JP2004228432A - 半導体レーザモジュール及び電子冷却ユニット - Google Patents

半導体レーザモジュール及び電子冷却ユニット Download PDF

Info

Publication number
JP2004228432A
JP2004228432A JP2003016354A JP2003016354A JP2004228432A JP 2004228432 A JP2004228432 A JP 2004228432A JP 2003016354 A JP2003016354 A JP 2003016354A JP 2003016354 A JP2003016354 A JP 2003016354A JP 2004228432 A JP2004228432 A JP 2004228432A
Authority
JP
Japan
Prior art keywords
semiconductor laser
electronic cooling
cooling unit
heat
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003016354A
Other languages
English (en)
Inventor
Atsushi Ozawa
淳 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2003016354A priority Critical patent/JP2004228432A/ja
Publication of JP2004228432A publication Critical patent/JP2004228432A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】半導体レーザを効率的に冷却する。
【解決手段】上面に半導体レーザ5を搭載した基板3の下面に半導体レーザ5を冷却する電子冷却ユニット20を取付けた半導体レーザモジュールにおいて、電子冷却ユニット20は、基板の他方面に接する吸熱板21と、吸熱板に対向する放熱板22と、吸熱板と放熱板との間に平面的に分散して配置され、p型半導体23とn型半導体24とを金属導体25で接続してなる複数のペルチェ素子26とを備えている。さらに、半導体レーザ5に対向する領域におけるペルチェ素子26の配置の密度を半導体レーザ5に対向しない領域におけるペルチェ素子26の配置の密度より高く設定している。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、光通信及び光計測に使用される半導体レーザモジュール及びこの半導体レーザモジュールに組込まれた電子冷却ユニットに関する。
【0002】
【従来の技術】
光通信及び光計測で用いる光の光源に採用される一般的な半導体レーザモジュールの概略構成を、図13の分解斜視図、図14の断面模式図を用いて説明する。
【0003】
上端開口を有する金属材料で形成されたケース1内の底壁1aの上面に電子冷却ユニット2が固定されている。この電子冷却ユニット2の上面に金属製の基板3が固定されている。この基板3の上面における長尺方向の一方側に、支持部材4を介して半導体レーザ5が取付けられている。この支持部材4には、半導体レーザ5の温度を検出するためのサーミスタ6が取付けられている。さらに、基板3の上面における長尺方向の一端にはレンズホルダー7を介してレンズ8が取付けられている。また、基板3の上面における半導体レーザ5を挟んだレンズ8と反対側には、半導体レーザ5から出力される光の強度をモニタする受光素子(フォトダイオード PD)10が支持部材9を介して取付けられている。
【0004】
ケース1の側壁1bにおけるレンズ8に対向する位置に円形の窓11が穿設されている。ケース1の側壁1bの外側における窓11位置に、光ファイバ13の端面を窓11を介してレンズ8に対向させるファイバ固定具12が固定されている。さらに、ケース1の別の側壁1cには、半導体レーザ5、電子冷却ユニット2に対して駆動電流を供給するとともに、受光素子(フォトダイオード PD)10で検出された光強度、サーミスタ6で検出された温度を取出すための複数の端子15が取付けられている。
さらに、ケース1の上端開口には、ケース1内の各光学部材を保護するための蓋14が固定されている。
【0005】
このような半導体レーザモジュールにおいて、半導体レーザ5にしきい値以上の直流電流を供給すると、半導体レーザ5は所定波長を有する光を出力する。半導体レーザ5から出力された光は、レンズ8へ入射される。レンズ8は入射された光を、窓11を介して、光ファイバ13の端面位置に集光させる。その結果、半導体レーザ5から出力された光は光ファイバ13を介して半導体レーザモジュールの外部へ供給される。半導体レーザ5から受光素子(フォトダイオード PD)10側にも光が出力されるので、受光素子10は、半導体レーザ5から出力される光の強度を検出して端子15を介して出力する。
【0006】
半導体レーザ5は光を出力すると同時に多大の熱を発生する。図15の特性Aは、半導体レーザ5に端子15を介して供給する入力電力パワー(W)と、半導体レーザ5から出力される光の光パワー(mW)との関係を示す。この特性Aからも理解できるように、入力された電力パワーの一部のみが光に変換されて外部へ出力されるが、入力された電力パワーの大部分は熱となって内部で消費される。
【0007】
このままでは、半導体レーザ5の温度が上昇して、半導体レーザ5から出力される光の波長、強度等の特性が変化する問題が発生する。また、温度が上昇すると、基板3が熱変形を起こし、半導体レーザ5、レンズ8、光ファイバ13の各光軸がずれたり、光ファイバ13の端面に光が焦点を結ばなくなる問題が発生して、半導体レーザ5から出力される光の出力効率が低下する。
【0008】
このような不都合を回避するために、基板3の下側に、電子冷却ユニット2を取付け、半導体レーザ5で発生した熱を、基板3を介して電子冷却ユニット2で吸収し、この電子冷却ユニット2を介して、ケース1の底壁1aから半導体レーザモジュール外に放熱させるようにしている。そして、サーミスタ6で検出された半導体レーザ5の温度が予め定められた許容範囲に入るように、電子冷却ユニット2に供給する電力を制御している。
【0009】
図15の特性Bは、半導体レーザ5及び電子冷却ユニット2に端子15を介して供給する半導体レーザモジュール全体としての合計の入力電力パワー(W)と、半導体レーザ5から出力される光の光パワー(mW)との関係を示す。この特性Bからも理解できるように、入力された電力パワーの一部のみが光に変換されて外部へ出力されるが、入力された電力パワーの大部分は熱、及びこの熱を外部へ放熱させる電子冷却ユニット2の消費電力となって内部で消費される。
【0010】
なお、電子冷却ユニットが組込まれた半導体レーザモジュールは例えば特許文献1に報告されている。
【0011】
【特許文献1】
特開平5―150146号公報
【0012】
【発明が解決しようとする課題】
しかしながら、図13、14に示す電子冷却ユニット2が組込まれた半導体レーザモジュールにおいてもまだ解消すべき次のような課題があった。
【0013】
すなわち、半導体レーザ5、レンズ8、受光素子10を搭載した基板3は、半導体レーザ5から発生する膨大な熱を一カ所に集中させずに分散させる必要のために、上記各光学素子の設置面積に比較して、かなり大きな面積を有する。
【0014】
したがって、半導体レーザ5駆動時における基板3の温度分布特性は、図16に示すように、半導体レーザ5の設置位置近傍の温度が最も高く、半導体レーザ5の設置位置から離れるに従って温度が低くなる。すなわち、基板3の温度分布における等温線40の密度が高く、基板3における温度差が大きいことを示す。
【0015】
一方、例えば、吸熱板と放熱板との間に1個又は複数のペルチェ素子が組込まれた構造を有する電子冷却ユニット2においては、吸熱板の各位置に入力した各熱をできるだけ均一に吸熱して、放熱板の各位置からできるだけ均一に放熱するようにしている。すなわち、吸熱板の各位置における吸熱能力は等しく設定されている。
【0016】
このような吸熱板の各位置における吸熱能力が等しく設定された電子冷却ユニット2を用いて、大量の熱を発熱する半導体レーザ5が搭載された基板3を冷却する場合、均一な吸熱能力の値を、温度分布特性(発熱分布特性)における最大温度(最大発熱量)に対応した値に設定する必要がある。具体的には、電子冷却ユニット2の均一な吸熱能力の値を半導体レーザ5が設置された位置の温度(発熱量)に対応した値に設定する必要がある。
【0017】
その結果、電子冷却ユニット2における半導体レーザ5が設置された位置においては、基板3を目的とする温度に制御可能であるが、半導体レーザ5の設置位置から遠く離れた位置においては、目的とする温度を下まわり、余分に冷却(過冷却)してしまう。
【0018】
このように、基板3の各位置における温度に大きな差があることは、電子冷却ユニット2に供給した電力が有効に使用されないことになり、半導体レーザ5の温度が予め定められた許容範囲に入るように、電子冷却ユニット2に供給する電力が増大する。
【0019】
このことは、半導体レーザモジュールから出力される光の出力を増加させるために、半導体レーザ5に印加する電力を増加した場合に、図15における特性Bに示すように、モジュール全体の入力電力パワー(W)が急激に増加する問題がある。
【0020】
電子冷却ユニット2の基板3に対する目的温度への冷却効率をより向上させるために、図17に示すように、大量の熱を発する半導体レーザ5を基板3のほぼ中央位置に設置し、基板3の端部に別途レンズ17を、レンズホルダー16を介して取付ける。このような半導体レーザモジュールにおいて、半導体レーザ5から出力された光はレンズ8で平行光に直され、次のレンズ17で、窓11を介して光ファイバ13の端面位置に集光される。
【0021】
この場合、大量の熱を発する半導体レーザ5が基板3のほぼ中央位置に設置されているので、図18に示す電子冷却ユニット2で冷却されている基板3の温度分布特性も、中央の広い範囲でやや高く、周辺位置がやや低い特性となるので、大きなピーク温度がなくなる。その結果、電子冷却ユニット2で余分に冷却(過冷却)してしまう領域が少なくなり、電子冷却ユニット2で基板3に搭載された半導体レーザ5を目的温度に効率的に冷却できる。
【0022】
したがって、図14に示す半導体レーザモジュールに比較して消費電力を低下できる。
【0023】
しかしながら、この半導体レーザモジュール内に組込まれるレンズ8、17等の光学部品数が増大するので、光軸合わせ、焦点位置合わせ等の光学調整作業が繁雑になり、この半導体レーザモジュールの製造工程が複雑になり、生産性の低下をまねく問題があった。
さらに、光学部品数が増大し、かつ製造工程が複雑になるので、半導体レーザモジュールの製造費が大幅に上昇する。
【0024】
図19の半導体レーザモジュールにおいては、図17の半導体レーザモジュールにおける基板3の端部に設けられたレンズ17を、ファイバ固定具12内に収納している。このような半導体レーザモジュールにおいても、図17の半導体レーザモジュールとほぼ同様の問題点を有する。
【0025】
本発明はこのような事情に鑑みてなされたものであり、内部に組込まれる光学系を複雑化することなく、少ない消費電力で半導体レーザから発生する熱を効率的に吸収でき、簡単に高強度の光を出力できる半導体レーザモジュール、及びこの半導体レーザモジュールに組込まれる電子冷却ユニットを提供することを目的とする。
【0026】
【課題を解決するための手段】
上記課題を解消するために、本発明は、ケース内に設けられた基板の一方面に、光を出力する半導体レーザと、この半導体レーザから出力された光をケースの側壁に穿設された窓を介しケースの外側に取付けられた光ファイバへ導くためのレンズとを取付け、基板の他方面に半導体レーザを冷却する電子冷却ユニットを取付けた半導体レーザモジュールにおいて、電子冷却ユニットは、基板の他方面に接する吸熱板と、吸熱板に対向する放熱板と、吸熱板と放熱板との間に平面的に分散して配置され、p型半導体とn型半導体とを金属導体で接続してなる複数のペルチェ素子とを備え、半導体レーザに対向する領域におけるペルチェ素子の配置の密度を半導体レーザに対向しない領域におけるペルチェ素子の配置の密度より高く設定されている。
【0027】
このように構成された半導体レーザモジュールに組込まれる電子冷却ユニットは、半導体レーザに対向する領域におけるペルチェ素子の配置の密度を半導体レーザに対向しない領域におけるペルチェ素子の配置の密度より高く設定されている。すなわち、大量の発熱を有する半導体レーザに対応する領域は高い吸熱能力を有し、半導体レーザから離れた発熱が少ない領域は低い吸熱能力を有する。
【0028】
したがって、その一部分に半導体レーザが取付けられた基板の全面に亘って目標とする温度にほぼ均一に冷却できるので、この電子冷却ユニットに供給される電力を有効に吸熱に使用できる。その結果、少ない消費電力で半導体レーザから発生する熱を効率的に吸収でき、少ない電力で半導体レーザの温度を予め定められた許容範囲に制御できる。
【0029】
また、別の発明は、上述した半導体レーザモジュールにおいて、電子冷却ユニットは、基板の他方面に接する吸熱板と、吸熱板に対向する放熱板と、吸熱板と放熱板との間に平面的に分散して配置され、p型半導体とn型半導体とを金属導体で接続してなる複数のペルチェ素子とを備え、半導体レーザに対向する領域におけるペルチェ素子に印加する電流を半導体レーザに対向しない領域におけるペルチェ素子に印加する電流より高く設定されている。
【0030】
このように構成された半導体レーザモジュールの電子冷却ユニットにおいては、大量の発熱を有する半導体レーザに対向する領域におけるペルチェ素子の吸熱能力は高く、半導体レーザに対向しない発熱が少ない領域におけるペルチェ素子の吸熱能力は低い。
【0031】
したがって、先の発明と同様に、半導体レーザが取付けられた基板の全面に亘って目標とする温度にほぼ均一に冷却できるので、少ない消費電力で半導体レーザから発生する熱を効率的に吸収できる。
【0032】
また、別の発明は、ケース内に設けられた基板の一方面に、光を出力する半導体レーザと、この半導体レーザから出力された光をケースの側壁に穿設された窓を介しケースの外側に取付けられた光ファイバへ導くためのレンズとを取付け、基板の他方面に半導体レーザを冷却する電子冷却機構を取付けた半導体レーザモジュールにおいて、電子冷却機構は、吸熱板と放熱板と複数のペルチェ素子とを有し、吸熱板が基板の他方面における半導体レーザに対向する領域に接する第1の電子冷却ユニットと、吸熱板と放熱板と複数のペルチェ素子とを有し、吸熱板が第1の電子冷却ユニットの放熱板及び基板の他方面における第1の電子冷却ユニットの吸熱板が接していない領域に接する第2の電子冷却ユニットとを備えている。
【0033】
このように構成された半導体レーザモジュールにおいては、大量の発熱を有する半導体レーザに対向する領域は第1の電子冷却ユニットと第2の電子冷却ユニットとの2台の電子冷却ユニットで冷却され、半導体レーザに対向しない発熱が少ない領域は第2の電子冷却ユニットのみで冷却される。したがって、電子冷却機構全体としては、半導体レーザに対向する領域における吸熱能力は高く、半導体レーザに対向しない領域における吸熱能力は低いので、上述した各発明とほぼ同じ作用効果を奏することが可能である。
【0034】
さらに、別の発明は、上述した各発明の半導体レーザモジュールにおいて、半導体レーザは、基板の一方面における中央位置から窓側方向の位置に配設されている。また、半導体レーザから出力された光を光ファイバへ導くためのレンズは1個である。
【0035】
このように、半導体レーザの温度を許容範囲に維持した状態で、基板に取付ける光学部品数を最小限に抑制できるので、製造工程の簡素化を図ることができる。
【0036】
さらに、別の発明の電子冷却ユニットは、所定の発熱分布を有する冷却対象に接する吸熱板と、吸熱板に対向する放熱板と、吸熱板と放熱板との間に平面的に分散して配置され、p型半導体とn型半導体とを金属導体で接続してなる複数のペルチェ素子とを備え、冷却対象の発熱分布における高発熱領域に対向するペルチェ素子の配置の密度を冷却対象の発熱分布における低発熱領域に対向するペルチェ素子の配置の密度より高く設定されている。
【0037】
このように構成された電子冷却ユニットは、半導体レーザモジュールの他に、発熱分布が既知である全ての冷却対象に対して適用可能である。
【0038】
【発明の実施の形態】
以下、本発明の各実施形態を図面を用いて説明する。
(第1実施形態)
図1は本発明の第1実施形態に係る半導体レーザモジュールの分解斜視図であり、図2は断面模式図であり、図3は回路図である。図13、図14に示す従来の半導体レーザモジュールと同一部分には同一符号を付して重複する部分の詳細説明を省略する。
【0039】
ケース1内の底壁1aの上面に電子冷却ユニット20が固定され、この電子冷却ユニット20の上面に金属製の基板3が固定されている。この基板3の上面における一方側に支持部材4を介して半導体レーザ5が取付けられている。この支持部材4には半導体レーザ5の温度を検出するためのサーミスタ6が取付けられている。さらに、基板3の上面にはレンズホルダー7を介してレンズ8が取付けられている。また、基板3の上面には、半導体レーザ5から出力される光の強度をモニタする受光素子(フォトダイオード PD)10が支持部材9を介して取付けられている。
【0040】
ケース1の側壁1bに穿設された窓11の外側に、光ファイバ13の端面を窓11を介してレンズ8に対向させるファイバ固定具12が固定されている。さらに、ケース1の別の側壁1cには、図3の回路図で示すように、半導体レーザ5、電子冷却ユニット2に対して直流の駆動電流を供給するとともに、受光素子(フォトダイオード PD)10で検出された光強度、サーミスタ6で検出された温度を取出すための複数の端子15が取付けられている。さらに、ケース1の上端開口には、ケース1内の各光学部材を保護するための蓋14が固定されている。
【0041】
図4はこの第1実施形態の半導体レーザモジュールに組込まれた電子冷却ユニット20の概略構成を示す断面模式図であり、図5は電子冷却ユニット20の概略構成を示す斜視図である。
【0042】
冷却対象である基板3の下面に接する吸熱板21とこの吸熱板21に対向し下面がケース1の底壁1aの上面に接する放熱板22との間に、p型半導体23とn型半導体24とを金属導体25で接続した複数のペルチェ素子26が平面的に分散して配置されている。隣接するペルチェ素子26どうしは別の金属導体27で接続されている。p型半導体23とn型半導体24とを接続する金属導体25は吸熱板21に印刷配線されている。隣接するペルチェ素子26どうしを接続する金属導体27は放熱板22に印刷配線されている。したがって、各ペルチェ素子26は吸熱板21と放熱板22とに熱的に接している。そして、図7に示すように、電子冷却ユニット20内に組込まれた全部のペルチェ素子26は金属導体27を介して直列接続されている。
【0043】
したがって、このペルチェ素子26の直列回路の両端子28、29間に直流電圧を外部に露出した端子15から印加すると、基板3の熱が吸熱板21を介して吸熱され、放熱板22を介してケース1の底壁1aに放熱される。
【0044】
このような電子冷却ユニット20において、半導体レーザ5に対向する領域におけるp型半導体23とn型半導体24と金属導体25とからなるペルチェ素子26の配置の密度を半導体レーザ5に対向しない領域におけるペルチェ素子26の配置の密度より高く設定されている。
【0045】
具体的には、図6に示すように、基板3の形状に対応する形状を有した吸熱板21と放熱板22におけるp型半導体23とn型半導体23とからなるペルチェ素子26の設置密度分布を、半導体レーザ5の発熱に起因する図16で示した基板3の温度分布(発熱分布)に対応するように設定している。
【0046】
このように構成された電子冷却ユニット20が組込まれた第1実施形態の半導体レーザモジュールにおいて、半導体レーザ5から出力された光は、レンズ8へ入射される。レンズ8は入射された光を、窓11を介して、光ファイバ13の端面位置に集光させる。その結果、半導体レーザ5から出力された光は光ファイバ13を介して半導体レーザモジュールの外部へ供給される。半導体レーザ5から受光素子10側にも光が出力されるので、受光素子10は、半導体レーザ5から出力される光の強度を検出して端子15を介して出力する。そして、サーミスタ6で検出された半導体レーザ5の温度が予め定められた許容範囲に入るように、電子冷却ユニット20に供給する電力を制御している。
【0047】
そして、電子冷却ユニット20は、図6に示すように、半導体レーザ5に対向する領域にp型半導体23とn型半導体24と金属導体25とからなるペルチェ素子26を多数配置し、半導体レーザ5に対向しない領域にペルチェ素子26を少数配置している。
【0048】
すなわち、この電子冷却ユニット20においては、大量の発熱を有する半導体レーザ5に対応する領域は高い吸熱能力を有し、半導体レーザ5から離れた発熱が少ない領域は低い吸熱能力を有する。
【0049】
図8はこの電子冷却ユニット20で冷却された状態の基板3の温度分布特性を示す図である。図示するように、等温線40の間隔は非常に疎らであり、基板3は、半導体レーザ5の取付け位置を含めて、広い範囲に亘って均一に冷却されていることが理解できる。したがって、この電子冷却ユニット20に外部の端子15を介して供給される電力を有効に吸熱に使用される。
【0050】
その結果、少ない消費電力で半導体レーザ5から発生する熱を効率的に吸収でき、少ない電力で半導体レーザ5の温度を予め定められた許容範囲に制御できる。
【0051】
また、図8に示すように、基板3の温度分布を従来の半導体レーザモジュールに比較して大幅に均一にできる。その結果、半導体レーザ5の稼働中に基板3が熱変形することが大幅に抑制されるので、半導体レーザ5、レンズ8、光ファイバ13との間の光軸がずれることが抑制される。
【0052】
例えば、光ファイバ13のコア径が10μmであり、光軸のセンタのずれの目標は数%以下である。さらに、半導体レーザ5の温度を−25℃から75℃まで変化させたときの光の出力レベルの変動は±0.5dB以下が要求されている。本実施形態の半導体レーザモジュールにおいては、上述した目標及び要求を十分満足する結果が得られた。
【0053】
なお、このように構成された電子冷却ユニット20は、上述した第1実施形態の半導体レーザモジュールに組込んで、冷却対象である半導体レーザ5を冷却する機能の他に、半導体レーザ5以外の発熱分布が既知である全ての冷却対象に対して適用可能である。すなわち、この電子冷却ユニット20を単独で使用可能である。
【0054】
(第2実施形態)
図9は本発明の第2実施形態に係る半導体レーザモジュールに組込まれた電子冷却ユニット20aにおける基板3の形状に対応する吸熱板21と放熱板22におけるp型半導体23とn型半導体23とからなるペルチェ素子26の設置密度分布を示す図である。電子冷却ユニット20a以外の構成は図1、図2、図3を用いて説明した第1実施形の半導体レーザモジュールと同じであるので、説明を省略する。
【0055】
この第2実施形態の半導体レーザモジュールの電子冷却ユニット20aにおいては、p型半導体23とn型半導体23とからなる複数のペルチェ素子26は等間隔に、吸熱板21(放熱板22)全体に亘って均等に配置されている。
【0056】
そして、図10、図11に示すように、全てのペルチェ素子26は、放熱板22の両側端近傍に印刷配線された電力線30、31を介して端子28、29に対して並列接続されている。ペルチェ素子26のp型半導体23と電力線30とを接続する印刷配線された線32の抵抗値、及びn型半導体24と電力線31とを接続する印刷配線された線33の抵抗値は、印刷配線の線幅を変更すことによって任意に設定可能である。
【0057】
各ペルチェ素子26に電流を供給するための線32、33の抵抗値を変更することによって、端子28、29間に一定直流電圧を印加した状態において、各ペルチェ素子26に流れる電流の値を任意に設定可能である。ペルチェ素子26に流れる電流の値を大きくすると、該当ペルチェ素子26の吸熱能力が上昇する。逆に、ペルチェ素子26に流れる電流の値を小さくすると、該当ペルチェ素子26の吸熱能力が低下する。
【0058】
この第2実施形態の半導体レーザモジュールの電子冷却ユニット20aにおいては、半導体レーザ5に対向する領域の各ペルチェ素子26の線32、33の抵抗値を小さくして、該当領域の各ペルチェ素子26の吸熱能力を上昇させる。逆に、半導体レーザ5に対向しない領域の各ペルチェ素子26の線32、33の抵抗値を大きくして、該当領域の各ペルチェ素子26の吸熱能力を低下させる。
【0059】
すなわち、この電子冷却ユニット20aにおいては、大量の発熱を有する半導体レーザ5に対応する領域は高い吸熱能力を有し、半導体レーザ5から離れた発熱が少ない領域は低い吸熱能力を有する。
【0060】
したがって、前述した第1実施形態の半導体レーザモジュールと同様に、図8に示すように、電子冷却ユニット20aで半導体レーザ5が取付けられた基板3の全面に亘って、ほぼ均一温度に冷却できる。よって、この電子冷却ユニット20aに外部の端子15を介して供給される電力を有効に吸熱に使用される。その結果、少ない消費電力で半導体レーザ5から発生する熱を効率的に吸収でき、少ない電力で半導体レーザ5の温度を予め定められた許容範囲に制御できる。
【0061】
(第3実施形態)
図12は本発明の第3実施形態に係る半導体レーザモジュールの概略構成を示す断面模式図である。図13、図14に示す従来の半導体レーザモジュールと同一部分には同一符号を付して重複する部分の詳細説明を省略する。
【0062】
この第3実施形態の半導体レーザモジュールにおいては、図14に示す従来の半導体レーザモジュールにおける1つの電子冷却ユニット2の代わりに、吸熱板の大きさが異なる積層された第1の電子冷却ユニット2aと第2の電子冷却ユニット2bとからなる電子冷却機構34が組込まれている。
【0063】
第1、第2の電子冷却ユニット2a、2bにおいては、上面の吸熱板21と下面の放熱板22との間に、p型半導体23とn型半導体23と金属導体25とからなる複数のペルチェ素子26を均一に配設している。
【0064】
ケース1内の底壁1a上に第2の電子冷却ユニット2bの下面の放熱板22が取付けられている。この第2の電子冷却ユニット2bの上面の吸熱板21の半導体レーザ5に対応する領域に、第1の電子冷却ユニット2aの下面の放熱板22が取付けられている。第1の電子冷却ユニット2aの上面の吸熱板21は、基板3aの下面における半導体レーザ5に対応する領域のみに接する大きさに設定されている。基板3aは下面が第1の電子冷却ユニット2aの吸熱板21と第2の電子冷却ユニット2bの吸熱板21とに同時に接するように、段差が形成されている。
【0065】
このように構成された第3実施形態の半導体レーザモジュールにおいては、半導体レーザ5を搭載した基板3aのうち、大量の発熱を有する半導体レーザ5に対向する領域は積層された第1の電子冷却ユニット2aと第2の電子冷却ユニット2bとの2台の電子冷却ユニット2a、2bで冷却され、半導体レーザ5に対向しない発熱が少ない領域は下側に位置する第2の電子冷却ユニット2bのみで冷却される。
【0066】
したがって、電子冷却機構34全体としては、半導体レーザ5に対向する領域における吸熱能力は高く、半導体レーザ5に対向しない領域における吸熱能力は低いので、上述した第1、第2実施形態の半導体レーザモジュールとほぼ同じ作用効果を奏することが可能である。
【0067】
なお、本発明は上述した各実施形態に限定されるものではい。実施形態の半導体レーザモジュールが低温環境下で使用される場合においては、各電子冷却ユニット20、20aに印加する直流電圧を逆極性に設定して、各電子冷却ユニット20、20aで半導体レーザ5を一定温度に加熱することも可能である。
【0068】
【発明の効果】
以上説明したように、本発明の半導体レーザモジュール、及びこの半導体レーザモジュールに組込まれる電子冷却ユニットにおいては、内部に組込まれる光学系を複雑化することなく、少ない消費電力で半導体レーザから発生する熱を効率的に吸収でき、簡単に高強度の光を出力できる。さらに、半導体レーザモジュール全体の製造費も節減できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係わる半導体レーザモジュールの概略構成を示す分解斜視図
【図2】同第1実施形態の半導体レーザモジュールの概略構成を示す断面模式図
【図3】同第1実施形態の半導体レーザモジュールの回路図
【図4】同第1実施形態の半導体レーザモジュールに組込まれた電子冷却ユニットの断面模式図
【図5】同第1実施形態の半導体レーザモジュールに組込まれた電子冷却ユニットの斜視図
【図6】同第1実施形態の半導体レーザモジュールに組込まれた電子冷却ユニットにおけるペルチェ素子の設置密度分布図
【図7】同第1実施形態の半導体レーザモジュールに組込まれた電子冷却ユニットの回路図
【図8】同第1実施形態の半導体レーザモジュールに組込まれた基板における温度分布特性図
【図9】本発明の第2実施形態の半導体レーザモジュールに組込まれた電子冷却ユニットにおけるペルチェ素子の設置密度分布図
【図10】同第2実施形態の半導体レーザモジュールに組込まれた電子冷却ユニットの回路図
【図11】同じく同第2実施形態の半導体レーザモジュールに組込まれた電子冷却ユニットの回路図
【図12】本発明の第3実施形態に係わる半導体レーザモジュールの概略構成を示す断面模式図
【図13】従来の半導体レーザモジュールの概略構成を示す分解斜視図
【図14】同従来の半導体レーザモジュールの概略構成を示す断面模式図
【図15】一般的な半導体レーザモジュールにおける出力光パワーと入力電力パワーとの関係を示す図
【図16】従来の半導体レーザモジュールに組込まれた基板における温度分布特性図
【図17】別の従来の半導体レーザモジュールの概略構成を示す断面模式図
【図18】同別の従来の半導体レーザモジュールに組込まれたに基板における温度分布特性図
【図19】さらに別の従来の半導体レーザモジュールの概略構成を示す断面模式図
【符号の説明】
1…ケース、2、20、20a…電子冷却ユニット、2a…第1の電子冷却ユニット、2b…第1の電子冷却ユニット、3、3a…基板、5…半導体レーザ、6…サーミスタ、8…レンズ、10…受光素子、11…窓、13…光ファイバ、14…蓋、15…端子、21…吸熱板、22…放熱板、23…p型半導体、24…n型半導体、25、27…導体金属、26…ペルチェ素子、30、31…電力線、32、33…線、34…電子冷却機構、40…等温線

Claims (5)

  1. ケース(1)内に設けられた基板(3)の一方面に、光を出力する半導体レーザ(5)と、この半導体レーザから出力された光を前記ケースの側壁に穿設された窓(11)を介し前記ケースの外側に取付けられた光ファイバ(13)へ導くためのレンズ(8)とを取付け、前記基板の他方面に前記半導体レーザを冷却する電子冷却ユニット(20)を取付けた半導体レーザモジュールにおいて、
    前記電子冷却ユニット(20)は、
    前記基板の他方面に接する吸熱板(21)と、
    前記吸熱板に対向する放熱板(22)と、
    前記吸熱板と放熱板との間に平面的に分散して配置され、p型半導体とn型半導体とを金属導体で接続してなる複数のペルチェ素子(26)とを備え、
    前記半導体レーザに対向する領域におけるペルチェ素子の配置の密度を前記半導体レーザに対向しない領域におけるペルチェ素子の配置の密度より高く設定されている
    ことを特徴とする半導体レーザモジュール。
  2. ケース(1)内に設けられた基板(3)の一方面に、光を出力する半導体レーザ(5)と、この半導体レーザから出力された光を前記ケースの側壁に穿設された窓(11)を介し前記ケースの外側に取付けられた光ファイバ(13)へ導くためのレンズ(8)とを取付け、前記基板の他方面に前記半導体レーザを冷却する電子冷却ユニット(20a)を取付けた半導体レーザモジュールにおいて、
    前記電子冷却ユニット(20a)は、
    前記基板の他方面に接する吸熱板(21)と、
    前記吸熱板に対向する放熱板(22)と、
    前記吸熱板と放熱板との間に平面的に分散して配置され、p型半導体とn型半導体とを金属導体で接続してなる複数のペルチェ素子(26)とを備え、
    前記半導体レーザに対向する領域におけるペルチェ素子に印加する電流を前記半導体レーザに対向しない領域におけるペルチェ素子に印加する電流より高く設定されている
    ことを特徴とする半導体レーザモジュール。
  3. ケース(1)内に設けられた基板(3)の一方面に、光を出力する半導体レーザ(5)と、この半導体レーザから出力された光を前記ケースの側壁に穿設された窓(11)を介し前記ケースの外側に取付けられた光ファイバ(13)へ導くためのレンズ(8)とを取付け、前記基板の他方面に前記半導体レーザを冷却する電子冷却機構(34)を取付けた半導体レーザモジュールにおいて、
    前記電子冷却機構(34)は、
    吸熱板と放熱板と複数のペルチェ素子とを有し、前記吸熱板が前記基板の他方面における半導体レーザに対向する領域に接する第1の電子冷却ユニット(2a)と、
    吸熱板と放熱板と複数のペルチェ素子とを有し、前記吸熱板が前記第1の電子冷却ユニットの放熱板及び前記基板の他方面における前記第1の電子冷却ユニットの吸熱板が接していない領域に接する第2の電子冷却ユニット(2b)とを備えた
    ことを特徴とする半導体レーザモジュール。
  4. 前記半導体レーザは前記基板の一方面における中央位置から前記窓側方向の位置に配設され、
    かつ、前記半導体レーザから出力された光を光ファイバへ導くためのレンズは1個である
    ことを特徴とする請求項1から3のいずれか1項記載の半導体レーザモジュール。
  5. 所定の発熱分布を有する冷却対象に接する吸熱板(21)と、
    前記吸熱板に対向する放熱板(22)と、
    前記吸熱板と放熱板との間に平面的に分散して配置され、p型半導体(23)とn型半導体(24)とを金属導体(25)で接続してなる複数のペルチェ素子26とを備え、
    前記冷却対象の発熱分布における高発熱領域に対向するペルチェ素子の配置の密度を前記冷却対象の発熱分布における低発熱領域に対向するペルチェ素子の配置の密度より高く設定されている
    ことを特徴とする電子冷却ユニット。
JP2003016354A 2003-01-24 2003-01-24 半導体レーザモジュール及び電子冷却ユニット Pending JP2004228432A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003016354A JP2004228432A (ja) 2003-01-24 2003-01-24 半導体レーザモジュール及び電子冷却ユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003016354A JP2004228432A (ja) 2003-01-24 2003-01-24 半導体レーザモジュール及び電子冷却ユニット

Publications (1)

Publication Number Publication Date
JP2004228432A true JP2004228432A (ja) 2004-08-12

Family

ID=32903836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003016354A Pending JP2004228432A (ja) 2003-01-24 2003-01-24 半導体レーザモジュール及び電子冷却ユニット

Country Status (1)

Country Link
JP (1) JP2004228432A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019008332A (ja) * 2018-10-18 2019-01-17 ソニー株式会社 医療用システム及び温度調節方法
WO2020162372A1 (ja) * 2019-02-08 2020-08-13 古河電気工業株式会社 光モジュールおよび熱電モジュール
JPWO2021084602A1 (ja) * 2019-10-29 2021-05-06
CN113523607A (zh) * 2021-08-04 2021-10-22 广东宏石激光技术股份有限公司 一种光学温控装置、激光切割头及激光加工方法
CN114002227A (zh) * 2021-11-01 2022-02-01 无锡昌鼎电子有限公司 一种半导体缺陷检测装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019008332A (ja) * 2018-10-18 2019-01-17 ソニー株式会社 医療用システム及び温度調節方法
WO2020162372A1 (ja) * 2019-02-08 2020-08-13 古河電気工業株式会社 光モジュールおよび熱電モジュール
CN113424377A (zh) * 2019-02-08 2021-09-21 古河电气工业株式会社 光模块以及热电模块
JPWO2021084602A1 (ja) * 2019-10-29 2021-05-06
WO2021084602A1 (ja) * 2019-10-29 2021-05-06 日本電信電話株式会社 光モジュール
EP4053617A4 (en) * 2019-10-29 2023-07-12 Nippon Telegraph And Telephone Corporation OPTICAL MODULE
CN113523607A (zh) * 2021-08-04 2021-10-22 广东宏石激光技术股份有限公司 一种光学温控装置、激光切割头及激光加工方法
CN113523607B (zh) * 2021-08-04 2023-07-14 广东宏石激光技术股份有限公司 一种光学温控装置、激光切割头及激光加工方法
CN114002227A (zh) * 2021-11-01 2022-02-01 无锡昌鼎电子有限公司 一种半导体缺陷检测装置
CN114002227B (zh) * 2021-11-01 2022-07-12 无锡昌鼎电子有限公司 一种半导体缺陷检测装置

Similar Documents

Publication Publication Date Title
US20090103294A1 (en) Led lamp with a heat sink
JP4057302B2 (ja) レーザダイオードモジュールからなる小型光源
US7994533B2 (en) LED lamp
JPWO2018116634A1 (ja) 光モジュール
US20050000559A1 (en) Thermoelectric generator
KR100868492B1 (ko) 열전소자가 구비된 태양전지 발전장치
US20090167134A1 (en) Light source module with high heat-dissipation efficiency
CN112748633B (zh) 一种激光光源和激光投影设备
KR20080097449A (ko) 집속 태양 전지 장치
KR20160009749A (ko) 적외선 led 감시카메라
KR20110136288A (ko) 열전대를 이용한 매립형 광소자 패키지 모듈
JP2004228432A (ja) 半導体レーザモジュール及び電子冷却ユニット
JP2004253779A (ja) 光送信器
KR101904361B1 (ko) 태양광 발전장치용 접속반 냉각장치
JP2006005081A (ja) パワー部品冷却装置
JP2010249945A (ja) 冷却システムおよび投写型映像表示装置
US20100294465A1 (en) Energy transducing apparatus and energy transducing equipment
WO2018105182A1 (ja) 光モジュールの制御方法、光モジュールユニットおよび光モジュール
JP4813829B2 (ja) 放熱装置、および放熱方法
KR20110105283A (ko) 열전소자를 이용한 엘이디 백라이트 유닛
KR20130110362A (ko) 열전모듈을 이용한 냉각수단을 갖는 엘이디 광원 장치
KR101512060B1 (ko) 태양광 발전장치
KR20100118373A (ko) 열전모듈을 이용한 휴대용 발전장치
JP2012089869A (ja) 放熱台
CN220964044U (zh) 散热系统及光电设备