WO2020162372A1 - 光モジュールおよび熱電モジュール - Google Patents

光モジュールおよび熱電モジュール Download PDF

Info

Publication number
WO2020162372A1
WO2020162372A1 PCT/JP2020/003800 JP2020003800W WO2020162372A1 WO 2020162372 A1 WO2020162372 A1 WO 2020162372A1 JP 2020003800 W JP2020003800 W JP 2020003800W WO 2020162372 A1 WO2020162372 A1 WO 2020162372A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
optical
module
pattern
monitor
Prior art date
Application number
PCT/JP2020/003800
Other languages
English (en)
French (fr)
Inventor
悠介 稲葉
麻衣子 有賀
一樹 山岡
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2020571173A priority Critical patent/JPWO2020162372A1/ja
Priority to CN202080012828.2A priority patent/CN113424377A/zh
Publication of WO2020162372A1 publication Critical patent/WO2020162372A1/ja
Priority to US17/393,918 priority patent/US20210367399A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/38Cooling arrangements using the Peltier effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02438Characterized by cooling of elements other than the laser chip, e.g. an optical element being part of an external cavity or a collimating lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0064Anti-reflection components, e.g. optical isolators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present invention relates to an optical module and a thermoelectric module.
  • An optical module in which a base is mounted on a Peltier module which is a thermoelectric module, and optical elements such as a semiconductor laser element, an optical isolator, and a lens are mounted on the base (see Patent Document 1). ..
  • TOSA transmitter optical sub-assembly
  • ROSA receiver optical sub-assembly
  • the present invention has been made in view of the above, and an object thereof is to provide an optical module and a thermoelectric module suitable for reducing the height.
  • an optical module includes an optical element and a thermoelectric module mounting the optical element, and the thermoelectric module includes a first substrate.
  • a second substrate arranged to face the first substrate, and a plurality of thermoelectric elements provided between the first substrate and the second substrate.
  • a pattern made of a material different from that of the first substrate is formed on a surface opposite to the back surface facing the second substrate, and the optical element includes the pattern on the surface of the first substrate. It is characterized by being mounted in association with.
  • the optical module according to one aspect of the present invention is characterized in that the pattern is made of at least one of metal, dielectric and resin.
  • the pattern includes a gold (Au) layer and at least one of copper (Cu), titanium (Ti), nickel (Ni), palladium (Pd), and platinum (Pt). It has a structure in which a layer made of is laminated.
  • the optical element is a semiconductor laser element, a semiconductor optical amplifier, a modulator, a light receiving element, a lens, a prism, a beam splitter, a mirror, a filter, a planar lightwave circuit or an optical isolator. Is characterized by.
  • the optical element is a semiconductor laser element
  • the optical element is mounted on the first substrate via a submount, and the submount and the thermal conductive material are mounted on the first substrate. It is fixed at.
  • An optical module according to one aspect of the present invention is characterized in that the optical element is fixed to the first substrate with an epoxy resin.
  • An optical module according to one aspect of the present invention is characterized by including a housing that houses the optical element and the thermoelectric module.
  • thermoelectric module includes a first substrate, a second substrate arranged to face the first substrate, and a plurality of units provided between the first substrate and the second substrate. And a pattern made of a material different from that of the first substrate is formed on a surface of the first substrate opposite to the back surface facing the second substrate. To do.
  • FIG. 1 is a schematic top view of the optical module according to the first embodiment.
  • FIG. 2 is a schematic partially cutaway surface view of the optical module according to the first embodiment.
  • FIG. 3 is a schematic top view of the optical module according to the second embodiment.
  • FIG. 4 is a schematic partially cutaway surface view of the optical module according to the second embodiment.
  • FIG. 5 is a schematic top view of the optical module according to the third embodiment.
  • FIG. 6 is a schematic partially cutaway surface view of the optical module according to the third embodiment.
  • FIG. 7 is a schematic top view of the optical module according to the fourth embodiment.
  • FIG. 8 is a schematic partially cutaway surface view of the optical module according to the fourth embodiment.
  • FIG. 9 is a schematic top view of the optical module according to the fifth embodiment.
  • FIG. 10 is a schematic partially cutaway surface view of the optical module according to the fifth embodiment.
  • FIG. 11 is a schematic top view of the optical module according to the sixth embodiment.
  • FIG. 12 is a schematic partially cutaway surface view of the optical module according to the sixth embodiment.
  • FIG. 13 is a schematic top view of a Peltier module according to Modification 2.
  • FIG. 14 is a schematic side view of a Peltier module according to Modification 2.
  • FIG. 15 is a schematic top view of a Peltier module according to Modification 3.
  • FIG. 16 is a schematic side view of a Peltier module according to Modification 3.
  • FIG. 17 is a schematic top view of a Peltier module according to Modification 4.
  • FIG. 18 is a schematic side view of a Peltier module according to Modification 4.
  • FIG. 19 is a schematic side view of a Peltier module according to Modification 5.
  • FIG. 20 is a schematic side view of a submount according to Modification 6.
  • FIG. 21 is a schematic side view of
  • the present inventors have studied a configuration that does not use a base in order to realize a low profile of the optical module. Thereby, it is possible to reduce the height by the total thickness of the thickness of the base and the thickness of the adhesive for bonding the thermoelectric module and the base.
  • the present inventors have reached the idea of solving the above problems by forming a pattern on the surface of the substrate of the thermoelectric module, and have completed the present invention.
  • (Embodiment 1) 1 and 2 are a schematic top view and a partially cutaway side view of the optical module according to the first embodiment, respectively.
  • the optical module 100 includes a housing 1.
  • the housing 1 includes a signal light output port 1a, a side wall portion 1b, a bottom plate portion 1c, an upper lid portion 1d, a wiring portion 1e, and leads 1f.
  • FIG. 2 is a top view with the upper lid 1d removed.
  • the side wall portion 1b is a frame plate-shaped member having four surfaces, and each surface is substantially orthogonal to the bottom plate portion 1c.
  • the signal light output port 1a is provided on one surface of the side wall portion 1b.
  • a lens 2 is housed in the signal light output port 1a, and an optical fiber 3 for outputting signal light is connected to the outside.
  • the bottom plate portion 1c is a plate-shaped member.
  • the upper lid portion 1d is a plate-shaped member that is arranged to face the bottom plate portion 1c.
  • the wiring portion 1e is provided on a part of the side wall portion 1b.
  • the lead 1f is provided on the side wall portion 1b.
  • the bottom plate portion 1c is made of a material having high thermal conductivity such as copper tungsten (CuW), copper molybdenum (CuMo), and aluminum oxide (Al 2 O 3 ).
  • the signal light output port 1a, the side wall portion 1b, and the upper lid portion 1d are made of a material having a low coefficient of thermal expansion such as Fe—Ni—Co alloy and aluminum oxide (Al 2 O 3 ).
  • the wiring portion 1e is made of an insulating material and has a wiring pattern made of a conductor.
  • the lead 1f is made of a conductor. In the present embodiment, the lead 1f is a lead pin, but it may be a pad-like one.
  • the lead 1f is electrically connected to a controller provided outside the optical module 100.
  • the controller controls the operation of the optical module 100.
  • the controller is configured to include, for example, an IC (Integrated Circuit).
  • the following components are housed inside the optical module 100: chip-on submount 4, lens 5, optical isolator 6, beam splitters 7 and 8, monitor photodiode (PD) 9 as a light receiving element, etalon filter. 10, a monitor PD 11, and a Peltier module 12.
  • the beam splitters 7 and 8 may be configured to include a prism or a mirror.
  • optical module 100 these components are mounted inside the housing 1, and the upper lid portion 1d is attached and hermetically sealed.
  • the optical module 100 is configured as a semiconductor laser module. The configuration and function of each component will be described below.
  • the Peltier module 12 which is a thermoelectric module, has a first substrate 12a, a second substrate 12b, a plurality of thermoelectric elements 12c, and a wiring pattern 12d.
  • the first substrate 12a is made of an insulating material having high thermal conductivity such as ceramics, and has a front surface 12aa and a back surface 12ab facing the front surface 12aa as a main surface.
  • the second substrate 12b is made of an insulating material having high thermal conductivity such as ceramics, and has a front surface 12ba and a back surface 12bb facing the front surface 12aa as main surfaces.
  • the second substrate 12b is arranged so that its front surface 12ba faces the back surface 12ab of the first substrate 12a.
  • the Peltier module 12 is fixed to the bottom plate portion 1c on the back surface 12bb of the second substrate 12b.
  • the plurality of thermoelectric elements 12c are columnar semiconductor elements provided between the first substrate 12a and the second substrate 12b, respectively.
  • the plurality of thermoelectric elements 12c are each made of a P-type semiconductor or an N-type semiconductor, for example, a bismuth tellurium-based semiconductor. These thermoelectric elements 12c are connected in series so as to form a PN junction by the wiring pattern 12d.
  • the wiring pattern 12d is a pattern made of a conductor such as metal formed on the back surface 12ab of the first substrate 12a and the front surface 12ba of the second substrate 12b.
  • the Peltier module 12 absorbs heat or generates heat according to the direction of current flow.
  • the current flowing through the Peltier module 12 is supplied from the outside via a lead (not shown).
  • the chip-on submount 4, the lens 5, the optical isolator 6, the beam splitters 7, 8, the monitor PD 9, the etalon filter 10, and the monitor PD 11 are mounted on the surface 12aa of the first substrate 12a of the Peltier module 12. These components are controlled to the desired temperature by passing an electric current through the Peltier module 12.
  • the chip-on submount 4 includes a laser element 4a and a submount 4b on which the laser element 4a is mounted.
  • the laser element 4a is a semiconductor laser element, for example, a wavelength tunable laser element.
  • the submount 4b is made of an insulating material having high thermal conductivity, and efficiently transfers the heat generated by the laser element 4a to the Peltier module 12.
  • the laser element 4a is externally supplied with power via a lead (not shown) and outputs the laser light L1 to the signal light output port 1a side.
  • the lens 5 collimates the laser light L1 and outputs it to the optical isolator 6.
  • the optical isolator 6 allows the laser light L1 to pass to the beam splitter 7 side, and blocks the passage of light traveling from the beam splitter 7 side. As a result, the optical isolator 6 blocks reflected light from entering the laser element 4a.
  • the beam splitter 7 outputs most of the laser light L1 that has passed through the optical isolator 6 to the lens 2 and part of it to the beam splitter 8 as laser light L2.
  • the lens 2 collects the input laser light L1 on the optical fiber 3 and couples it.
  • the beam splitter 8 splits the laser beam L2 into laser beams L3 and L4, outputs the laser beam L3 to the monitor PD9, and outputs the laser beam L4 to the etalon filter 10.
  • the monitor PD9 receives the laser beam L3 and outputs a current signal according to the received light intensity. The current signal is transmitted to the controller and used for detecting and controlling the power and wavelength of the laser light L1.
  • the etalon filter 10 is a filter whose transmission characteristics change periodically with respect to wavelength.
  • the etalon filter 10 transmits the laser light L4 with a transmittance according to the wavelength and outputs the laser light L4 to the monitor PD 11.
  • the monitor PD 11 receives the laser beam L4 transmitted through the etalon filter 10 and outputs a current signal according to the received light intensity.
  • the current signal is transmitted to the controller and used for detecting and controlling the wavelength of the laser light L1.
  • patterns P1 to P9 made of a material different from that of the first substrate 12a are formed on the surface 12aa of the first substrate 12a.
  • the patterns P1 to P9 are made of, for example, at least one of a metal, a dielectric, or a resin, depending on its use.
  • Optical elements such as the laser element 4a, the lens 5, the optical isolator 6, the beam splitters 7 and 8, and the monitor PDs 9 and 11 of the chip-on submount 4 are mounted in association with any of these patterns.
  • the pattern P1 functions as a marker for positioning when the chip-on submount 4 is mounted on the Peltier module 12 and is fixed with a heat conductive material. Therefore, the pattern P1 is associated with the laser element 4a.
  • the heat conductive material for fixing the chip-on submount 4 to the Peltier module 12 include solder and heat conductive resin.
  • the pattern P1 also functions as a flow stop until the heat conductive material is cured. In this case, the pattern P1 preferably has a thickness that functions as a flow stop.
  • the pattern P2 functions as a marker for adjusting the optical axis of the laser light L1. Therefore, the pattern P2 is associated with the laser element 4a and the lens 5.
  • the pattern P3 functions as a marker for positioning the optical isolator 6. Therefore, the pattern P3 is associated with the optical isolator 6.
  • An epoxy resin is exemplified as an adhesive agent for fixing the optical isolator 6 to the Peltier module 12.
  • the pattern P3 also functions as a flow stop that prevents the adhesive from flowing to an unnecessary place until the adhesive is cured. In this case, the pattern P3 preferably has a thickness that functions as a flow stop.
  • the patterns P4 and P5 function as wiring patterns for outputting the current signal from the monitor PD9 to the outside via the wiring section 1e and the leads 1f.
  • the monitor PD9 and the patterns P4 and P5 are connected by a bonding wire.
  • the pattern P6 also functions as a base for soldering the monitor PD9 and a marker for alignment. Therefore, the patterns P4 to P6 are associated with the monitor PD9.
  • the patterns P4 to P6 are preferably metallized patterns.
  • the metallized pattern is preferably made of gold (Au).
  • a structure of two or more layers in which a gold (Au) layer and a layer made of at least one of copper (Cu), titanium (Ti), nickel (Ni), palladium (Pd) and platinum (Pt) are laminated is provided. You may have.
  • the patterns P4 and P5 also function as a flow stop until the adhesive is cured.
  • the patterns P4 and P5 have a thickness that functions as a flow stop.
  • the pattern P7 functions as a base for soldering the monitor PD 11 and a marker for alignment.
  • the patterns P8 and P9 function as a wiring pattern for outputting the current signal from the monitor PD11 to the outside via the wiring portion 1e and the lead 1f.
  • the monitor PD11 and the patterns P8 and P9 are connected by bonding wires. Therefore, the patterns P7 to P9 are associated with the monitor PD11.
  • the patterns P7 to P9 are preferably metallized patterns.
  • optical module 100 by directly mounting the components without the base, it is possible to realize a low profile, and it is possible to suitably realize wiring, soldering, and alignment of the mounted optical element.
  • (Embodiment 2) 3 and 4 are a schematic top view and a partially cutaway side view of the optical module according to the second embodiment, respectively.
  • the optical module 100A includes a housing 1 similar to the optical module shown in FIG.
  • the housing 1 includes a signal light output port 1a, a side wall portion 1b, a bottom plate portion 1c, an upper lid portion 1d, a wiring portion 1e, and leads 1f.
  • optical module 100A chip-on submount 4, lens 5, optical isolator 6, beam splitters 7, 8, monitor PD 9, etalon filter 10, monitor PD 11, Peltier module 12. is there.
  • optical module 100A these components are mounted inside the housing 1, and the upper lid portion 1d is attached and hermetically sealed.
  • the optical module 100A is configured as a semiconductor laser module.
  • the configuration and function of each component will be described below. However, description of components having the same configurations and functions as those of the first embodiment will be appropriately omitted.
  • the Peltier module 12 absorbs heat or generates heat depending on the direction of current flow.
  • the chip-on submount 4, the lens 5, the optical isolator 6, the beam splitters 7, 8, the monitor PD 9, the etalon filter 10, and the monitor PD 11 are mounted on the surface 12aa of the first substrate 12a of the Peltier module 12 and desired by the Peltier module 12. Controlled by the temperature of.
  • the laser element 4a of the chip-on submount 4 outputs the laser light L1 to the signal light output port 1a side.
  • the lens 5 collimates the laser light L1 and outputs it to the beam splitter 7.
  • the beam splitter 7 outputs most of the laser light L1 to the optical isolator 6 and part of it as laser light L2 to the beam splitter 8.
  • the optical isolator 6 allows the laser light L1 to pass to the lens 2 side.
  • the lens 2 collects the input laser light L1 on the optical fiber 3 and couples it.
  • the beam splitter 8, the monitor PD 9, the etalon filter 10, and the monitor PD 11 have the same configurations and functions as those in the first embodiment.
  • patterns P1 to P10 made of a material different from that of the first substrate 12a are formed on the surface 12aa of the first substrate 12a.
  • the patterns P1 to P10 are made of, for example, at least one of a metal, a dielectric, or a resin, depending on its application.
  • the patterns P1 to P9 have the same functions as in the first embodiment.
  • the pattern P10 functions as a marker for adjusting the optical axis of the laser light L4. Therefore, the pattern P10 is associated with the beam splitter 8 and the etalon filter 10.
  • optical module 100A it is possible to realize a low profile, and it is possible to suitably realize wiring, soldering, and alignment of the mounted optical element.
  • (Embodiment 3) 5 and 6 are a schematic top view and a partially cutaway side view of the optical module according to the third embodiment, respectively.
  • the optical module 100B has a housing 1 similar to the optical module shown in FIG.
  • the housing 1 includes a signal light output port 1a, a side wall portion 1b, a bottom plate portion 1c, an upper lid portion 1d, a wiring portion 1e, and leads 1f.
  • optical module 100B chip-on submount 4, lens 5, optical isolator 6, beam splitters 7, 8, monitor PD 9, etalon filter 10, monitor PD 11, and Peltier module 12. is there. Further, the following components are housed inside the optical module 100B: a chip-on submount 21, lenses 22a and 22b, a beam splitter 23, and a monitor PD 24.
  • optical module 100B these components are mounted inside the housing 1, and the upper lid portion 1d is attached and hermetically sealed.
  • the optical module 100B is configured as a semiconductor laser module.
  • the configuration and function of each component will be described below. However, description of components having the same configurations and functions as those in the other embodiments will be appropriately omitted.
  • the Peltier module 12 absorbs heat or generates heat depending on the direction of current flow.
  • the chip-on submount 4, the lens 5, the optical isolator 6, the beam splitters 7 and 8, the monitor PD 9, the etalon filter 10, the monitor PD 11, the chip-on submount 21, the lenses 22a and 22b, the beam splitter 23, and the monitor PD 24 are Peltier modules. Twelve first substrates 12a are mounted on the surface 12aa and are controlled to a desired temperature by the Peltier module 12.
  • the chip-on submount 4, the lens 5, the beam splitter 7, the beam splitter 8, the monitor PD 9, the etalon filter 10, and the monitor PD 11 have the same configurations and functions as in the other embodiments.
  • the optical isolator 6 passes the laser light L1 to the chip-on submount 21 side.
  • the chip-on submount 21 includes a semiconductor optical amplifier 21a and a submount 21b on which the semiconductor optical amplifier 21a is mounted.
  • the submount 21b is made of an insulating material having high thermal conductivity, and efficiently transfers the heat generated by the semiconductor optical amplifier 21a to the Peltier module 12.
  • the submount 21b is fixed to the Peltier module 12 with a heat conductive material.
  • the semiconductor optical amplifier 21a is externally supplied with electric power through a lead (not shown), optically amplifies the laser light L1 input from the optical isolator 6 and condensed by the lens 22a, and outputs the signal as laser light L10. The light is output to the optical output port 1a side.
  • the lens 22b collimates the laser light L10 and outputs it to the beam splitter 23.
  • the beam splitter 23 outputs most of the laser light L10 to the lens 2 and part of it as laser light L11 to the monitor PD 24.
  • the lens 2 collects the input laser light L10 on the optical fiber 3 and couples it.
  • the monitor PD 24 receives the laser beam L11 and outputs a current signal according to the intensity of the received light.
  • the current signal is transmitted to the controller and used for detecting and controlling the power of the laser light L10.
  • patterns P1 to P9 and P21 to P23 made of a material different from that of the first substrate 12a are formed.
  • the patterns P1 to P9 and P21 to P23 are made of, for example, at least one of a metal, a dielectric or a resin, depending on the application.
  • the patterns P1 to P9 have the same functions as in the other embodiments.
  • the pattern P21 functions as a base for soldering the monitor PD 24 and a marker for alignment.
  • the patterns P22 and P23 function as a wiring pattern for outputting the current signal from the monitor PD 24 to the outside via the wiring section 1e and the leads 1f.
  • the monitor PD 24 and the patterns P22 and P23 are connected by a bonding wire. Therefore, the patterns P21 to P23 are associated with the monitor PD24.
  • the patterns P21 to P23 are preferably metallized patterns.
  • the optical module 100B it is possible to realize a low profile, and it is possible to suitably realize wiring, soldering, and alignment of the mounted optical element. Further, since the semiconductor optical amplifier 21a is provided, laser light of higher power can be output.
  • (Embodiment 4) 7 and 8 are a schematic top view and a partially cutaway side view of the optical module according to the fourth embodiment, respectively.
  • the optical module 100C includes a housing 1 similar to the optical module shown in FIG.
  • the housing 1 includes a signal light output port 1a, a side wall portion 1b, a bottom plate portion 1c, an upper lid portion 1d, a wiring portion 1e, and leads 1f.
  • optical module 100C chip-on submount 4, lens 5, optical isolator 6, beam splitter 7, lens 31, wavelength locker 32, monitor PDs 33 and 34, Peltier module 12. is there.
  • optical module 100C these components are mounted inside the housing 1, and the upper lid portion 1d is attached and hermetically sealed.
  • the optical module 100C is configured as a semiconductor laser module.
  • the configuration and function of each component will be described below. However, description of components having the same configurations and functions as those in the other embodiments will be appropriately omitted.
  • the Peltier module 12 absorbs heat or generates heat depending on the direction of current flow.
  • the chip-on submount 4, the lens 5, the optical isolator 6, the beam splitter 7, the lens 31, the wavelength locker 32, and the monitor PDs 33 and 34 are mounted on the surface 12aa of the first substrate 12a of the Peltier module 12 and desired by the Peltier module 12. Controlled by the temperature of.
  • the chip-on submount 4 and the lens 5 have the same configuration and function as in the other embodiments.
  • the beam splitter 7 outputs most of the laser light L1 output from the lens 5 to the optical isolator 6 and part of the laser light L1 to the lens 31 as laser light L2.
  • the optical isolator 6 allows the laser light L1 to pass to the lens 2 side.
  • the lens 2 collects the input laser light L1 on the optical fiber 3 and couples it.
  • the lens 31 collects the laser light L2 and inputs it to the wavelength locker 32.
  • the wavelength locker 32 is, for example, a known one composed of a planar lightwave circuit (PLC) made of quartz glass as a constituent material.
  • PLC planar lightwave circuit
  • the wavelength locker 32 splits the laser light L2 into two, outputs one of them to the monitor PD 33, and passes the other one through a filter whose transmission characteristic changes periodically with respect to the wavelength, and then monitors it. Output to PD34.
  • the filter is composed of, for example, a ring resonator having an optical waveguide structure.
  • Each of the monitor PDs 33 and 34 receives each of the two laser beams output by the wavelength locker 32 and outputs a current signal according to the intensity of the received light. Each current signal is transmitted to the controller and used for detecting and controlling the wavelength of the laser light L1.
  • patterns P1 to P3 and P31 to P35 made of a material different from that of the first substrate 12a are formed.
  • the patterns P1 to P3 and P31 to P35 are made of, for example, at least one of a metal, a dielectric or a resin, depending on the application.
  • the patterns P1 to P3 have the same functions as in the other embodiments.
  • the patterns P31 and P32 function as a flow stop until the adhesive is cured.
  • the patterns P33 and P34 function as a base for soldering the monitor PDs 33 and 34 and a marker for alignment.
  • the pattern P35 functions as a wiring pattern for outputting the current signal from the monitor PDs 33 and 34 to the outside via the wiring portion 1e and the lead 1f.
  • optical module 100C it is possible to realize a low profile, and it is possible to suitably realize wiring, soldering, and alignment of the mounted optical element.
  • the optical module 100D includes a housing 1 similar to the optical module shown in FIG.
  • the housing 1 includes a signal light output port 1a, a side wall portion 1b, a bottom plate portion 1c, an upper lid portion 1d, a wiring portion 1e, and leads 1f.
  • optical module 100D chip-on submount 4, lens 5, optical isolator 6, beam splitter 8, etalon filter 10, monitor PDs 9, 11, beam splitter 23, monitor PD 24, The lens 41 and the Peltier module 12.
  • optical module 100D these components are mounted inside the housing 1, and the upper lid portion 1d is attached and hermetically sealed.
  • the optical module 100D is configured as a semiconductor laser module.
  • the configuration and function of each component will be described below. However, description of components having the same configurations and functions as those in the other embodiments will be appropriately omitted.
  • the Peltier module 12 absorbs heat or generates heat depending on the direction of current flow.
  • the chip-on submount 4, the lens 5, the optical isolator 6, the beam splitter 8, the etalon filter 10, the monitor PDs 9, 11, the beam splitter 23, the monitor PD 24, and the lens 41 are mounted on the surface 12aa of the first substrate 12a of the Peltier module 12.
  • the temperature is controlled by the Peltier module 12 to a desired temperature.
  • the laser element 4a of the chip-on submount 4 is supplied with power from outside via a lead (not shown) to output the laser light L1 to the signal light output port 1a side, and at the same time, outputs the laser light L41 to the signal light output port 1a. To the other side.
  • the power of the laser light L1 and the power of the laser light L41 are in a proportional relationship.
  • the lens 5 collimates the laser light L1 and outputs it to the optical isolator 6.
  • the optical isolator 6 passes the laser light L1 to the beam splitter 23 side.
  • the beam splitter 23 outputs most of the laser light L1 to the lens 2 and part of it to the monitor PD 24 as laser light L11.
  • the lens 2 collects the input laser light L1 on the optical fiber 3 and couples it.
  • the monitor PD 24 receives the laser beam L11 and outputs a current signal according to the intensity of the received light.
  • the current signal is transmitted to the controller and used for detecting and controlling the power of the laser light L1.
  • the lens 41 collimates the laser light L41 and outputs it to the beam splitter 8.
  • the beam splitter 8 splits the laser light L41 into laser lights L42 and L43, outputs the laser light L42 to the monitor PD 9, and outputs the laser light L43 to the etalon filter 10.
  • the monitor PD9 receives the laser beam L42 and outputs a current signal according to the received light intensity. The current signal is transmitted to the controller and used for detecting and controlling the power and wavelength of the laser light L1.
  • the etalon filter 10 transmits the laser light L43 with a transmittance according to the wavelength and outputs it to the monitor PD 11.
  • the monitor PD 11 receives the laser beam L43 transmitted through the etalon filter 10 and outputs a current signal according to the received light intensity.
  • the current signal is transmitted to the controller and used for detecting and controlling the wavelength of the laser light L1.
  • patterns P2, P3, P6, P7, P21 to P23, P41 to P43 made of a material different from that of the first substrate 12a are formed on the surface 12aa of the first substrate 12a.
  • the patterns P2, P3, P6, P7, P21 to P23, and P41 to P43 are made of, for example, at least one of a metal, a dielectric, or a resin, depending on its use.
  • the patterns P2, P3, P6, P7, P21 to P23 have the same functions as in the other embodiments.
  • the patterns P41 and P42 function as markers for positioning when the chip-on submount 4 is mounted on the Peltier module 12 and is fixed with a heat conductive material.
  • the patterns P41 and P42 also function as a flow stop until the heat conductive material is cured. In this case, it is preferable that the patterns P41 and P42 have a thickness that functions as a flow stop.
  • the pattern P43 functions as a flow stop until the adhesive is cured. In this case, the pattern P43 preferably has a thickness that functions as a flow stop.
  • optical module 100D it is possible to realize a low profile, and it is possible to suitably realize wiring, soldering, and alignment of the mounted optical element.
  • FIG. 6 is a schematic top view and a partially cutaway side view of an optical module according to a sixth embodiment, respectively.
  • the optical module 100E has a housing 1 similar to the optical module shown in FIG.
  • the housing 1 includes a signal light output port 1a, a side wall portion 1b, a bottom plate portion 1c, an upper lid portion 1d, a wiring portion 1e, and leads 1f.
  • optical module 100E chip-on submount 4, lens 5, optical isolator 6, beam splitter 23, monitor PD 24, wavelength locker 32, monitor PD 33, 34, lens 41, Peltier.
  • the module 12 The following components are housed inside the optical module 100E: chip-on submount 4, lens 5, optical isolator 6, beam splitter 23, monitor PD 24, wavelength locker 32, monitor PD 33, 34, lens 41, Peltier.
  • optical module 100E these components are mounted inside the housing 1, and the upper lid portion 1d is attached and hermetically sealed.
  • the optical module 100E is configured as a semiconductor laser module.
  • the configuration and function of each component will be described below. However, description of components having the same configurations and functions as those of the other embodiments will be appropriately omitted.
  • the Peltier module 12 absorbs heat or generates heat depending on the direction of current flow.
  • the chip-on submount 4, the lens 5, the optical isolator 6, the beam splitter 23, the monitor PD 24, the wavelength locker 32, the monitor PDs 33 and 34, and the lens 41 are mounted on the surface 12aa of the first substrate 12a of the Peltier module 12, and the Peltier module A desired temperature is controlled by 12.
  • the laser element 4a of the chip-on submount 4 is supplied with power from outside via a lead (not shown) to output the laser light L1 to the signal light output port 1a side, and at the same time, outputs the laser light L41 to the signal light output port 1a. To the other side.
  • the power of the laser light L1 and the power of the laser light L41 are in a proportional relationship.
  • the lens 5, the optical isolator 6, the beam splitter 23, and the monitor PD 24 have the same configurations and functions as in the other embodiments.
  • the lens 41 collimates the laser light L41 and outputs it to the wavelength locker 32.
  • the wavelength locker 32 splits the laser light L41 into two, outputs one of them to the monitor PD 33, and passes the other one through a filter whose transmission characteristic changes periodically with respect to the wavelength, and then monitors. Output to PD34.
  • Each of the monitor PDs 33 and 34 receives each of the two laser beams output by the wavelength locker 32 and outputs a current signal according to the intensity of the received light. Each current signal is transmitted to the controller and used for detecting and controlling the wavelength of the laser light L1.
  • patterns P2, P3, P21 to P23, P33 to P35, P41, and P51 made of a material different from that of the first substrate 12a are formed on the surface 12aa of the first substrate 12a.
  • the patterns P2, P3, P21 to P23, P33 to P35, P41 and P51 are made of, for example, at least one of a metal, a dielectric or a resin depending on its use.
  • the patterns P2, P3, P21 to P23, P33 to P35, and P41 have the same functions as in the other embodiments.
  • the pattern P51 functions as a marker for alignment when the wavelength locker 32 is mounted on the Peltier module 12. Further, when the wavelength locker 32 is fixed to the Peltier module 12 with an adhesive, it also functions as a flow stop until the adhesive is cured. In this case, the pattern P51 preferably has a thickness that functions as a flow stop.
  • optical module 100E it is possible to realize a low profile, and it is possible to suitably realize wiring, soldering, and alignment of the mounted optical element.
  • the contact area between the heat source such as the laser element 4a and the semiconductor optical amplifier 21a and the Peltier module 12 becomes small. Therefore, when the heat source is at the end of the Peltier module 12, the thermoelectric element 12c that does not work effectively for cooling may be present, and the power consumption may increase.
  • the center of the heat source is preferably in a region including the center when the Peltier module 12 is divided into three in the longitudinal direction. Furthermore, it is more preferable that the center of the heat source is in a region including the center when the Peltier module 12 is divided into three in the direction orthogonal to the longitudinal direction.
  • thermoelectric elements 12c may be densely arranged around the mounting position of the heat source.
  • FIG. 13 and 14 are a schematic top view and a side view of a Peltier module 12A according to Modification 2, respectively. However, FIG. 13 is simplified except for the first substrate 12a and the wiring pattern 12d. Further, FIG. 14 is a simplified diagram excluding the wiring pattern 12d. In FIG. 13, since the heat source is mounted near the center of the Peltier module 12A, the thermoelectric elements 12c are densely arranged near the center of the Peltier module 12A and sparsely arranged other than the center.
  • (Modification 3) 15 and 16 are a schematic top view and a side view of a Peltier module 12B according to Modification 3, respectively.
  • FIG. 15 is a simplified diagram excluding the first substrate 12a and the wiring pattern 12d.
  • FIG. 16 is a simplified diagram excluding the wiring pattern 12d.
  • the thermoelectric elements 12c sparsely arranged in the Peltier module 12A according to Modified Example 2 are replaced with the low thermal conductive member 12e formed of a material having low thermal conductivity.
  • (Modification 4) 17 and 18 are a schematic top view and a side view of a Peltier module 12C according to Modification 4, respectively.
  • FIG. 17 is a simplified diagram excluding the first substrate 12a and the wiring pattern 12d.
  • FIG. 18 is a simplified diagram excluding the wiring pattern 12d.
  • the thermoelectric elements 12c that are sparsely arranged in the Peltier module 12A according to Modification 2 are removed.
  • FIG. 19 is a schematic side view of a Peltier module 12D according to Modification 5, which is simplified except for the wiring pattern 12d.
  • the modified example 5 only the optical elements that require temperature adjustment are mounted on the first substrate 12Da, and unnecessary optical elements are mounted on the third substrate 12Dc. Further, a thermoelectric element 12c is arranged between the first substrate 12Da and the second substrate 12b, and a low thermal conductive member 12e is arranged between the third substrate 12Dc and the second substrate 12b.
  • the removal of the base directly affects the warp of the first substrate 12a, and thus the optical coupling efficiency may decrease due to the displacement of the optical element.
  • FIG. 20 is a schematic side view of a submount according to Modification 6.
  • FIG. 20 shows a state in which the submount 4b is replaced with the submount 60b in the chip-on submount 4, the lenses 5 and 41 shown in FIG.
  • the submount 60b is provided with optical element mounting portions 60ba and 60bb in front of and behind the laser element 4a.
  • the lenses 5 and 41 which are greatly affected by the positional deviation, are mounted on the optical element installation portions 60ba and 60bb, it is possible to reduce the influence of the warp of the Peltier module 12 and suppress the decrease of the optical coupling efficiency.
  • the submount 60b may be replaced with a submount 61b according to Modification 7 as shown in FIG.
  • the submount 61b is provided with optical element mounting portions 61ba and 61bb in front of and behind the laser element 4a.
  • the lenses 5 and 41 are mounted on the optical element installation portions 61ba and 61bb.
  • the optical element installation parts 61ba and 61bb are provided so that there is a gap between them and the Peltier module 12.
  • the optical element mounted on the thermoelectric module is not limited to that of the above embodiment, and may be a modulator mounted on the TOSA, for example.
  • the semiconductor optical amplifier 21a in FIG. 5 may be replaced with a modulator.
  • the optical element and the pattern are “associated” means that the pattern functions to have some technical influence on the mounting of the optical element or the optical element, and the optical element or the mounting of the optical element. It means to perform the function associated with the technical matters related to.
  • the function means that each pattern functions, for example, as a marker for positioning or aligning each optical element, or as a flow stop for a thermally conductive material or adhesive having fluidity.
  • the wiring pattern can be used to inject a current into the optical element or to apply a voltage to the optical element.
  • the present invention is not limited to the above embodiment.
  • the present invention also includes those configured by appropriately combining the above-described components. Further, further effects and modified examples can be easily derived by those skilled in the art. Therefore, the broader aspects of the present invention are not limited to the above embodiments, and various modifications can be made.
  • the present invention can be used for optical modules and thermoelectric modules.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

光モジュール(100)は、光素子(4~11)と、前記光素子を搭載する熱電モジュール(12)と、を備え、前記熱電モジュール(12)は、第1基板(12a)と、前記第1基板(12a)と対向するように配置された第2基板(12b)と、前記第1基板(12a)と前記第2基板(12b)との間に設けられた複数の熱電素子(12c)と、を有し、前記第1基板(12a)の前記第2基板(12b)と対向する裏面(12ab)とは反対側の表面(12aa)には、前記第1基板(12a)とは異なる材料からなるパターン(P1~P9)が形成されており、前記光素子(4~11)は、前記第1基板(12a)の前記表面(12aa)に、前記パターン(P1~P9)と関連付けられて搭載されている。

Description

光モジュールおよび熱電モジュール
 本発明は、光モジュールおよび熱電モジュールに関するものである。
 光モジュールとして、熱電モジュールであるペルチェモジュール上にベースが搭載され、ベース上に半導体レーザ素子や光アイソレータやレンズなどの光素子が搭載された構成のものが開示されている(特許文献1参照)。
特開2011-171606号公報
 ところで、近年は光モジュールの小型化に対する要求が益々強くなってきている。特には、光送信モジュールであるTOSA(transmitter optical sub-assembly)や光受信モジュールであるROSA(receiver optical sub-assembly)には小型化が求められており、特に高さ方向におけるサイズの小型化、すなわち低背化が求められている。
 本発明は、上記に鑑みてなされたものであって、低背化に好適な光モジュールおよび熱電モジュールを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る光モジュールは、光素子と、前記光素子を搭載する熱電モジュールと、を備え、前記熱電モジュールは、第1基板と、前記第1基板と対向するように配置された第2基板と、前記第1基板と前記第2基板との間に設けられた複数の熱電素子と、を有し、前記第1基板の前記第2基板と対向する裏面とは反対側の表面には、前記第1基板とは異なる材料からなるパターンが形成されており、前記光素子は、前記第1基板の前記表面に、前記パターンと関連付けられて搭載されていることを特徴とする。
 本発明の一態様に係る光モジュールは、前記パターンは、金属、誘電体または樹脂の少なくとも1つからなることを特徴とする。
 本発明の一態様に係る光モジュールは、前記パターンは、金(Au)層と、銅(Cu)、チタン(Ti)、ニッケル(Ni)、パラジウム(Pd)および白金(Pt)の少なくとも1つからなる層とが積層した構造を有することを特徴とする。
 本発明の一態様に係る光モジュールは、前記光素子は、半導体レーザ素子、半導体光増幅器、変調器、受光素子、レンズ、プリズム、ビームスプリッタ、ミラー、フィルタ、平面光波回路または光アイソレータであることを特徴とする。
 本発明の一態様に係る光モジュールは、前記光素子は、半導体レーザ素子であり、サブマウントを介して前記第1基板に搭載されており、前記サブマウントは前記第1基板と熱伝導性材料にて固定されていることを特徴とする。
 本発明の一態様に係る光モジュールは、前記光素子は前記第1基板とエポキシ樹脂にて固定されていることを特徴とする。
 本発明の一態様に係る光モジュールは、前記光素子と前記熱電モジュールとを収容する筐体を備えることを特徴とする。
 本発明の一態様に係る熱電モジュールは、第1基板と、前記第1基板と対向するように配置された第2基板と、前記第1基板と前記第2基板との間に設けられた複数の熱電素子と、を備え、前記第1基板の前記第2基板と対向する裏面とは反対側の表面には、前記第1基板とは異なる材料からなるパターンが形成されていることを特徴とする。
 本発明によれば、光モジュールの低背化を実現できるという効果を奏する。
図1は、実施形態1に係る光モジュールの模式的な上面図である。 図2は、実施形態1に係る光モジュールの模式的な一部切欠測面図である。 図3は、実施形態2に係る光モジュールの模式的な上面図である。 図4は、実施形態2に係る光モジュールの模式的な一部切欠測面図である。 図5は、実施形態3に係る光モジュールの模式的な上面図である。 図6は、実施形態3に係る光モジュールの模式的な一部切欠測面図である。 図7は、実施形態4に係る光モジュールの模式的な上面図である。 図8は、実施形態4に係る光モジュールの模式的な一部切欠測面図である。 図9は、実施形態5に係る光モジュールの模式的な上面図である。 図10は、実施形態5に係る光モジュールの模式的な一部切欠測面図である。 図11は、実施形態6に係る光モジュールの模式的な上面図である。 図12は、実施形態6に係る光モジュールの模式的な一部切欠測面図である。 図13は、変形例2に係るペルチェモジュールの模式的な上面図である。 図14は、変形例2に係るペルチェモジュールの模式的な側面図である。 図15は、変形例3に係るペルチェモジュールの模式的な上面図である。 図16は、変形例3に係るペルチェモジュールの模式的な側面図である。 図17は、変形例4に係るペルチェモジュールの模式的な上面図である。 図18は、変形例4に係るペルチェモジュールの模式的な側面図である。 図19は、変形例5に係るペルチェモジュールの模式的な側面図である。 図20は、変形例6に係るサブマウントの模式的な側面図である。 図21は、変形例7に係るサブマウントの模式的な側面図である。
 以下に、図面を参照して実施形態について説明する。なお、この実施形態によりこの発明が限定されるものではない。また、図面の記載において、同一または対応する要素には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
 本発明者らは、光モジュールの低背化を実現するために、ベースを用いない構成を検討した。これにより、ベースの厚さと、熱電モジュールとベースとを接着するための接着剤の厚さとを合計した厚さだけ低背化が可能である。
 しかしながら、ベースの表面には、光素子を半田付けするためのメタライズパターンや、光素子に電力や電気信号を供給するための配線パターンや、光素子の位置合わせ用のマーカパターンなど、さまざまなパターンが形成されている。したがって、ベースを用いない構成では、光素子の半田付けや配線や位置合わせの点で問題が生じる。
 そこで、本発明者らは、熱電モジュールの基板の表面にパターンを形成することで、上記問題を解決することに想到し、本発明を完成させたのである。
(実施形態1)
 図1、2は、それぞれ、実施形態1に係る光モジュールの模式的な上面図、一部切欠側面図である。
 この光モジュール100は、筐体1を備えている。筐体1は、信号光出力ポート1aと、側壁部1bと、底板部1cと、上蓋部1dと、配線部1eと、リード1fとを備えている。図2は、上蓋部1dを外した状態で上面視したものである。側壁部1bは、4面を有する枠板状の部材であり、各面は底板部1cと略直交している。信号光出力ポート1aは、側壁部1bの1面に設けられている。信号光出力ポート1aにはレンズ2が収容されており、外部に信号光を出力するための光ファイバ3が接続されている。底板部1cは板状の部材である。上蓋部1dは、底板部1cと対向して配置された板状の部材である。配線部1eは側壁部1bの一部に設けられている。リード1fは側壁部1bに設けられている。
 底板部1cは、銅タングステン(CuW)、銅モリブデン(CuMo)、酸化アルミニウム(Al)などの熱伝導率が高い材料からなる。信号光出力ポート1a、側壁部1b、上蓋部1dは、Fe-Ni-Co合金、酸化アルミニウム(Al)などの熱膨張係数が低い材料からなる。配線部1eは絶縁性の材質からなり、導体からなる配線パターンが形成されている。リード1fは導体からなる。本実施形態ではリード1fはリードピンであるが、パッド状のものでもよい。
 リード1fは、光モジュール100の外部に設けられた制御器に電気的に接続されている。制御器は、光モジュール100の動作を制御する。制御器はたとえばIC(Integrated Circuit)を含んで構成されている。
 光モジュール100の内部には、以下のコンポーネントが収容されている:チップオンサブマウント4、レンズ5、光アイソレータ6、ビームスプリッタ7、8、受光素子であるモニタフォトダイオード(PD)9、エタロンフィルタ10、モニタPD11、ペルチェモジュール12である。なお、ビームスプリッタ7、8は、プリズムを含んで構成されていてもよいし、ミラーを含んで構成されていてもよい。
 光モジュール100では、筐体1の内部にこれらのコンポーネントが実装され、上蓋部1dを取り付けて気密封止される。
 光モジュール100は、半導体レーザモジュールとして構成されている。以下、各コンポーネントの構成および機能について説明する。
 熱電モジュールであるペルチェモジュール12は、第1基板12aと、第2基板12bと、複数の熱電素子12cと、配線パターン12dと、を有している。
 第1基板12aは、セラミックなどの熱伝導性が高い絶縁性の材料からなり、主表面として、表面12aaと表面12aaに対向する裏面12abとを有している。第2基板12bは、セラミックなどの熱伝導性が高い絶縁性の材料からなり、主表面として、表面12baと表面12aaに対向する裏面12bbとを有している。第2基板12bは、その表面12baが第1基板12aの裏面12abと対向するように配置されている。ペルチェモジュール12は第2基板12bの裏面12bbにおいて底板部1cに固定されている。
 複数の熱電素子12cは、それぞれ、第1基板12aと第2基板12bとの間に設けられた柱状の半導体素子である。複数の熱電素子12cは、それぞれ、P型半導体またはN型半導体からなるが、たとえばビスマステルル系の半導体からなる。これらの熱電素子12cは、配線パターン12dによってPN接合を形成するように直列接続されている。配線パターン12dは、第1基板12aの裏面12abと第2基板12bの表面12baとに形成された、金属等の導体からなるパターンである。これにより、ペルチェモジュール12は、電流を流す方向に応じて吸熱または発熱を行う。なお、ペルチェモジュール12に流す電流は、不図示のリードを介して外部から供給される。
 チップオンサブマウント4、レンズ5、光アイソレータ6、ビームスプリッタ7、8、モニタPD9、エタロンフィルタ10およびモニタPD11は、ペルチェモジュール12の第1基板12aの表面12aaに搭載されている。これらのコンポーネントは、ペルチェモジュール12に電流を流すことによって所望の温度に制御される。
 チップオンサブマウント4は、レーザ素子4aと、レーザ素子4aを搭載するサブマウント4bとを備える。レーザ素子4aは、半導体レーザ素子であり、たとえば波長可変レーザ素子である。サブマウント4bは、熱伝導性が高い絶縁性の材料からなり、レーザ素子4aが発する熱をペルチェモジュール12に効率良く輸送する。
 レーザ素子4aは、外部から不図示のリードを介して電力を供給されて、レーザ光L1を信号光出力ポート1a側に出力する。
 レンズ5は、レーザ光L1をコリメートして光アイソレータ6に出力する。光アイソレータ6はレーザ光L1をビームスプリッタ7側に通過させ、ビームスプリッタ7側から進行してきた光の通過を阻止する。これにより、光アイソレータ6は反射光などがレーザ素子4aに入力することを阻止する。
 ビームスプリッタ7は、光アイソレータ6を通過したレーザ光L1の大部分をレンズ2に出力し、一部をレーザ光L2としてビームスプリッタ8に出力する。レンズ2は入力されたレーザ光L1を光ファイバ3に集光して結合させる。
 ビームスプリッタ8は、レーザ光L2をレーザ光L3、L4に分岐し、レーザ光L3をモニタPD9に出力し、レーザ光L4をエタロンフィルタ10に出力する。モニタPD9はレーザ光L3を受光し、受光強度に応じた電流信号を出力する。電流信号は、制御器に送信され、レーザ光L1のパワーおよび波長の検出と制御とのために使用される。
 エタロンフィルタ10は、波長に対して透過特性が周期的に変化するフィルタである。エタロンフィルタ10は、レーザ光L4を、その波長に応じた透過率で透過させ、モニタPD11に出力する。モニタPD11は、エタロンフィルタ10を透過したレーザ光L4を受光し、受光強度に応じた電流信号を出力する。電流信号は、制御器に送信され、レーザ光L1の波長の検出と制御とのために使用される。
 ここで、第1基板12aの表面12aaには、第1基板12aとは異なる材料からなるパターンP1~P9が形成されている。パターンP1~P9は、その用途に応じて、たとえば金属、誘電体または樹脂の少なくとも1つからなる。チップオンサブマウント4のレーザ素子4a、レンズ5、光アイソレータ6、ビームスプリッタ7、8、モニタPD9、11などの光素子は、これらのパターンのいずれかと関連付けられて搭載されている。
 たとえば、パターンP1は、ペルチェモジュール12にチップオンサブマウント4を搭載し、熱伝導性材料にて固定する際の位置決めのためのマーカとして機能する。したがってパターンP1はレーザ素子4aと関連付けられる。なお、ペルチェモジュール12にチップオンサブマウント4を固定する熱伝導性材料としては、半田や熱伝導性樹脂等が例示される。パターンP1は熱伝導性材料が硬化するまでの流れ止めとしても機能する。この場合、パターンP1は、流れ止めとして機能する程度の厚さを有することが好ましい。
 パターンP2は、レーザ光L1の光軸を調整するためのマーカとして機能する。したがってパターンP2はレーザ素子4aやレンズ5と関連付けられる。
 パターンP3は、光アイソレータ6の位置決めのためのマーカとして機能する。したがってパターンP3は光アイソレータ6と関連付けられる。なお、ペルチェモジュール12に光アイソレータ6を固定する接着剤としては、エポキシ樹脂が例示される。パターンP3は、接着剤が硬化するまで、不要な場所に流れることを防止する流れ止めとしても機能する。この場合、パターンP3は、流れ止めとして機能する程度の厚さを有することが好ましい。
 パターンP4、P5は、モニタPD9からの電流信号を配線部1eおよびリード1fを介して外部に出力するための配線パターンとして機能する。モニタPD9とパターンP4、P5とはボンディングワイヤで接続されている。また、パターンP6は、モニタPD9の半田付けのためのベースおよび位置合わせ用のマーカとして機能する。したがってパターンP4~P6はモニタPD9と関連付けられる。なお、パターンP4~P6は、メタライズパターンであることが好ましい。メタライズパターンとしては、金(Au)からなるものが好ましい。また、金(Au)層と、銅(Cu)、チタン(Ti)、ニッケル(Ni)、パラジウム(Pd)および白金(Pt)の少なくとも1つからなる層とが積層した2層以上の構造を有してもよい。
 また、パターンP4、P5は、ビームスプリッタ7、8がペルチェモジュール12に接着剤で固定される場合は、接着剤が硬化するまでの流れ止めとしても機能する。この場合、パターンP4、P5は、流れ止めとして機能する程度の厚さを有することが好ましい。
 パターンP7は、モニタPD11の半田付けのためのベースおよび位置合わせ用のマーカとして機能する。パターンP8、P9は、モニタPD11からの電流信号を配線部1eおよびリード1fを介して外部に出力するための配線パターンとして機能する。モニタPD11とパターンP8、P9とはボンディングワイヤで接続されている。したがってパターンP7~P9はモニタPD11と関連付けられる。なお、パターンP7~P9は、メタライズパターンであることが好ましい。
 光モジュール100によれば、ベースなしで直接部品を実装することで、低背化を実現できるとともに、搭載する光素子の配線や半田付けや位置合わせを好適に実現できる。
(実施形態2)
 図3、4は、それぞれ、実施形態2に係る光モジュールの模式的な上面図、一部切欠側面図である。
 この光モジュール100Aは、図1に示す光モジュールと同様の筐体1を備えている。筐体1は、信号光出力ポート1aと、側壁部1bと、底板部1cと、上蓋部1dと、配線部1eと、リード1fとを備えている。
 光モジュール100Aの内部には、以下のコンポーネントが収容されている:チップオンサブマウント4、レンズ5、光アイソレータ6、ビームスプリッタ7、8、モニタPD9、エタロンフィルタ10、モニタPD11、ペルチェモジュール12である。
 光モジュール100Aでは、筐体1の内部にこれらのコンポーネントが実装され、上蓋部1dを取り付けて気密封止される。
 光モジュール100Aは、半導体レーザモジュールとして構成されている。以下、各コンポーネントの構成および機能について説明する。ただし、実施形態1の場合と構成や機能が同じコンポーネントについては適宜説明を省略する。
 ペルチェモジュール12は、電流を流す方向に応じて吸熱または発熱を行う。
 チップオンサブマウント4、レンズ5、光アイソレータ6、ビームスプリッタ7、8、モニタPD9、エタロンフィルタ10およびモニタPD11は、ペルチェモジュール12の第1基板12aの表面12aaに搭載され、ペルチェモジュール12によって所望の温度に制御される。
 チップオンサブマウント4のレーザ素子4aは、レーザ光L1を信号光出力ポート1a側に出力する。
 レンズ5は、レーザ光L1をコリメートしてビームスプリッタ7に出力する。ビームスプリッタ7は、レーザ光L1の大部分を光アイソレータ6に出力し、一部をレーザ光L2としてビームスプリッタ8に出力する。光アイソレータ6はレーザ光L1をレンズ2側に通過させる。レンズ2は入力されたレーザ光L1を光ファイバ3に集光して結合させる。
 ビームスプリッタ8、モニタPD9、エタロンフィルタ10、モニタPD11は、実施形態1の場合と同じ構成、機能を有する。
 ここで、第1基板12aの表面12aaには、第1基板12aとは異なる材料からなるパターンP1~P10が形成されている。パターンP1~P10は、その用途に応じて、たとえば金属、誘電体または樹脂の少なくとも1つからなる。
 パターンP1~P9は実施形態1の場合と同じ機能を有する。パターンP10は、レーザ光L4の光軸を調整するためのマーカとして機能する。したがってパターンP10はビームスプリッタ8やエタロンフィルタ10と関連付けられる。
 光モジュール100Aによれば、低背化を実現できるとともに、搭載する光素子の配線や半田付けや位置合わせを好適に実現できる。
(実施形態3)
 図5、6は、それぞれ、実施形態3に係る光モジュールの模式的な上面図、一部切欠側面図である。
 この光モジュール100Bは、図1に示す光モジュールと同様の筐体1を備えている。筐体1は、信号光出力ポート1aと、側壁部1bと、底板部1cと、上蓋部1dと、配線部1eと、リード1fとを備えている。
 光モジュール100Bの内部には、以下のコンポーネントが収容されている:チップオンサブマウント4、レンズ5、光アイソレータ6、ビームスプリッタ7、8、モニタPD9、エタロンフィルタ10、モニタPD11、ペルチェモジュール12である。さらに、光モジュール100Bの内部には、以下のコンポーネントが収容されている:チップオンサブマウント21、レンズ22a、22b、ビームスプリッタ23、モニタPD24である。
 光モジュール100Bでは、筐体1の内部にこれらのコンポーネントが実装され、上蓋部1dを取り付けて気密封止される。
 光モジュール100Bは、半導体レーザモジュールとして構成されている。以下、各コンポーネントの構成および機能について説明する。ただし、他の実施形態の場合と構成や機能が同じコンポーネントについては適宜説明を省略する。
 ペルチェモジュール12は、電流を流す方向に応じて吸熱または発熱を行う。
 チップオンサブマウント4、レンズ5、光アイソレータ6、ビームスプリッタ7、8、モニタPD9、エタロンフィルタ10、モニタPD11、チップオンサブマウント21、レンズ22a、22b、ビームスプリッタ23およびモニタPD24は、ペルチェモジュール12の第1基板12aの表面12aaに搭載され、ペルチェモジュール12によって所望の温度に制御される。
 チップオンサブマウント4、レンズ5、ビームスプリッタ7、ビームスプリッタ8、モニタPD9、エタロンフィルタ10、モニタPD11は、他の実施形態の場合と同じ構成、機能を有する。
 光アイソレータ6は、レーザ光L1をチップオンサブマウント21側に通過させる。チップオンサブマウント21は、半導体光増幅器21aと、半導体光増幅器21aを搭載するサブマウント21bとを備える。サブマウント21bは、熱伝導性が高い絶縁性の材料からなり、半導体光増幅器21aが発する熱をペルチェモジュール12に効率良く輸送する。サブマウント21bは、熱伝導性材料にてペルチェモジュール12に固定される。
 半導体光増幅器21aは、外部から不図示のリードを介して電力を供給されて、光アイソレータ6から入力された、レンズ22aによって集光されたレーザ光L1を光増幅して、レーザ光L10として信号光出力ポート1a側に出力する。
 レンズ22bは、レーザ光L10をコリメートしてビームスプリッタ23に出力する。ビームスプリッタ23は、レーザ光L10の大部分をレンズ2に出力し、一部をレーザ光L11としてモニタPD24に出力する。レンズ2は入力されたレーザ光L10を光ファイバ3に集光して結合させる。
 モニタPD24は、レーザ光L11を受光し、受光強度に応じた電流信号を出力する。電流信号は、制御器に送信され、レーザ光L10のパワーの検出と制御とのために使用される。
 ここで、第1基板12aの表面12aaには、第1基板12aとは異なる材料からなるパターンP1~P9、P21~P23が形成されている。パターンP1~P9、P21~P23は、その用途に応じて、たとえば金属、誘電体または樹脂の少なくとも1つからなる。
 パターンP1~P9は他の実施形態の場合と同じ機能を有する。パターンP21は、モニタPD24の半田付けのためのベースおよび位置合わせ用のマーカとして機能する。パターンP22、P23は、モニタPD24からの電流信号を配線部1eおよびリード1fを介して外部に出力ための配線パターンとして機能する。モニタPD24とパターンP22、P23とはボンディングワイヤで接続されている。したがってパターンP21~P23はモニタPD24と関連付けられる。なお、パターンP21~P23は、メタライズパターンであることが好ましい。
 光モジュール100Bによれば、低背化を実現できるとともに、搭載する光素子の配線や半田付けや位置合わせを好適に実現できる。また、半導体光増幅器21aを備えているので、より高いパワーのレーザ光を出力できる。
(実施形態4)
 図7、8は、それぞれ、実施形態4に係る光モジュールの模式的な上面図、一部切欠側面図である。
 この光モジュール100Cは、図1に示す光モジュールと同様の筐体1を備えている。筐体1は、信号光出力ポート1aと、側壁部1bと、底板部1cと、上蓋部1dと、配線部1eと、リード1fとを備えている。
 光モジュール100Cの内部には、以下のコンポーネントが収容されている:チップオンサブマウント4、レンズ5、光アイソレータ6、ビームスプリッタ7、レンズ31、波長ロッカー32、モニタPD33、34、ペルチェモジュール12である。
 光モジュール100Cでは、筐体1の内部にこれらのコンポーネントが実装され、上蓋部1dを取り付けて気密封止される。
 光モジュール100Cは、半導体レーザモジュールとして構成されている。以下、各コンポーネントの構成および機能について説明する。ただし、他の実施形態の場合と構成や機能が同じコンポーネントについては適宜説明を省略する。
 ペルチェモジュール12は、電流を流す方向に応じて吸熱または発熱を行う。
 チップオンサブマウント4、レンズ5、光アイソレータ6、ビームスプリッタ7、レンズ31、波長ロッカー32およびモニタPD33、34は、ペルチェモジュール12の第1基板12aの表面12aaに搭載され、ペルチェモジュール12によって所望の温度に制御される。
 チップオンサブマウント4、レンズ5は、他の実施形態の場合と同じ構成、機能を有する。ビームスプリッタ7は、レンズ5から出力されたレーザ光L1の大部分を光アイソレータ6に出力し、一部をレーザ光L2としてレンズ31に出力する。光アイソレータ6はレーザ光L1をレンズ2側に通過させる。レンズ2は入力されたレーザ光L1を光ファイバ3に集光して結合させる。
 レンズ31は、レーザ光L2を集光して波長ロッカー32に入力させる。波長ロッカー32は、たとえば石英系ガラスを構成材料とした平面光波回路(Planar Lightwave Circuit:PLC)からなる公知のものである。波長ロッカー32は、レーザ光L2を2つに分岐し、その一つをモニタPD33に出力し、他の1つを、波長に対して透過特性が周期的に変化するフィルタを通過させてからモニタPD34に出力する。フィルタはたとえば光導波路構造を有するリング共振器からなる。
 モニタPD33、34のそれぞれは、波長ロッカー32が出力する2つのレーザ光のそれぞれを受光し、受光強度に応じた電流信号を出力する。各電流信号は、制御器に送信され、レーザ光L1の波長の検出と制御とのために使用される。
 ここで、第1基板12aの表面12aaには、第1基板12aとは異なる材料からなるパターンP1~P3、P31~P35が形成されている。パターンP1~P3、P31~P35は、その用途に応じて、たとえば金属、誘電体または樹脂の少なくとも1つからなる。
 パターンP1~P3は他の実施形態の場合と同じ機能を有する。パターンP31、P32は、ビームスプリッタ7がペルチェモジュール12に接着剤で固定される場合、接着剤が硬化するまでの流れ止めとして機能する。
 パターンP33、P34は、モニタPD33、34の半田付けのためのベースおよび位置合わせ用のマーカとして機能する。パターンP35は、モニタPD33、34からの電流信号を配線部1eおよびリード1fを介して外部に出力ための配線パターンとして機能する。
 光モジュール100Cによれば、低背化を実現できるとともに、搭載する光素子の配線や半田付けや位置合わせを好適に実現できる。
(実施形態5)
 図9、10は、それぞれ、実施形態5に係る光モジュールの模式的な上面図、一部切欠側面図である。
 この光モジュール100Dは、図1に示す光モジュールと同様の筐体1を備えている。筐体1は、信号光出力ポート1aと、側壁部1bと、底板部1cと、上蓋部1dと、配線部1eと、リード1fとを備えている。
 光モジュール100Dの内部には、以下のコンポーネントが収容されている:チップオンサブマウント4、レンズ5、光アイソレータ6、ビームスプリッタ8、エタロンフィルタ10、モニタPD9、11、ビームスプリッタ23、モニタPD24、レンズ41、ペルチェモジュール12である。
 光モジュール100Dでは、筐体1の内部にこれらのコンポーネントが実装され、上蓋部1dを取り付けて気密封止される。
 光モジュール100Dは、半導体レーザモジュールとして構成されている。以下、各コンポーネントの構成および機能について説明する。ただし、他の実施形態の場合と構成や機能が同じコンポーネントについては適宜説明を省略する。
 ペルチェモジュール12は、電流を流す方向に応じて吸熱または発熱を行う。
 チップオンサブマウント4、レンズ5、光アイソレータ6、ビームスプリッタ8、エタロンフィルタ10、モニタPD9、11、ビームスプリッタ23、モニタPD24およびレンズ41は、ペルチェモジュール12の第1基板12aの表面12aaに搭載され、ペルチェモジュール12によって所望の温度に制御される。
 チップオンサブマウント4のレーザ素子4aは、外部から不図示のリードを介して電力を供給されて、レーザ光L1を信号光出力ポート1a側に出力するとともに、レーザ光L41を信号光出力ポート1aとは反対側に出力する。レーザ光L1のパワーとレーザ光L41のパワーとは比例関係にある。レンズ5は、レーザ光L1をコリメートして光アイソレータ6に出力する。
 光アイソレータ6はレーザ光L1をビームスプリッタ23側に通過させる。ビームスプリッタ23は、レーザ光L1の大部分をレンズ2に出力し、一部をレーザ光L11としてモニタPD24に出力する。レンズ2は入力されたレーザ光L1を光ファイバ3に集光して結合させる。
 モニタPD24は、レーザ光L11を受光し、受光強度に応じた電流信号を出力する。電流信号は、制御器に送信され、レーザ光L1のパワーの検出と制御とのために使用される。
 レンズ41は、レーザ光L41をコリメートしてビームスプリッタ8に出力する。ビームスプリッタ8は、レーザ光L41をレーザ光L42、L43に分岐し、レーザ光L42をモニタPD9に出力し、レーザ光L43をエタロンフィルタ10に出力する。モニタPD9はレーザ光L42を受光し、受光強度に応じた電流信号を出力する。電流信号は、制御器に送信され、レーザ光L1のパワーおよび波長の検出と制御とのために使用される。
 エタロンフィルタ10は、レーザ光L43を、その波長に応じた透過率で透過させ、モニタPD11に出力する。モニタPD11は、エタロンフィルタ10を透過したレーザ光L43を受光し、受光強度に応じた電流信号を出力する。電流信号は、制御器に送信され、レーザ光L1の波長の検出と制御とのために使用される。
 ここで、第1基板12aの表面12aaには、第1基板12aとは異なる材料からなるパターンP2、P3、P6、P7、P21~P23、P41~P43が形成されている。パターンP2、P3、P6、P7、P21~P23、P41~P43は、その用途に応じて、たとえば金属、誘電体または樹脂の少なくとも1つからなる。
 パターンP2、P3、P6、P7、P21~P23は他の実施形態の場合と同じ機能を有する。パターンP41、P42は、ペルチェモジュール12にチップオンサブマウント4を搭載し、熱伝導性材料にて固定する際の位置決めのためのマーカとして機能する。パターンP41、P42は、熱伝導性材料が硬化するまでの流れ止めとしても機能する。この場合、パターンP41、P42は、流れ止めとして機能する程度の厚さを有することが好ましい。パターンP43は、接着剤が硬化するまでの流れ止めとして機能する。この場合、パターンP43は、流れ止めとして機能する程度の厚さを有することが好ましい。
 光モジュール100Dによれば、低背化を実現できるとともに、搭載する光素子の配線や半田付けや位置合わせを好適に実現できる。
(実施形態6)
 図11、12は、それぞれ、実施形態6に係る光モジュールの模式的な上面図、一部切欠側面図である。
 この光モジュール100Eは、図1に示す光モジュールと同様の筐体1を備えている。筐体1は、信号光出力ポート1aと、側壁部1bと、底板部1cと、上蓋部1dと、配線部1eと、リード1fとを備えている。
 光モジュール100Eの内部には、以下のコンポーネントが収容されている:チップオンサブマウント4、レンズ5、光アイソレータ6、ビームスプリッタ23、モニタPD24、波長ロッカー32、モニタPD33、34、レンズ41、ペルチェモジュール12である。
 光モジュール100Eでは、筐体1の内部にこれらのコンポーネントが実装され、上蓋部1dを取り付けて気密封止される。
 光モジュール100Eは、半導体レーザモジュールとして構成されている。以下、各コンポーネントの構成および機能について説明する。ただし、他の実施形態の場合と構成や機能が同じコンポーネントについては適宜説明を省略する。
 ペルチェモジュール12は、電流を流す方向に応じて吸熱または発熱を行う。
 チップオンサブマウント4、レンズ5、光アイソレータ6、ビームスプリッタ23、モニタPD24、波長ロッカー32、モニタPD33、34およびレンズ41は、ペルチェモジュール12の第1基板12aの表面12aaに搭載され、ペルチェモジュール12によって所望の温度に制御される。
 チップオンサブマウント4のレーザ素子4aは、外部から不図示のリードを介して電力を供給されて、レーザ光L1を信号光出力ポート1a側に出力するとともに、レーザ光L41を信号光出力ポート1aとは反対側に出力する。レーザ光L1のパワーとレーザ光L41のパワーとは比例関係にある。
 レンズ5、光アイソレータ6、ビームスプリッタ23、モニタPD24は、他の実施形態の場合と同じ構成、機能を有する。
 レンズ41は、レーザ光L41をコリメートして波長ロッカー32に出力する。波長ロッカー32は、レーザ光L41を2つに分岐し、その一つをモニタPD33に出力し、他の1つを、波長に対して透過特性が周期的に変化するフィルタを通過させてからモニタPD34に出力する。
 モニタPD33、34のそれぞれは、波長ロッカー32が出力する2つのレーザ光のそれぞれを受光し、受光強度に応じた電流信号を出力する。各電流信号は、制御器に送信され、レーザ光L1の波長の検出と制御とのために使用される。
 ここで、第1基板12aの表面12aaには、第1基板12aとは異なる材料からなるパターンP2、P3、P21~P23、P33~P35、P41、P51が形成されている。パターンP2、P3、P21~P23、P33~P35、P41、P51は、その用途に応じて、たとえば金属、誘電体または樹脂の少なくとも1つからなる。
 パターンP2、P3、P21~P23、P33~P35、P41は他の実施形態の場合と同じ機能を有する。パターンP51は、ペルチェモジュール12に波長ロッカー32を搭載する場合の位置合わせ用のマーカとして機能する。また、波長ロッカー32がペルチェモジュール12に接着剤で固定される場合、接着剤が硬化するまでの流れ止めとしても機能する。この場合、パターンP51は、流れ止めとして機能する程度の厚さを有することが好ましい。
 光モジュール100Eによれば、低背化を実現できるとともに、搭載する光素子の配線や半田付けや位置合わせを好適に実現できる。
 上記実施形態では、ペルチェモジュール12と光素子12との間にベースを設けていないため、レーザ素子4aや半導体光増幅器21aのような熱源とペルチェモジュール12との接触面積が小さくなる。そのため、熱源がペルチェモジュール12の端にある場合は、冷却に有効に働かない熱電素子12cが存在するようになり、消費電力が上昇してしまう場合がある。
(変形例1)
 上記のような場合には、熱源をペルチェモジュール12の長手方向のより中央付近に配置することで、消費電力の上昇を抑制することができる。例えば、熱源の中心がペルチェモジュール12をその長手方向を3分割した際の中心を含む領域にあると好ましい。さらに、熱源の中心がペルチェモジュール12をその長手方向に直交する方向に対しても3分割した際の中心を含む領域にあると、より好ましい。
(変形例2)
 ペルチェモジュール12の消費電力の上昇を抑制し、効率よく駆動させるため、熱源の搭載位置の周辺に熱電素子12cを密に配置してもよい。
 図13、14は、それぞれ、変形例2に係るペルチェモジュール12Aの模式的な上面図、側面図である。ただし、図13は第1基板12aと配線パターン12dを除いて簡略化したものである。また図14は配線パターン12dを除いて簡略化したものである。図13において熱源はペルチェモジュール12Aの中心付近に搭載されるので、熱電素子12cがペルチェモジュール12Aの中心付近には密に配置され、中心以外には疎に配置されている。
(変形例3)
 図15、16は、それぞれ、変形例3に係るペルチェモジュール12Bの模式的な上面図、側面図である。ただし図15は第1基板12aと配線パターン12dを除いて簡略化したものである。また図16は配線パターン12dを除いて簡略化したものである。変形例3に係るペルチェモジュール12Bでは、変形例2に係るペルチェモジュール12Aで疎に配置された熱電素子12cを熱伝導率の低い材料で形成された低熱伝導部材12eに置き換えている。
(変形例4)
 図17、18は、それぞれ、変形例4に係るペルチェモジュール12Cの模式的な上面図、側面図である。ただし図17は第1基板12aと配線パターン12dを除いて簡略化したものである。また図18は配線パターン12dを除いて簡略化したものである。変形例4に係るペルチェモジュール12Cでは、変形例2に係るペルチェモジュール12Aで疎に配置された熱電素子12cを取り除いている。
(変形例5)
 図19は、変形例5に係るペルチェモジュール12Dの模式的な側面図であり、配線パターン12dを除いて簡略化したものである。変形例5では、温度調整が必要な光素子のみが第1基板12Daに搭載され、不必要な光素子が第3基板12Dcに搭載されている。また第1基板12Daと第2基板12bの間には熱電素子12cが配置され、第3基板12Dcと第2基板12bの間には低熱伝導部材12eが配置されている。
 また、ベースを取り除いたことにより、第1基板12aの反りの影響を直接受けるので光素子の位置ずれにより光結合効率が低下する場合がある。
(変形例6)
 図20は、変形例6に係るサブマウントの模式的な側面図である。図20は、図9に示すチップオンサブマウント4、レンズ5、41において、サブマウント4bをサブマウント60bに置き換えた状態を図示したものである。サブマウント60bには、レーザ素子4aの前方及び後方に光素子設置部60ba、60bbが設けられている。図20では位置ずれの影響を大きく受けるレンズ5、41が光素子設置部60ba、60bbに搭載されているので、ペルチェモジュール12の反りの影響を緩和して、光結合効率の低下を抑制することができる。またサブマウント60bは図21に示すような変形例7に係るサブマウント61bに置き換えてもよい。サブマウント61bには、レーザ素子4aの前方及び後方に光素子設置部61ba、61bbが設けられている。レンズ5、41は光素子設置部61ba、61bbに搭載されている。光素子設置部61ba、61bbは、ペルチェモジュール12との間に隙間が有るように設けられる。
 なお、熱電モジュールに搭載される光素子は上記実施形態のものに限定されず、たとえばTOSAに搭載されるような変調器でもよい。たとえば、図5における半導体光増幅器21aは変調器に置き換えてもよい。
 また、本明細書における光素子とパターンとが「関連付けられる」とは、パターンが、光素子または当該光素子の実装について何らかの技術的影響を与えるように機能し、光素子または当該光素子の実装に関する技術的事項に関連付けられた機能を発揮することを意味する。その機能とは、上記に例示したように、各パターンが、例えば、各光素子の位置決めや位置合わせのためのマーカとして機能したり、流動性を有した熱伝導性材料や接着剤の流れ止めとして機能したり、光軸を調整するためのマーカとして機能したり、配線パターンとして機能したりする等であるが、これらに限定されない。なお、配線パターンは、光素子に電流を注入するため、あるいは光素子に電圧を印加するために、利用することができる。
 また、上記実施形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施形態に限定されるものではなく、様々な変更が可能である。
 本発明は、光モジュールおよび熱電モジュールに利用することができる。
1 筐体
1a 信号光出力ポート
1b 側壁部
1c 底板部
1d 上蓋部
1e 配線部
1f リード
2、5、22a、22b、31、41 レンズ
3 光ファイバ
4、21 チップオンサブマウント
4a レーザ素子
4b、21b、60b、61b サブマウント
6 光アイソレータ
7、8、23 ビームスプリッタ
9、11、24、33、34 モニタPD
10 エタロンフィルタ
12、12A、12B、12C、12D ペルチェモジュール
12a、12Da 第1基板
12aa、12ba 表面
12ab、12bb 裏面
12b 第2基板
12Dc 第3基板
12c 熱電素子
12d 配線パターン
12e 低熱伝導部材
21a 半導体光増幅器
32 波長ロッカー
60ba、60bb、61ba、61bb 光素子設置部
100、100A、100B、100C、100D、100E 光モジュール
L1、L2、L3、L4、L10、L11、L41、L42、L43 レーザ光
P1、P2、P3、P4、P5、P6、P7、P8、P9、P10、P21、P22、P23、P31、P33、P34、P35、P41、P42、P43、P51 パターン

Claims (8)

  1.  光素子と、
     前記光素子を搭載する熱電モジュールと、
     を備え、
     前記熱電モジュールは、第1基板と、前記第1基板と対向するように配置された第2基板と、前記第1基板と前記第2基板との間に設けられた複数の熱電素子と、を有し、前記第1基板の前記第2基板と対向する裏面とは反対側の表面には、前記第1基板とは異なる材料からなるパターンが形成されており、
     前記光素子は、前記第1基板の前記表面に、前記パターンと関連付けられて搭載されていることを特徴とする光モジュール。
  2.  前記パターンは、金属、誘電体または樹脂の少なくとも1つからなることを特徴とする請求項1に記載の光モジュール。
  3.  前記パターンは、金(Au)層と、銅(Cu)、チタン(Ti)、ニッケル(Ni)、パラジウム(Pd)および白金(Pt)の少なくとも1つからなる層とが積層した構造を有することを特徴とする請求項1または2に記載の光モジュール。
  4.  前記光素子は、半導体レーザ素子、半導体光増幅器、変調器、受光素子、レンズ、プリズム、ビームスプリッタ、ミラー、フィルタ、平面光波回路または光アイソレータであることを特徴とする請求項1~3のいずれか一つに記載の光モジュール。
  5.  前記光素子は、半導体レーザ素子であり、サブマウントを介して前記第1基板に搭載されており、前記サブマウントは前記第1基板と熱伝導性材料にて固定されていることを特徴とする請求項1~3のいずれか一つに記載の光モジュール。
  6.  前記光素子は前記第1基板とエポキシ樹脂にて固定されていることを特徴とする請求項1~3のいずれか一つに記載の光モジュール。
  7.  前記光素子と前記熱電モジュールとを収容する筐体を備えることを特徴とする請求項1~6のいずれか一つに記載の光モジュール。
  8.  第1基板と、
     前記第1基板と対向するように配置された第2基板と、
     前記第1基板と前記第2基板との間に設けられた複数の熱電素子と、
     を備え、前記第1基板の前記第2基板と対向する裏面とは反対側の表面には、前記第1基板とは異なる材料からなるパターンが形成されていることを特徴とする熱電モジュール。
PCT/JP2020/003800 2019-02-08 2020-01-31 光モジュールおよび熱電モジュール WO2020162372A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020571173A JPWO2020162372A1 (ja) 2019-02-08 2020-01-31 光モジュールおよび熱電モジュール
CN202080012828.2A CN113424377A (zh) 2019-02-08 2020-01-31 光模块以及热电模块
US17/393,918 US20210367399A1 (en) 2019-02-08 2021-08-04 Optical module and thermoelectric module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019021913 2019-02-08
JP2019-021913 2019-02-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/393,918 Continuation US20210367399A1 (en) 2019-02-08 2021-08-04 Optical module and thermoelectric module

Publications (1)

Publication Number Publication Date
WO2020162372A1 true WO2020162372A1 (ja) 2020-08-13

Family

ID=71947687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003800 WO2020162372A1 (ja) 2019-02-08 2020-01-31 光モジュールおよび熱電モジュール

Country Status (4)

Country Link
US (1) US20210367399A1 (ja)
JP (1) JPWO2020162372A1 (ja)
CN (1) CN113424377A (ja)
WO (1) WO2020162372A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7400613B2 (ja) * 2020-04-27 2023-12-19 住友電気工業株式会社 光送信モジュール、光送受信モジュール、及び光モジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228432A (ja) * 2003-01-24 2004-08-12 Anritsu Corp 半導体レーザモジュール及び電子冷却ユニット
US20050094949A1 (en) * 2002-10-25 2005-05-05 Jan Mink Hermetically sealed package for an electro-optic device
JP2008211025A (ja) * 2007-02-27 2008-09-11 Yamaha Corp 電子モジュール
JP2008218891A (ja) * 2007-03-07 2008-09-18 Yamaha Corp 熱電モジュール
JP2017183395A (ja) * 2016-03-29 2017-10-05 三菱電機株式会社 波長多重光通信モジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003005509A1 (ja) * 2001-07-02 2004-10-28 古河電気工業株式会社 半導体レーザモジュール、光増幅器及び半導体レーザモジュールの製造方法
JP6507659B2 (ja) * 2015-01-15 2019-05-08 住友電気工業株式会社 光モジュールの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050094949A1 (en) * 2002-10-25 2005-05-05 Jan Mink Hermetically sealed package for an electro-optic device
JP2004228432A (ja) * 2003-01-24 2004-08-12 Anritsu Corp 半導体レーザモジュール及び電子冷却ユニット
JP2008211025A (ja) * 2007-02-27 2008-09-11 Yamaha Corp 電子モジュール
JP2008218891A (ja) * 2007-03-07 2008-09-18 Yamaha Corp 熱電モジュール
JP2017183395A (ja) * 2016-03-29 2017-10-05 三菱電機株式会社 波長多重光通信モジュール

Also Published As

Publication number Publication date
JPWO2020162372A1 (ja) 2021-12-09
CN113424377A (zh) 2021-09-21
US20210367399A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
US11307376B2 (en) Optical module
US8654440B2 (en) Optical amplification module and optical switch device
CN112835158B (zh) 与光子集成电路和基板共封装的激光光源
WO2020162446A1 (ja) 光モジュール
KR20150018963A (ko) 온도 제어 장치를 가진 광송신 모듈 및 그 제조 방법
WO2020162372A1 (ja) 光モジュールおよび熱電モジュール
US7520683B2 (en) Optical module
JP4718135B2 (ja) 光モジュール
JP7421840B2 (ja) 光モジュール
JP2019140306A (ja) 光モジュール
JP2013161825A (ja) レーザモジュール
JP7024367B2 (ja) 光モジュール
US11409061B2 (en) Optical module
CN115016077A (zh) 光模块
EP2133657B1 (en) Optical phase shifting plate
US6724784B2 (en) Optical wavelength locker module having a high thermal conductive material
JP7495359B2 (ja) 光モジュール
JP2024091982A (ja) 集積光学装置及び集積光モジュール
JPH11307873A (ja) 電子冷却器およびこれを用いた光部品モジュール
JP2019106442A (ja) 光モジュール
JP2022120929A (ja) 発光装置
JP2021120987A (ja) 光モジュール
JP2023023799A (ja) 多波長光源モジュール
JP2004093742A (ja) 多ポート光モジュール
JP2011243821A (ja) 光半導体装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571173

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20752174

Country of ref document: EP

Kind code of ref document: A1