC層には上記成分の他に、公知である硬化促進触媒,充填剤、軟化剤、老化防止剤、安定剤、接着促進剤、レベリング剤、消泡剤、可塑剤、無機フィラー、粘着付与性樹脂、繊維類、顔料等の着色剤、可使用時間延長剤等を使用することもできる。
【0070】
OC層も種々の方法で形成することができる。
(1) プラスチック基材もしくはUC層上にガスバリア層形成用塗料を塗工、加熱し、コポリマー(A)中のOH基とCOOH基とが反応したガスバリア層を形成した後、該バリア層上にOC用組成物を塗工し、加熱し、OC層を形成する。
(2) プラスチック基材もしくはUC層上にガスバリア層形成用塗料を塗工、乾燥し、コポリマー(A)中のOH基とCOOH基との反応が完了はしていないフィルム状の組成物、即ちバリア層前駆体を得、次いで該バリア層前駆体上にOC用組成物を塗工し、加熱し、コポリマー(A)中のOH基とCOOH基との反応及びOC層の形成を同時に行う。
(3) プラスチック基材もしくはUC層上にガスバリア層形成用塗料を塗工し、乾燥せずにOC用組成物を塗工し、加熱し、コポリマー(A)中のOH基とCOOH基との反応及びOC層の形成を同時に行う。
また、後述するようにOC層中に2価以上の金属化合物を含有する場合、バリア層中にOC層中の前記金属化合物が移行し易くなるという点で、(2)、(3)の方法が好ましい。
OC層を形成するための組成物としては、UC層形成用組成物の場合に提示したものを同様に例示できる。
【0071】
ガスバリア層に金属架橋構造を導入する方法としては、
(1) 2価以上の金属化合物を含有するガスバリア層形成用塗料を用いて、プラスチック基材上にバリア層を形成する方法の他に、
(2) ガスバリア性積層体がUC層またはOC層を有する場合には、UC層またはOC層の少なくともいずれか一方に2価以上の金属化合物(C)を含有させ、この2価以上の金属化合物をバリア層に移行させて、バリア層中に金属架橋構造を形成する。
ガスバリア層形成用塗料の項で述べた塩基性化合物や塩基性以外の金属化合物のうち、2価以上の金属化合物を含有する塗料を用いると、上記(1)の方法でガスバリア層に金属架橋構造を導入することができる。また、上記(1)の方法は、塗料が無機層状化合物(B)を含有する場合に塗料が高粘度化し塗装性を損なう場合がある。
尚、ここで生じる架橋構造は、イオン結合、共有結合はもちろん配位的な結合であってもよい。
【0072】
UC層、OC層は、それ自体が高湿度下における酸素ガスバリア性を向上させる機能を担うものではないと考える。しかし、UC層またはOC層中の2価以上の金属化合物がバリア層に移行し、該金属化合物がバリア層中のコポリマー(A)由来の水酸基やカルボキシル基と反応し、バリア層中に金属架橋構造を形成し得る。この金属架橋構造によって、ガスバリア層の高湿度下における酸素ガスバリア性を向上させ得るものと考察される。
尚、金属化合物は、ガスバリア層の厚さ方向に均一に移行し架橋するに寄与することが好ましいが、濃度分布があってもかまわない。また、ここで生じる架橋構造は、イオン結合、共有結合はもちろん配位的な結合であってもよい。
【0073】
UC層もしくはOC層に含有され得る2価以上の金属化合物(C)としては、以下に示すような種々のものを例示できる。
例えば、2価以上の金属のハロゲン化物、水酸化物、酸化物、炭酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、硫酸塩もしくは亜硫酸塩(C1)、
ジルコニウム錯塩、ハロゲン化ジルコニウム、無機酸のジルコニウム塩もしくは有機酸のジルコニウム塩(C2)等が挙げられ、金属化合物(C1)が好ましい。2価以上の金属化合物(C)としては、各群から選ばれる1種を単独で使用することもできるし、各郡内の2種以上を併用することもできるし、各群から選ばれる1種以上を併用することもできる。
【0074】
金属化合物(C1)としては、2価以上の金属の水酸化物、酸化物、炭酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、硫酸塩が好ましい。
2価以上の金属としては、Mg、Ca、Zn、Cu、Co、Fe、Ni、AlもしくはZrが好ましく、Mg、Caがより好ましい。
Mg化合物としては、MgO、Mg(OH)、MgSO、MgCl、MgCO等が挙げられ、MgO、Mg(OH)、MgSOが好ましい。
【0075】
金属化合物(C2)としては、例えば、オキシ塩化ジルコニウム、ヒドロキシ塩化ジルコニウム、4塩化ジルコニウム、臭化ジルコニウム等のハロゲン化ジルコニウム、硫酸ジルコニウム、塩基性硫酸ジルコニウム、硝酸ジルコニウムなどの鉱酸のジルコニウム塩、蟻酸ジルコニウム、酢酸ジルコニウム、プロピオン酸ジルコニウム、カプリル酸ジルコニウム、ステアリン酸ジルコニウムなどの有機酸のジルコニウム塩、炭酸ジルコニウムアンモニウム、硫酸ジルコニウムナトリウム、酢酸ジルコニウムアンモニウム、蓚酸ジルコニウムナトリウム、クエン酸ジルコニウムナトリウム、クエン酸ジルコニウムアンモニウムなどのジルコニウム錯塩、などがあげられ、炭酸ジルコニウムアンモニウムが好ましい。炭酸ジルコニウムアンモニウムとしては、ニューテックス(株)製の「ジルコゾールAC−7」が挙げられる。
【0076】
UC層もしくはOC層のいずれか一方が2価以上の金属化合物を含有する場合に、UC層もしくはOC層形成用のポリマー成分100重量部に対して、上記金属化合物を0.2〜40重量部含有することが好ましく、0.3〜20重量部含有することがより好ましく、0.5〜10重量部含有することがさらに好ましい。
【0077】
UC層、バリア層、OC層を形成するには,各層を形成するための組成物を,ロールコーター方式,グラビア方式,グラビアオフセット方式,スプレー塗装方式,あるいはそれらを組み合わせた方式などにより,それぞれプラスチック基材上、UC層上、バリア層上に、所望の厚さにコーティングすることができるが,これらの方式に限定されるものではない。
また、未延伸フィルムに塗布して乾燥した後、延伸処理することもできる。例えば、乾燥後、テンター式延伸機に供給してフィルムを走行方向と幅方向に同時に延伸(同時2軸延伸)、熱処理することもできる。あるいは、多段熱ロール等を用いてフィルムの走行方向に延伸を行った後に塗料等を塗布し、乾燥後、テンター式延伸機によって幅方向に延伸(逐次2軸延伸)してもよい。また、走行方向の延伸とテンターでの同時2軸延伸を組み合わせることも可能である。
本発明におけるガスバリア層の厚みは、積層体のガスバリア性を十分高めるためには少なくとも0.1μmより厚くすることが望ましい。
【0078】
本発明のガスバリア性積層体は酸素ガスバリア性を必要とする様々な分野に適用することができ、特に食品包装用分野に好適である。
【0079】
【実施例】
以下に実施例及び比較例を挙げて、本発明について具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。
【0080】
<酸素透過度>
各積層フィルムを120℃30分(レトルト試験)の条件で煮沸高温殺菌した後に、Modern Control社製、酸素透過試験器OX−TRAN TWINを用い、25℃、80%RHにおける酸素透過度を求めた。具体的には、25℃、80%RHに加湿した酸素ガス及び窒素ガス(キャリアーガス)を用いた。
【0081】
コポリマー(A)を含有するガスバリア層形成用塗料から形成されたフィルム(=バリア層)の酸素透過度は以下の計算式により求めた。
1/Ptotal=1/Pfilm+1/PPET
但し、
total:コポリマー(A)を含有するガスバリア層形成用塗料から形成されたフィルム(=バリア層)、及び基材フィルム(ポリエチレンテレフタレートフィルム)層とからなる積層フィルムの酸素透過度。UC層を有する場合には、フィルム(=バリア層)、UC層及び基材フィルムの酸素透過度。
film:コポリマー(A)を含有するガスバリア層形成用塗料から形成されたフィルム層の酸素透過度。
PET:基材フィルム(ポリエチレンテレフタレートフィルム)層の酸素透過度。UC層を有する場合には、UC層及び基材フィルムの酸素透過度。
【0082】
[実施例1]
ポリエステル(東洋紡(株)製、バイロン200(Tg67℃)、Mn=17000)を酢酸エチル/MEK混合溶媒に溶解したものに、酸化マグネシウムをポリエステル100重量部に対して5重量部添加し、ビーズミルを用いて分散した。この溶液に、ポリイソシアネート(住友化学(株)製、スミジュール3300)を、ポリエステルとポリイソシアネートの重量比が60/40になるように調整し、混合溶液を得た。この混合溶液にジブチルすずラウリレート1%MEK溶液、MEKおよび酢酸エチルを混合し、固形分約14%のプライマー組成物(=UC層形成用組成物)を得た。
【0083】
セパラブル4口フラスコに温度制御レギュレーター、冷却管、撹拌装置を取り付けて精製水89.7部を仕込み、80℃に昇温し反応容器内を窒素置換した後、滴下管よりグリセリンメタクリレート(以下、GLM)(日本油脂(株)製、「ブレンマーGLM」)2部、アクリル酸(以下、AA)18部、精製水25部、アゾ化合物(和光純薬工業(株)製「V−50」)0.24部を1時間かけて滴下した。滴下終了後、更に3時間反応を継続した。重合終了後、固形分15%のGLM−AA共重合体水溶液を得た。
【0084】
上記GLM−AA水溶液を用い、カルボキシル基の5モル%を水酸化ナトリウムにより中和した固形分10重量%のGLM−AA水溶液(=バリア層形成用塗料)を調整した。
【0085】
延伸ポリエステルフィルム(厚み12μm)上に、上記プライマー組成物をバーコーターNo.4を用いて塗工し、電気オーブンで80℃30秒の条件で乾燥し、厚さ0.5μmの皮膜を形成し、積層フィルムを得た。この積層フィルム上に上記GLM−AA水溶液をバーコーターNo.6を用いて塗工し、電気オーブンで80℃2分乾燥した後、電気オーブンで200℃2分乾燥及び熱処理を行い、厚さ2μmの皮膜を形成した。
オートクレーブを用いて熱水中(120℃、1.2kgf/cm)で30分間処理した後の積層フィルム及びフィルム層(=ガスバリア層)の酸素透過度を測定した結果を表1に示す。
【0086】
[実施例2〜3]
GLM、AAのモノマー組成比が表1に示すようになるよう実施例1と同様に重合を行った。得られたGLM−AA共重合水溶液を用いて、カルボキシル基の5モル%を水酸化ナトリウムにより中和した固形分10%のGLM−AA水溶液(=バリア層形成用塗料)を得た。得られた水溶液を用いた以外は、実施例1と同様にして、積層フィルムを得た。
得られた積層フィルム及びフィルム層の酸素透過度を測定した結果を表1に示す。
【0087】
[実施例4]
セパラブル4口フラスコに温度制御レギュレーター、冷却管、撹拌装置を取り付けて精製水89.7部を仕込み、80℃に昇温し反応容器内を窒素置換した後、滴下管よりグリセリンメタクリレート(以下、GLM)(日本油脂(株)製、「ブレンマーGLM」)5部、2−ヒドロキシエチルアクリレート(以下、HEA)1部、アクリル酸(以下、AA)14部、精製水25部、アゾ化合物(和光純薬工業(株)製「V−50」)0.24部を1時間かけて滴下した。滴下終了後、更に3時間反応を継続した。重合終了後、固形分15重量%のGLMA―HEA―AA共重合体水溶液を得た。
【0088】
上記GLM−HEA−AA水溶液を用い、カルボキシル基の5モル%を水酸化ナトリウムにより中和した固形分10重量%のGLM−HEA−AA水溶液(=バリア層形成用塗料)を得た。得られた水溶液を用いた以外は、実施例1と同様にして、積層フィルムを得た。
得られた積層フィルム及びフィルム層の酸素透過度を測定した結果を表1に示す。
【0089】
[実施例5]
セパラブル4口フラスコに温度制御レギュレーター、冷却管、撹拌装置を取り付けて精製水89.7部を仕込み、80℃に昇温し反応容器内を窒素置換した後、滴下管よりグリセリンメタクリレート(以下、GLM)(日本油脂(株)製、「ブレンマーGLM」)5部、4−ヒドロキシブチルアクリレート(以下、4HBA)1部、アクリル酸(以下、AA)14部、精製水25部、アゾ化合物(和光純薬工業(株)製「V−50」)0.24部を1時間かけて滴下した。滴下終了後、更に3時間反応を継続した。重合終了後、固形分15重量%のGLMA―4HBA―AA共重合体水溶液を得た。
【0090】
上記GLM−4HBA−AA水溶液を用い、カルボキシル基の5モル%を水酸化ナトリウムにより中和した固形分10重量%のGLM−4HBA−AA水溶液(=バリア層形成用塗料)を得た。得られた水溶液を用いた以外は、実施例1と同様にして、積層フィルムを得た。
得られた積層フィルム及びフィルム層の酸素透過度を測定した結果を表1に示す。
【0091】
[比較例1]
GLM、AAのモノマー組成比が表1に示すようになるよう実施例1と同様に重合を行った。得られたGLM−AA共重合水溶液を用いて、カルボキシル基の5モル%を水酸化ナトリウムにより中和した固形分10%のGLM−AA水溶液(=バリア層形成用塗料)を得た。得られた水溶液を用いた以外は、実施例1と同様にして、積層フィルムを得た。
得られた積層フィルム及びフィルム層の酸素透過度を測定した結果を表1に示す。
【0092】
[実施例6]
酸化マグネシウムを含有しなかった以外は実施例1と同様にして、固形分約14%のプライマー組成物(=UC層形成用組成物)を得た。
【0093】
セパラブル4口フラスコに温度制御レギュレーター、冷却管、撹拌装置を取り付けて精製水89.7部を仕込み、80℃に昇温し反応容器内を窒素置換した後、滴下管よりグリセリンメタクリレート(以下、GLM)(日本油脂(株)製、「ブレンマーGLM」)2部、アクリル酸(以下、AA)18部、精製水25部、アゾ化合物(和光純薬工業(株)製「V−50」)0.24部を1時間かけて滴下した。滴下終了後、更に3時間反応を継続した。重合終了後、固形分15%のGLM−AA共重合体水溶液を得た。
【0094】
上記GLM−AA共重合体水溶液を用い、カルボキシル基の5モル%を水酸化ナトリウムで中和し、さらに、対カルボン酸当量が0.5%になるよう水酸化マグネシウムを溶解し、固形分10重量%のGLM−AA水溶液(=バリア層形成用塗料)を調整した。
【0095】
延伸ポリエステルフィルム(厚み12μm)上に、上記プライマー組成物を実施例1の場合と同様にして塗工し、乾燥し、積層フィルムを得た。この積層フィルム上に上記GLM−AA共重合体水溶液をバーコーターNo.6を用いて塗工し、電気オーブンで80℃2分乾燥した後、電気オーブンで200℃2分乾燥及び熱処理を行い、厚さ2μmの皮膜を形成し、ガスバリア性積層体を得た。
次いで、オートクレーブを用いて得られたガスバリア性積層体を熱水中(120℃、1.2kgf/cm)で30分間処理した後の積層フィルム及びフィルム層(=ガスバリア層)の酸素透過度を測定した結果を表2に示す。
【0096】
[実施例7〜8]
カルボキシル基の5モル%を水酸化ナトリウムで中和し、さらに、対カルボン酸当量が表2に示すようになるよう水酸化マグネシウムを溶解した固形分10重量%のGLM−AA水溶液(=バリア層形成用塗料)を調整した。得られた水溶液を用いた以外は、実施例6と同様にして、積層フィルムを得た。
得られた積層フィルム及びフィルム層の酸素透過度を測定した結果を表2に示す。
【0097】
[実施例9]
セパラブル4口フラスコに温度制御レギュレーター、冷却管、撹拌装置を取り付けてメタノール66.9部を仕込み、昇温リフラックス下において反応容器内を窒素置換した後、滴下管よりGLM(日本油脂(株)製、「ブレンマーGLM」)2.25部、グリシジルメタクリレート(以下、GMA)(日本油脂(株)製、「ブレンマーG」)0.75部、AA12部、メタノール20部、アゾ化合物(和光純薬工業(株)製「2,2’−アゾビスイソブチロニトリル」)0.6部を1時間かけて滴下した。滴下終了後、更に4時間反応を継続した。重合終了後、固形分15%のGLM−GMA−AA共重合体メタノール溶液を得た。
【0098】
上記GLM−GMA−AAメタノール溶液を用い、カルボキシル基の5モル%を水酸化ナトリウムにより中和した固形分10重量%のGLM−GMA−AAメタノール溶液(=バリア層形成用塗料)を調整した。得られた溶液を用いた以外は、実施例1と同様にして、積層フィルムを得た。得られた積層フィルム及びフィルム層の酸素透過度を測定した結果を表3に示す。
【0099】
[実施例10〜11]
GLM、GMA、AAのモノマー組成比が表1に示すようになるよう実施例9と同様に重合を行った。得られたGLM−GMA−AA共重合体メタノール溶液を用いて、カルボキシル基の5モル%を水酸化ナトリウムにより中和した固形分10%のGLM−GMA−AA共重合体メタノール溶液(=バリア層形成用塗料)を得た。得られた溶液を用いた以外は、実施例1と同様にして、酸化マグネシウム含有プライマー層上にガスバリア層を設け、積層フィルムを得た。
得られた積層フィルム及びフィルム層の酸素透過度を測定した結果を表3に示す。
【0100】
【表1】
Figure 2004238604
【0101】
【表2】
Figure 2004238604
【0102】
【表3】
Figure 2004238604
【0103】
【発明の効果】
本発明により、構造中に塩素を含有せず、高湿度下での酸素ガスバリア性の点で優れ、さらに高いガスバリア性を有するガスバリア性積層体を提供することが出来た。

Claims (14)

  1. 水酸基及びエチレン性不飽和二重結合を有するモノマー(a1)と、カルボキシル基もしくは酸無水物基及びエチレン性不飽和二重結合を有するモノマー(a2)とを、−COOH基/−OH基=0.05〜100のモル比で重合して成るコポリマー(A)を含有することを特徴とするガスバリア層形成用塗料。
  2. 水酸基及びエチレン性不飽和二重結合を有するモノマー(a1)と、カルボキシル基もしくは酸無水物基及びエチレン性不飽和二重結合を有するモノマー(a2)の少なくともいずれか一方が(メタ)アクリロイル基を有することを特徴とする請求項1記載のガスバリア層形成用塗料。
  3. 水酸基及びエチレン性不飽和二重結合を有するモノマー(a1)がグリセリン(メタ)アクリレートであること特徴とする請求項1又は2記載のガスバリア層形成用塗料。
  4. コポリマー(A)が、エポキシ基及びエチレン性不飽和二重結合を有するモノマー(a3)をモノマー(a1)及びモノマー(a2)と共重合してなることを特徴とする請求項1ないし3いずれか記載のガスバリア層形成用塗料。
  5. エポキシ基及びエチレン性不飽和二重結合を有するモノマー(a3)がグリシジル(メタ)アクリレートであること特徴とする請求項4記載のガスバリア層形成用塗料。
  6. 無機層状化合物(B)を含有することを特徴とする請求項1ないし5いずれか記載のガスバリア層形成用塗料。
  7. コポリマー(A)100重量部に対し、無機層状化合物(B)を多くとも100重量部含有することを特徴とする請求項6記載のガスバリア層形成用塗料。
  8. 塩基性化合物ないしは塩基性以外の金属化合物を含有することを特徴とする請求項1ないし7いずれか記載のガスバリア層形成用塗料。
  9. 請求項1ないし8いずれかに記載のガスバリア層形成用塗料から形成されるガスバリア層が、プラスチック基材上に直に、又はアンダーコート層を介してプラスチック基材上に積層されたことを特徴とするガスバリア性積層体。
  10. プラスチック基材又はアンダーコート層とは接していないガスバリア層の他の面に、オーバーコート層が積層されたことを特徴とする請求項9記載のガスバリア性積層体。
  11. アンダーコート層及びオーバーコート層の少なくともいずれか一方が、ポリウレタン系ポリマーを含有することを特徴とする請求項9又は10記載のガスバリア性積層体。
  12. アンダーコート層及びオーバーコート層の少なくともいずれか一方が、2価以上の金属化合物を含有することを特徴とする請求項9ないし11いずれかに記載のガスバリア性積層体。
  13. 2価以上の金属化合物が、水酸基もしくはカルボキシル基と架橋し得ることを特徴とする請求項12記載のガスバリア性積層体。
  14. 2価以上の金属が、Mg又はCaであることを特徴とする請求項12又は13記載のガスバリア性積層体。
JP2003105898A 2002-12-09 2003-04-09 ガスバリア層形成用塗料及び該塗料を用いて成るガスバリア性積層体 Pending JP2004238604A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003105898A JP2004238604A (ja) 2002-12-09 2003-04-09 ガスバリア層形成用塗料及び該塗料を用いて成るガスバリア性積層体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002356848 2002-12-09
JP2003105898A JP2004238604A (ja) 2002-12-09 2003-04-09 ガスバリア層形成用塗料及び該塗料を用いて成るガスバリア性積層体

Publications (1)

Publication Number Publication Date
JP2004238604A true JP2004238604A (ja) 2004-08-26

Family

ID=32964455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105898A Pending JP2004238604A (ja) 2002-12-09 2003-04-09 ガスバリア層形成用塗料及び該塗料を用いて成るガスバリア性積層体

Country Status (1)

Country Link
JP (1) JP2004238604A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125742A1 (ja) * 2006-04-26 2007-11-08 Kureha Corporation コーティング液、それを用いたガスバリア性フィルム、ガスバリア性積層体及びガスバリア性多層フィルム、並びにそれらの製造方法
WO2007143343A1 (en) * 2006-06-05 2007-12-13 Henkel Corporation Retortable radiation-cured coatings for plastic film and metallic foil substrates
JP2008248062A (ja) * 2007-03-30 2008-10-16 Kureha Corp ガスバリア層形成用塗工液およびガスバリア性積層体の製造方法
WO2014034627A1 (ja) * 2012-08-28 2014-03-06 ユニチカ株式会社 ガスバリア性積層体、それを有するガスバリア性複合体、およびそれらを含む包装体
JP5756408B2 (ja) * 2009-12-25 2015-07-29 東洋製罐株式会社 アンダーコート用塗料組成物
WO2020203766A1 (ja) * 2019-04-01 2020-10-08 Dic株式会社 ガスバリア性組成物、コーティング剤および積層体

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125742A1 (ja) * 2006-04-26 2007-11-08 Kureha Corporation コーティング液、それを用いたガスバリア性フィルム、ガスバリア性積層体及びガスバリア性多層フィルム、並びにそれらの製造方法
JPWO2007125742A1 (ja) * 2006-04-26 2009-09-10 株式会社クレハ コーティング液、それを用いたガスバリア性フィルム、ガスバリア性積層体及びガスバリア性多層フィルム、並びにそれらの製造方法
US8632888B2 (en) 2006-04-26 2014-01-21 Toppan Printing Co., Ltd. Coating solution, and gas barrier film, gas barrier laminate and gas barrier multilayer film, using the coating solution, and their manufacturing methods
WO2007143343A1 (en) * 2006-06-05 2007-12-13 Henkel Corporation Retortable radiation-cured coatings for plastic film and metallic foil substrates
JP2009539647A (ja) * 2006-06-05 2009-11-19 ヘンケル・コーポレーション プラスチックフィルム基材及び金属箔基材のためのレトルト処理可能な放射硬化性コーティング
JP2008248062A (ja) * 2007-03-30 2008-10-16 Kureha Corp ガスバリア層形成用塗工液およびガスバリア性積層体の製造方法
JP5756408B2 (ja) * 2009-12-25 2015-07-29 東洋製罐株式会社 アンダーコート用塗料組成物
WO2014034627A1 (ja) * 2012-08-28 2014-03-06 ユニチカ株式会社 ガスバリア性積層体、それを有するガスバリア性複合体、およびそれらを含む包装体
WO2020203766A1 (ja) * 2019-04-01 2020-10-08 Dic株式会社 ガスバリア性組成物、コーティング剤および積層体
JPWO2020203766A1 (ja) * 2019-04-01 2021-12-16 Dic株式会社 ガスバリア性組成物、コーティング剤および積層体
JP7156508B2 (ja) 2019-04-01 2022-10-19 Dic株式会社 ガスバリア性組成物、コーティング剤および積層体

Similar Documents

Publication Publication Date Title
JP4225158B2 (ja) ガスバリア性積層体の製造方法
EP1930153B1 (en) Gas barrier laminate
TWI410325B (zh) 氣體阻障性積層體
JP5155535B2 (ja) ガスバリア性コート剤およびフィルム
JP2006219518A (ja) ガスバリア性塗料及び該塗料を用いてなるガスバリア性積層体
US20060009561A1 (en) Gas barrier coating material and gas barrier laminates made by using the same
JP4114585B2 (ja) ガスバリア性積層体の製造方法
US7435446B2 (en) Method of producing gas barrier multilayer body
JP2004315586A (ja) ガスバリア性積層体の製造方法
JP2004115776A (ja) ガスバリア性塗料
JP2004238605A (ja) ガスバリア層形成用塗料及び該塗料を用いて成るガスバリア性積層体
JP4254453B2 (ja) ガスバリア性塗料及び該塗料を用いてなるガスバリア性積層体
JP2004238604A (ja) ガスバリア層形成用塗料及び該塗料を用いて成るガスバリア性積層体
JP2004323817A (ja) ガスバリア層形成用塗料及び該塗料を用いて成るガスバリア性積層体
JP2004315585A (ja) ガスバリア性積層体の製造方法
JP2004322625A (ja) ガスバリア性積層体の製造方法
JP2004323592A (ja) ガスバリア性積層体(1)、及び該ガスバリア性積層体(1)を用いてなるガスバリア性積層体(2)の製造方法
JP4351099B2 (ja) ガスバリア性積層体の製造方法
JP4621435B2 (ja) ガスバリア性塗料及び該塗料を用いてなるガスバリア性積層体
JP2004322500A (ja) ガスバリア性積層体の製造方法
JP2004314368A (ja) ガスバリア性積層体の製造方法
JP4388840B2 (ja) ガスバリア性積層体の製造方法
JP2005270907A (ja) ガスバリア性積層体の製造方法
JP2004307731A (ja) ガスバリア性塗料
JP2005139325A (ja) ガスバリア性塗料及び該塗料を用いてなるガスバリア性積層体