JP2004221202A - ヘテロ接合バイポーラトランジスタ及びその製造方法 - Google Patents
ヘテロ接合バイポーラトランジスタ及びその製造方法 Download PDFInfo
- Publication number
- JP2004221202A JP2004221202A JP2003004954A JP2003004954A JP2004221202A JP 2004221202 A JP2004221202 A JP 2004221202A JP 2003004954 A JP2003004954 A JP 2003004954A JP 2003004954 A JP2003004954 A JP 2003004954A JP 2004221202 A JP2004221202 A JP 2004221202A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- base region
- collector
- bipolar transistor
- emitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electrodes Of Semiconductors (AREA)
- Bipolar Transistors (AREA)
Abstract
【課題】寄生容量をより一層低減することができるヘテロ接合バイポーラトランジスタ及びその製造方法を提供する。
【解決手段】サブコレクタ層2上にコレクタ層3が形成され、コレクタ層3上に真性ベース領域5aが形成されている。外部ベース領域5bの直下には、コレクタ層3及びサブコレクタ層2は存在せず、Si基板1まで到達する半絶縁材4が埋め込まれている。このため、外部ベース領域5bとコレクタとの間の寄生容量が低減され、高速動作が可能となる。
【選択図】 図9
【解決手段】サブコレクタ層2上にコレクタ層3が形成され、コレクタ層3上に真性ベース領域5aが形成されている。外部ベース領域5bの直下には、コレクタ層3及びサブコレクタ層2は存在せず、Si基板1まで到達する半絶縁材4が埋め込まれている。このため、外部ベース領域5bとコレクタとの間の寄生容量が低減され、高速動作が可能となる。
【選択図】 図9
Description
【0001】
【発明の属する技術分野】
本発明は、外部ベースとコレクタとの間の寄生容量の低減を図ったヘテロ接合バイポーラトランジスタ(HBT)及びその製造方法に関する。
【0002】
【従来の技術】
HBTは、ベース層にエミッタ層よりもバンドギャップの狭い半導体を用いることにより、ベース層に高濃度の不純物をドーピングしてもベース層からエミッタ層への正孔の注入を抑制できる。このため、ホモ接合型バイポーラトランジスタと比較すると、同じベースシート抵抗を実現するために必要なベース層が薄く、ベース走行時間の短縮等が可能である。従って、HBTは、より高速動作が可能である。
【0003】
HBTの高速動作を示す指標として、電流利得遮断周波数fTと最大発信周波数fmaxがある。これらは、夫々下記数1、数2で表される。
【0004】
【数1】
【0005】
【数2】
【0006】
ここで、τBはベース走行時間、τCはコレクタ走行時間、reはエミッタ交流等価抵抗、CBEはエミッタ−ベース間容量、CBCはベース−コレクタ間容量、REEはエミッタ外部抵抗、RCCはコレクタ外部抵抗、RBはベース抵抗である。
【0007】
HBTがトランジスタ動作するために必要な部分(真性領域)は、平面的にはエミッタ層とベース層との界面の直下の領域のみである。しかし、ベース層へ外部配線からコンタクトを得るための外部ベース領域やコレクタ層へ外部配線からコンタクトを得るためのサブコレクタ層は、トランジスタを動作させるために必須の構成要素とされている。
【0008】
そして、外部ベース領域とサブコレクタ層とが重畳する領域は、ベース−コレクタ間の寄生容量(外部ベース−コレクタ間容量)として、ベース−コレクタ間容量の一部を構成してしまっている。
【0009】
デバイス面積をスケーリングにより縮小させた場合、ベース−コレクタ間容量のうち外部ベース−コレクタ間容量の占める割合が高くなる。このため、エミッタ面積を縮小しても、ベース−コレクタ間容量はエミッタ面積の縮小に比例して小さくはならない。
【0010】
一方、エミッタ交流等価抵抗reは、エミッタ電流密度が等しい場合、エミッタ面積の縮小に逆比例して大きくなり、また、エミッタ外部抵抗REEもエミッタ面積の縮小に逆比例して大きくなる。
【0011】
以上の理由から、従来のHBTでは、エミッタ面積を縮小してもベース−コレクタ間容量の充放電時間が大きくなるため、エミッタ面積を縮小しても、電流利得遮断周波数fTが増加しにくい状況となっていた。
【0012】
そこで、最近では、コレクタ層のうち外部ベース電極の下に位置する領域を絶縁材又は半絶縁材で置き換えることにより、ベース−コレクタ容量を低減する技術について報告がなされており、これまでのところ、外部ベース−コレクタ間容量を低減する有効な技術の1つとなっている。
【0013】
図19は、従来のヘテロ接合バイポーラトランジスタ(Si/SiGe/SiHBT)における電極の配置を示すレイアウト図である。また、図20は、従来のヘテロ接合バイポーラトランジスタ(Si/SiGe/Si HBT)の構造を示す断面図である。この断面図には、エミッタの長辺に垂直な断面、即ち、図19中のI−I線に沿った断面を示している。
【0014】
この従来のHBTにおいては、p型Si基板101上に、サブコレクタ層として機能する高濃度n−Si層102が形成され、その上にコレクタ層として機能する低濃度n−Si層103が形成されている。更に、低濃度n−Si層103上に、ベース層として機能する高濃度p−SiGe層105が形成され、その上にエミッタ層として機能する多結晶Si層107が形成されている。このようにして、真性領域が構成されている。
【0015】
高濃度p−SiGe層105のうち、多結晶Si層107と接する部分はベース層として機能するが、その周囲の部分は外部ベース領域として機能する。そして、この外部ベース領域として機能する部分と高濃度n−Si層102との間では、低濃度n−Si層103に溝が形成され、その内部に半絶縁性の層104が埋め込まれている。低濃度n−Si層103の一部には、選択的なイオン注入により、コレクタコンタクト層111が形成されている。
【0016】
そして、全面にSiO2膜112が形成されている。このSiO2膜112には、夫々多結晶Si層107、外部ベース領域、コレクタコンタクト層111まで到達するコンタクトホールが開孔されており、これらの内部にエミッタ電極108、ベース電極109、コレクタ電極110が形成されている。
【0017】
【特許文献1】
特開平6−37102号公報
【0018】
【発明が解決しようとする課題】
しかしながら、図19及び図20に示すような従来のHBTにおいても、寄生容量の低減は十分ということはできず、更なる低減が要請されている。
【0019】
本発明は、かかる問題点に鑑みてなされたものであって、寄生容量をより一層低減することができるヘテロ接合バイポーラトランジスタ及びその製造方法を提供することを目的とする。
【0020】
【課題を解決するための手段】
本願発明者は、前記課題を解決すべく鋭意検討を重ねた結果、以下に示す発明の諸態様に想到した。
【0021】
本発明に係るヘテロ接合バイポーラトランジスタは、サブコレクタ層と、前記サブコレクタ層上に形成されたコレクタ層と、前記コレクタ層上に形成された真性ベース領域と、前記ベース層に接続された外部ベース領域と、前記真性ベース領域上に形成されたエミッタ層と、有するヘテロ接合バイポーラトランジスタを対象とする。そして、前記サブコレクタ層及び前記コレクタ層は、平面視で前記外部ベース領域の下方から離間した位置に形成されていることを特徴とする。
【0022】
本発明に係るヘテロ接合バイポーラトランジスタの製造方法では、先ず、半導体基板上に、少なくともその一部がサブコレクタ層となる第1の半導体層を形成し、前記第1の半導体層上に、少なくともその一部がコレクタ層となる第2の半導体層を形成する。次に、前記第1の半導体層及び前記第2の半導体層に、前記第1の半導体層の底面よりも深い溝を形成した後、前記第2の半導体層上に真性ベース領域を形成し、前記溝上に外部ベース領域を形成する。そして、前記真性ベース領域上にエミッタ層を形成する。
【0023】
なお、第1の半導体層及び第2の半導体層を形成する工程では、第1の半導体層を半導体基板上に堆積する必要はなく、イオン注入等を行うことにより、結果として、半導体基板上に第1の半導体層が存在する状態となればよい。
【0024】
これらの本発明においては、外部ベース領域の下に、コレクタ層(第2の半導体層)のみならず、サブコレクタ層(第1の半導体層)も存在しない。このため、外部ベース領域とコレクタとの間の容量が低減される。従って、ベース−コレクタ間容量が低減される。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタ及びその製造方法について添付の図面を参照して具体的に説明する。
【0026】
(第1の実施形態)
先ず、本発明の第1の実施形態について説明する。但し、ここでは、便宜上、各HBTの構造をその製造方法と共に説明する。図1は、本発明の第1の実施形態に係るHBTにおける電極の配置を示すレイアウト図である。また、図2乃至図9は、第1の実施形態に係るHBT(Si/SiGe/Si HBT)の製造方法を工程順に示す断面図である。但し、図2(a)乃至図9(a)には、エミッタの長辺に垂直な断面、即ち、図1中のI−I線に沿った断面を示し、図2(b)乃至図9(b)には、エミッタの長辺に沿った断面、即ち、図1中のII−II線に沿った断面を示している。
【0027】
本実施形態では、先ず、図2に示すように、p型Si基板1の表面に、例えばSbをイオン注入することにより、Sbが2×1019cm−3添加されたイオン注入層(第1の半導体層)2を形成する。イオン注入層2の厚さは、例えば3μmとする。このイオン注入層2が、Siサブコレクタ層として機能する。次に、イオン注入層2上に、Pが1×1018cm−3程度添加されたエピタキシャル層(第2の半導体層)3を結晶成長により形成する。エピタキシャル層3の厚さは、例えば0.4μmとする。
【0028】
その後、図3に示すように、エピタキシャル層3のうち、長方形状のエミッタを形成する予定の領域と整合する領域を三方から囲む溝4aをエッチングにより形成する。エピタキシャル層3のうち、溝4aに包囲された部分がSiコレクタ層として機能する。このとき、溝4aの平面パターンは、図1及び図3に示すように、エミッタが延びる方向に沿って延びる2つのパターンと、これらの2つの部分を繋ぐパターンとから構成されるものとする。また、溝4aの深さは、図3に示すように、エピタキシャル層3及びイオン注入層2を貫通して溝4aの底部がp型Si基板1まで到達するようにする。
【0029】
続いて、図4に示すように、溝4a内に半絶縁材4を埋め込む。半絶縁材4の材料は特に限定されるものではない。例えば、溝4aの側壁をウェット酸化することにより、酸化膜を形成し、その内側にポリシリコン膜を堆積した後、平坦化を行うことにより形成することができる。
【0030】
次に、図5に示すように、Bが3×1019cm−3添加されたSiGe層5を結晶成長により形成する。SiGe層5の厚さは、例えば0.04μm程度とする。更に、SiGe層5のうち半絶縁材4上に位置する部分に、例えばBを3×1015cm−2のドーズ量で選択的にイオン注入することにより、高濃度ベースコンタクト領域(外部ベース領域)5bを形成すると共に、この外部ベース領域5bに三方を囲まれた真性ベース領域5aを形成する。その後、レジスト(図示せず)をマスクとして用い、SiGe層5のうち、真性ベース領域5a及び外部ベース領域5bを除く部分を除去する。
【0031】
次いで、図6に示すように、全面にレジスト21を塗布し、このレジスト21のコレクタを形成する予定の領域に開口部21aをフォトリソグラフィ技術により形成する。そして、レジスト21をマスクとして用い、Pを4×1015cm−2のドーズ量でイオン注入することにより、イオン注入層2まで到達するコレクタコンタクト領域11をエピタキシャル層3に形成する。
【0032】
レジスト21を除去した後、図7に示すように、SiO2層12を全面に形成する。SiO2層12の厚さは、例えば0.2μmとする。
【0033】
続いて、図8に示すように、SiO2層12にエミッタ窓を開孔する。エミッタ窓の形状は、例えば長辺の長さが2.5μm、短辺の長さが0.7μmの長方形状とする。そして、Pが3×1020cm−3添加されたポリシリコン層(図示せず)を堆積した後、これをフォトリソグラフィ技術及びエッチングにより加工することにより、エミッタ層7を形成する。このとき、ポリシリコン層の厚さは、例えば0.2μmとする。
【0034】
その後、図9に示すように、SiO2層12に、フォトリソグラフィ技術及びエッチングにより外部ベース領域5b、コレクタコンタクト層11まで到達するコンタクトホールを開孔する。そして、これらの内部に、夫々ベース電極9、コレクタ電極10を形成すると共に、エミッタ層7上にエミッタ電極8を形成する。これらの電極は、例えばAl電極であるが、これに限定されない。
【0035】
このようにして製造されたHBTにおいては、外部ベース領域5bの下方に存在するものは、半絶縁材4及びp型Si基板1であり、コレクタ層として機能するエピタキシャル層3及びサブコレクタ層として機能するイオン注入層2は存在しない。このため、外部ベース領域とコレクタとの間の容量が、従来のものと比して極めて低くなる。例えば、外部ベース領域下にコレクタ層及びサブコレクタ層が存在する従来のHBTであって、下記表1のような形状を有するものに対し、図19及び図20に示す構造を採用した場合には、外部ベースとコレクタとの間の容量が0.43倍になるのに対し、本実施形態によれば0.14倍まで低減することができる。つまり、本実施形態によれば、図19及び図20に示す構造に対し、外部ベース領域とコレクタとの間の容量を1/3程度まで低減することができる。この結果、より一層高速動作が可能となる。
【0036】
【表1】
【0037】
なお、図19及び図20に示す従来のHBTに対して、単に外部ベース領域の下方からコレクタ層及びサブコレクタ層を除いたのでは、コレクタ電極を形成することができない。これに対し、本実施形態では、コレクタ電極を、エミッタ電極との間にベース電極が存在しない位置、より具体的には、エミッタ電極が延びる方向においてエミッタ電極から離間した位置に設けているため、そのような問題は生じない。
【0038】
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。但し、ここでは、便宜上、各HBTの構造をその製造方法と共に説明する。第2の実施形態における電極の配置は、第1の実施形態と同様である。図10乃至図17は、第2の実施形態に係るHBT(Si/SiGe/Si HBT)の製造方法を工程順に示す断面図である。但し、図10(a)乃至図17(a)には、エミッタの長辺に垂直な断面、即ち、図1中のI−I線に沿った断面を示し、図10(b)乃至図17(b)には、エミッタの長辺に沿った断面、即ち、図1中のII−II線に沿った断面を示している。
【0039】
本実施形態では、先ず、第1の実施形態と同様にして、半絶縁材4の溝4a内への埋め込みまでの工程を行う。
【0040】
次に、図10に示すように、エピタキシャル層3の表面に自然酸化膜13を形成し、その上にレジスト22を塗布し、このレジスト22のコレクタを形成する予定の領域に開口部22aをフォトリソグラフィ技術により形成する。そして、レジスト22をマスクとして用い、Pを7×1014cm−2のドーズ量でイオン注入することにより、イオン注入層2まで到達するコレクタコンタクト領域11をエピタキシャル層3に形成する。
【0041】
次いで、図11に示すように、レジスト22をマスクとして、コレクタコンタクト領域11上の自然酸化膜13を除去する。
【0042】
その後、図12に示すように、全面にポリシリコン層14を形成する。ポリシリコン層14の厚さは、例えば0.2μmとする。続いて、ポリシリコン層14の表面を酸化させる(図示せず)。この酸化は、例えば表面から0.03μm程度の深さまで行う。この酸化により、ポリシリコン層14の表面が安定化する。次に、全面にSiO2層15を堆積する。SiO2層15の厚さは、例えば0.2μmとする。
【0043】
次いで、図13に示すように、フォトリソグラフィ技術及びエッチングによりSiO2層15を加工することにより、SiO2層15を真性ベース領域又は外部ベース領域を形成する予定の領域並びにコレクタコンタクト領域11上のみに残存させる。その後、パターニングされたSiO2層15をマスクとして、ポリシリコン層14及び自然酸化膜13をエッチングする。
【0044】
続いて、コレクタコンタクト領域11上のポリシリコン層14にのみ、Pを4×1015cm−2のドーズ量でイオン注入する。更に、半絶縁材4及びこれに包囲されたエピタキシャル層3上のポリシリコン層14にのみ、Bを4×1015cm−2のドーズ量でイオン注入する。なお、これらのイオン注入は、SiO2層15を残存させたまま行う。
【0045】
次に、図14に示すように、SiO2層15にエミッタ窓を開孔する。エミッタ窓の形状は、例えば長辺の長さが2.5μm、短辺の長さが0.7μmの長方形状とする。この開孔の後に残存するポリシリコン層14のうち、半絶縁材4上に位置する部分が外部ベース領域6となる。
【0046】
次いで、図15に示すように、Bが3×1019cm−3添加されたSiGe層5を、超高圧CVD装置を使用してエミッタ窓内に選択成長させる。SiGe層5の厚さは、例えば0.04μm程度とする。このSiGe層5が真性ベース領域として機能する。
【0047】
続いて、図16に示すように、なお、全面に厚さが0.3μm程度のSiO2絶縁膜を成膜し、エッチバックによりサイドウォール16を形成する。図16乃至図17では、このときに形成されたSiO2層とSiO2層15とを一体化してSiO2層12として表している。
【0048】
その後、Pが5×1020cm−3添加されたポリシリコン層(図示せず)を全面に堆積した後、これをフォトリソグラフィ技術及びエッチングにより加工することにより、図16に示すように、エミッタ層7を形成する。このとき、ポリシリコン層の厚さは、例えば0.2μmとする。
【0049】
その後、SiO2層12に、フォトリソグラフィ技術及びエッチングにより外部ベース領域6、コレクタコンタクト層11上のポリシリコン層14まで到達するコンタクトホールを開孔する。そして、これらの内部に、夫々ベース電極9、コレクタ電極10を形成すると共に、エミッタ層7上にエミッタ電極8を形成する。これらの電極は、例えばAl電極であるが、これに限定されない。
【0050】
このようにして製造されたHBTにおいても、外部ベース領域6の下方に存在するものは、半絶縁材4及びp型Si基板1であり、コレクタ層として機能するエピタキシャル層3及びサブコレクタ層として機能するイオン注入層2は存在しない。このため、第1の実施形態と同様の効果が得られる。
【0051】
なお、半絶縁材4としては、上記のものに限定されない。例えば、GaAs系HBTにおいて、CrがドープされたGaAs材が溝内に埋め込まれていてもよく、InP系HBTにおいて、FeがドープされたInP材が溝内に埋め込まれていてもよい。
【0052】
また、半絶縁材の代わりに、絶縁物又は禁制帯幅が広い半導体が溝内に埋め込まれてもよい。絶縁物としては、例えばSiO2若しくはSOG等の酸化物、SiN若しくはAlN等の窒化物、SiON、BCB(ベンゾシクロブテン)又はポリイミド等を用いることができる。また、ここで、禁制帯幅が広い半導体とは、ベース、コレクタ及びサブコレクタを構成する材料よりも禁制帯幅が1eV以上広い半導体をいう。
【0053】
更に、溝を形成してからその内部に半絶縁材、絶縁物又は禁制帯幅が広い半導体を埋め込むのではなく、上述の実施形態で溝を形成している部分を酸化するか、又は窒化することにより、絶縁部を形成してもよい。このような絶縁部は、例えば酸素イオンを注入した後に活性化アニールを行うことにより形成することができる。
【0054】
また、溝を形成してからその内部に半絶縁材等を埋め込むのではなく、上述の実施形態で溝を形成している部分に、深い準位を形成するイオン(不純物)又は絶縁物を形成するイオン(不純物)を注入することにより、準位が深いイオン導入層を形成してもよい。このようなイオン(不純物)は、より具体的には、禁制帯幅の中央から±0.1eV程度に準位を形成する不純物である。
【0055】
更に、溝内に何も埋め込まれずに、中空となっていてもよい。このような構造のHBTは、例えば、次のようにして製造することができる。先ず、上述の実施形態と同様にして溝を形成した後に、一旦溝内にSiO2膜を埋め込む。次に、真性ベース領域及び外部ベース領域を形成し、これらを覆うエッチング保護膜、例えばSiN膜を全面に形成する。次いで、エッチング保護膜の真性ベース領域及び外部ベース領域からずれた位置にSiO2膜まで到達する開口部を形成し、フッ化水素酸を含むエッチング液を用いてSiO2膜を除去する。そして、エッチング保護膜を除去する。このような方法により、外部ベース領域の下が中空となった構造のHBTを製造することができる。
【0056】
また、イオン注入層2は、エピタキシャル層3を形成した後に、イオン注入を行うことによって形成してもよい。
【0057】
更に、電極の配置も特に限定されるものではなく、例えば図18(a)に示すように、ベース電極9がエミッタ電極8を間に挟むようにして、2箇所に設けられていてもよい。また、図18(b)に示すように、図18(a)に示す配置に対して、コレクタ電極10がエミッタ電極8を間に挟むようにして、2箇所に設けられていてもよい。但し、いずれの場合でも、平面視で、コレクタ電極10の少なくとも一部とエミッタ電極8との間に、ベース電極9が存在しないようにして、これらの各電極が配置されていることが好ましい。
【0058】
以下、本発明の諸態様を付記としてまとめて記載する。
【0059】
(付記1) サブコレクタ層と、
前記サブコレクタ層上に形成されたコレクタ層と、
前記コレクタ層上に形成された真性ベース領域と、
前記ベース層に接続された外部ベース領域と、
前記真性ベース領域上に形成されたエミッタ層と、
有し、
前記サブコレクタ層及び前記コレクタ層は、平面視で前記外部ベース領域の下方から離間した位置に形成されていることを特徴とするヘテロ接合バイポーラトランジスタ。
【0060】
(付記2) 前記外部ベース領域の下に、前記サブコレクタ層及び前記コレクタ層よりも深く形成された絶縁材又は半絶縁材を有することを特徴とする付記1に記載のヘテロ接合バイポーラトランジスタ。
【0061】
(付記3) 前記絶縁材は、酸化膜又は窒化膜からなることを特徴とする付記2に記載のヘテロ接合バイポーラトランジスタ。
【0062】
(付記4) 前記絶縁材は、SiO2、SiN、AlN、スピンオングラス、SiON、ベンゾシクロブテン及びポリイミドからなる群から選択された1種の材料からなることを特徴とする付記2に記載のヘテロ接合バイポーラトランジスタ。
【0063】
(付記5) 前記半絶縁材は、広い禁制帯幅を備えた半導体からなることを特徴とする付記2に記載のヘテロ接合バイポーラトランジスタ。
【0064】
(付記6) 前記外部ベース領域の下に、前記サブコレクタ層及び前記コレクタ層よりも深く形成された中空部を有することを特徴とする付記1に記載のヘテロ接合バイポーラトランジスタ。
【0065】
(付記7) 前記真性ベース領域は、不純物が導入されたSiGeからなることを特徴とする付記1乃至6のいずれか1項に記載のヘテロ接合バイポーラトランジスタ。
【0066】
(付記8) 前記外部ベース領域は、不純物が導入されたSiGeからなることを特徴とする付記1乃至7のいずれか1項に記載のヘテロ接合バイポーラトランジスタ。
【0067】
(付記9) 前記外部ベース領域の厚さは、前記真性ベース領域の厚さと実質的に同等であることを特徴とする付記8に記載のヘテロ接合バイポーラトランジスタ。
【0068】
(付記10) 前記外部ベース領域は、不純物が導入されたポリシリコンからなることを特徴とする付記1乃至7のいずれか1項に記載のヘテロ接合バイポーラトランジスタ。
【0069】
(付記11) 前記外部ベース領域の厚さは、前記真性ベース領域の厚さよりも厚いことを特徴とする付記10に記載のヘテロ接合バイポーラトランジスタ。
【0070】
(付記12) 前記エミッタ層に接続されたエミッタ電極と、
前記外部ベース領域に接続されたベース電極と、
前記サブコレクタ層に接続されたコレクタ電極と
を有し、
平面視で、前記コレクタ電極の少なくとも一部と前記エミッタ電極との間に、前記ベース電極が存在しないことを特徴とする付記1乃至11のいずれか1項に記載のヘテロ接合バイポーラトランジスタ。
【0071】
(付記13) 前記エミッタ電極の平面形状は、実質的に長方形であり、
前記ベース電極は、前記エミッタ電極の長辺に対向して配置され、
前記コレクタ電極は、前記エミッタ電極の短辺に対向して配置されていることを特徴とする付記12に記載のヘテロ接合バイポーラトランジスタ。
【0072】
(付記14) 半導体基板上に、少なくともその一部がサブコレクタ層となる第1の半導体層及び少なくともその一部がコレクタ層となる第2の半導体層を形成する工程と、
前記第1の半導体層及び前記第2の半導体層に、前記第1の半導体層の底面よりも深い溝を形成する工程と、
前記第2の半導体層上に真性ベース領域を形成し、前記溝上に外部ベース領域を形成する工程と、
前記真性ベース領域上にエミッタ層を形成する工程と、
を有することを特徴とするヘテロ接合バイポーラトランジスタの製造方法。
【0073】
(付記15) 前記溝を形成する工程と前記真性ベース領域及び前記外部ベース領域を形成する工程との間に、
前記溝内に前記第1の半導体層及び前記第2の半導体層とは異なる材料を埋め込む工程を有することを特徴とする付記14に記載のヘテロ接合バイポーラトランジスタの製造方法。
【0074】
(付記16) 前記溝内に前記第1の半導体層及び前記第2の半導体層とは異なる材料を埋め込む工程の前に、前記溝の側面及び底面に絶縁膜を形成する工程を有することを特徴とする付記15に記載のヘテロ接合バイポーラトランジスタの製造方法。
【0075】
(付記17) 半導体基板上に、少なくともその一部がサブコレクタ層となる第1の半導体層及び少なくともその一部がコレクタ層となる第2の半導体層を形成する工程と、
前記第1の半導体層及び前記第2の半導体層を選択的に酸化するか、又は窒化することにより、前記第1の半導体層及び前記第2の半導体層に、前記第1の半導体層の底面よりも深い絶縁部を形成する工程と、
前記第2の半導体層上に真性ベース領域を形成し、前記絶縁部上に外部ベース領域を形成する工程と、
前記真性ベース領域上にエミッタ層を形成する工程と、
を有することを特徴とするヘテロ接合バイポーラトランジスタの製造方法。
【0076】
(付記18) 半導体基板上に、少なくともその一部がサブコレクタ層となる第1の半導体層及び少なくともその一部がコレクタ層となる第2の半導体層を形成する工程と、
前記第1の半導体層及び前記第2の半導体層に選択的にイオン注入を施すことにより、前記第1の半導体層及び前記第2の半導体層に、前記第1の半導体層の底面よりも深く、準位が深いイオン導入層を形成する工程と、
前記第2の半導体層上に真性ベース領域を形成し、前記イオン導入層上に外部ベース領域を形成する工程と、
前記真性ベース領域上にエミッタ層を形成する工程と、
を有することを特徴とするヘテロ接合バイポーラトランジスタの製造方法。
【0077】
(付記19) 半導体基板上に、少なくともその一部がサブコレクタ層となる第1の半導体層及び少なくともその一部がコレクタ層となる第2の半導体層を形成する工程と、
前記第1の半導体層及び前記第2の半導体層に選択的にイオン注入を施すことにより、前記第1の半導体層及び前記第2の半導体層に、前記第1の半導体層の底面よりも深いイオン導入絶縁層を形成する工程と、
前記第2の半導体層上に真性ベース領域を形成し、前記イオン導入絶縁層上に外部ベース領域を形成する工程と、
前記真性ベース領域上にエミッタ層を形成する工程と、
を有することを特徴とするヘテロ接合バイポーラトランジスタの製造方法。
【0078】
【発明の効果】
以上詳述したように、本発明によれば、外部ベース領域とコレクタとの間の容量を低減することができる。このため、より一層高速な動作が可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係るHBTにおける電極の配置を示すレイアウト図である。
【図2】本発明の第1の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図3】図2に引き続き、本発明の第1の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図4】図3に引き続き、本発明の第1の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図5】図4に引き続き、本発明の第1の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図6】図5に引き続き、本発明の第1の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図7】図6に引き続き、本発明の第1の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図8】図7に引き続き、本発明の第1の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図9】図8に引き続き、本発明の第1の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図10】本発明の第2の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図11】図10に引き続き、本発明の第2の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図12】図11に引き続き、本発明の第2の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図13】図12に引き続き、本発明の第2の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図14】図13に引き続き、本発明の第2の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図15】図14に引き続き、本発明の第2の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図16】図15に引き続き、本発明の第2の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図17】図16に引き続き、本発明の第2の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図18】各電極の配置の例を示すレイアウト図である。
【図19】従来のヘテロ接合バイポーラトランジスタにおける電極の配置を示すレイアウト図である。
【図20】従来のヘテロ接合バイポーラトランジスタの構造を示す断面図である。
【符号の説明】
1;Si基板
2;イオン注入層
3;エピタキシャル層
4;半絶縁材
4a;溝
5;SiGe層
5a;真性ベース領域
5b;外部ベース領域
6;外部ベース領域
7;エミッタ層
8;エミッタ電極
9;ベース電極
10;コレクタ電極
11;コレクタコンタクト領域
12;SiO2層
13;自然酸化膜
14;ポリシリコン層
15;SiO2層
16;サイドウォール
21;レジスト
21a;開口部
22;レジスト
22a;開口部
【発明の属する技術分野】
本発明は、外部ベースとコレクタとの間の寄生容量の低減を図ったヘテロ接合バイポーラトランジスタ(HBT)及びその製造方法に関する。
【0002】
【従来の技術】
HBTは、ベース層にエミッタ層よりもバンドギャップの狭い半導体を用いることにより、ベース層に高濃度の不純物をドーピングしてもベース層からエミッタ層への正孔の注入を抑制できる。このため、ホモ接合型バイポーラトランジスタと比較すると、同じベースシート抵抗を実現するために必要なベース層が薄く、ベース走行時間の短縮等が可能である。従って、HBTは、より高速動作が可能である。
【0003】
HBTの高速動作を示す指標として、電流利得遮断周波数fTと最大発信周波数fmaxがある。これらは、夫々下記数1、数2で表される。
【0004】
【数1】
【0005】
【数2】
【0006】
ここで、τBはベース走行時間、τCはコレクタ走行時間、reはエミッタ交流等価抵抗、CBEはエミッタ−ベース間容量、CBCはベース−コレクタ間容量、REEはエミッタ外部抵抗、RCCはコレクタ外部抵抗、RBはベース抵抗である。
【0007】
HBTがトランジスタ動作するために必要な部分(真性領域)は、平面的にはエミッタ層とベース層との界面の直下の領域のみである。しかし、ベース層へ外部配線からコンタクトを得るための外部ベース領域やコレクタ層へ外部配線からコンタクトを得るためのサブコレクタ層は、トランジスタを動作させるために必須の構成要素とされている。
【0008】
そして、外部ベース領域とサブコレクタ層とが重畳する領域は、ベース−コレクタ間の寄生容量(外部ベース−コレクタ間容量)として、ベース−コレクタ間容量の一部を構成してしまっている。
【0009】
デバイス面積をスケーリングにより縮小させた場合、ベース−コレクタ間容量のうち外部ベース−コレクタ間容量の占める割合が高くなる。このため、エミッタ面積を縮小しても、ベース−コレクタ間容量はエミッタ面積の縮小に比例して小さくはならない。
【0010】
一方、エミッタ交流等価抵抗reは、エミッタ電流密度が等しい場合、エミッタ面積の縮小に逆比例して大きくなり、また、エミッタ外部抵抗REEもエミッタ面積の縮小に逆比例して大きくなる。
【0011】
以上の理由から、従来のHBTでは、エミッタ面積を縮小してもベース−コレクタ間容量の充放電時間が大きくなるため、エミッタ面積を縮小しても、電流利得遮断周波数fTが増加しにくい状況となっていた。
【0012】
そこで、最近では、コレクタ層のうち外部ベース電極の下に位置する領域を絶縁材又は半絶縁材で置き換えることにより、ベース−コレクタ容量を低減する技術について報告がなされており、これまでのところ、外部ベース−コレクタ間容量を低減する有効な技術の1つとなっている。
【0013】
図19は、従来のヘテロ接合バイポーラトランジスタ(Si/SiGe/SiHBT)における電極の配置を示すレイアウト図である。また、図20は、従来のヘテロ接合バイポーラトランジスタ(Si/SiGe/Si HBT)の構造を示す断面図である。この断面図には、エミッタの長辺に垂直な断面、即ち、図19中のI−I線に沿った断面を示している。
【0014】
この従来のHBTにおいては、p型Si基板101上に、サブコレクタ層として機能する高濃度n−Si層102が形成され、その上にコレクタ層として機能する低濃度n−Si層103が形成されている。更に、低濃度n−Si層103上に、ベース層として機能する高濃度p−SiGe層105が形成され、その上にエミッタ層として機能する多結晶Si層107が形成されている。このようにして、真性領域が構成されている。
【0015】
高濃度p−SiGe層105のうち、多結晶Si層107と接する部分はベース層として機能するが、その周囲の部分は外部ベース領域として機能する。そして、この外部ベース領域として機能する部分と高濃度n−Si層102との間では、低濃度n−Si層103に溝が形成され、その内部に半絶縁性の層104が埋め込まれている。低濃度n−Si層103の一部には、選択的なイオン注入により、コレクタコンタクト層111が形成されている。
【0016】
そして、全面にSiO2膜112が形成されている。このSiO2膜112には、夫々多結晶Si層107、外部ベース領域、コレクタコンタクト層111まで到達するコンタクトホールが開孔されており、これらの内部にエミッタ電極108、ベース電極109、コレクタ電極110が形成されている。
【0017】
【特許文献1】
特開平6−37102号公報
【0018】
【発明が解決しようとする課題】
しかしながら、図19及び図20に示すような従来のHBTにおいても、寄生容量の低減は十分ということはできず、更なる低減が要請されている。
【0019】
本発明は、かかる問題点に鑑みてなされたものであって、寄生容量をより一層低減することができるヘテロ接合バイポーラトランジスタ及びその製造方法を提供することを目的とする。
【0020】
【課題を解決するための手段】
本願発明者は、前記課題を解決すべく鋭意検討を重ねた結果、以下に示す発明の諸態様に想到した。
【0021】
本発明に係るヘテロ接合バイポーラトランジスタは、サブコレクタ層と、前記サブコレクタ層上に形成されたコレクタ層と、前記コレクタ層上に形成された真性ベース領域と、前記ベース層に接続された外部ベース領域と、前記真性ベース領域上に形成されたエミッタ層と、有するヘテロ接合バイポーラトランジスタを対象とする。そして、前記サブコレクタ層及び前記コレクタ層は、平面視で前記外部ベース領域の下方から離間した位置に形成されていることを特徴とする。
【0022】
本発明に係るヘテロ接合バイポーラトランジスタの製造方法では、先ず、半導体基板上に、少なくともその一部がサブコレクタ層となる第1の半導体層を形成し、前記第1の半導体層上に、少なくともその一部がコレクタ層となる第2の半導体層を形成する。次に、前記第1の半導体層及び前記第2の半導体層に、前記第1の半導体層の底面よりも深い溝を形成した後、前記第2の半導体層上に真性ベース領域を形成し、前記溝上に外部ベース領域を形成する。そして、前記真性ベース領域上にエミッタ層を形成する。
【0023】
なお、第1の半導体層及び第2の半導体層を形成する工程では、第1の半導体層を半導体基板上に堆積する必要はなく、イオン注入等を行うことにより、結果として、半導体基板上に第1の半導体層が存在する状態となればよい。
【0024】
これらの本発明においては、外部ベース領域の下に、コレクタ層(第2の半導体層)のみならず、サブコレクタ層(第1の半導体層)も存在しない。このため、外部ベース領域とコレクタとの間の容量が低減される。従って、ベース−コレクタ間容量が低減される。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態に係るヘテロ接合バイポーラトランジスタ及びその製造方法について添付の図面を参照して具体的に説明する。
【0026】
(第1の実施形態)
先ず、本発明の第1の実施形態について説明する。但し、ここでは、便宜上、各HBTの構造をその製造方法と共に説明する。図1は、本発明の第1の実施形態に係るHBTにおける電極の配置を示すレイアウト図である。また、図2乃至図9は、第1の実施形態に係るHBT(Si/SiGe/Si HBT)の製造方法を工程順に示す断面図である。但し、図2(a)乃至図9(a)には、エミッタの長辺に垂直な断面、即ち、図1中のI−I線に沿った断面を示し、図2(b)乃至図9(b)には、エミッタの長辺に沿った断面、即ち、図1中のII−II線に沿った断面を示している。
【0027】
本実施形態では、先ず、図2に示すように、p型Si基板1の表面に、例えばSbをイオン注入することにより、Sbが2×1019cm−3添加されたイオン注入層(第1の半導体層)2を形成する。イオン注入層2の厚さは、例えば3μmとする。このイオン注入層2が、Siサブコレクタ層として機能する。次に、イオン注入層2上に、Pが1×1018cm−3程度添加されたエピタキシャル層(第2の半導体層)3を結晶成長により形成する。エピタキシャル層3の厚さは、例えば0.4μmとする。
【0028】
その後、図3に示すように、エピタキシャル層3のうち、長方形状のエミッタを形成する予定の領域と整合する領域を三方から囲む溝4aをエッチングにより形成する。エピタキシャル層3のうち、溝4aに包囲された部分がSiコレクタ層として機能する。このとき、溝4aの平面パターンは、図1及び図3に示すように、エミッタが延びる方向に沿って延びる2つのパターンと、これらの2つの部分を繋ぐパターンとから構成されるものとする。また、溝4aの深さは、図3に示すように、エピタキシャル層3及びイオン注入層2を貫通して溝4aの底部がp型Si基板1まで到達するようにする。
【0029】
続いて、図4に示すように、溝4a内に半絶縁材4を埋め込む。半絶縁材4の材料は特に限定されるものではない。例えば、溝4aの側壁をウェット酸化することにより、酸化膜を形成し、その内側にポリシリコン膜を堆積した後、平坦化を行うことにより形成することができる。
【0030】
次に、図5に示すように、Bが3×1019cm−3添加されたSiGe層5を結晶成長により形成する。SiGe層5の厚さは、例えば0.04μm程度とする。更に、SiGe層5のうち半絶縁材4上に位置する部分に、例えばBを3×1015cm−2のドーズ量で選択的にイオン注入することにより、高濃度ベースコンタクト領域(外部ベース領域)5bを形成すると共に、この外部ベース領域5bに三方を囲まれた真性ベース領域5aを形成する。その後、レジスト(図示せず)をマスクとして用い、SiGe層5のうち、真性ベース領域5a及び外部ベース領域5bを除く部分を除去する。
【0031】
次いで、図6に示すように、全面にレジスト21を塗布し、このレジスト21のコレクタを形成する予定の領域に開口部21aをフォトリソグラフィ技術により形成する。そして、レジスト21をマスクとして用い、Pを4×1015cm−2のドーズ量でイオン注入することにより、イオン注入層2まで到達するコレクタコンタクト領域11をエピタキシャル層3に形成する。
【0032】
レジスト21を除去した後、図7に示すように、SiO2層12を全面に形成する。SiO2層12の厚さは、例えば0.2μmとする。
【0033】
続いて、図8に示すように、SiO2層12にエミッタ窓を開孔する。エミッタ窓の形状は、例えば長辺の長さが2.5μm、短辺の長さが0.7μmの長方形状とする。そして、Pが3×1020cm−3添加されたポリシリコン層(図示せず)を堆積した後、これをフォトリソグラフィ技術及びエッチングにより加工することにより、エミッタ層7を形成する。このとき、ポリシリコン層の厚さは、例えば0.2μmとする。
【0034】
その後、図9に示すように、SiO2層12に、フォトリソグラフィ技術及びエッチングにより外部ベース領域5b、コレクタコンタクト層11まで到達するコンタクトホールを開孔する。そして、これらの内部に、夫々ベース電極9、コレクタ電極10を形成すると共に、エミッタ層7上にエミッタ電極8を形成する。これらの電極は、例えばAl電極であるが、これに限定されない。
【0035】
このようにして製造されたHBTにおいては、外部ベース領域5bの下方に存在するものは、半絶縁材4及びp型Si基板1であり、コレクタ層として機能するエピタキシャル層3及びサブコレクタ層として機能するイオン注入層2は存在しない。このため、外部ベース領域とコレクタとの間の容量が、従来のものと比して極めて低くなる。例えば、外部ベース領域下にコレクタ層及びサブコレクタ層が存在する従来のHBTであって、下記表1のような形状を有するものに対し、図19及び図20に示す構造を採用した場合には、外部ベースとコレクタとの間の容量が0.43倍になるのに対し、本実施形態によれば0.14倍まで低減することができる。つまり、本実施形態によれば、図19及び図20に示す構造に対し、外部ベース領域とコレクタとの間の容量を1/3程度まで低減することができる。この結果、より一層高速動作が可能となる。
【0036】
【表1】
【0037】
なお、図19及び図20に示す従来のHBTに対して、単に外部ベース領域の下方からコレクタ層及びサブコレクタ層を除いたのでは、コレクタ電極を形成することができない。これに対し、本実施形態では、コレクタ電極を、エミッタ電極との間にベース電極が存在しない位置、より具体的には、エミッタ電極が延びる方向においてエミッタ電極から離間した位置に設けているため、そのような問題は生じない。
【0038】
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。但し、ここでは、便宜上、各HBTの構造をその製造方法と共に説明する。第2の実施形態における電極の配置は、第1の実施形態と同様である。図10乃至図17は、第2の実施形態に係るHBT(Si/SiGe/Si HBT)の製造方法を工程順に示す断面図である。但し、図10(a)乃至図17(a)には、エミッタの長辺に垂直な断面、即ち、図1中のI−I線に沿った断面を示し、図10(b)乃至図17(b)には、エミッタの長辺に沿った断面、即ち、図1中のII−II線に沿った断面を示している。
【0039】
本実施形態では、先ず、第1の実施形態と同様にして、半絶縁材4の溝4a内への埋め込みまでの工程を行う。
【0040】
次に、図10に示すように、エピタキシャル層3の表面に自然酸化膜13を形成し、その上にレジスト22を塗布し、このレジスト22のコレクタを形成する予定の領域に開口部22aをフォトリソグラフィ技術により形成する。そして、レジスト22をマスクとして用い、Pを7×1014cm−2のドーズ量でイオン注入することにより、イオン注入層2まで到達するコレクタコンタクト領域11をエピタキシャル層3に形成する。
【0041】
次いで、図11に示すように、レジスト22をマスクとして、コレクタコンタクト領域11上の自然酸化膜13を除去する。
【0042】
その後、図12に示すように、全面にポリシリコン層14を形成する。ポリシリコン層14の厚さは、例えば0.2μmとする。続いて、ポリシリコン層14の表面を酸化させる(図示せず)。この酸化は、例えば表面から0.03μm程度の深さまで行う。この酸化により、ポリシリコン層14の表面が安定化する。次に、全面にSiO2層15を堆積する。SiO2層15の厚さは、例えば0.2μmとする。
【0043】
次いで、図13に示すように、フォトリソグラフィ技術及びエッチングによりSiO2層15を加工することにより、SiO2層15を真性ベース領域又は外部ベース領域を形成する予定の領域並びにコレクタコンタクト領域11上のみに残存させる。その後、パターニングされたSiO2層15をマスクとして、ポリシリコン層14及び自然酸化膜13をエッチングする。
【0044】
続いて、コレクタコンタクト領域11上のポリシリコン層14にのみ、Pを4×1015cm−2のドーズ量でイオン注入する。更に、半絶縁材4及びこれに包囲されたエピタキシャル層3上のポリシリコン層14にのみ、Bを4×1015cm−2のドーズ量でイオン注入する。なお、これらのイオン注入は、SiO2層15を残存させたまま行う。
【0045】
次に、図14に示すように、SiO2層15にエミッタ窓を開孔する。エミッタ窓の形状は、例えば長辺の長さが2.5μm、短辺の長さが0.7μmの長方形状とする。この開孔の後に残存するポリシリコン層14のうち、半絶縁材4上に位置する部分が外部ベース領域6となる。
【0046】
次いで、図15に示すように、Bが3×1019cm−3添加されたSiGe層5を、超高圧CVD装置を使用してエミッタ窓内に選択成長させる。SiGe層5の厚さは、例えば0.04μm程度とする。このSiGe層5が真性ベース領域として機能する。
【0047】
続いて、図16に示すように、なお、全面に厚さが0.3μm程度のSiO2絶縁膜を成膜し、エッチバックによりサイドウォール16を形成する。図16乃至図17では、このときに形成されたSiO2層とSiO2層15とを一体化してSiO2層12として表している。
【0048】
その後、Pが5×1020cm−3添加されたポリシリコン層(図示せず)を全面に堆積した後、これをフォトリソグラフィ技術及びエッチングにより加工することにより、図16に示すように、エミッタ層7を形成する。このとき、ポリシリコン層の厚さは、例えば0.2μmとする。
【0049】
その後、SiO2層12に、フォトリソグラフィ技術及びエッチングにより外部ベース領域6、コレクタコンタクト層11上のポリシリコン層14まで到達するコンタクトホールを開孔する。そして、これらの内部に、夫々ベース電極9、コレクタ電極10を形成すると共に、エミッタ層7上にエミッタ電極8を形成する。これらの電極は、例えばAl電極であるが、これに限定されない。
【0050】
このようにして製造されたHBTにおいても、外部ベース領域6の下方に存在するものは、半絶縁材4及びp型Si基板1であり、コレクタ層として機能するエピタキシャル層3及びサブコレクタ層として機能するイオン注入層2は存在しない。このため、第1の実施形態と同様の効果が得られる。
【0051】
なお、半絶縁材4としては、上記のものに限定されない。例えば、GaAs系HBTにおいて、CrがドープされたGaAs材が溝内に埋め込まれていてもよく、InP系HBTにおいて、FeがドープされたInP材が溝内に埋め込まれていてもよい。
【0052】
また、半絶縁材の代わりに、絶縁物又は禁制帯幅が広い半導体が溝内に埋め込まれてもよい。絶縁物としては、例えばSiO2若しくはSOG等の酸化物、SiN若しくはAlN等の窒化物、SiON、BCB(ベンゾシクロブテン)又はポリイミド等を用いることができる。また、ここで、禁制帯幅が広い半導体とは、ベース、コレクタ及びサブコレクタを構成する材料よりも禁制帯幅が1eV以上広い半導体をいう。
【0053】
更に、溝を形成してからその内部に半絶縁材、絶縁物又は禁制帯幅が広い半導体を埋め込むのではなく、上述の実施形態で溝を形成している部分を酸化するか、又は窒化することにより、絶縁部を形成してもよい。このような絶縁部は、例えば酸素イオンを注入した後に活性化アニールを行うことにより形成することができる。
【0054】
また、溝を形成してからその内部に半絶縁材等を埋め込むのではなく、上述の実施形態で溝を形成している部分に、深い準位を形成するイオン(不純物)又は絶縁物を形成するイオン(不純物)を注入することにより、準位が深いイオン導入層を形成してもよい。このようなイオン(不純物)は、より具体的には、禁制帯幅の中央から±0.1eV程度に準位を形成する不純物である。
【0055】
更に、溝内に何も埋め込まれずに、中空となっていてもよい。このような構造のHBTは、例えば、次のようにして製造することができる。先ず、上述の実施形態と同様にして溝を形成した後に、一旦溝内にSiO2膜を埋め込む。次に、真性ベース領域及び外部ベース領域を形成し、これらを覆うエッチング保護膜、例えばSiN膜を全面に形成する。次いで、エッチング保護膜の真性ベース領域及び外部ベース領域からずれた位置にSiO2膜まで到達する開口部を形成し、フッ化水素酸を含むエッチング液を用いてSiO2膜を除去する。そして、エッチング保護膜を除去する。このような方法により、外部ベース領域の下が中空となった構造のHBTを製造することができる。
【0056】
また、イオン注入層2は、エピタキシャル層3を形成した後に、イオン注入を行うことによって形成してもよい。
【0057】
更に、電極の配置も特に限定されるものではなく、例えば図18(a)に示すように、ベース電極9がエミッタ電極8を間に挟むようにして、2箇所に設けられていてもよい。また、図18(b)に示すように、図18(a)に示す配置に対して、コレクタ電極10がエミッタ電極8を間に挟むようにして、2箇所に設けられていてもよい。但し、いずれの場合でも、平面視で、コレクタ電極10の少なくとも一部とエミッタ電極8との間に、ベース電極9が存在しないようにして、これらの各電極が配置されていることが好ましい。
【0058】
以下、本発明の諸態様を付記としてまとめて記載する。
【0059】
(付記1) サブコレクタ層と、
前記サブコレクタ層上に形成されたコレクタ層と、
前記コレクタ層上に形成された真性ベース領域と、
前記ベース層に接続された外部ベース領域と、
前記真性ベース領域上に形成されたエミッタ層と、
有し、
前記サブコレクタ層及び前記コレクタ層は、平面視で前記外部ベース領域の下方から離間した位置に形成されていることを特徴とするヘテロ接合バイポーラトランジスタ。
【0060】
(付記2) 前記外部ベース領域の下に、前記サブコレクタ層及び前記コレクタ層よりも深く形成された絶縁材又は半絶縁材を有することを特徴とする付記1に記載のヘテロ接合バイポーラトランジスタ。
【0061】
(付記3) 前記絶縁材は、酸化膜又は窒化膜からなることを特徴とする付記2に記載のヘテロ接合バイポーラトランジスタ。
【0062】
(付記4) 前記絶縁材は、SiO2、SiN、AlN、スピンオングラス、SiON、ベンゾシクロブテン及びポリイミドからなる群から選択された1種の材料からなることを特徴とする付記2に記載のヘテロ接合バイポーラトランジスタ。
【0063】
(付記5) 前記半絶縁材は、広い禁制帯幅を備えた半導体からなることを特徴とする付記2に記載のヘテロ接合バイポーラトランジスタ。
【0064】
(付記6) 前記外部ベース領域の下に、前記サブコレクタ層及び前記コレクタ層よりも深く形成された中空部を有することを特徴とする付記1に記載のヘテロ接合バイポーラトランジスタ。
【0065】
(付記7) 前記真性ベース領域は、不純物が導入されたSiGeからなることを特徴とする付記1乃至6のいずれか1項に記載のヘテロ接合バイポーラトランジスタ。
【0066】
(付記8) 前記外部ベース領域は、不純物が導入されたSiGeからなることを特徴とする付記1乃至7のいずれか1項に記載のヘテロ接合バイポーラトランジスタ。
【0067】
(付記9) 前記外部ベース領域の厚さは、前記真性ベース領域の厚さと実質的に同等であることを特徴とする付記8に記載のヘテロ接合バイポーラトランジスタ。
【0068】
(付記10) 前記外部ベース領域は、不純物が導入されたポリシリコンからなることを特徴とする付記1乃至7のいずれか1項に記載のヘテロ接合バイポーラトランジスタ。
【0069】
(付記11) 前記外部ベース領域の厚さは、前記真性ベース領域の厚さよりも厚いことを特徴とする付記10に記載のヘテロ接合バイポーラトランジスタ。
【0070】
(付記12) 前記エミッタ層に接続されたエミッタ電極と、
前記外部ベース領域に接続されたベース電極と、
前記サブコレクタ層に接続されたコレクタ電極と
を有し、
平面視で、前記コレクタ電極の少なくとも一部と前記エミッタ電極との間に、前記ベース電極が存在しないことを特徴とする付記1乃至11のいずれか1項に記載のヘテロ接合バイポーラトランジスタ。
【0071】
(付記13) 前記エミッタ電極の平面形状は、実質的に長方形であり、
前記ベース電極は、前記エミッタ電極の長辺に対向して配置され、
前記コレクタ電極は、前記エミッタ電極の短辺に対向して配置されていることを特徴とする付記12に記載のヘテロ接合バイポーラトランジスタ。
【0072】
(付記14) 半導体基板上に、少なくともその一部がサブコレクタ層となる第1の半導体層及び少なくともその一部がコレクタ層となる第2の半導体層を形成する工程と、
前記第1の半導体層及び前記第2の半導体層に、前記第1の半導体層の底面よりも深い溝を形成する工程と、
前記第2の半導体層上に真性ベース領域を形成し、前記溝上に外部ベース領域を形成する工程と、
前記真性ベース領域上にエミッタ層を形成する工程と、
を有することを特徴とするヘテロ接合バイポーラトランジスタの製造方法。
【0073】
(付記15) 前記溝を形成する工程と前記真性ベース領域及び前記外部ベース領域を形成する工程との間に、
前記溝内に前記第1の半導体層及び前記第2の半導体層とは異なる材料を埋め込む工程を有することを特徴とする付記14に記載のヘテロ接合バイポーラトランジスタの製造方法。
【0074】
(付記16) 前記溝内に前記第1の半導体層及び前記第2の半導体層とは異なる材料を埋め込む工程の前に、前記溝の側面及び底面に絶縁膜を形成する工程を有することを特徴とする付記15に記載のヘテロ接合バイポーラトランジスタの製造方法。
【0075】
(付記17) 半導体基板上に、少なくともその一部がサブコレクタ層となる第1の半導体層及び少なくともその一部がコレクタ層となる第2の半導体層を形成する工程と、
前記第1の半導体層及び前記第2の半導体層を選択的に酸化するか、又は窒化することにより、前記第1の半導体層及び前記第2の半導体層に、前記第1の半導体層の底面よりも深い絶縁部を形成する工程と、
前記第2の半導体層上に真性ベース領域を形成し、前記絶縁部上に外部ベース領域を形成する工程と、
前記真性ベース領域上にエミッタ層を形成する工程と、
を有することを特徴とするヘテロ接合バイポーラトランジスタの製造方法。
【0076】
(付記18) 半導体基板上に、少なくともその一部がサブコレクタ層となる第1の半導体層及び少なくともその一部がコレクタ層となる第2の半導体層を形成する工程と、
前記第1の半導体層及び前記第2の半導体層に選択的にイオン注入を施すことにより、前記第1の半導体層及び前記第2の半導体層に、前記第1の半導体層の底面よりも深く、準位が深いイオン導入層を形成する工程と、
前記第2の半導体層上に真性ベース領域を形成し、前記イオン導入層上に外部ベース領域を形成する工程と、
前記真性ベース領域上にエミッタ層を形成する工程と、
を有することを特徴とするヘテロ接合バイポーラトランジスタの製造方法。
【0077】
(付記19) 半導体基板上に、少なくともその一部がサブコレクタ層となる第1の半導体層及び少なくともその一部がコレクタ層となる第2の半導体層を形成する工程と、
前記第1の半導体層及び前記第2の半導体層に選択的にイオン注入を施すことにより、前記第1の半導体層及び前記第2の半導体層に、前記第1の半導体層の底面よりも深いイオン導入絶縁層を形成する工程と、
前記第2の半導体層上に真性ベース領域を形成し、前記イオン導入絶縁層上に外部ベース領域を形成する工程と、
前記真性ベース領域上にエミッタ層を形成する工程と、
を有することを特徴とするヘテロ接合バイポーラトランジスタの製造方法。
【0078】
【発明の効果】
以上詳述したように、本発明によれば、外部ベース領域とコレクタとの間の容量を低減することができる。このため、より一層高速な動作が可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係るHBTにおける電極の配置を示すレイアウト図である。
【図2】本発明の第1の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図3】図2に引き続き、本発明の第1の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図4】図3に引き続き、本発明の第1の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図5】図4に引き続き、本発明の第1の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図6】図5に引き続き、本発明の第1の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図7】図6に引き続き、本発明の第1の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図8】図7に引き続き、本発明の第1の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図9】図8に引き続き、本発明の第1の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図10】本発明の第2の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図11】図10に引き続き、本発明の第2の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図12】図11に引き続き、本発明の第2の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図13】図12に引き続き、本発明の第2の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図14】図13に引き続き、本発明の第2の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図15】図14に引き続き、本発明の第2の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図16】図15に引き続き、本発明の第2の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図17】図16に引き続き、本発明の第2の実施形態に係るHBTの製造方法を工程順に示す断面図である。
【図18】各電極の配置の例を示すレイアウト図である。
【図19】従来のヘテロ接合バイポーラトランジスタにおける電極の配置を示すレイアウト図である。
【図20】従来のヘテロ接合バイポーラトランジスタの構造を示す断面図である。
【符号の説明】
1;Si基板
2;イオン注入層
3;エピタキシャル層
4;半絶縁材
4a;溝
5;SiGe層
5a;真性ベース領域
5b;外部ベース領域
6;外部ベース領域
7;エミッタ層
8;エミッタ電極
9;ベース電極
10;コレクタ電極
11;コレクタコンタクト領域
12;SiO2層
13;自然酸化膜
14;ポリシリコン層
15;SiO2層
16;サイドウォール
21;レジスト
21a;開口部
22;レジスト
22a;開口部
Claims (10)
- サブコレクタ層と、
前記サブコレクタ層上に形成されたコレクタ層と、
前記コレクタ層上に形成された真性ベース領域と、
前記ベース層に接続された外部ベース領域と、
前記真性ベース領域上に形成されたエミッタ層と、
有し、
前記サブコレクタ層及び前記コレクタ層は、平面視で前記外部ベース領域の下方から離間した位置に形成されていることを特徴とするヘテロ接合バイポーラトランジスタ。 - 前記外部ベース領域の下に、前記サブコレクタ層及び前記コレクタ層よりも深く形成された絶縁材又は半絶縁材を有することを特徴とする請求項1に記載のヘテロ接合バイポーラトランジスタ。
- 前記絶縁材は、酸化膜又は窒化膜からなることを特徴とする請求項2に記載のヘテロ接合バイポーラトランジスタ。
- 前記絶縁材は、SiO2、SiN、AlN、スピンオングラス、SiON、ベンゾシクロブテン及びポリイミドからなる群から選択された1種の材料からなることを特徴とする請求項2に記載のヘテロ接合バイポーラトランジスタ。
- 前記真性ベース領域は、不純物が導入されたSiGeからなることを特徴とする請求項1乃至4のいずれか1項に記載のヘテロ接合バイポーラトランジスタ。
- 前記外部ベース領域は、不純物が導入されたSiGeからなることを特徴とする請求項1乃至5のいずれか1項に記載のヘテロ接合バイポーラトランジスタ。
- 前記外部ベース領域は、不純物が導入されたポリシリコンからなることを特徴とする請求項1乃至5のいずれか1項に記載のヘテロ接合バイポーラトランジスタ。
- 前記エミッタ層に接続されたエミッタ電極と、
前記外部ベース領域に接続されたベース電極と、
前記サブコレクタ層に接続されたコレクタ電極と
を有し、
平面視で、前記コレクタ電極の少なくとも一部と前記エミッタ電極との間に、前記ベース電極が存在しないことを特徴とする請求項1乃至7のいずれか1項に記載のヘテロ接合バイポーラトランジスタ。 - 半導体基板上に、少なくともその一部がサブコレクタ層となる第1の半導体層及び少なくともその一部がコレクタ層となる第2の半導体層を形成する工程と、
前記第1の半導体層及び前記第2の半導体層に、前記第1の半導体層の底面よりも深い溝を形成する工程と、
前記第2の半導体層上に真性ベース領域を形成し、前記溝上に外部ベース領域を形成する工程と、
前記真性ベース領域上にエミッタ層を形成する工程と、
を有することを特徴とするヘテロ接合バイポーラトランジスタの製造方法。 - 前記溝を形成する工程と前記真性ベース領域及び前記外部ベース領域を形成する工程との間に、
前記溝内に前記第1の半導体層及び前記第2の半導体層とは異なる材料を埋め込む工程を有することを特徴とする請求項9に記載のヘテロ接合バイポーラトランジスタの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003004954A JP2004221202A (ja) | 2003-01-10 | 2003-01-10 | ヘテロ接合バイポーラトランジスタ及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003004954A JP2004221202A (ja) | 2003-01-10 | 2003-01-10 | ヘテロ接合バイポーラトランジスタ及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004221202A true JP2004221202A (ja) | 2004-08-05 |
Family
ID=32895760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003004954A Pending JP2004221202A (ja) | 2003-01-10 | 2003-01-10 | ヘテロ接合バイポーラトランジスタ及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004221202A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016197619A (ja) * | 2015-04-02 | 2016-11-24 | 住友電気工業株式会社 | 半導体素子形成用基板、半導体素子形成用基板の製造方法、及び半導体素子の製造方法 |
-
2003
- 2003-01-10 JP JP2003004954A patent/JP2004221202A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016197619A (ja) * | 2015-04-02 | 2016-11-24 | 住友電気工業株式会社 | 半導体素子形成用基板、半導体素子形成用基板の製造方法、及び半導体素子の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2062291B1 (en) | Method of manufacturing a bipolar transistor | |
JP3494638B2 (ja) | 半導体装置及び半導体装置の製造方法 | |
US5428243A (en) | Bipolar transistor with a self-aligned heavily doped collector region and base link regions. | |
JPH05198569A (ja) | フィールド酸化物領域の製造方法 | |
US6503808B1 (en) | Lateral bipolar transistor and method for producing the same | |
JP2001267330A (ja) | バイポーラトランジスタおよびその製造方法 | |
JP4358113B2 (ja) | トランジスタ構造の製造方法 | |
JP2004221202A (ja) | ヘテロ接合バイポーラトランジスタ及びその製造方法 | |
JPH07130834A (ja) | 半導体装置およびその製造方法 | |
JP2001196382A (ja) | 半導体装置及びその製造方法 | |
JP2004079726A (ja) | 半導体装置および半導体装置の製造方法 | |
JP3785258B2 (ja) | 半導体装置の製造方法 | |
JPH01246874A (ja) | バイポーラトランジスタおよびバイポーラトランジスタの製法 | |
JP3778122B2 (ja) | 半導体装置の製造方法 | |
JP3278493B2 (ja) | 半導体装置およびその製造方法 | |
JP2004040131A (ja) | 半導体装置及びその製造方法 | |
JP5277555B2 (ja) | 半導体装置の製造方法 | |
JP3077798B2 (ja) | 半導体装置およびその製造方法 | |
JP2000114267A (ja) | 半導体装置の製造方法 | |
JPH02152240A (ja) | 半導体装置の製造方法 | |
JP2004327896A (ja) | 半導体装置およびその製造方法 | |
JPH0722433A (ja) | 半導体装置およびその製造方法 | |
JPH04105325A (ja) | 半導体集積回路装置 | |
KR19980013700A (ko) | 반도체 트랜지스터 제조방법(Semiconductor Transister Menufacturing Method) | |
JPH06326116A (ja) | 半導体装置およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20051222 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20070903 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20090908 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100112 |