JP2004179644A - Phosphor lamination and light source using the same - Google Patents

Phosphor lamination and light source using the same Download PDF

Info

Publication number
JP2004179644A
JP2004179644A JP2003380788A JP2003380788A JP2004179644A JP 2004179644 A JP2004179644 A JP 2004179644A JP 2003380788 A JP2003380788 A JP 2003380788A JP 2003380788 A JP2003380788 A JP 2003380788A JP 2004179644 A JP2004179644 A JP 2004179644A
Authority
JP
Japan
Prior art keywords
phosphor
phosphor layer
diffusing agent
light emitting
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003380788A
Other languages
Japanese (ja)
Other versions
JP5138145B2 (en
Inventor
Takahiro Naito
隆宏 内藤
Hiroto Tamaoki
寛人 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2003380788A priority Critical patent/JP5138145B2/en
Publication of JP2004179644A publication Critical patent/JP2004179644A/en
Application granted granted Critical
Publication of JP5138145B2 publication Critical patent/JP5138145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphor lamination, in which two types of phosphor layers are laid on a semiconductor light-emitting element, such as an LED or an LD to enhance color rendering properties, with enhanced luminous efficiency and reduced the deterioration of the phosphor layers by adjusting the mixture of a diffusing agent, a binder resin, and a phosphor in each phosphor layer, and to provide a white light-emitting device or the like, using the phosphor lamination. <P>SOLUTION: In this phosphor lamination, a first phosphor layer and a second phosphor layer which includes a phosphor emitting a fluorescent light of a wavelength shorter than that of the fluorescent light emitted by the phosphor in the first phosphor layer are laid on a semiconductor light-emitting element such as an LED or an LD. In the lamination structure, where the first phosphor layer is positioned closer to the semiconductor light-emitting element than the second phosphor layer, the blending quantity or the refractive index of the diffusing agent and/or the binder resin in the first and second phosphor layers is adjusted. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、半導体発光素子(発光ダイオードもしくはレーザーダイオード等)を有する蛍光体積層構造及びそれを用いる光源に関する。   The present invention relates to a phosphor laminated structure having a semiconductor light emitting element (such as a light emitting diode or a laser diode) and a light source using the same.

尚、本明細書においては、LEDもしくはLDチップそのものは「発光素子」もしくは「半導体発光素子」と呼び、LEDもしくはLDチップ、前記チップ上に積層された蛍光体、及び電極などの光学装置を含む発光装置全体を「発光装置」「光源」と呼ぶことにする。   In this specification, the LED or LD chip itself is called a “light emitting element” or “semiconductor light emitting element” and includes an optical device such as an LED or LD chip, a phosphor laminated on the chip, and an electrode. The entire light-emitting device will be referred to as “light-emitting device” and “light source”.

白色系の混色光を発する光源は、低電圧駆動、小型軽量化、耐久性、長寿命などの長所を有し、次世代の省エネルギー照明源として、また、車載の表示光源や携帯電話表示部のバックライトとして脚光を浴びている。   A light source that emits white-colored mixed light has advantages such as low voltage drive, small size, light weight, durability, and long life, and as a next-generation energy-saving illumination source, as well as in-vehicle display light sources and mobile phone display units. It is in the limelight as a backlight.

例えば、半導体発光素子上に蛍光体層を設け、白色系の混色光を発する光源とする方法には、青色発光素子からの発光の一部を蛍光体で波長変換し、残る青色発光と蛍光体からの発光との混色により白色発光を得る方法と、発光素子として紫外発光素子を用い、赤(R)、緑(G)、青(B)を発光する蛍光体を用いて白色光を得る方法とが提案されている。前者では蛍光体としてセリウムで付活されたYAGが使用されているが、混色により形成されるスペクトルは、比較的赤色領域成分が少なく、赤色成分を必要とする分野での使用では演色性が充分でないという問題がある。そこで、後者の、RGBを発光する蛍光体を使用して白色光を得る方法が演色性に優れた白色光を比較的得やすいので推奨される。しかしながら、RGB比率により白色が形成されるため、その比率が正しく、かつ均等でないと、色むらが生じやすいという問題がある。このような発光の「むら」はRGBのそれぞれの蛍光体の比重や粒径の違いにより、その塗布および樹脂の硬化工程で発生することが見出されており、かかる解決策として実質的に平坦な面上に一定の厚みを有する蛍光体を形成する構造が提案されている(例えば、特許文献1参照)。
特開2000−31532号公報
For example, in a method of providing a phosphor layer on a semiconductor light emitting device and using it as a light source that emits white mixed color light, a part of light emitted from a blue light emitting device is wavelength-converted by the phosphor, and the remaining blue light emission and phosphor A method for obtaining white light by mixing colors with light emitted from a light source, and a method for obtaining white light using a phosphor that emits red (R), green (G), and blue (B) using an ultraviolet light emitting element as a light emitting element. And have been proposed. In the former, YAG activated with cerium is used as the phosphor, but the spectrum formed by color mixture has relatively little red region component, and color rendering is sufficient for use in fields that require a red component. There is a problem that is not. Therefore, the latter method of obtaining white light using phosphors that emit RGB is recommended because it is relatively easy to obtain white light with excellent color rendering. However, since white is formed by the RGB ratio, there is a problem that uneven color tends to occur unless the ratio is correct and uniform. Such “unevenness” of light emission has been found to occur in the coating and resin curing processes due to differences in specific gravity and particle size of each of the RGB phosphors. A structure for forming a phosphor having a certain thickness on a smooth surface has been proposed (see, for example, Patent Document 1).
JP 2000-31532 A

しかしながら、上記従来の構造上の改善策は抜本的でない。すなわち、例え蛍光体層厚みを均一に形成できても蛍光体の層中の分布の不均一性に基づく色むらの発生は解決できない。   However, the conventional structural improvement measures are not drastic. That is, even if the phosphor layer thickness can be formed uniformly, the occurrence of color unevenness based on the non-uniformity of the distribution in the phosphor layer cannot be solved.

したがって、本発明者らは複数の蛍光体層を積層する場合に膜厚、蛍光体の層中の不均一性に基づく、色むらを解消すべく、鋭意検討の結果、蛍光体層を積層する構造の場合、各層の拡散効率を調整することにより、色むらだけでなく、全体としての輝度向上を達成できることを見出した。   Therefore, the inventors of the present invention laminating phosphor layers as a result of intensive studies to eliminate color unevenness based on film thickness and non-uniformity in the phosphor layers when laminating a plurality of phosphor layers. In the case of the structure, it has been found that by adjusting the diffusion efficiency of each layer, not only the color unevenness but also the overall brightness can be achieved.

したがって、本発明の第1の目的は、蛍光体層を積層する場合の色むらを解消するとともに、全体としての輝度の向上を図ることができる蛍光体積層構造を提供することにある。   Accordingly, a first object of the present invention is to provide a phosphor laminate structure that can eliminate uneven color in the case of laminating phosphor layers and can improve the overall luminance.

さらに、本発明の第2の目的は、青色または紫外発光可能な半導体発光素子上に、複数の蛍光体層を積層して光源とする場合に、色むらによる品質の低下がなく、輝度の向上を図れる光源を提供することにある。   Furthermore, the second object of the present invention is to improve luminance without deterioration of quality due to color unevenness when a plurality of phosphor layers are laminated on a semiconductor light emitting device capable of emitting blue or ultraviolet light. It is to provide a light source capable of achieving the above.

上記第1の目的は、半導体発光素子上に、蛍光体、拡散剤、及びバインダー樹脂からなる蛍光体層を複数層積層してなり、前記半導体発光素子に近い方の第1の蛍光体層が、前記半導体発光素子から遠い方の第2の蛍光体層より波長の長い蛍光を発する蛍光体を含んでなる蛍光体積層構造であって、前記第1の蛍光体層は、前記第2の蛍光体層に含まれる拡散剤と同等または屈折率の大きい拡散剤を含み、その配合量が前記第2の蛍光体層より多いことを特徴とする蛍光体積層構造により達成される。また、前記第一の蛍光体層は、前記半導体発光素子の少なくとも一部を被覆し、前記第二の蛍光体層は、該第一の蛍光体層と半導体発光素子の少なくとも一部とを被覆することが好ましい。   The first object is to laminate a plurality of phosphor layers made of a phosphor, a diffusing agent, and a binder resin on a semiconductor light emitting element, and the first phosphor layer closer to the semiconductor light emitting element The phosphor layered structure includes a phosphor that emits fluorescence having a wavelength longer than that of the second phosphor layer far from the semiconductor light emitting element, and the first phosphor layer includes the second phosphor layer. The phosphor layered structure is characterized in that it contains a diffusing agent having the same or higher refractive index as the diffusing agent contained in the body layer, and the amount of the diffusing agent is larger than that of the second phosphor layer. The first phosphor layer covers at least a part of the semiconductor light emitting element, and the second phosphor layer covers the first phosphor layer and at least a part of the semiconductor light emitting element. It is preferable to do.

前記波長変換巾の大きい第1の蛍光体層中の拡散材の拡散効果を第2の蛍光体層よりも多くすることにより、色むらがなく、しかも輝度及び効率を向上させることができるからである。その作用機能の詳細は不明であるが、波長変換巾の大きい第1層の拡散効率を高めることにより、第1層だけでなく、第2層における効率のよい波長変換が達成できるものと思われる。   By increasing the diffusion effect of the diffusing material in the first phosphor layer having a large wavelength conversion width as compared with that of the second phosphor layer, there is no color unevenness and the luminance and efficiency can be improved. is there. Although the details of its function are unknown, it seems that efficient wavelength conversion not only in the first layer but also in the second layer can be achieved by increasing the diffusion efficiency of the first layer having a large wavelength conversion width. .

具体的には、前記拡散剤は、SiO、Al、TiO、B、Zr、Y及びCaCOからなる酸化物から選択される少なくとも1種であることが好ましい。酸化物拡散材は蛍光体とのなじみがよく、特に以下で定義されるシリコンナイトライド蛍光体の劣化を早めることがないことが見出されている。 Specifically, the diffusing agent is at least one selected from oxides composed of SiO 2 , Al 2 O 3 , TiO 2 , B 2 O 3 , Zr 2 O 3 , Y 2 O 3 and CaCO 3. Preferably there is. It has been found that the oxide diffusing material is familiar with the phosphor, and in particular does not accelerate the deterioration of the silicon nitride phosphor defined below.

本発明の蛍光体積層構造は、第1及び第2の蛍光体層中の拡散剤の種類が異なる場合は、前記第1の蛍光体層中の拡散剤の屈折率が、前記第2の蛍光体層中の拡散剤の屈折率より大きくなるように配合するのがよい。拡散材配合の絶対量を減少させ、効率よい波長変換を望めるからである。   In the phosphor layered structure of the present invention, when the types of diffusing agents in the first and second phosphor layers are different, the refractive index of the diffusing agent in the first phosphor layer is the second fluorescence layer. It is good to mix | blend so that it may become larger than the refractive index of the diffusing agent in a body layer. This is because the absolute amount of the diffusing material can be reduced and efficient wavelength conversion can be expected.

本発明の蛍光体積層構造は、前記第1及び第2の蛍光体層中の拡散剤が同一種である場合は、前記第1の蛍光体層中の拡散剤の配合量が、第2の蛍光体層中の拡散剤の配合量より多くなる。同一種拡散材を使用することにより第1層と第2層の拡散効率の調整が容易となる。   In the phosphor laminate structure of the present invention, when the diffusing agent in the first and second phosphor layers is the same type, the blending amount of the diffusing agent in the first phosphor layer is the second It becomes more than the compounding quantity of the diffusing agent in the phosphor layer. By using the same kind of diffusing material, it is easy to adjust the diffusion efficiency of the first layer and the second layer.

本発明の蛍光体積層構造に用いるバインダ−樹脂としては、エポキシ樹脂、アクリル樹脂、イミド樹脂、シリコーン樹脂、ユリア樹脂を用いるのがよい。第1層と第2層のバインダー樹脂は共通とするのが製造上便利であるが、第1及び第2の蛍光体層を形成するバインダー樹脂の種類が異なってもよい。その場合は、前記第1の蛍光体層を形成するバインダー樹脂の屈折率が、前記第2の蛍光体層を形成するバインダー樹脂の屈折率より大きいのが好ましい。界面での光反射を少なくすることができるからである。   As the binder resin used in the phosphor laminate structure of the present invention, it is preferable to use an epoxy resin, an acrylic resin, an imide resin, a silicone resin, or a urea resin. Although it is convenient for manufacturing to use the same binder resin for the first layer and the second layer, the types of binder resins for forming the first and second phosphor layers may be different. In that case, the refractive index of the binder resin forming the first phosphor layer is preferably larger than the refractive index of the binder resin forming the second phosphor layer. This is because light reflection at the interface can be reduced.

第1及び第2の蛍光体層中の拡散材の有効屈折率はバインダー樹脂と拡散材の屈折率差に依存する。したがって、バインダー樹脂の種類が同一である場合は、前記第1の蛍光体層中の拡散材配合量の調整で第1層と第2層の拡散効果を調節することもできるが、その量的調整とともに、または量的調整とは独立してバインダー樹脂と拡散剤との屈折率差が、前記第2の蛍光体層を形成するバインダー樹脂と拡散剤との屈折率差より大きくなるようにすることにより、第1層と第2層の拡散効率を調整することができる。他方、第1及び第2の蛍光体層を形成するバインダー樹脂の種類が異なる場合は、前記第1の蛍光体層を形成するバインダー樹脂の屈折率が、前記第2の蛍光体層を形成するバインダー樹脂の屈折率より大きく、かつ、前記第1の蛍光体層を形成するバインダー樹脂と拡散剤の屈折率差が、前記第2の蛍光体層を形成するバインダー樹脂と拡散材の屈折率差より大きくすることにより、第1層及び第2層の拡散効率を調節することができる。要するに、本発明により所定の作用効果を得るためには、第1及び第2の蛍光体層中の拡散剤及びバインダー樹脂により構成される平均屈折率が、第2の蛍光体層中の拡散剤とバインダー樹脂との平均屈折率より大きくなるように調整する必要がある。   The effective refractive index of the diffusing material in the first and second phosphor layers depends on the refractive index difference between the binder resin and the diffusing material. Therefore, when the types of the binder resins are the same, the diffusion effect of the first layer and the second layer can be adjusted by adjusting the amount of the diffusing material in the first phosphor layer. The refractive index difference between the binder resin and the diffusing agent is made larger than the refractive index difference between the binder resin and the diffusing agent forming the second phosphor layer together with the adjustment or independently of the quantitative adjustment. Thus, the diffusion efficiency of the first layer and the second layer can be adjusted. On the other hand, when the types of binder resins forming the first and second phosphor layers are different, the refractive index of the binder resin forming the first phosphor layer forms the second phosphor layer. The refractive index difference between the binder resin forming the first phosphor layer and the diffusing agent is larger than the refractive index of the binder resin, and the refractive index difference between the binder resin forming the second phosphor layer and the diffusing material. By making it larger, the diffusion efficiency of the first layer and the second layer can be adjusted. In short, in order to obtain a predetermined function and effect according to the present invention, the average refractive index composed of the diffusing agent and the binder resin in the first and second phosphor layers is the diffusing agent in the second phosphor layer. It is necessary to adjust so that it may become larger than the average refractive index of binder resin.

本発明の第2の目的は、青色が発光可能な半導体発光素子に適用する場合は、蛍光体、拡散剤、及びバインダー樹脂からなる蛍光体層を複数層積層してなる光源において、
前記半導体発光素子に近い方の第1の蛍光体層はシリコンナイトライド系蛍光体を含み、前記半導体発光素子からより遠い方の第2の蛍光体層より波長の長い蛍光を発する蛍光体が少なくともアルミニウムガーネット系蛍光体を含む光源であり、前記第1の蛍光体層は、前記第2の蛍光体層に含まれる拡散剤と同等または屈折率の大きい拡散剤を含み、その配合量が前記第2の蛍光体層より多くする構成により達成される。
When the second object of the present invention is applied to a semiconductor light emitting device capable of emitting blue light, in a light source formed by laminating a plurality of phosphor layers composed of a phosphor, a diffusing agent, and a binder resin,
The first phosphor layer closer to the semiconductor light emitting element includes a silicon nitride phosphor, and at least a phosphor emitting fluorescence having a longer wavelength than the second phosphor layer farther from the semiconductor light emitting element. The light source includes an aluminum garnet-based phosphor, and the first phosphor layer includes a diffusing agent having a refractive index equal to or larger than that of the diffusing agent included in the second phosphor layer, and the blending amount thereof is the first This is achieved by a configuration with more than two phosphor layers.

紫外線を発することができる半導体発光素子に適用する場合は、蛍光体、拡散剤、及びバインダー樹脂からなる蛍光体層を複数層積層してなる光源において、
前記半導体発光素子に近い方の第1の蛍光体層は、紫外励起赤色発光蛍光体を含み、前記第2の蛍光体層は紫外励起緑色発光蛍光体を含み、かつ、前記第3の蛍光体層は紫外励起青色発光蛍光体を含み、
前記第1の蛍光体層は、前記第2の蛍光体層に含まれる拡散剤と同等または屈折率の大きい拡散剤をより多く含み、前記第2の蛍光体層は、前記第3の蛍光体層に含まれる拡散剤と同等または屈折率の大きい拡散剤をより多く含む構成により達成することができる。
When applied to a semiconductor light emitting device capable of emitting ultraviolet light, in a light source formed by laminating a plurality of phosphor layers composed of a phosphor, a diffusing agent, and a binder resin,
The first phosphor layer closer to the semiconductor light emitting element includes an ultraviolet excited red light emitting phosphor, the second phosphor layer includes an ultraviolet excited green light emitting phosphor, and the third phosphor. The layer comprises an ultraviolet excited blue emitting phosphor;
The first phosphor layer includes a larger amount of a diffusing agent having a refractive index equal to or larger than that of the diffusing agent contained in the second phosphor layer, and the second phosphor layer includes the third phosphor. This can be achieved by a structure containing more diffusing agents having the same or higher refractive index as the diffusing agent contained in the layer.

本発明の蛍光体積層構造を有する光源は、積層される蛍光体層の拡散効果を調整することにより、色むらが解消され、高い歩留まりが達成される。しかも積層される蛍光体層の拡散効果を調整することにより、蛍光体の拡散効果の調整がされていないものに比して輝度の向上が得られる。   In the light source having the phosphor laminated structure of the present invention, color unevenness is eliminated by adjusting the diffusion effect of the phosphor layers to be laminated, and a high yield is achieved. In addition, by adjusting the diffusion effect of the phosphor layers to be laminated, the luminance can be improved as compared with the case where the phosphor diffusion effect is not adjusted.

以上説明したように、本発明に係る蛍光体積層構造及びそれを用いる光源は、半導体発光素子上に、蛍光体、拡散剤、及びバインダー樹脂からなる蛍光体層を積層する構造であって、第1の蛍光体層が波長の長い蛍光を発する蛍光体を含み、第2の蛍光体層が波長の短い蛍光を発する蛍光体を含んでなる積層構造であって、前記第1の蛍光体層を前記第2の蛍光体層よりも発光素子に近い方に配置する積層構造において、前記第1の蛍光体層中の拡散剤配合量を前記第2の蛍光体層中の配合量よりも多くしたこと、前記第1の蛍光体層中の拡散剤及び/又はバインダー樹脂の屈折率が、前記第2の蛍光体層中の拡散剤の屈折率より大きくなるように配合したことを特徴とする。即ち、このことによって輝度及び効率を向上させることが可能である。また、自己吸収を抑制して蛍光体の光を効率よく取り出すことができる。   As described above, the phosphor laminate structure according to the present invention and the light source using the phosphor laminate structure have a structure in which a phosphor layer made of a phosphor, a diffusing agent, and a binder resin is laminated on a semiconductor light emitting device. The first phosphor layer includes a phosphor that emits fluorescence with a long wavelength, and the second phosphor layer includes a phosphor that emits fluorescence with a short wavelength, and the first phosphor layer includes In the laminated structure arranged closer to the light emitting element than the second phosphor layer, the amount of the diffusing agent in the first phosphor layer is larger than the amount in the second phosphor layer. In addition, the refractive index of the diffusing agent and / or binder resin in the first phosphor layer is blended so as to be larger than the refractive index of the diffusing agent in the second phosphor layer. That is, it is possible to improve luminance and efficiency. Moreover, self-absorption can be suppressed and the light of a fluorescent substance can be taken out efficiently.

以下、本発明に係る発光装置、蛍光体、拡散剤、及びバインダー樹脂を、発明の実施の形態及び実施例を用いて説明する。だたし、本発明はこの実施の形態及び実施例に限定されない。
<発光装置1>
図1は、本発明に係る発光装置1を示す図である。発光装置1は、サファイア基板1の上部に積層された青色光を発光できる半導体層2と、前記半導体層2に形成された電極から延びるワイヤで導電接続されたリードフレームと、前記サファイア基板1と半導体層2とから構成される半導体発光素子の外周を覆うように設けられたシリコンナイトライド蛍光体層14a、YAG:Ce系蛍光体層14b、前記積層蛍光体層14a及びb、及びリードフレーム13の外周面を覆うエポキシ樹脂15とから構成されている。
Hereinafter, a light emitting device, a phosphor, a diffusing agent, and a binder resin according to the present invention will be described with reference to embodiments and examples of the present invention. However, the present invention is not limited to this embodiment and example.
<Light-emitting device 1>
FIG. 1 is a diagram showing a light emitting device 1 according to the present invention. The light emitting device 1 includes a semiconductor layer 2 that can emit blue light stacked on the sapphire substrate 1, a lead frame that is conductively connected by wires extending from electrodes formed on the semiconductor layer 2, and the sapphire substrate 1. The silicon nitride phosphor layer 14a, the YAG: Ce-based phosphor layer 14b, the laminated phosphor layers 14a and 14b, and the lead frame 13 provided so as to cover the outer periphery of the semiconductor light emitting device composed of the semiconductor layer 2. And an epoxy resin 15 covering the outer peripheral surface of the substrate.

発光装置1で青色光を発光した第1の発光スペクトルは、まず、第1のシリコンナイトライド蛍光体層14aに照射され、その一部が吸収され、波長変換された第2の発光スペクトルを発する。この第2の発光スペクトルは第2のYAG:Ce系蛍光体層14bに照射されるが、これに吸収されることなく、透過する。他方、前記シリコンナイトライド蛍光体層14aを透過した第1の発光スペクトルの一部が、第2のYAG:Ce系蛍光体層14bに照射され、一部が吸収され、波長変換された第3の発光スペクトルが発光される。したがって、上記発光装置からは第1の青色スペクトル、第2の赤色スペクトル及び第3の黄色スペクトルが合わさって演色性の高い白色を発光することになる。   The first emission spectrum of the blue light emitted from the light emitting device 1 is first irradiated onto the first silicon nitride phosphor layer 14a, part of which is absorbed and emits a wavelength-converted second emission spectrum. . The second emission spectrum is applied to the second YAG: Ce phosphor layer 14b, but is transmitted without being absorbed by the second YAG: Ce phosphor layer 14b. On the other hand, a part of the first emission spectrum transmitted through the silicon nitride phosphor layer 14a is irradiated to the second YAG: Ce phosphor layer 14b, and a part thereof is absorbed and wavelength-converted third. The emission spectrum is emitted. Therefore, the light emitting device emits white with high color rendering properties by combining the first blue spectrum, the second red spectrum, and the third yellow spectrum.

<発光装置2>
図2は、本発明に係る発光装置2を示す図である。発光装置2は、サファイア基板1の上部に積層された近紫外線を発光できる半導体層2と、前記半導体層2に形成された電極から延びるワイヤで導電接続されたリードフレームと、前記サファイア基板1と半導体層2とから構成される半導体発光素子の外周を覆うように設けられた紫外励起赤色発光蛍光体層24a、紫外励起緑色発光蛍光体層24b、紫外励起青色発光蛍光体層24c、前記積層蛍光体層24a〜24c、及びリードフレーム13の外周面を覆うエポキシ樹脂15とから構成されている。
<Light-emitting device 2>
FIG. 2 is a diagram showing a light emitting device 2 according to the present invention. The light emitting device 2 includes a semiconductor layer 2 stacked on the sapphire substrate 1 and capable of emitting near-ultraviolet light, a lead frame conductively connected by wires extending from electrodes formed on the semiconductor layer 2, and the sapphire substrate 1. An ultraviolet-excited red light-emitting phosphor layer 24a, an ultraviolet-excited green light-emitting phosphor layer 24b, an ultraviolet-excited blue light-emitting phosphor layer 24c provided so as to cover the outer periphery of the semiconductor light-emitting element composed of the semiconductor layer 2, and the laminated fluorescence The body layers 24 a to 24 c and the epoxy resin 15 covering the outer peripheral surface of the lead frame 13 are configured.

発光装置2で近紫外線を発光した第1の発光スペクトルは、まず、第1の赤色発光蛍光体層24aに照射され、その一部が吸収され、波長変換された第2の発光スペクトルを発する。この第2の発光スペクトルは第2の緑色発光蛍光体層24bに照射されるが、これに吸収されることなく、透過する。他方、前記赤色発光蛍光体層24aを透過した第1の発光スペクトルの一部が、第2の緑色発光蛍光体層24bに照射され、一部が吸収され、波長変換された第3の発光スペクトルが発光される。この第3の発光スペクトルは第3の青色発光蛍光体層24bに照射されるが、これに吸収されることなく、透過する。他方、前記赤色発光蛍光体層24a、緑色発光蛍光体層24bを透過した第1の発光スペクトルの一部が、第3の青色発光蛍光体層24cに照射され、一部が吸収され、波長変換された第4の発光スペクトルが発光される。したがって、上記発光装置からは第2の赤色スペクトルと第3の緑色スペクトルと第4の青色スペクトルが合わさって演色性の高い白色を発光することになる。   The first emission spectrum that emits near-ultraviolet light by the light emitting device 2 is first irradiated to the first red light emitting phosphor layer 24a, a part of which is absorbed, and emits a wavelength-converted second emission spectrum. The second emission spectrum is applied to the second green light emitting phosphor layer 24b, but is transmitted without being absorbed by the second green light emitting phosphor layer 24b. On the other hand, a part of the first emission spectrum transmitted through the red-emitting phosphor layer 24a is irradiated to the second green-emitting phosphor layer 24b, and a part thereof is absorbed and wavelength-converted third emission spectrum. Is emitted. The third emission spectrum is applied to the third blue light emitting phosphor layer 24b, but is transmitted without being absorbed by the third blue light emitting phosphor layer 24b. On the other hand, a part of the first emission spectrum transmitted through the red light-emitting phosphor layer 24a and the green light-emitting phosphor layer 24b is irradiated to the third blue light-emitting phosphor layer 24c, and a part thereof is absorbed, thereby converting the wavelength. The emitted fourth emission spectrum is emitted. Therefore, the light emitting device emits white with high color rendering properties by combining the second red spectrum, the third green spectrum, and the fourth blue spectrum.

<半導体発光素子>
光源の励起用LEDとしては、InGaNを発光層とする公知の単一または多重量子井戸構造の青色LEDおよびAlInGaN、GaNまたはAlGaNを発光層とする公知の単一または多重量子井戸構造の近紫外LEDを使用することができる。
<Semiconductor light emitting device>
As a light source excitation LED, a known single or multiple quantum well blue LED having InGaN as a light emitting layer and a known single or multiple quantum well near UV LED having AlInGaN, GaN or AlGaN as a light emitting layer Can be used.

<蛍光体>
本実施の形態に用いられる蛍光体は、発光素子から放出された可視光や紫外光の一部を吸収し、その吸収した光の波長と異なる波長を有する光を発光するものである。本実施の形態における蛍光体は、バインダー樹脂により固着されて蛍光体層に含有される他、LEDチップをパッケージに固定するための絶縁性接着剤(例えば、エポキシ樹脂、シリコーン樹脂、硝子のような透光性無機部材)の中に含有されることもできる。また、本実施の形態における蛍光体層は、モールド部材5の表面を被覆するようなキャップとして設けられる他、モールド部材の表面あるいは発光素子から間隔をあけて、モールド部材中にシート状の蛍光体層として設けることもできる。
本実施の形態に用いられる蛍光体としては、少なくともLEDチップの半導体発光層から発光された光によって励起され、波長変換した光を発光する蛍光体をいい、該蛍光体を固着させる結着剤とともに波長変換部材とされる。
本発明に係る蛍光体は、平均粒径が3μm以上であり、かつ粒度分布測定で2μm以下の粒径の粒子が体積分布で10%以下である蛍光体粒子から構成されるのがよい。好ましくは平均粒径が5μm以上15μm以下、さらに好ましくは平均粒径が10μm以上12μm以下である。蛍光体層を形成する際の形成ばらつきを抑えることが可能となり、配向ばらつきの少ない高輝度を得ることができる。
<Phosphor>
The phosphor used in this embodiment absorbs part of visible light and ultraviolet light emitted from the light emitting element, and emits light having a wavelength different from the wavelength of the absorbed light. The phosphor in the present embodiment is fixed by a binder resin and contained in the phosphor layer, and an insulating adhesive for fixing the LED chip to the package (for example, epoxy resin, silicone resin, glass, etc.) (Translucent inorganic member). In addition, the phosphor layer according to the present embodiment is provided as a cap that covers the surface of the mold member 5, and is spaced from the surface of the mold member or the light emitting element, and a sheet-like phosphor is formed in the mold member. It can also be provided as a layer.
The phosphor used in the present embodiment is a phosphor that emits light that has been wavelength-converted and excited by light emitted from at least the semiconductor light emitting layer of the LED chip, together with a binder that fixes the phosphor. The wavelength conversion member is used.
The phosphor according to the present invention is preferably composed of phosphor particles having an average particle diameter of 3 μm or more and particles having a particle diameter of 2 μm or less as measured by particle size distribution in a volume distribution of 10% or less. The average particle size is preferably 5 μm or more and 15 μm or less, and more preferably the average particle size is 10 μm or more and 12 μm or less. It is possible to suppress formation variation when forming the phosphor layer, and high luminance with little alignment variation can be obtained.

(RGB蛍光体)
例えば、紫外線照射により青色発光が可能なものとして、規則的な結晶成長形状としてほぼ六角形状を有する成長粒子から構成され、青色領域の発光を行うBaMgAl1017:Euで表されるユウロピウム賦活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行う(Ca、Sr、Ba)(POCl:Euで表されるユウロピウム賦活ハロリン酸カルシウム系蛍光体、規則的な結晶成長形状としてほぼ立方体形状を有する成長粒子から構成され、青色領域の発光を行う(Ca、Sr、Ba)Cl:Euで表されるユウロピウム賦活アルカリ土類クロロボレート系蛍光体、
破断面を有する破断粒子から構成され、青緑色領域の発光を行う(Sr、Ca、Ba)Al:Euまたは(Sr、Ca、Ba)Al1425:Euで表されるユウロピウム賦活アルカリ土類アルミネート系蛍光体が挙げられる。
紫外線照射により緑色発光が可能なものとして、破断面を有する破断粒子から構成され、緑色領域の発光を行う(Mg、Ca、Sr、Ba)Si:Euで表されるユウロピウム賦活アルカリ土類シリコンオキシナイトライド系蛍光体、破断面を有する破断粒子から構成され、緑色領域の発光を行う(Ba、Ca、Sr)SiO:Euで表されるユウロピウム賦活アルカリ土類マグネシウムシリケート系蛍光体が挙げられる。
紫外線照射により赤色発光が可能な蛍光体として、赤色破断面を有する破断粒子から構成され、赤色領域の発光を行う(Mg、Ca、Sr、Ba)Si:Euで表されるユウロピウム賦活アルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、赤色領域の発光を行う(Y、La、Gd、Lu)S:Euで表されるユウロピウム賦活希土類オキシカルユゲナイト系蛍光体等が挙げられる。
(RGB phosphor)
For example, europium-activated barium represented by BaMgAl 10 O 17 : Eu, which is composed of grown particles having a substantially hexagonal shape as a regular crystal growth shape and capable of emitting blue light by ultraviolet irradiation, and emits light in a blue region. Magnesium aluminate-based phosphor, composed of growing particles having a substantially spherical shape as a regular crystal growth shape, emits light in a blue region (Ca, Sr, Ba) 5 (PO 4 ) 3 Cl: Eu Europium-activated calcium halophosphate phosphor, which is composed of growing particles having a substantially cubic shape as a regular crystal growth shape, and emits light in a blue region (Ca, Sr, Ba) 2 B 5 O 9 Cl: Eu Europium activated alkaline earth chloroborate phosphor,
Europium composed of fractured particles having a fracture surface and emitting in the blue-green region (Sr, Ca, Ba) Al 2 O 4 : Eu or (Sr, Ca, Ba) 4 Al 14 O 25 : Eu Examples include activated alkaline earth aluminate phosphors.
Europium activation represented by (Mg, Ca, Sr, Ba) Si 2 O 2 N 2 : Eu composed of fractured particles having a fracture surface and capable of emitting green light by ultraviolet irradiation. Europium-activated alkaline earth magnesium silicate composed of alkaline earth silicon oxynitride phosphor, broken particles having a fracture surface, and emitting green light (Ba, Ca, Sr) 2 SiO 4 : Eu System phosphors.
Europium represented by (Mg, Ca, Sr, Ba) 2 Si 5 N 8 : Eu composed of broken particles having a red fracture surface as a phosphor capable of emitting red light by ultraviolet irradiation. The activated alkaline earth silicon nitride phosphor is composed of growing particles having a substantially spherical shape as a regular crystal growth shape, and emits light in the red region (Y, La, Gd, Lu) 2 O 2 S: Eu And europium-activated rare earth oxycalyugenite-based phosphors.

(アルミニウム・ガーネット系蛍光体)
本実施の形態に用いられるアルミニウム・ガーネット系蛍光体とは、Alを含み、かつY、Lu、Sc、La、Gd、Tb、Eu及びSmから選択された少なくとも一つの元素と、Ga及びInから選択された一つの元素とを含み、希土類元素から選択された少なくとも一つの元素で付活された蛍光体であり、半導体発光素子から発光された可視光や紫外線で励起されて発光する蛍光体である。例えば、上述したYAG系蛍光体の他、Tb2.95Ce0.05Al12、Y2.90Ce0.05Tb0.05Al12、Y2.94Ce0.05Pr0.01Al12、Y2.90Ce0.05Pr0.05Al12等が挙げられる。これらのうち、本実施の形態において、特にYを含み、かつCeあるいはPrで付活され組成の異なる2種類以上のイットリウム・アルミニウム酸化物系蛍光体が利用される。
(Aluminum / garnet phosphor)
The aluminum garnet phosphor used in the present embodiment includes Al and at least one element selected from Y, Lu, Sc, La, Gd, Tb, Eu, and Sm, and Ga and In. A phosphor activated by at least one element selected from rare earth elements and excited by visible light or ultraviolet light emitted from a semiconductor light emitting device. is there. For example, in addition to the YAG phosphor described above, Tb 2.95 Ce 0.05 Al 5 O 12 , Y 2.90 Ce 0.05 Tb 0.05 Al 5 O 12 , Y 2.94 Ce 0.05 Pr 0.01 Al 5 O 12, Y 2.90 Ce 0.05 Pr 0.05 Al 5 O 12 and the like. Among these, in the present embodiment, two or more yttrium / aluminum oxide phosphors containing Y and activated by Ce or Pr and having different compositions are used.

具体的な蛍光体としては、セリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体(以下、「YAG系蛍光体」と呼ぶことがある。)が挙げられる。特に、高輝度且つ長時間の使用時においては(Re1-xSmx3(Al1-yGay512:Ce(0≦x<1、0≦y≦1、但し、Reは、Y,Gd,Laからなる群より選択される少なくとも一種の元素である。)などが好ましい。
(Re1-xSmx3(Al1-yGay512:Ce蛍光体は、ガーネット構造のため、熱、光及び水分に強く、励起スペクトルのピークが470nm付近などにさせることができる。また、発光ピークも530nm付近にあり720nmまで裾を引くブロードな発光スペクトルを持たせることができる。
Specific examples of the phosphor include yttrium, aluminum, and garnet phosphors activated with cerium (hereinafter, sometimes referred to as “YAG phosphors”). In particular, at the time of high luminance and long-term use (Re 1-x Sm x) 3 (Al 1-y Ga y) 5 O 12: Ce (0 ≦ x <1,0 ≦ y ≦ 1, where, Re Is at least one element selected from the group consisting of Y, Gd, and La).
(Re 1-x Sm x) 3 (Al 1-y Ga y) 5 O 12: Ce phosphor, for garnet structure, heat, resistant to light and moisture, the peak of the excitation spectrum can be like in the vicinity of 470nm Can do. In addition, the emission peak is in the vicinity of 530 nm, and a broad emission spectrum that extends to 720 nm can be provided.

本実施の形態における発光装置における蛍光物質として、2種類以上の蛍光体を混合させてもよい。即ち、Al、Ga、Y、La及びGdやSmの含有量が異なる2種類以上の(Re1-xSmx3(Al1-yGay512:Ce蛍光体を混合させてRGBの波長成分を増やすことができる。また、現在のところ半導体発光素子の発光波長には、バラツキが生ずるものがあるため2種類以上の蛍光体を混合調整させて所望の白色系の混色光などを得ることができる。具体的には、半導体発光素子の発光波長に合わせて色度点の異なる蛍光体の量を調整し含有させることでその蛍光体間と発光素子で結ばれる色度図上の任意の点を発光させることができる。 Two or more kinds of phosphors may be mixed as the phosphor in the light emitting device in this embodiment. That, Al, Ga, Y, the content of La and Gd and Sm are two or more kinds of (Re 1-x Sm x) 3 (Al 1-y Ga y) 5 O 12: by mixing Ce phosphor RGB wavelength components can be increased. At present, there are variations in the emission wavelength of the semiconductor light emitting device, so that two or more kinds of phosphors can be mixed and adjusted to obtain a desired white mixed color light or the like. Specifically, by adjusting the amount of phosphors with different chromaticity points according to the emission wavelength of the semiconductor light-emitting element, light can be emitted from any point on the chromaticity diagram connected between the phosphors and the light-emitting element. Can be made.

発光層に窒化物系化合物半導体を用いた半導体発光素子から発光した青色系の光と、青色光を吸収させるためボディーカラーが黄色である蛍光体から発光する緑色系の光と、必要に応じて赤色系の光との混色表示をさせると所望の白色系発光色表示を行うことができる。発光装置はこの混色を起こさせるために蛍光体の粉体やバルクをエポキシ樹脂、アクリル樹脂或いはシリコーン樹脂などの各種樹脂や酸化珪素、酸化アルミニウムなどの透光性無機物中に含有させることもできる。このように蛍光体が含有されたものは、半導体発光素子からの光が透過する程度に薄く形成させたドット状のものや層状ものなど用途に応じて種々用いることができる。蛍光体と透光性無機物との比率や塗布、充填量を種々調整すること及び発光素子の発光波長を選択することにより白色を含め電球色など任意の色調を提供させることができる。
YAG系蛍光体を使用すると、放射照度として(Ee)=0.1W・cm−2以上1000W・cm−2以下の半導体発光素子と接する或いは近接して配置された場合においても高効率に十分な耐光性を有する発光装置とすることができる。
Blue light emitted from a semiconductor light emitting device using a nitride compound semiconductor in the light emitting layer, green light emitted from a phosphor whose body color is yellow to absorb blue light, and as necessary When a mixed color display with red light is displayed, a desired white light emission color display can be performed. In order to cause this color mixture, the light emitting device can contain phosphor powder and bulk in various resins such as epoxy resin, acrylic resin or silicone resin, and translucent inorganic materials such as silicon oxide and aluminum oxide. Such phosphors can be used in various ways depending on applications such as dot-like and layer-like ones that are formed thin enough to transmit light from the semiconductor light-emitting element. By adjusting the ratio, coating, and filling amount of the phosphor and the translucent inorganic substance and selecting the emission wavelength of the light emitting element, it is possible to provide an arbitrary color tone such as a light bulb color including white.
When a YAG phosphor is used, high efficiency is sufficient even when it is placed in contact with or close to a semiconductor light emitting device having an irradiance of (Ee) = 0.1 W · cm −2 to 1000 W · cm −2. A light-emitting device having light resistance can be obtained.

本実施の形態に用いられるセリウムで付活されたイットリウム・アルミニウム酸化物系蛍光体である緑色系が発光可能なYAG系蛍光体では、ガーネット構造のため、熱、光及び水分に強く、励起吸収スペクトルのピーク波長が420nmから470nm付近にさせることができる。また、発光ピーク波長λも510nm付近にあり700nm付近まで裾を引くブロードな発光スペクトルを持つ。一方、セリウムで付活されたイットリウム・アルミニウム酸化物系蛍光体である赤色系が発光可能なYAG系蛍光体でも、ガーネット構造であり熱、光及び水分に強く、励起吸収スペクトルのピーク波長が420nmから470nm付近にさせることができる。また、発光ピーク波長λが600nm付近にあり750nm付近まで裾を引くブロードな発光スペクトルを持つ。 The cerium-activated yttrium / aluminum oxide phosphor used in the present embodiment is a YAG phosphor capable of emitting green light, and is strong against heat, light and moisture due to the garnet structure, and is excited and absorbed. The peak wavelength of the spectrum can be in the vicinity of 420 nm to 470 nm. In addition, with a broad emission spectrum that tails off to around 700nm is in the vicinity of the emission peak wavelength λ p even 510nm. On the other hand, even YAG phosphors capable of emitting red light, which are yttrium / aluminum oxide phosphors activated by cerium, have a garnet structure and are resistant to heat, light and moisture, and the peak wavelength of the excitation absorption spectrum is 420 nm. To about 470 nm. Also, having a broad emission spectrum emission peak wavelength lambda p is tails to around 750nm is in the vicinity of 600 nm.

ガーネット構造を持ったYAG系蛍光体の組成の内、Alの一部をGaで置換することで発光スペクトルが短波長側にシフトし、また組成のYの一部をGd及び/又はLaで置換することで、発光スペクトルが長波長側へシフトする。このように組成を変化することで発光色を連続的に調節することが可能である。したがって、長波長側の強度がGdの組成比で連続的に変えられるなど窒化物半導体の青色系発光を利用して白色系発光に変換するための理想条件を備えている。Yの置換が2割未満では、緑色成分が大きく赤色成分が少なくなり、8割以上では、赤み成分が増えるものの輝度が急激に低下する。また、励起吸収スペクトルについても同様に、ガーネット構造を持ったYAG系蛍光体の組成の内、Alの一部をGaで置換することで励起吸収スペクトルが短波長側にシフトし、また組成のYの一部をGd及び/又はLaで置換することで、励起吸収スペクトルが長波長側へシフトする。YAG系蛍光体の励起吸収スペクトルのピーク波長は、発光素子の発光スペクトルのピーク波長より短波長側にあることが好ましい。このように構成すると、発光素子に投入する電流を増加させた場合、励起吸収スペクトルのピーク波長は、発光素子の発光スペクトルのピーク波長にほぼ一致するため、蛍光体の励起効率を低下させることなく、色度ズレの発生を抑えた発光装置を形成することができる。   Of the composition of YAG phosphors with a garnet structure, the emission spectrum is shifted to the short wavelength side by substituting part of Al with Ga, and part of Y of the composition is replaced with Gd and / or La. By doing so, the emission spectrum shifts to the long wavelength side. In this way, it is possible to continuously adjust the emission color by changing the composition. Therefore, an ideal condition for converting white light emission by using blue light emission of the nitride semiconductor is provided such that the intensity on the long wavelength side is continuously changed by the composition ratio of Gd. If the substitution of Y is less than 20%, the green component is large and the red component is small, and if it is 80% or more, the redness component is increased but the luminance is drastically decreased. Similarly, the excitation absorption spectrum is shifted to the short wavelength side by substituting part of Al with Ga in the composition of the YAG phosphor having a garnet structure. By substituting a part of Gd and / or La, the excitation absorption spectrum is shifted to the longer wavelength side. The peak wavelength of the excitation absorption spectrum of the YAG phosphor is preferably on the shorter wavelength side than the peak wavelength of the emission spectrum of the light emitting element. With this configuration, when the current input to the light emitting element is increased, the peak wavelength of the excitation absorption spectrum substantially matches the peak wavelength of the emission spectrum of the light emitting element, so that the excitation efficiency of the phosphor is not reduced. Thus, a light emitting device in which the occurrence of chromaticity deviation is suppressed can be formed.

このような蛍光体は、Y、Gd、Ce、La、Al、Sm、Pr、Tb及びGaの原料として酸化物、又は高温で容易に酸化物になる化合物を使用し、それらを化学量論比で十分に混合して原料を得る。又は、Y、Gd、Ce、La、Sm、Pr、Tbの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して混合原料を得る。これにフラックスとしてフッ化アンモニウム等のフッ化物を適量混合して坩堝に詰め、空気中1350〜1450°Cの温度範囲で2〜5時間焼成して焼成品を得、次に焼成品を水中でボールミルして、洗浄、分離、乾燥、最後に篩を通すことで得ることができる。また、別の実施の形態における蛍光体の製造方法では、蛍光体の原料を混合した混合原料とフラックスからなる混合物を、大気中又は弱還元雰囲気中にて行う第一焼成工程と、還元雰囲気中にて行う第二焼成工程とからなる、二段階で焼成することが好ましい。ここで、弱還元雰囲気とは、混合原料から所望の蛍光体を形成する反応過程において必要な酸素量は少なくとも含むように設定された弱い還元雰囲気のことをいい、この弱還元雰囲気中において所望とする蛍光体の構造形成が完了するまで第一焼成工程を行うことにより、蛍光体の黒変を防止し、かつ光の吸収効率の低下を防止できる。また、第二焼成工程における還元雰囲気とは、弱還元雰囲気より強い還元雰囲気をいう。このように二段階で焼成すると、励起波長の吸収効率の高い蛍光体が得られる。従って、このように形成された蛍光体にて発光装置を形成した場合に、所望とする色調を得るために必要な蛍光体量を減らすことができ、光取り出し効率の高い発光装置を形成することができる。   Such phosphors use oxides or compounds that easily become oxides at high temperatures as raw materials for Y, Gd, Ce, La, Al, Sm, Pr, Tb and Ga, and they are added in a stoichiometric ratio. Mix thoroughly to obtain the raw material. Or a coprecipitated oxide obtained by calcining a solution obtained by coprecipitation of oxalic acid with a solution obtained by dissolving a rare earth element of Y, Gd, Ce, La, Sm, Pr, and Tb in an acid at a stoichiometric ratio with acid; Aluminum and gallium oxide are mixed to obtain a mixed raw material. An appropriate amount of fluoride such as ammonium fluoride is mixed with this as a flux and packed in a crucible, fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a fired product, and then the fired product in water. It can be obtained by ball milling, washing, separating, drying and finally passing through a sieve. Further, in the method for manufacturing a phosphor in another embodiment, a first firing step in which a mixture composed of a mixture of phosphor materials and a flux is mixed in the atmosphere or in a weak reducing atmosphere, and in a reducing atmosphere. It is preferable to perform the baking in two stages, which includes the second baking step performed in step (b). Here, the weak reducing atmosphere refers to a weak reducing atmosphere set to include at least the amount of oxygen necessary in the reaction process of forming a desired phosphor from the mixed raw material. By performing the first firing step until the formation of the phosphor structure is completed, blackening of the phosphor can be prevented and a decrease in light absorption efficiency can be prevented. In addition, the reducing atmosphere in the second firing step refers to a reducing atmosphere stronger than the weak reducing atmosphere. By firing in two stages in this way, a phosphor with high absorption efficiency at the excitation wavelength can be obtained. Therefore, when a light emitting device is formed with the phosphor thus formed, the amount of the phosphor necessary for obtaining a desired color tone can be reduced, and a light emitting device with high light extraction efficiency can be formed. Can do.

組成の異なる2種類以上の、セリウムで付活されたイットリウム・アルミニウム酸化物系蛍光体を混合させて用いても良い。また、各層に1種の蛍光体のみを含む多層構造としても良い。多層構造の場合、発光素子から光をより短波長側で吸収発光しやすい蛍光体層、それよりも長波長側で吸収発光しやすい蛍光体層の順に配置させることが好ましい。これによって効率よく吸収及び発光させることができる。   Two or more kinds of yttrium / aluminum oxide phosphors activated by cerium having different compositions may be mixed and used. Moreover, it is good also as a multilayer structure which contains only 1 type of fluorescent substance in each layer. In the case of a multilayer structure, it is preferable to arrange in order of a phosphor layer that easily absorbs and emits light from the light emitting element on a shorter wavelength side, and a phosphor layer that easily absorbs and emits light on a longer wavelength side. This makes it possible to efficiently absorb and emit light.

(窒化物系蛍光体)
本実施の形態における蛍光物質は、Nを含み、かつBe、Mg、Ca、Sr、Ba、及びZnから選択された少なくとも一つの元素と、C、Si、Ge、Sn、Ti、Zr、及びHfから選択された少なくとも一つの元素とを含み、希土類元素から選択された少なくとも一つの元素で付活された窒化物系蛍光体とすることができる。また、本実施の形態に用いられる窒化物系蛍光体としては、半導体発光素子から発光された可視光、紫外線、及びYAG系蛍光体からの発光を吸収することによって励起され発光する蛍光体をいう。例えば、Ca−Ge−N:Eu,Z系、Sr−Ge−N:Eu,Z系、Sr−Ca−Ge−N:Eu,Z系、Ca−Ge−O−N:Eu,Z系、Sr−Ge−O−N:Eu,Z系、Sr−Ca−Ge−O−N:Eu,Z系、Ba−Si−N:Eu,Z系、Sr−Ba−Si−N:Eu,Z系、Ba−Si−O−N:Eu,Z系、Sr−Ba−Si−O−N:Eu,Z系、Ca−Si−C−N:Eu,Z系、Sr−Si−C−N:Eu,Z系、Sr−Ca−Si−C−N:Eu,Z系、Ca−Si−C−O−N:Eu,Z系、Sr−Si−C−O−N:Eu,Z系、Sr−Ca−Si−C−O−N:Eu,Z系、Mg−Si−N:Eu,Z系、Mg−Ca−Sr−Si−N:Eu,Z系、Sr−Mg−Si−N:Eu,Z系、Mg−Si−O−N:Eu,Z系、Mg−Ca−Sr−Si−O−N:Eu,Z系、Sr−Mg−Si−O−N:Eu,Z系、Ca−Zn−Si−C−N:Eu,Z系、Sr−Zn−Si−C−N:Eu,Z系、Sr−Ca−Zn−Si−C−N:Eu,Z系、Ca−Zn−Si−C−O−N:Eu,Z系、Sr−Zn−Si−C−O−N:Eu,Z系、Sr−Ca−Zn−Si−C−O−N:Eu,Z系、Mg−Zn−Si−N:Eu,Z系、Mg−Ca−Zn−Sr−Si−N:Eu,Z系、Sr−Zn−Mg−Si−N:Eu,Z系、Mg−Zn−Si−O−N:Eu,Z系、Mg−Ca−Zn−Sr−Si−O−N:Eu,Z系、Sr−Mg−Zn−Si−O−N:Eu,Z系、Ca−Zn−Si−Sn−C−N:Eu,Z系、Sr−Zn−Si−Sn−C−N:Eu,Z系、Sr−Ca−Zn−Si−Sn−C−N:Eu,Z系、Ca−Zn−Si−Sn−C−O−N:Eu,Z系、Sr−Zn−Si−Sn−C−O−N:Eu,Z系、Sr−Ca−Zn−Si−Sn−C−O−N:Eu,Z系、Mg−Zn−Si−Sn−N:Eu,Z系、Mg−Ca−Zn−Sr−Si−Sn−N:Eu,Z系、Sr−Zn−Mg−Si−Sn−N:Eu,Z系、Mg−Zn−Si−Sn−O−N:Eu,Z系、Mg−Ca−Zn−Sr−Si−Sn−O−N:Eu,Z系、Sr−Mg−Zn−Si−Sn−O−N:Eu,Z系など種々の組み合わせの蛍光体を製造することができる。希土類元素であるZは、Y、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Luのうち少なくとも1種以上が含有されていることが好ましいが、Sc、Sm、Tm、Ybが含有されていてもよい。これらの希土類元素は、単体の他、酸化物、イミド、アミド等の状態で原料中に混合する。希土類元素は、主に安定な3価の電子配置を有するが、Yb、Sm等は2価、Ce、Pr、Tb等は4価の電子配置を有する。酸化物の希土類元素を用いた場合、酸素の関与が蛍光体の発光特性に影響を及ぼす。つまり酸素を含有することにより発光輝度の低下を生じる場合もある。その反面、残光を短くするなどの利点もある。但し、Mnを用いると、粒径が大きくなり、発光輝度の向上を図ることができる。
(Nitride phosphor)
The fluorescent material in the present embodiment contains N and at least one element selected from Be, Mg, Ca, Sr, Ba, and Zn, and C, Si, Ge, Sn, Ti, Zr, and Hf And a nitride-based phosphor activated with at least one element selected from rare earth elements. In addition, the nitride-based phosphor used in the present embodiment refers to a phosphor that is excited and emits light by absorbing visible light, ultraviolet light, and light emitted from the YAG-based phosphor emitted from the semiconductor light-emitting element. . For example, Ca—Ge—N: Eu, Z system, Sr—Ge—N: Eu, Z system, Sr—Ca—Ge—N: Eu, Z system, Ca—Ge—O—N: Eu, Z system, Sr—Ge—O—N: Eu, Z system, Sr—Ca—Ge—ON: Eu, Z system, Ba—Si—N: Eu, Z system, Sr—Ba—Si—N: Eu, Z Type, Ba-Si-ON: Eu, Z type, Sr-Ba-Si-ON: Eu, Z type, Ca-Si-CN: Eu, Z type, Sr-Si-CN : Eu, Z system, Sr-Ca-Si-CN: Eu, Z system, Ca-Si-C-O-N: Eu, Z system, Sr-Si-C-O-N: Eu, Z system Sr—Ca—Si—C—O—N: Eu, Z series, Mg—Si—N: Eu, Z series, Mg—Ca—Sr—Si—N: Eu, Z series, Sr—Mg—Si— N: Eu, Z-based, Mg-Si-O- : Eu, Z series, Mg-Ca-Sr-Si-ON: Eu, Z series, Sr-Mg-Si-ON: Eu, Z series, Ca-Zn-Si-CN: Eu, Z-based, Sr-Zn-Si-CN: Eu, Z-based, Sr-Ca-Zn-Si-CN: Eu, Z-based, Ca-Zn-Si-CN- Eu: Z System, Sr—Zn—Si—C—O—N: Eu, Z system, Sr—Ca—Zn—Si—C—O—N: Eu, Z system, Mg—Zn—Si—N: Eu, Z system Mg-Ca-Zn-Sr-Si-N: Eu, Z system, Sr-Zn-Mg-Si-N: Eu, Z system, Mg-Zn-Si-O-N: Eu, Z system, Mg- Ca-Zn-Sr-Si-ON: Eu, Z system, Sr-Mg-Zn-Si-ON: Eu, Z system, Ca-Zn-Si-Sn-CN: Eu, Z system , Sr-Zn-Si-S -CN: Eu, Z system, Sr-Ca-Zn-Si-Sn-CN: Eu, Z system, Ca-Zn-Si-Sn-C-O-N: Eu, Z system, Sr- Zn—Si—Sn—C—O—N: Eu, Z series, Sr—Ca—Zn—Si—Sn—C—O—N: Eu, Z series, Mg—Zn—Si—Sn—N: Eu, Z-based, Mg-Ca-Zn-Sr-Si-Sn-N: Eu, Z-based, Sr-Zn-Mg-Si-Sn-N: Eu, Z-based, Mg-Zn-Si-Sn-O-N : Eu, Z series, Mg-Ca-Zn-Sr-Si-Sn-ON: Eu, Z series, Sr-Mg-Zn-Si-Sn-ON: Various combinations such as Eu, Z series A phosphor can be manufactured. Z, which is a rare earth element, preferably contains at least one of Y, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, but Sc, Sm, Tm, Yb may be contained. These rare earth elements are mixed in the raw material in the form of oxides, imides, amides, etc. in addition to simple substances. Rare earth elements mainly have a stable trivalent electron configuration, while Yb, Sm, etc. have a divalent configuration, and Ce, Pr, Tb, etc. have a tetravalent electron configuration. When the rare earth element of the oxide is used, the involvement of oxygen affects the light emission characteristics of the phosphor. In other words, the emission luminance may be reduced by containing oxygen. On the other hand, there are also advantages such as shortening the afterglow. However, when Mn is used, the particle size becomes large, and the emission luminance can be improved.

例えば、共付活剤としてLaを使用する。酸化ランタン(La)は、白色の結晶で、空気中に放置すると速やかに炭酸塩に代わるため、不活性ガス雰囲気中で保存する。
例えば、共付活剤としてPrを使用する。酸化プラセオジム(Pr11)は、通常の希土類酸化物Zと異なり、非化学量論的酸化物で、プラセオジムのシュウ酸塩、水酸化物、炭酸塩などを空気中で焼く800℃に加熱するとPr11の組成をもつ黒色の粉体として得られる。Pr11はプラセオジム化合物合成の出発物質となり、高純度のものも市販されている。
For example, La is used as a coactivator. Since lanthanum oxide (La 2 O 3 ) is a white crystal and is quickly replaced with carbonate when left in the air, it is stored in an inert gas atmosphere.
For example, Pr is used as a coactivator. Praseodymium oxide (Pr 6 O 11 ) is a non-stoichiometric oxide, unlike ordinary rare earth oxide Z 2 O 3, and burns praseodymium oxalate, hydroxide, carbonate, etc. in the air 800 When heated to 0 ° C., it is obtained as a black powder having a composition of Pr 6 O 11 . Pr 6 O 11 is a starting material for synthesizing a praseodymium compound, and a high-purity one is also commercially available.

特に本発明に係る蛍光体は、Mnが添加されたSr−Ca−Si−N:Eu、Ca−Si−N:Eu、Sr−Si−N:Eu、Sr−Ca−Si−O−N:Eu、Ca−Si−O−N:Eu、Sr−Si−O−N:Eu系シリコンナイトライドである。この蛍光体の基本構成元素は、一般式LSi(2/3X+4/3Y):Eu若しくはLSi(2/3X+4/3Y−2/3Z):Eu(Lは、Sr、Ca、SrとCaのいずれか。)で表される。一般式中、X及びYは、X=2、Y=5又は、X=1、Y=7であることが好ましいが、任意のものも使用できる。具体的には、基本構成元素は、Mnが添加された(SrCa1−XSi:Eu、SrSi:Eu、CaSi:Eu、SrCa1−XSi10:Eu、SrSi10:Eu、CaSi10:Euで表される蛍光体を使用することが好ましいが、この蛍光体の組成中には、Mg、Sr、Ca、Ba、Zn、B、Al、Cu、Mn、Cr及びNiからなる群より選ばれる少なくとも1種以上が含有されていてもよい。但し、本発明は、この実施の形態及び実施例に限定されない。
Lは、Sr、Ca、SrとCaのいずれかである。SrとCaは、所望により配合比を変えることができる。
蛍光体の組成にSiを用いることにより安価で結晶性の良好な蛍光体を提供することができる。
In particular, the phosphor according to the present invention includes Mn-added Sr—Ca—Si—N: Eu, Ca—Si—N: Eu, Sr—Si—N: Eu, Sr—Ca—Si—O—N: Eu, Ca-Si-ON: Eu, Sr-Si-ON: Eu-based silicon nitride. The basic constituent elements of this phosphor are represented by the general formula L X Si Y N (2 / 3X + 4 / 3Y) : Eu or L X Si Y O Z N (2 / 3X + 4 / 3Y-2 / 3Z) : Eu (L is Sr, Ca, or any one of Sr and Ca.) In the general formula, X and Y are preferably X = 2, Y = 5, or X = 1, Y = 7, but any can be used. Specifically, the basic constituent elements, Mn is added (Sr X Ca 1-X) 2 Si 5 N 8: Eu, Sr 2 Si 5 N 8: Eu, Ca 2 Si 5 N 8: Eu, Sr X Ca 1-X Si 7 N 10: Eu, SrSi 7 N 10: Eu, CaSi 7 N 10: it is preferable to use a phosphor represented by Eu, during the composition of the phosphor, Mg, At least one selected from the group consisting of Sr, Ca, Ba, Zn, B, Al, Cu, Mn, Cr and Ni may be contained. However, the present invention is not limited to this embodiment and examples.
L is any one of Sr, Ca, Sr and Ca. The mixing ratio of Sr and Ca can be changed as desired.
By using Si for the composition of the phosphor, it is possible to provide an inexpensive phosphor with good crystallinity.

発光中心に希土類元素であるユウロピウムEuを用いる。ユウロピウムは、主に2価と3価のエネルギー準位を持つ。本発明の蛍光体は、母体のアルカリ土類金属系窒化ケイ素に対して、Eu2+を付活剤として用いる。Eu2+は、酸化されやすく、3価のEuの組成で市販されている。しかし、市販のEuでは、Oの関与が大きく、良好な蛍光体が得られにくい。そのため、EuからOを、系外へ除去したものを使用することが好ましい。たとえば、ユウロピウム単体、窒化ユウロピウムを用いることが好ましい。但し、Mnを添加した場合は、その限りではない。
SrSi:Eu,Pr、BaSi:Eu,Pr、MgSi:Eu,Pr、ZnSi:Eu,Pr、SrSi10:Eu,Pr、BaSi10:Eu,Ce、MgSi10:Eu,Ce、ZnSi10:Eu,Ce、SrGe:Eu,Ce、BaGe:Eu,Pr、MgGe:Eu,Pr、ZnGe:Eu,Pr、SrGe10:Eu,Ce、BaGe10:Eu,Pr、MgGe10:Eu,Pr、ZnGe10:Eu,Ce、Sr1.8Ca0.2Si:Eu,Pr、Ba1.8Ca0.2Si:Eu,Ce、Mg1.8Ca0.2Si:Eu,Pr、Zn1.8Ca0.2Si:Eu,Ce、Sr0.8Ca0.2Si10:Eu,La、Ba0.8Ca0.2Si10:Eu,La、Mg0.8Ca0.2Si10:Eu,Nd、Zn0.8Ca0.2Si10:Eu,Nd、Sr0.8Ca0.2Ge10:Eu,Tb、Ba0.8Ca0.2Ge10:Eu,Tb、Mg0.8Ca0.2Ge10:Eu,Pr、Zn0.8Ca0.2Ge10:Eu、Pr、Sr0.8Ca0.2SiGeN10:Eu,Pr、Ba0.8Ca0.2SiGeN10:Eu,Pr、Mg0.8Ca0.2SiGeN10:Eu,Y、Zn0.8Ca0.2SiGeN10:Eu,Y、SrSi:Pr、BaSi:Pr、SrSi:Tb、BaGe10:Ceなどが製造できるがこれに限定されない。
Europium Eu, which is a rare earth element, is used for the emission center. Europium mainly has bivalent and trivalent energy levels. The phosphor of the present invention uses Eu 2+ as an activator with respect to the base alkaline earth metal silicon nitride. Eu 2+ is easily oxidized and is commercially available with a trivalent Eu 2 O 3 composition. However, in commercially available Eu 2 O 3 , O is greatly involved and it is difficult to obtain a good phosphor. Therefore, it is preferable to use a material obtained by removing O from Eu 2 O 3 out of the system. For example, it is preferable to use europium alone or europium nitride. However, this is not the case when Mn is added.
Sr 2 Si 5 N 8: Eu , Pr, Ba 2 Si 5 N 8: Eu, Pr, Mg 2 Si 5 N 8: Eu, Pr, Zn 2 Si 5 N 8: Eu, Pr, SrSi 7 N 10: Eu , Pr, BaSi 7 N 10: Eu, Ce, MgSi 7 N 10: Eu, Ce, ZnSi 7 N 10: Eu, Ce, Sr 2 Ge 5 N 8: Eu, Ce, Ba 2 Ge 5 N 8: Eu, Pr, Mg 2 Ge 5 N 8 : Eu, Pr, Zn 2 Ge 5 N 8: Eu, Pr, SrGe 7 N 10: Eu, Ce, BaGe 7 N 10: Eu, Pr, MgGe 7 N 10: Eu, Pr , ZnGe 7 N 10: Eu, Ce, Sr 1.8 Ca 0.2 Si 5 N 8: Eu, Pr, Ba 1.8 Ca 0.2 Si 5 N 8: Eu, Ce, Mg 1.8 Ca 0 .2 Si 5 N 8 : Eu, Pr, Zn 1.8 Ca 0.2 Si 5 N 8 : Eu, Ce, Sr 0.8 Ca 0.2 Si 7 N 10 : Eu, La, Ba 0.8 Ca 0.2 Si 7 N 10: Eu, La, Mg 0.8 Ca 0.2 Si 7 N 10: Eu, Nd, Zn 0.8 Ca 0.2 Si 7 N 10: Eu, Nd, Sr 0.8 Ca 0.2 Ge 7 N 10: Eu, Tb, Ba 0.8 Ca 0.2 Ge 7 N 10: Eu, Tb, Mg 0.8 Ca 0.2 Ge 7 N 10: Eu, Pr, Zn 0.8 Ca 0.2 Ge 7 N 10 : Eu, Pr, Sr 0.8 Ca 0.2 Si 6 GeN 10 : Eu, Pr, Ba 0.8 Ca 0.2 Si 6 GeN 10 : Eu, Pr, Mg 0.8 Ca 0.2 Si 6 GeN 10: Eu, Y , Zn 0.8 Ca 0.2 Si GeN 10: Eu, Y, Sr 2 Si 5 N 8: Pr, Ba 2 Si 5 N 8: Pr, Sr 2 Si 5 N 8: Tb, BaGe 7 N 10: Ce , etc. can be manufactured without limitation.

添加物であるMnは、Eu2+の拡散を促進し、発光輝度、エネルギー効率、量子効率等の発光効率の向上を図る。Mnは、原料中に含有させるか、又は、製造工程中にMn単体若しくはMn化合物を含有させ、原料と共に焼成する。但し、Mnは、焼成後の基本構成元素中に含有されていないか、含有されていても当初含有量と比べて少量しか残存していない。これは、焼成工程において、Mnが飛散したためであると思われる。 Mn as an additive promotes diffusion of Eu 2+ and improves luminous efficiency such as luminous luminance, energy efficiency, and quantum efficiency. Mn is contained in the raw material, or Mn alone or a Mn compound is contained in the manufacturing process and fired together with the raw material. However, Mn is not contained in the basic constituent elements after firing, or even if contained, only a small amount remains compared to the initial content. This is probably because Mn was scattered in the firing step.

蛍光体には、基本構成元素中に、若しくは、基本構成元素とともに、Mg、Ga,In,Li、Na,K、Re、Mo、Fe,Sr、Ca、Ba、Zn、B、Al、Cu、Mn、Cr、O及びNiからなる群より選ばれる少なくとも1種以上を含有する。これらの元素は、粒径を大きくしたり、発光輝度を高めたりする等の作用を有している。また、B、Al、Mg、Cr及びNiは、残光を抑えることができるという作用を有している。   The phosphor includes Mg, Ga, In, Li, Na, K, Re, Mo, Fe, Sr, Ca, Ba, Zn, B, Al, Cu, in the basic constituent element or together with the basic constituent element. It contains at least one selected from the group consisting of Mn, Cr, O and Ni. These elements have actions such as increasing the particle diameter and increasing the luminance of light emission. Further, B, Al, Mg, Cr and Ni have an effect that afterglow can be suppressed.

このような窒化物系蛍光体は、半導体発光素子によって発光された青色光の一部を吸収して黄から赤色領域の光を発光する。窒化物系蛍光体をYAG系蛍光体と共に上記の構成を有する発光装置に使用して、半導体発光素子により発光された青色光と、窒化物系蛍光体による黄色から赤色光とが混色により暖色系の白色系の混色光を発光する発光装置を提供する。窒化物系蛍光体の他に加える蛍光体には、セリウムで付活されたイットリウム・アルミニウム酸化物蛍光物質が含有されていることが好ましい。前記イットリウム・アルミニウム酸化物蛍光物質を含有することにより、所望の色度に調節することができるからである。セリウムで付活されたイットリウム・アルミニウム酸化物蛍光物質は、半導体発光素子により発光された青色光の一部を吸収して黄色領域の光を発光する。ここで、半導体発光素子により発光された青色光と、イットリウム・アルミニウム酸化物蛍光物質の黄色光とが混色により青白い白色に発光する。従って、このイットリウム・アルミニウム酸化物蛍光物質と赤色発光する蛍光体とを、透光性を有するコーティング部材中に一緒に混合し、半導体発光素子により発光された青色光とを組み合わせることにより白色系の混色光を発光する発光装置を提供することができる。特に好ましいのは、色度が色度図における黒体放射の軌跡上に位置する白色の発光装置である。但し、所望の色温度の発光装置を提供するため、イットリウム・アルミニウム酸化物蛍光物質の蛍光体量と、赤色発光の蛍光体量を適宜変更することもできる。この白色系の混色光を発光する発光装置は、特殊演色評価数R9の改善を図っている。従来の青色発光素子とセリウムで付活されたイットリウム・アルミニウム酸化物蛍光物質との組合せのみの白色系発光装置は、色温度Tcp=4600K付近において特殊演色評価数R9がほぼ0に近く、赤み成分が不足していた。そのため特殊演色評価数R9を高めることが解決課題となっていたが、本発明において赤色発光の蛍光体をイットリウム・アルミニウム酸化物蛍光物質と共に用いることにより、色温度Tcp=4600K付近において特殊演色評価数R9を40付近まで高めることができる。 Such a nitride-based phosphor absorbs part of the blue light emitted by the semiconductor light emitting device and emits light in the yellow to red region. Using a nitride-based phosphor together with a YAG-based phosphor in the light-emitting device having the above-described configuration, the blue light emitted from the semiconductor light-emitting element and the yellow to red light by the nitride-based phosphor are mixed to produce a warm color system. Provided is a light emitting device that emits a white mixed color light. It is preferable that the phosphor added in addition to the nitride-based phosphor contains an yttrium / aluminum oxide phosphor activated with cerium. This is because it can be adjusted to a desired chromaticity by containing the yttrium aluminum oxide phosphor. The yttrium / aluminum oxide phosphor activated by cerium absorbs part of the blue light emitted by the semiconductor light emitting element and emits light in the yellow region. Here, the blue light emitted by the semiconductor light emitting element and the yellow light of the yttrium / aluminum oxide fluorescent material emit light blue-white by mixing colors. Therefore, the yttrium / aluminum oxide phosphor and the phosphor emitting red light are mixed together in a translucent coating member and combined with the blue light emitted by the semiconductor light emitting element to produce a white-based material. A light emitting device that emits mixed color light can be provided. Particularly preferred is a white light emitting device whose chromaticity is located on the locus of black body radiation in the chromaticity diagram. However, in order to provide a light emitting device having a desired color temperature, the amount of phosphor of the yttrium / aluminum oxide phosphor and the amount of phosphor of red light emission can be appropriately changed. This light-emitting device that emits white-based mixed color light improves the special color rendering index R9. A white light emitting device consisting only of a combination of a conventional blue light emitting element and an yttrium aluminum oxide phosphor activated by cerium has a special color rendering index R9 of almost 0 at a color temperature T cp = 4600K, and is reddish Insufficient ingredients. Therefore, increasing the special color rendering index R9 has been a problem to be solved. In the present invention, a special color rendering evaluation is performed in the vicinity of the color temperature T cp = 4600K by using a phosphor emitting red light together with an yttrium aluminum oxide phosphor. The number R9 can be increased to around 40.

次に、本発明に係る蛍光体((SrCa1−XSi:Eu)の製造方法を説明するが、本製造方法に限定されない。上記蛍光体には、Mn、Oが含有されている。
原料のSr、Caを粉砕する。原料のSr、Caは、単体を使用することが好ましいが、イミド化合物、アミド化合物などの化合物を使用することもできる。また原料Sr、Caには、B、Al、Cu、Mg、Mn、MnO、Mn、Alなどを含有するものでもよい。原料のSr、Caは、アルゴン雰囲気中、グローブボックス内で粉砕を行う。粉砕により得られたSr、Caは、平均粒径が約0.1μmから15μmであることが好ましいが、この範囲に限定されない。Sr、Caの純度は、2N以上であることが好ましいが、これに限定されない。より混合状態を良くするため、金属Ca、金属Sr、金属Euのうち少なくとも1以上を合金状態としたのち、窒化し、粉砕後、原料として用いることもできる。
Next, the phosphor according to the present invention: is described a method of manufacturing the ((Sr X Ca 1-X ) 2 Si 5 N 8 Eu), but is not limited to this manufacturing method. The phosphor contains Mn and O.
Raw materials Sr and Ca are pulverized. The raw materials Sr and Ca are preferably used alone, but compounds such as imide compounds and amide compounds can also be used. The raw materials Sr and Ca may contain B, Al, Cu, Mg, Mn, MnO, Mn 2 O 3 , Al 2 O 3 and the like. The raw materials Sr and Ca are pulverized in a glove box in an argon atmosphere. Sr and Ca obtained by pulverization preferably have an average particle diameter of about 0.1 μm to 15 μm, but are not limited to this range. The purity of Sr and Ca is preferably 2N or higher, but is not limited thereto. In order to improve the mixed state, at least one of the metal Ca, the metal Sr, and the metal Eu can be alloyed, nitrided, pulverized, and used as a raw material.

原料のSiを粉砕する。原料のSiは、単体を使用することが好ましいが、窒化物化合物、イミド化合物、アミド化合物などを使用することもできる。例えば、Si、Si(NH、MgSiなどである。原料のSiの純度は、3N以上のものが好ましいが、Al、Mg、金属ホウ化物(CoB、NiB、CrB)、酸化マンガン、HBO、B、CuO、CuOなどの化合物が含有されていてもよい。Siも、原料のSr、Caと同様に、アルゴン雰囲気中、若しくは、窒素雰囲気中、グローブボックス内で粉砕を行う。Si化合物の平均粒径は、約0.1μmから15μmであることが好ましい。 The raw material Si is pulverized. The raw material Si is preferably a simple substance, but a nitride compound, an imide compound, an amide compound, or the like can also be used. For example, Si 3 N 4 , Si (NH 2 ) 2 , Mg 2 Si, or the like. The purity of the raw material Si is preferably 3N or more, but Al 2 O 3 , Mg, metal borides (Co 3 B, Ni 3 B, CrB), manganese oxide, H 3 BO 3 , B 2 O 3 , Compounds such as Cu 2 O and CuO may be contained. Si is pulverized in a glove box in an argon atmosphere or a nitrogen atmosphere in the same manner as the raw materials Sr and Ca. The average particle size of the Si compound is preferably about 0.1 μm to 15 μm.

次に、原料のSr、Caを、窒素雰囲気中で窒化する。この反応式を、以下の式1および式2にそれぞれ示す。
3Sr + N → Sr ・・・(式1)
3Ca + N → Ca ・・・(式2)
Sr、Caを、窒素雰囲気中、600〜900℃、約5時間、窒化する。Sr、Caは、混合して窒化しても良いし、それぞれ個々に窒化しても良い。これにより、Sr、Caの窒化物を得ることができる。Sr、Caの窒化物は、高純度のものが好ましいが、市販のものも使用することができる。
Next, the raw materials Sr and Ca are nitrided in a nitrogen atmosphere. This reaction formula is shown in the following formula 1 and formula 2, respectively.
3Sr + N 2 → Sr 3 N 2 (Formula 1)
3Ca + N 2 → Ca 3 N 2 (Formula 2)
Sr and Ca are nitrided in a nitrogen atmosphere at 600 to 900 ° C. for about 5 hours. Sr and Ca may be mixed and nitrided, or may be individually nitrided. Thereby, a nitride of Sr and Ca can be obtained. Sr and Ca nitrides are preferably of high purity, but commercially available ones can also be used.

原料のSiを、窒素雰囲気中で窒化する。この反応式を、以下の式3に示す。
3Si + 2N → Si ・・・(式3)
ケイ素Siも、窒素雰囲気中、800〜1200℃、約5時間、窒化する。これにより、窒化ケイ素を得る。本発明で使用する窒化ケイ素は、高純度のものが好ましいが、市販のものも使用することができる。
The raw material Si is nitrided in a nitrogen atmosphere. This reaction formula is shown in the following formula 3.
3Si + 2N 2 → Si 3 N 4 (Formula 3)
Silicon Si is also nitrided in a nitrogen atmosphere at 800 to 1200 ° C. for about 5 hours. Thereby, silicon nitride is obtained. The silicon nitride used in the present invention is preferably highly pure, but commercially available ones can also be used.

Sr、Ca若しくはSr−Caの窒化物を粉砕する。Sr、Ca、Sr−Caの窒化物を、アルゴン雰囲気中、若しくは、窒素雰囲気中、グローブボックス内で粉砕を行う。同様に、Siの窒化物を粉砕する。また、同様に、Euの化合物Euを粉砕する。Euの化合物として、酸化ユウロピウムを使用するが、金属ユウロピウム、窒化ユウロピウムなども使用可能である。このほか、原料のZは、イミド化合物、アミド化合物を用いることもできる。酸化ユウロピウムは、高純度のものが好ましいが、市販のものも使用することができる。粉砕後のアルカリ土類金属の窒化物、窒化ケイ素及び酸化ユウロピウムの平均粒径は、約0.1μmから15μmであることが好ましい。 Sr, Ca or Sr—Ca nitride is pulverized. Sr, Ca, and Sr—Ca nitrides are pulverized in a glove box in an argon atmosphere or a nitrogen atmosphere. Similarly, Si nitride is pulverized. Similarly, the Eu compound Eu 2 O 3 is pulverized. Europium oxide is used as the Eu compound, but metal europium, europium nitride, and the like can also be used. In addition, as the raw material Z, an imide compound or an amide compound can be used. Europium oxide is preferably highly purified, but commercially available products can also be used. The average particle size of the alkaline earth metal nitride, silicon nitride and europium oxide after pulverization is preferably about 0.1 μm to 15 μm.

上記原料中には、Mg、Sr、Ca、Ba、Zn、B、Al、Cu、Mn、Cr、O及びNiからなる群より選ばれる少なくとも1種以上が含有されていてもよい。また、Mg、Zn、B等の上記元素を以下の混合工程において、配合量を調節して混合することもできる。これらの化合物は、単独で原料中に添加することもできるが、通常、化合物の形態で添加される。この種の化合物には、HBO、Cu、MgCl、MgO・CaO、Al、金属ホウ化物(CrB、Mg、AlB、MnB)、B、CuO、CuOなどがある。 The raw material may contain at least one selected from the group consisting of Mg, Sr, Ca, Ba, Zn, B, Al, Cu, Mn, Cr, O, and Ni. In addition, the above elements such as Mg, Zn, and B can be mixed by adjusting the blending amount in the following mixing step. These compounds can be added alone to the raw material, but are usually added in the form of compounds. Such compounds include H 3 BO 3 , Cu 2 O 3 , MgCl 2 , MgO · CaO, Al 2 O 3 , metal borides (CrB, Mg 3 B 2 , AlB 2 , MnB), B 2 O 3 , Cu 2 O, CuO, and the like.

上記粉砕を行った後、Sr、Ca、Sr−Caの窒化物、Siの窒化物、Euの化合物Euを混合し、Mnを添加する。これらの混合物は、酸化されやすいため、Ar雰囲気中、又は、窒素雰囲気中、グローブボックス内で、混合を行う。 After the pulverization, Sr, Ca, Sr—Ca nitride, Si nitride, and Eu compound Eu 2 O 3 are mixed, and Mn is added. Since these mixtures are easily oxidized, they are mixed in a glove box in an Ar atmosphere or a nitrogen atmosphere.

最後に、Sr、Ca、Sr−Caの窒化物、Siの窒化物、Euの化合物Euの混合物をアンモニア雰囲気中で、焼成する。焼成により、Mnが添加された(SrCa1−XSi:Euで表される蛍光体を得ることができる。ただし、各原料の配合比率を変更することにより、目的とする蛍光体の組成を変更することができる。 Finally, a mixture of Sr, Ca, Sr—Ca nitride, Si nitride, and Eu compound Eu 2 O 3 is fired in an ammonia atmosphere. A phosphor represented by (Sr X Ca 1-X ) 2 Si 5 N 8 : Eu to which Mn is added can be obtained by firing. However, the composition of the target phosphor can be changed by changing the blending ratio of each raw material.

焼成は、管状炉、小型炉、高周波炉、メタル炉などを使用することができる。焼成温度は、1200から1700℃の範囲で焼成を行うことができるが、1400から1700℃の焼成温度が好ましい。焼成は、徐々に昇温を行い1200から1500℃で数時間焼成を行う一段階焼成を使用することが好ましいが、800から1000℃で一段階目の焼成を行い、徐々に加熱して1200から1500℃で二段階目の焼成を行う二段階焼成(多段階焼成)を使用することもできる。蛍光体の原料は、窒化ホウ素(BN)材質のるつぼ、ボートを用いて焼成を行うことが好ましい。窒化ホウ素材質のるつぼの他に、アルミナ(Al)材質のるつぼを使用することもできる。
以上の製造方法を使用することにより、目的とする蛍光体を得ることが可能である。
For firing, a tubular furnace, a small furnace, a high-frequency furnace, a metal furnace, or the like can be used. The firing temperature can be in the range of 1200 to 1700 ° C, but the firing temperature is preferably 1400 to 1700 ° C. It is preferable to use a one-step baking in which the temperature is gradually raised and the baking is performed at 1200 to 1500 ° C. for several hours, but the first baking is performed at 800 to 1000 ° C. and the heating is gradually started from 1200. Two-stage firing (multi-stage firing) in which the second stage firing is performed at 1500 ° C. can also be used. The phosphor material is preferably fired using a boron nitride (BN) crucible or boat. Other boron nitride material quality of the crucible, alumina (Al 2 O 3) can also be used materials of the crucible.
By using the above manufacturing method, it is possible to obtain a target phosphor.

本発明の実施例において、赤味を帯びた光を発光する蛍光体として、特に窒化物系蛍光体を使用するが、本発明においては、上述したYAG系蛍光体と赤色系の光を発光可能な蛍光体とを備える発光装置とすることも可能である。このような赤色系の光を発光可能な蛍光体は、波長が400〜600nmの光によって励起されて発光する蛍光体であり、例えば、YS:Eu、LaS:Eu、CaS:Eu、SrS:Eu、ZnS:Mn、ZnCdS:Ag,Al、ZnCdS:Cu,Al等が挙げられる。このようにYAG系蛍光体とともに赤色系の光を発光可能な蛍光体を使用することにより発光装置の演色性を向上させることが可能である。 In the embodiment of the present invention, a nitride-based phosphor is used as the phosphor that emits reddish light. In the present invention, the above-described YAG-based phosphor can emit red light. It is also possible to provide a light emitting device including a simple phosphor. Such a phosphor capable of emitting red light is a phosphor that emits light when excited by light having a wavelength of 400 to 600 nm. For example, Y 2 O 2 S: Eu, La 2 O 2 S: Eu. CaS: Eu, SrS: Eu, ZnS: Mn, ZnCdS: Ag, Al, ZnCdS: Cu, Al and the like. Thus, by using a phosphor capable of emitting red light together with a YAG phosphor, it is possible to improve the color rendering properties of the light emitting device.

以上のようにして形成されるアルミニウム・ガーネット系蛍光体、および窒化物系蛍光体に代表される赤色系の光を発光可能な蛍光体は、発光素子の周辺において一層からなる波長変換部材中に二種類以上存在してもよいし、二層からなる波長変換部材中にそれぞれ一種類あるいは二種類以上存在してもよい。このような構成にすると、異なる種類の蛍光体からの光の混色による混色光が得られる。この場合、各蛍光物質から発光される光をより良く混色しかつ色ムラを減少させるために、各蛍光体の平均粒径及び形状は類似していることが好ましい。また、窒化物系蛍光体は、YAG系蛍光体により波長変換された光の一部を吸収してしまうことを考慮して、窒化系蛍光体がYAG系蛍光体より発光素子に近い位置に配置されるように波長変換部材を形成することが好ましい。このように構成することによって、YAG蛍光体により波長変換された光の一部が窒化物系蛍光体に吸収されてしまうことがなくなり、YAG系蛍光体と窒化物系蛍光体とを混合して含有させた場合と比較して、混色光の演色性を向上させることができる。また、窒化物系蛍光体を含む第一の蛍光体層は、半導体発光素子の少なくとも一部を被覆し、YAG系蛍光体を含む第二の蛍光体層は、第一の蛍光体層と半導体発光素子の少なくとも一部とを被覆する蛍光体積層構造とすることが好ましい。このように構成することにより、窒化物蛍光体およびYAG系蛍光体が半導体発光素子の光により直接励起されることにより、蛍光体の励起効率を向上させることができる。   The phosphor capable of emitting red light typified by the aluminum garnet phosphor and the nitride phosphor formed as described above is disposed in the wavelength conversion member made of a single layer around the light emitting element. Two or more types may exist, and one type or two or more types may exist in the wavelength conversion member consisting of two layers. With such a configuration, it is possible to obtain mixed color light by mixing light from different types of phosphors. In this case, it is preferable that the average particle diameters and shapes of the phosphors are similar in order to better mix the light emitted from the phosphors and reduce color unevenness. Also, considering that the nitride-based phosphor absorbs part of the light that has been wavelength-converted by the YAG-based phosphor, the nitride-based phosphor is disposed closer to the light emitting element than the YAG-based phosphor. It is preferable to form the wavelength conversion member as described above. With this configuration, a part of the light wavelength-converted by the YAG phosphor is not absorbed by the nitride phosphor, and the YAG phosphor and the nitride phosphor are mixed. Compared with the case where it contains, the color rendering property of mixed-color light can be improved. The first phosphor layer containing the nitride phosphor covers at least a part of the semiconductor light emitting device, and the second phosphor layer containing the YAG phosphor is composed of the first phosphor layer and the semiconductor. It is preferable to have a phosphor layered structure that covers at least a part of the light emitting element. With this configuration, the excitation efficiency of the phosphor can be improved by the nitride phosphor and the YAG phosphor being directly excited by the light of the semiconductor light emitting device.

(アルカリ土類金属塩)
本実施の形態における発光装置は、発光素子が発光した光の一部を吸収し、その吸収した光の波長と異なる波長を有する光を発光する蛍光体として、ユウロピウムで付活されたアルカリ土類金属珪酸塩を有することもできる。該アルカリ土類金属珪酸塩は、以下のような一般式で表されるアルカリ土類金属オルト珪酸塩が好ましい。
(2−x−y)SrO・x(Ba,Ca)O・(1−a−b−c−d)SiO・aPbAlcBdGeO:yEu2+(式中、0<x<1.6、0.005<y<0.5、0<a、b、c、d<0.5である。)
(2−x−y)BaO・x(Sr,Ca)O・(1−a−b−c−d)SiO・aPbAlcBdGeO:yEu2+(式中、0.01<x<1.6、0.005<y<0.5、0<a、b、c、d<0.5である。)
ここで、好ましくは、a、b、cおよびdの値のうち、少なくとも一つが0.01より大きい。
(Alkaline earth metal salt)
The light-emitting device in this embodiment mode uses alkaline earth activated by europium as a phosphor that absorbs part of light emitted from a light-emitting element and emits light having a wavelength different from the wavelength of the absorbed light. It can also have a metal silicate. The alkaline earth metal silicate is preferably an alkaline earth metal orthosilicate represented by the following general formula.
(2-x-y) SrO · x (Ba, Ca) O · (1-a-b-c-d) SiO 2 · aP 2 O 5 bAl 2 O 3 cB 2 O 3 dGeO 2: yEu 2+ ( Equation Medium, 0 <x <1.6, 0.005 <y <0.5, 0 <a, b, c, d <0.5.)
(2-x-y) BaO · x (Sr, Ca) O · (1-a-b-c-d) SiO 2 · aP 2 O 5 bAl 2 O 3 cB 2 O 3 dGeO 2: yEu 2+ ( Equation (Inside, 0.01 <x <1.6, 0.005 <y <0.5, 0 <a, b, c, d <0.5.)
Here, preferably, at least one of the values of a, b, c and d is greater than 0.01.

本実施の形態における発光装置は、アルカリ土類金属塩からなる蛍光体として、上述したアルカリ土類金属珪酸塩の他、ユウロピウムおよび/またはマンガンで付活されたアルカリ土類金属アルミン酸塩やY(V,P,Si)O:Eu、または次式で示されるアルカリ土類金属−マグネシウム−二珪酸塩を有することもできる。
Me(3−x−y)MgSi:xEu,yMn(式中、0.005<x<0.5、0.005<y<0.5、Meは、Baおよび/またはSrおよび/またはCaを示す。)
The light-emitting device in the present embodiment is a phosphor composed of an alkaline earth metal salt. In addition to the alkaline earth metal silicate described above, alkaline earth metal aluminate or Y activated by europium and / or manganese is used. (V, P, Si) O 4 : Eu, or an alkaline earth metal-magnesium-disilicate represented by the following formula:
Me (3-xy) MgSi 2 O 3 : xEu, yMn (wherein 0.005 <x <0.5, 0.005 <y <0.5, Me represents Ba and / or Sr and / or Or Ca.)

次に、本実施の形態におけるアルカリ土類金属珪酸塩からなる蛍光体の製造工程を説明する。
アルカリ土類金属珪酸塩の製造のために、選択した組成に応じて出発物質アルカリ土類金属炭酸塩、二酸化珪素ならびに酸化ユウロピウムの化学量論的量を密に混合し、かつ、蛍光体の製造に常用の固体反応で、還元性雰囲気のもと、温度1100℃および1400℃で所望の蛍光体に変換する。この際、0.2モル未満の塩化アンモニウムまたは他のハロゲン化物を添加することが好ましい。また、必要に応じて珪素の一部をゲルマニウム、ホウ素、アルミニウム、リンで置換することもできるし、ユウロピウムの一部をマンガンで置換することもできる。
Next, the manufacturing process of the phosphor made of alkaline earth metal silicate in the present embodiment will be described.
For the production of alkaline earth metal silicates, the stoichiometric amounts of the starting materials alkaline earth metal carbonate, silicon dioxide and europium oxide are intimately mixed according to the selected composition, and the phosphor is produced. In a conventional solid reaction, the desired phosphor is converted at a temperature of 1100 ° C. and 1400 ° C. under a reducing atmosphere. At this time, it is preferable to add less than 0.2 mol of ammonium chloride or other halide. If necessary, part of silicon can be replaced with germanium, boron, aluminum, and phosphorus, and part of europium can be replaced with manganese.

上述したような蛍光体、即ち、ユウロピウムおよび/またはマンガンで付活されたアルカリ土類金属アルミン酸塩やY(V,P,Si)O:Eu、YS:Eu3+の一つまたはこれらの蛍光体を組み合わせることによって、以下の表に実施例として示されるように、所望の色温度を有する発光色および高い色再現性を得ることができる。 One of the phosphors as described above, ie, alkaline earth metal aluminates activated with europium and / or manganese, Y (V, P, Si) O 4 : Eu, Y 2 O 2 S: Eu 3+ By combining one or these phosphors, as shown in the following table as an example, it is possible to obtain an emission color having a desired color temperature and high color reproducibility.

Figure 2004179644
Figure 2004179644

(その他の蛍光体)
本実施の形態において、蛍光体として紫外光により励起されて所定の色の光を発生する蛍光体も用いることができ、具体例として、例えば、
(1)Ca10(POFCl:Sb,Mn
(2)M(POCl:Eu(但し、MはSr、Ca、Ba、Mgから選択される少なくとも一種)
(3)BaMgAl1627:Eu
(4)BaMgAl1627:Eu、Mn
(5)3.5MgO・0.5MgF・GeO:Mn
(6)YS:Eu
(7)MgAs11:Mn
(8)SrAl1425:Eu
(9)(Zn、Cd)S:Cu
(10)SrAl:Eu
(11)Ca10(POClBr:Mn、Eu
(12)ZnGeO:Mn
(13)GdS:Eu、及び
(14)LaS:Eu等が挙げられる。
また、これらの蛍光体は、一層からなる波長変換部材中に単独で用いても良いし、混合して用いてもよい。さらに、二層以上が積層されてなる波長変換部材中の各層に、これらの蛍光体を単独で用いても良いし、混合して用いてもよい。
(Other phosphors)
In this embodiment, a phosphor that is excited by ultraviolet light and generates light of a predetermined color can be used as a phosphor. As a specific example, for example,
(1) Ca 10 (PO 4 ) 6 FCl: Sb, Mn
(2) M 5 (PO 4 ) 3 Cl: Eu (where M is at least one selected from Sr, Ca, Ba, Mg)
(3) BaMg 2 Al 16 O 27 : Eu
(4) BaMg 2 Al 16 O 27 : Eu, Mn
(5) 3.5MgO.0.5MgF 2 .GeO 2 : Mn
(6) Y 2 O 2 S: Eu
(7) Mg 6 As 2 O 11 : Mn
(8) Sr 4 Al 14 O 25 : Eu
(9) (Zn, Cd) S: Cu
(10) SrAl 2 O 4 : Eu
(11) Ca 10 (PO 4 ) 6 ClBr: Mn, Eu
(12) Zn 2 GeO 4 : Mn
(13) Gd 2 O 2 S: Eu, (14) La 2 O 2 S: Eu, and the like.
In addition, these phosphors may be used alone in a single-layer wavelength conversion member, or may be used as a mixture. Furthermore, these phosphors may be used alone or in combination in each layer in the wavelength conversion member in which two or more layers are laminated.

<拡散剤>
蛍光体層中に拡散剤を配合することによって、蛍光体層中の蛍光体の配合量を減らし、発光輝度を高めた蛍光体層を得ることができる。また、指向性を緩和することができる。
拡散剤としては、二酸化珪素、酸化チタン、酸化アルミニウム、炭酸カルシウム、酸化亜鉛、チタン酸バリウムなどの無機系拡散剤が好ましい。エポキシ樹脂、フェノールホルマリン樹脂、ベンゾグアナミン樹脂、メラミン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、グアナミン樹脂などの有機系拡散剤であってもよい。
平均粒径は1μm以上10μmであるのが好ましい。
本発明のある実施の形態において、蛍光体層中の拡散剤は、第1の蛍光体層には第2の蛍光体層より多く配合する。バインダー樹脂と拡散剤の配合量は、(バインダー樹脂):(拡散剤)=10:0.1〜10:2であることが好ましい。
<Diffusion agent>
By blending a diffusing agent in the phosphor layer, it is possible to obtain a phosphor layer in which the blending amount of the phosphor in the phosphor layer is reduced and the emission luminance is increased. Moreover, directivity can be relaxed.
As the diffusing agent, inorganic diffusing agents such as silicon dioxide, titanium oxide, aluminum oxide, calcium carbonate, zinc oxide, and barium titanate are preferable. Organic diffusing agents such as epoxy resins, phenol formalin resins, benzoguanamine resins, melamine resins, acrylic resins, polycarbonate resins, polyethylene resins, polypropylene resins, and guanamine resins may be used.
The average particle size is preferably 1 μm or more and 10 μm.
In an embodiment of the present invention, the diffusing agent in the phosphor layer is blended more in the first phosphor layer than in the second phosphor layer. The blending amount of the binder resin and the diffusing agent is preferably (binder resin) :( diffusing agent) = 10: 0.1 to 10: 2.

また本発明の他の実施の形態では、第1及び第2の蛍光体層に異なる拡散剤を配合した場合、第1の蛍光体層中の拡散剤の屈折率が第2の蛍光体層中の拡散剤の屈折率より大きくなるように配合する。具体的には、第1の蛍光体層中の拡散剤がAlである場合は、第2の蛍光体層中の拡散剤が屈折率がそれより小さいSiOとなるような組合せとすることができる。しかし、第1の蛍光体層中の拡散剤の屈折率が第2の蛍光体層中の拡散剤の屈折率より大きければよく、この組合せに限定するものではない。 In another embodiment of the present invention, when different diffusing agents are blended in the first and second phosphor layers, the refractive index of the diffusing agent in the first phosphor layer is in the second phosphor layer. It mix | blends so that it may become larger than the refractive index of this diffusing agent. Specifically, when the diffusing agent in the first phosphor layer is Al 2 O 3 , the combination is such that the diffusing agent in the second phosphor layer is SiO 2 having a refractive index smaller than that. can do. However, it is sufficient that the refractive index of the diffusing agent in the first phosphor layer is larger than the refractive index of the diffusing agent in the second phosphor layer, and the present invention is not limited to this combination.

<バインダー樹脂>
本発明のある実施の形態において、第1及び第2の蛍光体層を形成するバインダー樹脂の種類が異なり、第1の蛍光体層を形成するバインダー樹脂の屈折率が、第2の蛍光体層を形成するバインダー樹脂の屈折率より大きくなるように配合する。前記第1の蛍光体層を形成するバインダー樹脂がエポキシ樹脂であって、前記第2の蛍光体層を形成するバインダー樹脂がシリコーン樹脂である組合せとすることができる。しかし、第1の蛍光体層を形成するバインダー樹脂の屈折率が、第2の蛍光体層を形成するバインダー樹脂の屈折率より大きければよく、この組合せに限定するものではない。
<Binder resin>
In an embodiment of the present invention, the types of binder resins forming the first and second phosphor layers are different, and the refractive index of the binder resin forming the first phosphor layer is the second phosphor layer. It is blended so as to be larger than the refractive index of the binder resin that forms the film. The binder resin forming the first phosphor layer may be an epoxy resin and the binder resin forming the second phosphor layer may be a silicone resin. However, the refractive index of the binder resin that forms the first phosphor layer may be larger than the refractive index of the binder resin that forms the second phosphor layer, and the present invention is not limited to this combination.

<モールド部材>
モールド部材とは、外部環境からの外力や水分などから蛍光体層やLEDチップを保護すると共に発光素子からの光を効率よく外部に放出させるための部材である。このような、モールド部材を構成する具体的材料としては、エポキシ樹脂、ユリア樹脂、シリコーン樹脂などの耐候性に優れた透明樹脂や、金属アルコキシドなどを出発原料としゾルゲル法により生成される透光性無機部材、ガラスなどが好適に用いられる。特に、本形態におけるモールド部材は、セラミックに対して浸透性の高い透明樹脂とすることが好ましい。
高密度にLEDチップを配置させた場合は、熱衝撃による導電性ワイヤーの断線などを考慮しエポキシ樹脂、シリコーン樹脂やそれらの組み合わせたものなどを使用することがより好ましい。また、モールド部材中には、視野角をさらに増やすために拡散剤を含有させても良い。具体的な拡散剤としては、チタン酸バリウム、酸化チタン、酸化アルミニウム、酸化珪素等、およびそれらの混合物が好適に用いられる。また、所望外の波長をカットする目的で有機や無機の着色染料や着色顔料を含有させることができる。さらに、蛍光体を含有させることもできる。
<Mold member>
The mold member is a member for protecting the phosphor layer and the LED chip from external force or moisture from the external environment and efficiently emitting light from the light emitting element to the outside. As a specific material constituting such a mold member, transparent resin having excellent weather resistance such as epoxy resin, urea resin, silicone resin, and translucency generated by sol-gel method using metal alkoxide as a starting material. An inorganic member, glass or the like is preferably used. In particular, the mold member in this embodiment is preferably a transparent resin having high permeability to ceramic.
When LED chips are arranged at a high density, it is more preferable to use an epoxy resin, a silicone resin, or a combination thereof in consideration of disconnection of the conductive wire due to thermal shock. Further, a diffusing agent may be contained in the mold member in order to further increase the viewing angle. As specific diffusing agents, barium titanate, titanium oxide, aluminum oxide, silicon oxide, and the like, and mixtures thereof are preferably used. Moreover, an organic or inorganic coloring dye or coloring pigment can be contained for the purpose of cutting an undesired wavelength. Furthermore, a phosphor can be contained.

以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例に限定されるものではない。
図1に本発明に係る実施例において形成される発光装置の模式図を示す。本実施例において、第1の蛍光体層に含有されるシリコンナイトライド系蛍光体は、(Sr0.7Ca0.3Si:Eu(以下、「蛍光体1」と呼ぶ。)である。また、第2の蛍光体層に含有されるYAG:Ce系蛍光体は、Y(Al0.8Ga0.212:Ce(以下、「蛍光体2」と呼ぶ。)である。
Examples according to the present invention will be described in detail below. In addition, this invention is not limited to the Example shown below.
FIG. 1 shows a schematic view of a light emitting device formed in an embodiment according to the present invention. In this example, the silicon nitride-based phosphor contained in the first phosphor layer is (Sr 0.7 Ca 0.3 ) 2 Si 5 N 8 : Eu (hereinafter referred to as “phosphor 1”). .) The YAG: Ce-based phosphor contained in the second phosphor layer is Y 3 (Al 0.8 Ga 0.2 ) 5 O 12 : Ce (hereinafter referred to as “phosphor 2”). is there.

図1に示されるように、凹部、及び正負一対のリード電極を熱可塑性樹脂を材料として射出成形することにより形成する。青色領域の光が発光可能な半導体発光素子2を絶縁性接着剤により凹部内に接着し固定する。本実施例においては、凹部内に載置される半導体発光素子をそれぞれ1チップとしたが、複数のチップをそれぞれの凹部内に載置しても構わない。導電性ワイヤーを利用して半導体発光素子2、正電極及び負電極を、リード電極の正電極及び負電極にそれぞれワイヤーボンディングする。   As shown in FIG. 1, the recess and the pair of positive and negative lead electrodes are formed by injection molding using a thermoplastic resin as a material. The semiconductor light emitting element 2 capable of emitting light in the blue region is bonded and fixed in the recess with an insulating adhesive. In this embodiment, the semiconductor light emitting elements placed in the recesses are each one chip, but a plurality of chips may be placed in the respective recesses. The semiconductor light emitting element 2, the positive electrode, and the negative electrode are wire-bonded to the positive electrode and the negative electrode of the lead electrode, respectively, using a conductive wire.

シリコーン樹脂に蛍光体1を含有させた第1の蛍光体層14aの形成材料を調整し、凹部内に載置されている半導体発光素子2が覆われるように、調整した材料を配置し硬化させる。   The material for forming the first phosphor layer 14a in which the phosphor 1 is contained in the silicone resin is adjusted, and the adjusted material is disposed and cured so as to cover the semiconductor light emitting element 2 placed in the recess. .

続いて、シリコーン樹脂に蛍光体2を含有させた第2の蛍光体層14bの形成材料を調整し、半導体発光素子2、及び第1の蛍光体層14aが覆われるように、調整した材料を配置し硬化させる。   Subsequently, the formation material of the second phosphor layer 14b in which the phosphor 2 is contained in the silicone resin is adjusted, and the adjusted material is used so that the semiconductor light emitting element 2 and the first phosphor layer 14a are covered. Place and cure.

また、第1の蛍光体層中の拡散剤とバインダー樹脂との平均屈折率が、第2の蛍光体層中の拡散剤とバインダー樹脂との平均屈折率よりも高くするために、第1の蛍光体層中にAl、第2の蛍光体層中にSiOを配合しておく。第1及び第2の蛍光体層中の拡散剤及びバインダー樹脂との組合せは第1の蛍光体層の平均屈折率が第2の蛍光体層中の平均屈折率よりも大きくなるように設定していればよく、今回の組み合わせだけに限らない。 In addition, in order to make the average refractive index of the diffusing agent and the binder resin in the first phosphor layer higher than the average refractive index of the diffusing agent and the binder resin in the second phosphor layer, Al 2 O 3 is blended in the phosphor layer, and SiO 2 is blended in the second phosphor layer. The combination of the diffusing agent and the binder resin in the first and second phosphor layers is set so that the average refractive index of the first phosphor layer is larger than the average refractive index in the second phosphor layer. It is only necessary to have this combination.

シリコーン樹脂に拡散剤を含有させたモールド部材15により、導電性ワイヤー、蛍光体層14a及びb、及び半導体発光素子2を封止する。   The conductive wire, the phosphor layers 14a and 14b, and the semiconductor light emitting element 2 are sealed by the mold member 15 in which the diffusing agent is contained in the silicone resin.

図2に本発明に係る実施例において形成される発光装置の模式図を示す。本実施例において、第1の蛍光体層に含有される紫外励起赤色発光蛍光体は、YO22:Eu、YVO4:Eu、Gd23:Eu、(Y,Gd)BO3:Eu、YBO3:Eu(以下、「蛍光体1」と呼ぶ。)であり、第2の蛍光体層に含有される紫外励起緑色発光蛍光体は、ZnS:Cu,Ag 、Zn2SiO4:Mn、BaAl1219:Mn、BaMgAl1626:Eu,Mn(以下、「蛍光体2」と呼ぶ。)、第3の蛍光体層に含有される紫外励起青色発光蛍光体は、BaMgAl1017:Eu、CaWO4:Pb、Y2SiO5:Ce(以下、「蛍光体3」と呼ぶ。)である。 FIG. 2 shows a schematic diagram of a light emitting device formed in an embodiment according to the present invention. In this embodiment, the ultraviolet-excited red light-emitting phosphor contained in the first phosphor layer is YO 2 S 2 : Eu, YVO 4 : Eu, Gd 2 O 3 : Eu, (Y, Gd) BO 3 : Eu, YBO 3 : Eu (hereinafter referred to as “phosphor 1”), and the ultraviolet-excited green light-emitting phosphor contained in the second phosphor layer is ZnS: Cu, Ag, Zn 2 SiO 4 : Mn, BaAl 12 O 19 : Mn, BaMgAl 16 O 26 : Eu, Mn (hereinafter referred to as “phosphor 2”), the ultraviolet-excited blue light-emitting phosphor contained in the third phosphor layer is BaMgAl 10 O 17 : Eu, CaWO 4 : Pb, Y 2 SiO 5 : Ce (hereinafter referred to as “phosphor 3”).

図2に示されるように、凹部、及び正負一対のリード電極を熱可塑性樹脂を材料として射出成形することにより形成する。紫外線を発することができる半導体発光素子2を絶縁性接着剤により凹部内に接着し固定する。本実施例においては、凹部内に載置される半導体発光素子をそれぞれ1チップとしたが、複数のチップを凹部内に載置しても構わない。導電性ワイヤーを利用して半導体発光素子2、正電極及び負電極を、リード電極の正電極及び負電極にそれぞれワイヤーボンディングする。   As shown in FIG. 2, the recess and the pair of positive and negative lead electrodes are formed by injection molding using a thermoplastic resin as a material. The semiconductor light emitting element 2 capable of emitting ultraviolet light is adhered and fixed in the recess with an insulating adhesive. In this embodiment, each semiconductor light emitting element placed in the recess is one chip, but a plurality of chips may be placed in the recess. The semiconductor light emitting element 2, the positive electrode, and the negative electrode are wire-bonded to the positive electrode and the negative electrode of the lead electrode, respectively, using a conductive wire.

シリコーン樹脂に蛍光体1を含有させた第1の蛍光体層24aの形成材料を調整し、凹部内に載置されている半導体発光素子1及び2が覆われるように、調整した材料を配置し硬化させる。   The material for forming the first phosphor layer 24a in which the phosphor 1 is contained in the silicone resin is adjusted, and the adjusted material is arranged so that the semiconductor light emitting elements 1 and 2 placed in the recesses are covered. Harden.

続いて、シリコーン樹脂に蛍光体2を含有させた第2の蛍光体層24bの形成材料を調整し、凹部内に載置されている半導体発光素子1及び2、及び第1の蛍光体層24aが覆われるように、調整した材料を配置し硬化させる。   Then, the formation material of the 2nd fluorescent substance layer 24b which made the fluorescent substance 2 contain in the silicone resin was adjusted, the semiconductor light-emitting devices 1 and 2 and the 1st fluorescent substance layer 24a which were mounted in the recessed part. Place and cure the prepared material so that is covered.

更に、シリコーン樹脂に蛍光体3を含有させた第3の蛍光体層24cの形成材料を調整し、凹部内に載置されている半導体発光素子1及び2、第1の蛍光体層24a、及び第2の蛍光体層24bが覆われるように、調整した材料を配置し硬化させる。   Furthermore, the formation material of the 3rd fluorescent substance layer 24c which made the fluorescent substance 3 contain the silicone resin was adjusted, the semiconductor light emitting elements 1 and 2 mounted in the recessed part, the 1st fluorescent substance layer 24a, The adjusted material is placed and cured so that the second phosphor layer 24b is covered.

また、第1の蛍光体層中の拡散剤とバインダー樹脂との平均屈折率が、第2の蛍光体層中の拡散剤とバインダー樹脂との平均屈折率よりも高くなるように拡散剤を配合しておく。   Also, a diffusing agent is blended so that the average refractive index of the diffusing agent and binder resin in the first phosphor layer is higher than the average refractive index of the diffusing agent and binder resin in the second phosphor layer. Keep it.

シリコーン樹脂に拡散剤を含有させたモールド部材15により、導電性ワイヤー、蛍光体層24a〜24c、及び半導体発光素子1及び2を封止する。   The conductive wire, the phosphor layers 24a to 24c, and the semiconductor light emitting elements 1 and 2 are sealed by the mold member 15 in which the diffusing agent is contained in the silicone resin.

図3から図12は、本実施例にかかる発光装置およびその形成工程を示す模式的な断面図および上面図である。以下、図面を参照しながら本実施例にかかる発光装置およびその形成方法について説明する。   FIG. 3 to FIG. 12 are a schematic cross-sectional view and a top view showing the light-emitting device according to the present example and the forming process thereof. Hereinafter, a light emitting device and a method for forming the same according to the present embodiment will be described with reference to the drawings.

図10に示されるように、本実施例にかかる発光装置は、サブマウント32にフリップチップ実装された発光素子の周囲に第一の蛍光体層36aおよび第二の蛍光体層36bを有する。第一の蛍光体層36aは、透光性のサファイア基板1における発光観測面側主面の少なくとも一部を被覆し、第二の蛍光体層36bは、上記第一の蛍光体層36aおよび発光素子の側面を被覆している。ここで、フリップチップ実装とは、発光素子の電極を、バンプと呼ばれる導電部材と介してサブマウントのような支持基板の導電パターンに対向させ接合することにより機械的および電気的接続を行う実装方法をいう。以下、本実施例にかかる発光装置の形成方法を説明する。   As shown in FIG. 10, the light emitting device according to this example includes a first phosphor layer 36 a and a second phosphor layer 36 b around the light emitting element flip-chip mounted on the submount 32. The first phosphor layer 36a covers at least a part of the main surface on the emission observation surface side of the translucent sapphire substrate 1, and the second phosphor layer 36b includes the first phosphor layer 36a and the light emission. The side of the element is covered. Here, the flip chip mounting is a mounting method in which the electrodes of the light emitting element are mechanically and electrically connected by facing and bonding to the conductive pattern of a support substrate such as a submount via a conductive member called a bump. Say. Hereinafter, a method of forming the light emitting device according to this example will be described.

サブマウント用基板は、その一方の面に導電性部材を配置し、正電極と負電極とを絶縁分離する導電性パターン31とする。また、導電性部材は、反射率の高いアルミニウム、銀や金およびそれらの合金を使用することが好ましい。サブマウント用基板の材料は、半導体発光素子の材料と熱膨張係数がほぼ等しいもの、例えば、窒化物系半導体発光素子に対して窒化アルミニウムが好ましい。このような材料を使用することにより、サブマウントと発光素子との間に発生する熱応力が緩和され、バンプを介したサブマウントと発光素子との間の電気的接続は維持できるため、発光装置の信頼性を向上させることができる。あるいは、サブマウント用基板の材料は、保護素子(ツェナーダイオード)が形成可能であり安価でもあるシリコンが好ましい。ツェナーダイオードとして機能するサブマウントは、正電極を有するp型半導体領域と、負電極を有するn型半導体領域とを有し、発光素子のp側電極とn側電極に対して逆並列となるように接続される。即ち、発光素子のn側電極およびp側電極が、サブマウントのp型半導体領域およびn型半導体領域とそれぞれバンプにより電気的に接続される。さらに、サブマウント32に設けられた正負両電極は、導電性ワイヤ44によってリード電極のような外部電極と接続されている。このように、サブマウントにツェナーダイオードの機能を持たせることにより、正負リード電極間に過大な電圧が印加された場合、その電圧がツェナーダイオードのツェナー電圧を超えると、発光素子の正負両電極間はツェナー電圧に保持され、このツェナー電圧以上になることはない。従って、発光素子間に過大な電圧が印加されるのを防止でき、過大な電圧から発光素子を保護し、素子破壊や性能劣化の発生を防止することができる。   The submount substrate is provided with a conductive member 31 on one surface thereof to form a conductive pattern 31 for insulating and separating the positive electrode and the negative electrode. The conductive member is preferably made of aluminum, silver, gold, or an alloy thereof having high reflectivity. The material for the submount substrate is preferably aluminum nitride with respect to a material having substantially the same thermal expansion coefficient as that of the semiconductor light emitting device, for example, a nitride semiconductor light emitting device. By using such a material, the thermal stress generated between the submount and the light emitting element is relieved, and the electrical connection between the submount and the light emitting element via the bump can be maintained. Reliability can be improved. Alternatively, the material of the submount substrate is preferably silicon that can form a protective element (zener diode) and is inexpensive. The submount that functions as a Zener diode has a p-type semiconductor region having a positive electrode and an n-type semiconductor region having a negative electrode, and is in reverse parallel to the p-side electrode and the n-side electrode of the light-emitting element. Connected to. That is, the n-side electrode and the p-side electrode of the light emitting element are electrically connected to the p-type semiconductor region and the n-type semiconductor region of the submount by the bumps, respectively. Further, the positive and negative electrodes provided on the submount 32 are connected to an external electrode such as a lead electrode by a conductive wire 44. In this way, by giving the submount the function of a Zener diode, when an excessive voltage is applied between the positive and negative lead electrodes, if the voltage exceeds the Zener voltage of the Zener diode, the voltage between the positive and negative electrodes of the light emitting element Is held at the zener voltage and never exceeds this zener voltage. Therefore, it is possible to prevent an excessive voltage from being applied between the light emitting elements, protect the light emitting elements from the excessive voltage, and prevent the occurrence of element destruction and performance deterioration.

発光装置の信頼性を向上させるため、発光素子の正負両電極間と絶縁部との間に生じた隙間にはアンダフィルが充填されることが好ましい。アンダフィルの材料は、例えばエポキシ樹脂等の熱硬化性樹脂である。アンダフィルの熱応力を緩和させるため、さらに窒化アルミニウム、酸化アルミニウム及びそれらの複合混合物等がエポキシ樹脂に混入されてもよい。アンダフィルの量は、発光素子の正負両電極とサブマウントとの間に生じた隙間を埋めることができる量である。   In order to improve the reliability of the light emitting device, it is preferable that an underfill is filled in the gap formed between the positive and negative electrodes of the light emitting element and the insulating portion. The underfill material is, for example, a thermosetting resin such as an epoxy resin. In order to relieve the thermal stress of underfill, aluminum nitride, aluminum oxide, a composite mixture thereof, or the like may be further mixed into the epoxy resin. The amount of underfill is an amount that can fill a gap formed between the positive and negative electrodes of the light emitting element and the submount.

図3に示されるように、発光素子の正負両電極は、上記導電性パターンの正負両電極にそれぞれ対向され固定されている。即ち、発光素子のp側電極およびn側電極は、サブマウントの同一面側に形成された正負両電極にそれぞれ対向させてバンプ33を介して固定される。まず、サブマウントの正負両電極に対し、Auからなるバンプを形成する。次に、発光素子の電極とサブマウントの電極とをバンプを介して対向させ、荷重、熱および超音波をかけることによりバンプを溶着し、発光素子の電極とサブマウントとの電極とを接合する。なお、バンプの材料として、Auの他、共晶ハンダ(Au−Sn)、Pb−Sn、鉛フリーハンダ等を用いることもできる。   As shown in FIG. 3, both the positive and negative electrodes of the light emitting element are fixed opposite to the positive and negative electrodes of the conductive pattern. That is, the p-side electrode and the n-side electrode of the light emitting element are fixed via the bumps 33 so as to face both the positive and negative electrodes formed on the same surface side of the submount. First, bumps made of Au are formed on both the positive and negative electrodes of the submount. Next, the electrode of the light emitting element and the electrode of the submount are opposed to each other through the bump, and the bump is welded by applying a load, heat, and ultrasonic waves, and the electrode of the light emitting element and the electrode of the submount are joined. . In addition to Au, eutectic solder (Au—Sn), Pb—Sn, lead-free solder, and the like can be used as the bump material.

本実施例のように、フリップチップ実装された発光素子とサブマウントとの複合素子とすることにより、発光素子の透光性基板側から光がとりだせるため発光装置の光取り出し効率が向上し、サブマウントをツェナーダイオードとして信頼性の高い発光装置とすることができる。また、放熱性の高い発光装置とすることができる。   As in this example, by using a composite element of a light-emitting element and a submount mounted on a flip chip, light extraction efficiency of the light-emitting device is improved because light can be extracted from the light-transmitting substrate side of the light-emitting element. A highly reliable light-emitting device can be obtained by using a submount as a Zener diode. In addition, a light-emitting device with high heat dissipation can be obtained.

図4に示されるように、発光素子の透光性基板側からサブマウント用基板に対して第一のスクリーン版34aを配置する。第一のスクリーン版34aは、透光性基板の発光観測面側の主面以外は、マスクするような構成としてある。なお、スクリーン版の代わりとして、導電性ワイヤ44のボールボンディング位置やパーティングライン形成位置等、蛍光体層を形成させたくない位置にメタルマスクを配置しても構わない。   As shown in FIG. 4, the first screen plate 34a is disposed on the submount substrate from the translucent substrate side of the light emitting element. The first screen plate 34a is configured to mask other than the main surface on the light emission observation surface side of the translucent substrate. In place of the screen plate, a metal mask may be disposed at a position where the phosphor layer is not desired to be formed, such as a ball bonding position of the conductive wire 44 or a parting line formation position.

以下、本実施例における蛍光体層の形成方法を説明する。まず、シリコーン樹脂に窒化物系蛍光体を含有させた第一の蛍光体層36aの形成材料を調整する。ここで、形成材料に含有される窒化物系蛍光体および拡散剤の組成は、実施例1と同様とする。図5に示されるように、窒化物系蛍光体を含有させた蛍光体層の形成材料は、発光素子における透光性基板の主面のうち、半導体が積層されていない側の面の少なくとも一部を被覆するようにスキージ35を使ってスクリーン印刷される。図6は、発光素子の透光性基板の発光観測面側主面に第一の蛍光体層36aの形成材料が配置された状態を示す模式的な断面図である。   Hereinafter, a method for forming the phosphor layer in this example will be described. First, a material for forming the first phosphor layer 36a in which a nitride phosphor is contained in a silicone resin is adjusted. Here, the composition of the nitride-based phosphor and the diffusing agent contained in the forming material is the same as in Example 1. As shown in FIG. 5, the material for forming the phosphor layer containing the nitride-based phosphor is at least one of the main surfaces of the light-transmitting substrate in the light-emitting element on the side where the semiconductor is not stacked. Screen printing is performed using a squeegee 35 so as to cover the portion. FIG. 6 is a schematic cross-sectional view showing a state in which the material for forming the first phosphor layer 36a is disposed on the main surface on the light emission observation surface side of the light-transmitting substrate of the light-emitting element.

次に、シリコーン樹脂にYAG系蛍光体を含有させた第二の蛍光体層36bの形成材料を調整する。ここで、形成材料に含有されるYAG系蛍光体および拡散剤の組成は、実施例1と同様とする。図7に示されるように、第一の蛍光体層の形成材料が配置された方向からサブマウント用基板に対して第二のスクリーン版34bを配置する。ここで、第二のスクリーン版34bは、上記第一のスクリーン版34aとはマスクの間隔が異なり、少なくとも発光素子の側面および第一の蛍光体層形成材料がマスクされないような構成としてある。さらに、図8に示されるように、YAG系蛍光体を含有させた第二の蛍光体層36bの形成材料は、上記第一の蛍光体層36aの形成材料と、発光素子の側面方向とを被覆するようにスクリーン印刷される。   Next, the material for forming the second phosphor layer 36b in which the YAG phosphor is contained in the silicone resin is adjusted. Here, the compositions of the YAG phosphor and the diffusing agent contained in the forming material are the same as those in Example 1. As shown in FIG. 7, the second screen plate 34 b is disposed on the submount substrate from the direction in which the first phosphor layer forming material is disposed. Here, the second screen plate 34b is different from the first screen plate 34a in the mask interval, and is configured such that at least the side surfaces of the light emitting element and the first phosphor layer forming material are not masked. Further, as shown in FIG. 8, the material for forming the second phosphor layer 36b containing the YAG phosphor includes the material for forming the first phosphor layer 36a and the side direction of the light emitting element. Screen printed to cover.

図9は、第一の蛍光体層形成材料と発光素子の側面方向とを被覆するように、第二の蛍光体層の形成材料が配置された状態を示す模式的な断面図である。図9に示されるように、第二のスクリーン版34bを取り外し、第一および第二の蛍光体層の形成材料を硬化させる。なお、ここで、第一および第二の蛍光体層の形成材料は別々に硬化させても構わない。即ち、第一の蛍光体層の形成材料を硬化させた後、第二の蛍光体層の形成材料をスクリーン印刷し、硬化させても構わない。このように形成することにより、第一の蛍光体層形成材料のタレを防ぎ、第一の蛍光体層をサファイア基板の発光観測面側主面方向に確実に配置することができる。最後に、パーティングラインに沿って少なくとも一つの発光素子がサブマウントに載置されるようにサブマウント用基板をカットすると、蛍光体層が発光素子の周囲に形成された素子が得られる。   FIG. 9 is a schematic cross-sectional view showing a state in which the second phosphor layer forming material is disposed so as to cover the first phosphor layer forming material and the side surface direction of the light emitting element. As shown in FIG. 9, the second screen plate 34 b is removed and the first and second phosphor layer forming materials are cured. Here, the materials for forming the first and second phosphor layers may be cured separately. That is, after the material for forming the first phosphor layer is cured, the material for forming the second phosphor layer may be screen-printed and cured. By forming in this way, sagging of the first phosphor layer forming material can be prevented, and the first phosphor layer can be reliably arranged in the direction of the main surface of the sapphire substrate on the emission observation surface side. Finally, by cutting the submount substrate so that at least one light emitting element is placed on the submount along the parting line, an element having a phosphor layer formed around the light emitting element is obtained.

本実施例のように第一および第二の蛍光体層を形成することにより、YAG系蛍光体を含有する蛍光体層のうち、第一の蛍光体層を被覆する部分は、窒化物系蛍光体により波長変換された光を吸収することなく発光観測面側に反射させ、波長変換されることなく第一の蛍光体層を透過してきた発光素子からの光の少なくとも一部の光を吸収して発光する。一方、YAG系蛍光体を含有する蛍光体層のうち発光素子の側面方向を被覆する部分は、窒化物系蛍光体を含む層を間に介することなく発光素子からの光により直接励起される。したがって、発光素子からの光により励起されるYAG系蛍光体による発光と、同じく発光素子からの光により励起される窒化物系蛍光体による発光とが混色し合うため、蛍光体の励起効率を高め発光装置の従来と比較して演色性を高めることができる。   By forming the first and second phosphor layers as in this embodiment, the portion of the phosphor layer containing the YAG phosphor that covers the first phosphor layer is nitride-based fluorescence. The light that has been wavelength-converted by the body is reflected to the emission observation surface side without being absorbed, and at least part of the light from the light-emitting element that has been transmitted through the first phosphor layer without being wavelength-converted is absorbed. Flashes. On the other hand, the portion of the phosphor layer containing the YAG phosphor that covers the side surface direction of the light emitting element is directly excited by light from the light emitting element without interposing a layer containing the nitride phosphor. Therefore, the light emission from the YAG phosphor excited by the light from the light emitting element and the light emission from the nitride phosphor similarly excited by the light from the light emitting element are mixed in color, so the excitation efficiency of the phosphor is increased. The color rendering property can be improved as compared with the conventional light emitting device.

図11は、本実施例における発光装置の模式的な上面図を示し、図12は、図11に示される発光装置のA−A‘における断面図である。本実施例における発光装置は、半導体素子に電力を供給するための正負一対のリード電極43a、43bを有し半導体素子を収納するためのパッケージ41と、発光素子から出射される光の配光性を制御するためのレンズ48と、パッケージ41の凹部とレンズとの間に充填された封止部材47とを少なくとも有する。   FIG. 11 is a schematic top view of the light emitting device in this example, and FIG. 12 is a cross-sectional view taken along line A-A ′ of the light emitting device shown in FIG. 11. The light emitting device in this embodiment has a pair of positive and negative lead electrodes 43a and 43b for supplying electric power to the semiconductor element, a package 41 for housing the semiconductor element, and a light distribution characteristic of light emitted from the light emitting element. And a sealing member 47 filled between the concave portion of the package 41 and the lens.

本実施例におけるパッケージ41は、成型用樹脂を材料とした射出成型により、金属基体45とリード電極43a、43bの一部が成型用樹脂に被覆されるように一体成型されている。また、金属基体45は、半導体素子を載置するための凹部底面42を有し、熱伝導性のよい金属を材料とするため、発光装置の放熱性を向上させることができる。本実施例において半導体発光素子が載置されたサブマウント32は、図11および図12に示されるように、銀ペーストにてパッケージの凹部底面42に固着される。導電性ワイヤ44は、サブマウント32の導電パターン31と、パッケージの凹部底面42近傍に露出されたリード電極43a、43bを接続する。封止部材47の材料は、上述したモールド部材と同じ材料とすることができる。本実施例における封止部材47は、導電性ワイヤの周囲を被覆するゲル状のシリコーン樹脂と、そのゲル状のシリコーン樹脂とレンズ48とを接着するラバー状のシリコーン樹脂とからなる多層構造とされている。このように、柔軟性を有するゲル状のシリコーン樹脂にて導電性ワイヤを被覆することにより、導電性ワイヤの断線を防ぎ、信頼性の高い発光装置とすることができる。   The package 41 in this embodiment is integrally molded so that a part of the metal base 45 and the lead electrodes 43a and 43b are covered with the molding resin by injection molding using the molding resin as a material. In addition, the metal base 45 has a concave bottom surface 42 for mounting a semiconductor element and is made of a metal having good thermal conductivity, so that the heat dissipation of the light emitting device can be improved. In this embodiment, the submount 32 on which the semiconductor light emitting element is mounted is fixed to the concave bottom surface 42 of the package with silver paste, as shown in FIGS. The conductive wire 44 connects the conductive pattern 31 of the submount 32 to the lead electrodes 43a and 43b exposed in the vicinity of the recess bottom surface 42 of the package. The material of the sealing member 47 can be the same material as the mold member described above. The sealing member 47 in this embodiment has a multilayer structure composed of a gel-like silicone resin that covers the periphery of the conductive wire and a rubber-like silicone resin that bonds the gel-like silicone resin and the lens 48 together. ing. In this manner, by covering the conductive wire with a flexible gel-like silicone resin, disconnection of the conductive wire can be prevented and a highly reliable light-emitting device can be obtained.

なお、本実施例における別の態様として、サブマウントに設けられる正負一対の電極の何れか一方と極性を同じくする裏面電極をサブマウントに設けることもできる。このとき、サブマウントの裏面電極は、リード電極と導通させた凹部底面に対向され導電性接着剤を介して固着される。このように裏面電極を有するサブマウントとすることにより、導電性ワイヤの本数を減らし、ワイヤ切れのない信頼性の高い発光装置とすることができる。   As another aspect of the present embodiment, a back electrode having the same polarity as any one of a pair of positive and negative electrodes provided on the submount can be provided on the submount. At this time, the back electrode of the submount is opposed to the bottom surface of the recess that is electrically connected to the lead electrode, and is fixed through a conductive adhesive. By using a submount having a back electrode in this manner, the number of conductive wires can be reduced, and a highly reliable light-emitting device without wire breakage can be obtained.

本発明にかかる蛍光体積層構造を有する光源は、低電圧駆動、小型軽量化、耐久性、長寿命などの長所を有し、次世代の省エネルギー照明源として、また、車載の表示光源や携帯電話表示部のバックライトとして用いることができる。   The light source having the phosphor laminated structure according to the present invention has advantages such as low voltage drive, small size and light weight, durability, and long life, and is used as a next-generation energy-saving illumination source, as well as an in-vehicle display light source and a mobile phone. It can be used as a backlight of a display portion.

青色LEDを発光源とし、第1層をシリコンナイトライド蛍光体、第2層をセリウムで付活されたYAG蛍光体で構成した発光装置の概略図、Schematic of a light-emitting device comprising a blue LED as a light source, a first layer made of silicon nitride phosphor, and a second layer made of YAG phosphor activated by cerium, 紫外LEDを発光源とし、第1層を紫外励起赤色発光蛍光体、第2層を紫外励起緑色発光蛍光体、第3層を紫外励起青色発光蛍光体で構成した発光装置の概略図、Schematic diagram of a light emitting device comprising an ultraviolet LED as a light source, a first layer composed of an ultraviolet excited red light emitting phosphor, a second layer composed of an ultraviolet excited green light emitting phosphor, and a third layer composed of an ultraviolet excited blue light emitting phosphor; 本発明にかかる蛍光体積層構造の一実施例を示す模式的な断面図、Typical sectional drawing which shows one Example of the fluorescent substance laminated structure concerning this invention, 本発明にかかる蛍光体積層構造の一実施例を示す模式的な断面図、Typical sectional drawing which shows one Example of the fluorescent substance laminated structure concerning this invention, 本発明にかかる蛍光体積層構造の一実施例を示す模式的な断面図、Typical sectional drawing which shows one Example of the fluorescent substance laminated structure concerning this invention, 本発明にかかる蛍光体積層構造の一実施例を示す模式的な断面図、Typical sectional drawing which shows one Example of the fluorescent substance laminated structure concerning this invention, 本発明にかかる蛍光体積層構造の一実施例を示す模式的な断面図、Typical sectional drawing which shows one Example of the fluorescent substance laminated structure concerning this invention, 本発明にかかる蛍光体積層構造の一実施例を示す模式的な断面図、Typical sectional drawing which shows one Example of the fluorescent substance laminated structure concerning this invention, 本発明にかかる蛍光体積層構造の一実施例を示す模式的な断面図、Typical sectional drawing which shows one Example of the fluorescent substance laminated structure concerning this invention, 本発明にかかる蛍光体積層構造の一実施例を示す模式的な断面図、Typical sectional drawing which shows one Example of the fluorescent substance laminated structure concerning this invention, 本発明にかかる発光装置の一実施例を示す模式的な上面図、The typical top view showing one example of the light-emitting device concerning the present invention, 本発明にかかる発光装置の一実施例を示す模式的な断面図である。It is typical sectional drawing which shows one Example of the light-emitting device concerning this invention.

符号の説明Explanation of symbols

1 サファイア基板
2 半導体層
13、13a、13b リードフレーム
14a シリコンナイトライド蛍光体
14b YAG:Ce系蛍光体
15 シリコーン樹脂 モールド部材
24a 紫外励起赤色発光蛍光体
24b 紫外励起緑色発光蛍光体
24c 紫外励起青色発光蛍光体
31 導電性パターン
32 サブマウント
33 バンプ
34a 第一のスクリーン版
34b 第二のスクリーン版
35 スキージ
36a 第一の蛍光体層の形成材料
36b 第一の蛍光体層の形成材料
41 パッケージ
42 凹部底面
43a、43b リード電極
44 導電性ワイヤ
45 金属基体
46 半導体素子
47 封止部材
48 レンズ
DESCRIPTION OF SYMBOLS 1 Sapphire substrate 2 Semiconductor layer 13, 13a, 13b Lead frame 14a Silicon nitride fluorescent substance 14b YAG: Ce system fluorescent substance 15 Silicone resin Mold member 24a Ultraviolet excitation red light emission fluorescent substance 24b Ultraviolet excitation green light emission fluorescent substance 24c Ultraviolet excitation blue light emission Phosphor 31 Conductive pattern 32 Submount 33 Bump 34a First screen plate 34b Second screen plate 35 Squeegee 36a First phosphor layer forming material 36b First phosphor layer forming material 41 Package 42 Recess bottom surface 43a, 43b Lead electrode 44 Conductive wire 45 Metal base 46 Semiconductor element 47 Sealing member 48 Lens

Claims (13)

半導体発光素子上に、蛍光体、拡散剤、及びバインダー樹脂からなる蛍光体層を複数層積層してなり、前記半導体発光素子に近い方の第1の蛍光体層が、前記半導体発光素子から遠い方の第2の蛍光体層より波長の長い蛍光を発する蛍光体を含んでなる蛍光体積層構造であって、
前記第1の蛍光体層は、前記第2の蛍光体層に含まれる拡散剤と同等または屈折率の大きい拡散剤を含み、その配合量が前記第2の蛍光体層より多いことを特徴とする蛍光体積層構造。
A plurality of phosphor layers made of a phosphor, a diffusing agent, and a binder resin are laminated on a semiconductor light emitting element, and the first phosphor layer closer to the semiconductor light emitting element is far from the semiconductor light emitting element. A phosphor layered structure including a phosphor that emits fluorescence having a wavelength longer than that of the second phosphor layer,
The first phosphor layer includes a diffusing agent having a refractive index equal to or larger than that of the diffusing agent contained in the second phosphor layer, and the blending amount thereof is larger than that of the second phosphor layer. A phosphor laminate structure.
前記第1の蛍光体層は、前記半導体発光素子の少なくとも一部を被覆し、前記第2の蛍光体層は、該第1の蛍光体層と半導体発光素子の少なくとも一部とを被覆する請求項1に記載の蛍光体積層構造。
The first phosphor layer covers at least a part of the semiconductor light emitting element, and the second phosphor layer covers the first phosphor layer and at least a part of the semiconductor light emitting element. Item 6. The phosphor laminated structure according to Item 1.
前記拡散剤は、SiO、Al、Zr、及びY、TiO、B、CaCOからなる酸化物群から選択される少なくとも1種である請求項1または2に記載の蛍光体積層構造。 The diffusing agent is at least one selected from the group consisting of SiO 2 , Al 2 O 3 , Zr 2 O 3 , and Y 2 O 3 , TiO 2 , B 2 O 3 , and CaCO 3. 3. The phosphor laminated structure according to 1 or 2. 第1及び第2の蛍光体層中の拡散剤の種類が異なり、前記第1の蛍光体層中の拡散剤の屈折率が、前記第2の蛍光体層中の拡散剤の屈折率より大きい請求項1乃至3に記載の蛍光体積層構造。   The kind of diffusing agent in the first and second phosphor layers is different, and the refractive index of the diffusing agent in the first phosphor layer is larger than the refractive index of the diffusing agent in the second phosphor layer. The phosphor laminated structure according to claim 1. 第1及び第2の蛍光体層を形成するバインダー樹脂の種類が異なり、前記第1の蛍光体層を形成するバインダー樹脂の屈折率が、前記第2の蛍光体層を形成するバインダー樹脂の屈折率より大きいことを特徴とする請求項1乃至4に記載の蛍光体積層構造。   The types of binder resins that form the first and second phosphor layers are different, and the refractive index of the binder resin that forms the first phosphor layer is the refraction of the binder resin that forms the second phosphor layer. The phosphor layered structure according to claim 1, wherein the phosphor layered structure has a larger ratio. バインダー樹脂はエポキシ樹脂、アクリル樹脂、イミド樹脂、シリコーン樹脂、ユリア樹脂からなる群から選ばれる請求項1乃至5に記載の蛍光体積層構造。   The phosphor laminated structure according to claim 1, wherein the binder resin is selected from the group consisting of an epoxy resin, an acrylic resin, an imide resin, a silicone resin, and a urea resin. 前記第1及び第2の蛍光体層中の拡散剤が同一であって、前記第1の蛍光体層中の拡散剤の配合量が、第2の蛍光体層中の拡散剤の配合量より多くしてなる請求項1乃至6に記載の蛍光体積層構造。   The diffusing agent in the first and second phosphor layers is the same, and the blending amount of the diffusing agent in the first phosphor layer is greater than the blending amount of the diffusing agent in the second phosphor layer. The phosphor layered structure according to claim 1, wherein the phosphor layered structure is increased. 第1及び第2の蛍光体層を形成するバインダー樹脂の種類が同一であり、前記第1の蛍光体層を形成するバインダー樹脂と拡散剤との屈折率差が、前記第2の蛍光体層を形成するバインダー樹脂と拡散剤との屈折率差より大きいことを特徴とする請求項1乃至7に記載の蛍光体積層構造。   The type of binder resin forming the first and second phosphor layers is the same, and the difference in refractive index between the binder resin forming the first phosphor layer and the diffusing agent is the second phosphor layer. The phosphor laminated structure according to claim 1, wherein a difference in refractive index between the binder resin and the diffusing agent forming the phosphor is larger. 第1及び第2の蛍光体層を形成するバインダー樹脂の種類が異なり、前記第1の蛍光体層を形成するバインダー樹脂の屈折率が、前記第2の蛍光体層を形成するのバインダー樹脂の屈折率より大きく、かつ、前記第1の蛍光体層を形成するバインダー樹脂と拡散剤の屈折率差が、前記第2の蛍光体層を形成するバインダー樹脂と拡散材の屈折率差より大きいことを特徴とする請求項1乃至8に記載の蛍光体積層構造。   The types of binder resins that form the first and second phosphor layers are different, and the refractive index of the binder resin that forms the first phosphor layer is the same as that of the binder resin that forms the second phosphor layer. The refractive index difference between the binder resin forming the first phosphor layer and the diffusing agent is larger than the refractive index difference between the binder resin forming the second phosphor layer and the diffusing material. The phosphor layered structure according to claim 1, wherein: 第1及び第2の蛍光体層中の拡散剤及び/又はバインダー樹脂の種類が異なり、第1の蛍光体層中の拡散剤とバインダー樹脂との平均屈折率が、第2の蛍光体層中の拡散剤とバインダー樹脂との平均屈折率より大きいことを特徴とする請求項1乃至9に記載の蛍光体積層構造。   The kind of diffusing agent and / or binder resin in the first and second phosphor layers is different, and the average refractive index of the diffusing agent and binder resin in the first phosphor layer is in the second phosphor layer. The phosphor multilayer structure according to claim 1, wherein the phosphor has a larger refractive index than the average refractive index of the diffusing agent and binder resin. 青色が発光可能な半導体発光素子上に、蛍光体、拡散剤、及びバインダー樹脂からなる蛍光体層を複数積層してなる光源において、
前記半導体発光素子に近い方の第1の蛍光体層はシリコンナイトライド系蛍光体であって、前記半導体発光素子からより遠い方の第2の蛍光体層より波長の長い蛍光を発する蛍光体は少なくともアルミニウムガーネット系蛍光体である光源であり、
前記第1の蛍光体層は、前記第2の蛍光体層に含まれる拡散剤と同等または屈折率の大きい拡散剤を含み、その配合量が前記第2の蛍光体層より多いことを特徴とする光源。
In a light source formed by laminating a plurality of phosphor layers made of a phosphor, a diffusing agent, and a binder resin on a semiconductor light emitting element capable of emitting blue light,
The first phosphor layer closer to the semiconductor light emitting element is a silicon nitride-based phosphor, and the phosphor emitting fluorescence having a longer wavelength than the second phosphor layer farther from the semiconductor light emitting element is A light source that is at least an aluminum garnet phosphor,
The first phosphor layer includes a diffusing agent having a refractive index equal to or larger than that of the diffusing agent contained in the second phosphor layer, and the blending amount thereof is larger than that of the second phosphor layer. Light source.
前記第一の蛍光体層は、前記半導体発光素子の主面の少なくとも一部を被覆し、前記第二の蛍光体層は、該第一の蛍光体層と半導体発光素子の側面方向とを被覆する請求項11に記載の光源。   The first phosphor layer covers at least a part of the main surface of the semiconductor light emitting device, and the second phosphor layer covers the first phosphor layer and the side surface direction of the semiconductor light emitting device. The light source according to claim 11. 紫外線を発することができる半導体発光素子上に、蛍光体、拡散剤、及びバインダー樹脂からなる蛍光体層を複数層積層してなる光源において、
前記半導体発光素子に近い方の第1の蛍光体層は、紫外励起赤色発光蛍光体を含み、前記第2の蛍光体層は紫外励起緑色発光蛍光体を含み、かつ、前記第3の蛍光体層は紫外励起青色発光蛍光体を含み、
前記第1の蛍光体層は、前記第2の蛍光体層に含まれる拡散剤と同等または屈折率の大きい拡散剤を第2の蛍光体層より多く含み、前記第2の蛍光体層は、前記第3の蛍光体層に含まれる拡散剤と同等または屈折率の大きい拡散剤を第3の蛍光体層より多く含むことを特徴とする光源。
In a light source formed by laminating a plurality of phosphor layers made of a phosphor, a diffusing agent, and a binder resin on a semiconductor light emitting device capable of emitting ultraviolet rays,
The first phosphor layer closer to the semiconductor light emitting element includes an ultraviolet excited red light emitting phosphor, the second phosphor layer includes an ultraviolet excited green light emitting phosphor, and the third phosphor. The layer comprises an ultraviolet excited blue emitting phosphor;
The first phosphor layer includes a diffusing agent equivalent to or larger in refractive index than the diffusing agent contained in the second phosphor layer than the second phosphor layer, and the second phosphor layer includes: A light source comprising a diffusing agent equivalent to or having a larger refractive index than the diffusing agent contained in the third phosphor layer, as compared with the third phosphor layer.
JP2003380788A 2002-11-12 2003-11-11 Phosphor laminate structure and light source using the same Expired - Lifetime JP5138145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003380788A JP5138145B2 (en) 2002-11-12 2003-11-11 Phosphor laminate structure and light source using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002328938 2002-11-12
JP2002328938 2002-11-12
JP2003380788A JP5138145B2 (en) 2002-11-12 2003-11-11 Phosphor laminate structure and light source using the same

Publications (2)

Publication Number Publication Date
JP2004179644A true JP2004179644A (en) 2004-06-24
JP5138145B2 JP5138145B2 (en) 2013-02-06

Family

ID=32716173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003380788A Expired - Lifetime JP5138145B2 (en) 2002-11-12 2003-11-11 Phosphor laminate structure and light source using the same

Country Status (1)

Country Link
JP (1) JP5138145B2 (en)

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032387A (en) * 2004-07-12 2006-02-02 Asahi Rubber:Kk Led lamp
JP2006060005A (en) * 2004-08-19 2006-03-02 Shin Etsu Chem Co Ltd Light emitting device and its manufacturing method
WO2006043747A1 (en) * 2004-10-18 2006-04-27 Lg Innotek Co., Ltd Phosphor, light emitting device by using the same and manufacturing method of the same
JP2006135300A (en) * 2004-10-04 2006-05-25 Stanley Electric Co Ltd Manufacturing method of semiconductor light emitting device
JP2006135288A (en) * 2004-11-05 2006-05-25 Samsung Electro Mech Co Ltd White emitting diode package and its manufacturing method
JP2006156604A (en) * 2004-11-26 2006-06-15 Kyocera Corp Light emitting device and lighting system
WO2006064930A1 (en) * 2004-12-17 2006-06-22 Ube Industries, Ltd. Photo-conversion structure and light-emitting device using same
WO2006093135A1 (en) * 2005-02-28 2006-09-08 Denki Kagaku Kogyo Kabushiki Kaisha Fluorescent substance and process for producing the same, and luminescent element using the same
JP2006245003A (en) * 2005-03-02 2006-09-14 Osram Opto Semiconductors Gmbh Electroluminescence device
JP2006269986A (en) * 2005-03-25 2006-10-05 Matsushita Electric Ind Co Ltd Light-emitting device
JP2006295132A (en) * 2005-03-14 2006-10-26 Toshiba Corp Light emitting device
JP2006310710A (en) * 2005-05-02 2006-11-09 Sony Corp Semiconductor light-emitting element
JP2006310568A (en) * 2005-04-28 2006-11-09 Toyoda Gosei Co Ltd Light emitting device
KR20060125340A (en) * 2005-06-02 2006-12-06 에이프로시스템즈 (주) Light emitting diode comprising optical medium
KR100654287B1 (en) 2004-11-04 2006-12-08 가부시키가이샤 고이토 세이사꾸쇼 Light emitting device and vehicular lamp
WO2007005417A1 (en) * 2005-06-30 2007-01-11 3M Innovative Properties Company Structured phosphor tape article
WO2007005418A1 (en) * 2005-06-30 2007-01-11 3M Innovative Properties Company Phosphor tape article
JP2007049114A (en) * 2005-05-30 2007-02-22 Sharp Corp Light emitting device and method of manufacturing the same
EP1768195A2 (en) * 2005-09-27 2007-03-28 Sanyo Electric Co., Ltd. Light emitting diode and method for manufacturing the same
JP2007080872A (en) * 2005-09-09 2007-03-29 Matsushita Electric Works Ltd Light emitting device
JP2007088318A (en) * 2005-09-26 2007-04-05 Taiwan Oasis Technology Co Ltd White light-emitting diode and manufacturing process therefor
JP2007157798A (en) * 2005-11-30 2007-06-21 Kyocera Corp Light emitting device
JP2007527118A (en) * 2004-02-20 2007-09-20 ゲルコアー リミテッド ライアビリティ カンパニー Efficient light source using phosphor-converted LED
CN100345316C (en) * 2005-04-04 2007-10-24 江苏奥雷光电有限公司 Fluorescent powder coating process for high-power light-emitting diode
JP2007288200A (en) * 2006-04-18 2007-11-01 Harvatek Corp Sealing structure of light emitting diode chip, and packaging method of light emitting diode chip structure
JP2008071806A (en) * 2006-09-12 2008-03-27 C I Kasei Co Ltd Light emitting device
JP2008098486A (en) * 2006-10-13 2008-04-24 Kyocera Corp Light emitting element
US7385228B2 (en) 2005-02-14 2008-06-10 Kabushiki Kaisha Toshiba Semiconductor light-emitting element and light-emitting device
JP2008227412A (en) * 2007-03-15 2008-09-25 Sharp Corp Light-emitting device and method of manufacturing the same
CN100442559C (en) * 2005-02-10 2008-12-10 株式会社东芝 White led and manufacturing method therefor
JP2009506530A (en) * 2005-08-26 2009-02-12 ソウル セミコンダクター カンパニー リミテッド Manufacturing method of light emitting diode
CN100470860C (en) * 2006-02-15 2009-03-18 深圳市量子光电子有限公司 Light-emitted diode
EP2060537A2 (en) 2007-11-14 2009-05-20 Niigata University Siloxane-grafted silica, transparent silicone composition, and optoelectronic device encapsulated therewith
WO2009069345A1 (en) * 2007-11-30 2009-06-04 Nichia Corporation Phosphor, light-emitting device using the same, and method for producing phosphor
JPWO2007080803A1 (en) * 2006-01-16 2009-06-11 パナソニック株式会社 Semiconductor light emitting device
JP2009177131A (en) * 2007-12-27 2009-08-06 Toyoda Gosei Co Ltd Method for manufacturing phosphor-containing glass plate and method for manufacturing light-emitting device
WO2009144922A1 (en) * 2008-05-30 2009-12-03 株式会社 東芝 White light led, and backlight and liquid crystal display device using the same
JP2009290244A (en) * 2009-09-14 2009-12-10 Sharp Corp Light emitting device and method of manufacturing the same
US7745985B2 (en) 2005-11-04 2010-06-29 Panasonic Corporation Light-emitting module, and display unit and lighting unit using the same
US7808007B2 (en) 2007-05-29 2010-10-05 Kabushiki Kaisha Toshiba Optical semiconductor device
JP2010226110A (en) * 2009-03-20 2010-10-07 Yiguang Electronic Ind Co Ltd Light emitting diode package structure and method of manufacturing the same
JP2011054987A (en) * 2010-11-08 2011-03-17 Asahi Rubber Inc Led lamp
JP2011091414A (en) * 2005-11-30 2011-05-06 Sharp Corp Light-emitting device
JP2011108865A (en) * 2009-11-18 2011-06-02 Kyocera Corp Optical module and droplet curing device
JP2011151419A (en) * 2005-05-30 2011-08-04 Sharp Corp Light emitting device and fabricating method thereof
CN102163681A (en) * 2009-12-03 2011-08-24 Lg伊诺特有限公司 Light emitting apparatus, method of manufacturing the same, and lighting system
JP2011171557A (en) * 2010-02-19 2011-09-01 Toshiba Corp Light emitting device, method of manufacturing the same, and light emitting device manufacturing apparatus
CN102237474A (en) * 2010-05-07 2011-11-09 浙江雄邦节能产品有限公司 White light-emitting diode (LED)
JP2011243713A (en) * 2010-05-18 2011-12-01 Citizen Electronics Co Ltd Light emitting device
JP2011249855A (en) * 2007-08-02 2011-12-08 Lextar Electronics Corp Light emitting diode package
JP2012009639A (en) * 2010-06-25 2012-01-12 Panasonic Electric Works Co Ltd Light-emitting device
US8106584B2 (en) 2004-12-24 2012-01-31 Kyocera Corporation Light emitting device and illumination apparatus
JP2012060192A (en) * 2011-12-26 2012-03-22 Toshiba Corp Light emitting device, method for manufacturing the light emitting device, and light emitting device manufacturing apparatus
JP2012078135A (en) * 2010-09-30 2012-04-19 Sharp Corp Conveyance inspection device, taping device, and conveyance inspection method
CN101299451B (en) * 2008-06-26 2012-05-02 罗维鸿 Encapsulation structure of LED
KR20120049161A (en) * 2011-12-21 2012-05-16 서울반도체 주식회사 Light emitting diode chip having wavelength converting layer, method of fabricating the same and package having the same
CN102468395A (en) * 2010-11-04 2012-05-23 浙江雄邦节能产品有限公司 Ceramic substrate LED apparatus
JP2012514071A (en) * 2008-12-30 2012-06-21 ナノシス・インク. Method for encapsulating nanocrystals and the resulting composition
US8368099B2 (en) 2007-11-07 2013-02-05 Industrial Technology Research Institute Light emitting device and fabricating method thereof
KR101234316B1 (en) * 2009-07-01 2013-02-18 성균관대학교산학협력단 Aluminate phosphors including alkaline earth metals and method of preparating powders of the same
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
US8558448B2 (en) 2010-08-05 2013-10-15 Stanley Electric Co., Ltd. Semiconductor light emitting device
KR101322457B1 (en) * 2007-03-27 2013-10-25 서울반도체 주식회사 Amber color light emitting device
JP2014039053A (en) * 2006-01-16 2014-02-27 Philips Lumileds Lightng Co Llc Phosphor conversion semiconductor light emitting device
US8663498B2 (en) 2006-11-24 2014-03-04 Sharp Kabushiki Kaisha Phosphor, method of producing the same, and light emitting apparatus
JP2014065800A (en) * 2012-09-25 2014-04-17 Covalent Materials Corp Laminate-type ceramic composite
JP2014123738A (en) * 2012-12-21 2014-07-03 Soraa Inc Method of coating violet led with luminescent material and device
JP2014170895A (en) * 2013-03-05 2014-09-18 Mitsubishi Chemicals Corp Wavelength conversion member and light-emitting device using the same
US8896004B2 (en) 2005-04-26 2014-11-25 Kabushiki Kaisha Toshiba White LED, backlight using the same, and liquid crystal display device
TWI466336B (en) * 2012-04-25 2014-12-21 Advanced Optoelectronic Tech Led manufacturing method
WO2014203479A1 (en) * 2013-06-21 2014-12-24 パナソニックIpマネジメント株式会社 Light source, and vehicle headlamp equipped with light source
US8946987B2 (en) 2007-11-07 2015-02-03 Industrial Technology Research Institute Light emitting device and fabricating method thereof
US9139767B2 (en) 2008-12-30 2015-09-22 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
JP2015179846A (en) * 2008-11-13 2015-10-08 メイベン オプトロニクス インターナショナル リミテッド System and method for forming thin-film phosphor layer for phosphor-converted light emitting devices
US9199842B2 (en) 2008-12-30 2015-12-01 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
WO2016006120A1 (en) * 2014-07-10 2016-01-14 エムテックスマート株式会社 Led manufacturing method and led
US9269876B2 (en) 2012-03-06 2016-02-23 Soraa, Inc. Light emitting diodes with low refractive index material layers to reduce light guiding effects
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US9410664B2 (en) 2013-08-29 2016-08-09 Soraa, Inc. Circadian friendly LED light source
US9419189B1 (en) 2013-11-04 2016-08-16 Soraa, Inc. Small LED source with high brightness and high efficiency
US9455382B2 (en) 2013-07-05 2016-09-27 Nichia Corporation Light emitting device
US9653662B2 (en) 2013-12-05 2017-05-16 Nichia Corporation Light emitting device
US9660151B2 (en) 2014-05-21 2017-05-23 Nichia Corporation Method for manufacturing light emitting device
US9929320B2 (en) 2014-12-18 2018-03-27 Samsung Electronics Co., Ltd. Wavelength conversion film and light emitting device package including the same
US9978904B2 (en) 2012-10-16 2018-05-22 Soraa, Inc. Indium gallium nitride light emitting devices
KR101873998B1 (en) * 2011-07-28 2018-07-05 엘지이노텍 주식회사 Light emitting device package and lighting system including the same
US10036099B2 (en) 2008-08-07 2018-07-31 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of gallium nitride boules
WO2018163691A1 (en) * 2017-03-10 2018-09-13 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP2018151610A (en) * 2017-03-10 2018-09-27 日本電気硝子株式会社 Wavelength conversion member and light emitting device
US10145026B2 (en) 2012-06-04 2018-12-04 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of semipolar gallium nitride boules
US10214686B2 (en) 2008-12-30 2019-02-26 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
JP2019109330A (en) * 2017-12-18 2019-07-04 パナソニックIpマネジメント株式会社 Wavelength conversion device, light source apparatus, illumination apparatus and projection type video display apparatus
US10557595B2 (en) 2009-09-18 2020-02-11 Soraa, Inc. LED lamps with improved quality of light
US11198270B2 (en) 2008-12-30 2021-12-14 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118959U (en) * 1989-03-10 1990-09-25
JPH10284759A (en) * 1997-04-10 1998-10-23 Nichia Chem Ind Ltd Light-emitting device and display using the same
JP2000031532A (en) * 1998-07-14 2000-01-28 Toshiba Electronic Engineering Corp Semiconductor light emitting device
JP2000208815A (en) * 1996-07-29 2000-07-28 Nichia Chem Ind Ltd Light-emitting diode
JP2001077433A (en) * 1999-06-30 2001-03-23 Nichia Chem Ind Ltd Light-emitting device and formation method thereof
WO2001040403A1 (en) * 1999-11-30 2001-06-07 Osram Opto Semiconductors Gmbh & Co.Ohg Light source using a yellow-to-red-emitting phosphor
JP2001166114A (en) * 1999-12-13 2001-06-22 Keiwa Inc Optical sheet and back light unit using the same
JP2002033517A (en) * 2000-05-09 2002-01-31 Nichia Chem Ind Ltd Light emitting element and its manufacturing method
JP2002176201A (en) * 2000-12-05 2002-06-21 Okaya Electric Ind Co Ltd Semiconductor light emitting element
JP2003142737A (en) * 2001-08-22 2003-05-16 Nichia Chem Ind Ltd Light emitting device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118959U (en) * 1989-03-10 1990-09-25
JP2000208815A (en) * 1996-07-29 2000-07-28 Nichia Chem Ind Ltd Light-emitting diode
JPH10284759A (en) * 1997-04-10 1998-10-23 Nichia Chem Ind Ltd Light-emitting device and display using the same
JP2000031532A (en) * 1998-07-14 2000-01-28 Toshiba Electronic Engineering Corp Semiconductor light emitting device
JP2001077433A (en) * 1999-06-30 2001-03-23 Nichia Chem Ind Ltd Light-emitting device and formation method thereof
WO2001040403A1 (en) * 1999-11-30 2001-06-07 Osram Opto Semiconductors Gmbh & Co.Ohg Light source using a yellow-to-red-emitting phosphor
JP2001166114A (en) * 1999-12-13 2001-06-22 Keiwa Inc Optical sheet and back light unit using the same
JP2002033517A (en) * 2000-05-09 2002-01-31 Nichia Chem Ind Ltd Light emitting element and its manufacturing method
JP2002176201A (en) * 2000-12-05 2002-06-21 Okaya Electric Ind Co Ltd Semiconductor light emitting element
JP2003142737A (en) * 2001-08-22 2003-05-16 Nichia Chem Ind Ltd Light emitting device

Cited By (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527118A (en) * 2004-02-20 2007-09-20 ゲルコアー リミテッド ライアビリティ カンパニー Efficient light source using phosphor-converted LED
JP2006032387A (en) * 2004-07-12 2006-02-02 Asahi Rubber:Kk Led lamp
JP2006060005A (en) * 2004-08-19 2006-03-02 Shin Etsu Chem Co Ltd Light emitting device and its manufacturing method
JP2006135300A (en) * 2004-10-04 2006-05-25 Stanley Electric Co Ltd Manufacturing method of semiconductor light emitting device
WO2006043747A1 (en) * 2004-10-18 2006-04-27 Lg Innotek Co., Ltd Phosphor, light emitting device by using the same and manufacturing method of the same
KR100654287B1 (en) 2004-11-04 2006-12-08 가부시키가이샤 고이토 세이사꾸쇼 Light emitting device and vehicular lamp
US7501749B2 (en) * 2004-11-04 2009-03-10 Koito Manufacturing Co., Ltd. Vehicle lamp using emitting device for suppressing color tone difference according to illumination conditions
JP2006135288A (en) * 2004-11-05 2006-05-25 Samsung Electro Mech Co Ltd White emitting diode package and its manufacturing method
JP2006156604A (en) * 2004-11-26 2006-06-15 Kyocera Corp Light emitting device and lighting system
JP4582095B2 (en) * 2004-12-17 2010-11-17 宇部興産株式会社 Light converting structure and light emitting device using the same
JPWO2006064930A1 (en) * 2004-12-17 2008-06-12 宇部興産株式会社 Light conversion structure and light emitting device using the same
KR100885694B1 (en) 2004-12-17 2009-02-26 우베 고산 가부시키가이샤 Photo-conversion structure and light-emitting device using same
WO2006064930A1 (en) * 2004-12-17 2006-06-22 Ube Industries, Ltd. Photo-conversion structure and light-emitting device using same
US8106584B2 (en) 2004-12-24 2012-01-31 Kyocera Corporation Light emitting device and illumination apparatus
CN100442559C (en) * 2005-02-10 2008-12-10 株式会社东芝 White led and manufacturing method therefor
US7385228B2 (en) 2005-02-14 2008-06-10 Kabushiki Kaisha Toshiba Semiconductor light-emitting element and light-emitting device
US7795059B2 (en) 2005-02-14 2010-09-14 Kabushiki Kaisha Toshiba Method of fabricating a semiconductor light-emitting device
US8125139B2 (en) 2005-02-28 2012-02-28 Denki Kagaku Kogyo Kabushiki Kaisha Fluorescent substance and process for producing the same, and luminescent element using the same
WO2006093135A1 (en) * 2005-02-28 2006-09-08 Denki Kagaku Kogyo Kabushiki Kaisha Fluorescent substance and process for producing the same, and luminescent element using the same
JP2006245003A (en) * 2005-03-02 2006-09-14 Osram Opto Semiconductors Gmbh Electroluminescence device
JP4653671B2 (en) * 2005-03-14 2011-03-16 株式会社東芝 Light emitting device
US7964887B2 (en) 2005-03-14 2011-06-21 Kabushiki Kaisha Toshiba Light emitting device
JP2006295132A (en) * 2005-03-14 2006-10-26 Toshiba Corp Light emitting device
JP2006269986A (en) * 2005-03-25 2006-10-05 Matsushita Electric Ind Co Ltd Light-emitting device
CN100345316C (en) * 2005-04-04 2007-10-24 江苏奥雷光电有限公司 Fluorescent powder coating process for high-power light-emitting diode
US8896004B2 (en) 2005-04-26 2014-11-25 Kabushiki Kaisha Toshiba White LED, backlight using the same, and liquid crystal display device
JP2006310568A (en) * 2005-04-28 2006-11-09 Toyoda Gosei Co Ltd Light emitting device
JP2006310710A (en) * 2005-05-02 2006-11-09 Sony Corp Semiconductor light-emitting element
US9281456B2 (en) 2005-05-30 2016-03-08 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
JP2007049114A (en) * 2005-05-30 2007-02-22 Sharp Corp Light emitting device and method of manufacturing the same
JP2011151419A (en) * 2005-05-30 2011-08-04 Sharp Corp Light emitting device and fabricating method thereof
US8729788B2 (en) 2005-05-30 2014-05-20 Sharp Kabushiki Kaisha Light emitting device provided with a wavelength conversion unit incorporating plural kinds of phosphors
US7737621B2 (en) 2005-05-30 2010-06-15 Sharp Kabushiki Kaisha Light emitting device provided with a wavelength conversion unit incorporating plural kinds of phosphors
US9722149B2 (en) 2005-05-30 2017-08-01 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
US10008644B2 (en) 2005-05-30 2018-06-26 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
KR20060125340A (en) * 2005-06-02 2006-12-06 에이프로시스템즈 (주) Light emitting diode comprising optical medium
WO2007005417A1 (en) * 2005-06-30 2007-01-11 3M Innovative Properties Company Structured phosphor tape article
US7294861B2 (en) 2005-06-30 2007-11-13 3M Innovative Properties Company Phosphor tape article
WO2007005418A1 (en) * 2005-06-30 2007-01-11 3M Innovative Properties Company Phosphor tape article
JP4878053B2 (en) * 2005-08-26 2012-02-15 ソウル セミコンダクター カンパニー リミテッド Manufacturing method of light emitting diode
JP2009506530A (en) * 2005-08-26 2009-02-12 ソウル セミコンダクター カンパニー リミテッド Manufacturing method of light emitting diode
US8053259B2 (en) 2005-08-26 2011-11-08 Seoul Semiconductor Co., Ltd. Manufacturing method of light emitting diode
JP2007080872A (en) * 2005-09-09 2007-03-29 Matsushita Electric Works Ltd Light emitting device
JP2007088318A (en) * 2005-09-26 2007-04-05 Taiwan Oasis Technology Co Ltd White light-emitting diode and manufacturing process therefor
EP1768195A2 (en) * 2005-09-27 2007-03-28 Sanyo Electric Co., Ltd. Light emitting diode and method for manufacturing the same
JP2007095807A (en) * 2005-09-27 2007-04-12 Sanyo Electric Co Ltd Manufacturing method of light emitting device
US8013515B2 (en) 2005-11-04 2011-09-06 Panasonic Corporation Light-emitting module, and display unit and lighting unit using the same
US7745985B2 (en) 2005-11-04 2010-06-29 Panasonic Corporation Light-emitting module, and display unit and lighting unit using the same
JP2011091414A (en) * 2005-11-30 2011-05-06 Sharp Corp Light-emitting device
JP2007157798A (en) * 2005-11-30 2007-06-21 Kyocera Corp Light emitting device
JP2014039053A (en) * 2006-01-16 2014-02-27 Philips Lumileds Lightng Co Llc Phosphor conversion semiconductor light emitting device
JPWO2007080803A1 (en) * 2006-01-16 2009-06-11 パナソニック株式会社 Semiconductor light emitting device
CN100470860C (en) * 2006-02-15 2009-03-18 深圳市量子光电子有限公司 Light-emitted diode
JP2007288200A (en) * 2006-04-18 2007-11-01 Harvatek Corp Sealing structure of light emitting diode chip, and packaging method of light emitting diode chip structure
JP2008071806A (en) * 2006-09-12 2008-03-27 C I Kasei Co Ltd Light emitting device
JP2008098486A (en) * 2006-10-13 2008-04-24 Kyocera Corp Light emitting element
US10259997B2 (en) 2006-11-24 2019-04-16 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US8663498B2 (en) 2006-11-24 2014-03-04 Sharp Kabushiki Kaisha Phosphor, method of producing the same, and light emitting apparatus
US9624427B2 (en) 2006-11-24 2017-04-18 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US9884990B2 (en) 2006-11-24 2018-02-06 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US9484502B2 (en) 2007-03-15 2016-11-01 Sharp Kabushiki Kaisha Light emitting device and method for manufacturing the same
US9478716B2 (en) 2007-03-15 2016-10-25 Sharp Kabushiki Kaisha Light emitting device and method for manufacturing the same
JP2008227412A (en) * 2007-03-15 2008-09-25 Sharp Corp Light-emitting device and method of manufacturing the same
US8841838B2 (en) 2007-03-15 2014-09-23 Sharp Kabushiki Kaisha Light emitting device and method for manufacturing the same
US9966504B2 (en) 2007-03-15 2018-05-08 Sharp Kabushiki Kaisha Light emitting device and method for manufacturing the same
US8427048B2 (en) 2007-03-15 2013-04-23 Sharp Kabushiki Kaisha Light emitting device and method for manufacturing the same
US9755115B2 (en) 2007-03-15 2017-09-05 Sharp Kabushiki Kaisha Light emitting device and method for manufacturing the same
US7843131B2 (en) 2007-03-15 2010-11-30 Sharp Kabushiki Kaisha Light emitting device and method for manufacturing the same
KR101322457B1 (en) * 2007-03-27 2013-10-25 서울반도체 주식회사 Amber color light emitting device
US7808007B2 (en) 2007-05-29 2010-10-05 Kabushiki Kaisha Toshiba Optical semiconductor device
JP2011249855A (en) * 2007-08-02 2011-12-08 Lextar Electronics Corp Light emitting diode package
US8368099B2 (en) 2007-11-07 2013-02-05 Industrial Technology Research Institute Light emitting device and fabricating method thereof
US8946987B2 (en) 2007-11-07 2015-02-03 Industrial Technology Research Institute Light emitting device and fabricating method thereof
US9074101B2 (en) 2007-11-14 2015-07-07 Niigata University Siloxane-grafted silica, transparent silicone composition, and optoelectronic device encapsulated therewith
EP2060537A2 (en) 2007-11-14 2009-05-20 Niigata University Siloxane-grafted silica, transparent silicone composition, and optoelectronic device encapsulated therewith
WO2009069345A1 (en) * 2007-11-30 2009-06-04 Nichia Corporation Phosphor, light-emitting device using the same, and method for producing phosphor
JP5544881B2 (en) * 2007-11-30 2014-07-09 日亜化学工業株式会社 Phosphor, light emitting device using the same, and method for producing phosphor
US8030839B2 (en) 2007-11-30 2011-10-04 Nichia Corporation Phosphor activated with europium, light emitting device using the same and method of manufacturing the phosphor
JPWO2009069345A1 (en) * 2007-11-30 2011-04-07 日亜化学工業株式会社 Phosphor, light emitting device using the same, and method for producing phosphor
JP2009177131A (en) * 2007-12-27 2009-08-06 Toyoda Gosei Co Ltd Method for manufacturing phosphor-containing glass plate and method for manufacturing light-emitting device
WO2009144922A1 (en) * 2008-05-30 2009-12-03 株式会社 東芝 White light led, and backlight and liquid crystal display device using the same
US8288937B2 (en) 2008-05-30 2012-10-16 Kabushiki Kaisha Toshiba White LED, and backlight and liquid crystal display device using the same
CN101299451B (en) * 2008-06-26 2012-05-02 罗维鸿 Encapsulation structure of LED
US10036099B2 (en) 2008-08-07 2018-07-31 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of gallium nitride boules
JP2015179846A (en) * 2008-11-13 2015-10-08 メイベン オプトロニクス インターナショナル リミテッド System and method for forming thin-film phosphor layer for phosphor-converted light emitting devices
US9797041B2 (en) 2008-11-13 2017-10-24 Maven Optronics Corp. System and method for forming a thin-film phosphor layer for phosphor-converted light emitting devices
US10214686B2 (en) 2008-12-30 2019-02-26 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US11396158B2 (en) 2008-12-30 2022-07-26 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US11198270B2 (en) 2008-12-30 2021-12-14 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US9804319B2 (en) 2008-12-30 2017-10-31 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US9199842B2 (en) 2008-12-30 2015-12-01 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US10899105B2 (en) 2008-12-30 2021-01-26 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US10302845B2 (en) 2008-12-30 2019-05-28 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US10444423B2 (en) 2008-12-30 2019-10-15 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US10544362B2 (en) 2008-12-30 2020-01-28 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
JP2012514071A (en) * 2008-12-30 2012-06-21 ナノシス・インク. Method for encapsulating nanocrystals and the resulting composition
US9139767B2 (en) 2008-12-30 2015-09-22 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US11420412B2 (en) 2008-12-30 2022-08-23 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
JP2010226110A (en) * 2009-03-20 2010-10-07 Yiguang Electronic Ind Co Ltd Light emitting diode package structure and method of manufacturing the same
KR101234316B1 (en) * 2009-07-01 2013-02-18 성균관대학교산학협력단 Aluminate phosphors including alkaline earth metals and method of preparating powders of the same
JP2009290244A (en) * 2009-09-14 2009-12-10 Sharp Corp Light emitting device and method of manufacturing the same
US10553754B2 (en) 2009-09-18 2020-02-04 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US10557595B2 (en) 2009-09-18 2020-02-11 Soraa, Inc. LED lamps with improved quality of light
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US11105473B2 (en) 2009-09-18 2021-08-31 EcoSense Lighting, Inc. LED lamps with improved quality of light
US11662067B2 (en) 2009-09-18 2023-05-30 Korrus, Inc. LED lamps with improved quality of light
JP2011108865A (en) * 2009-11-18 2011-06-02 Kyocera Corp Optical module and droplet curing device
CN102163681A (en) * 2009-12-03 2011-08-24 Lg伊诺特有限公司 Light emitting apparatus, method of manufacturing the same, and lighting system
JP2011171557A (en) * 2010-02-19 2011-09-01 Toshiba Corp Light emitting device, method of manufacturing the same, and light emitting device manufacturing apparatus
CN102237474A (en) * 2010-05-07 2011-11-09 浙江雄邦节能产品有限公司 White light-emitting diode (LED)
JP2011243713A (en) * 2010-05-18 2011-12-01 Citizen Electronics Co Ltd Light emitting device
JP2012009639A (en) * 2010-06-25 2012-01-12 Panasonic Electric Works Co Ltd Light-emitting device
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
US8558448B2 (en) 2010-08-05 2013-10-15 Stanley Electric Co., Ltd. Semiconductor light emitting device
JP2012078135A (en) * 2010-09-30 2012-04-19 Sharp Corp Conveyance inspection device, taping device, and conveyance inspection method
CN102468395A (en) * 2010-11-04 2012-05-23 浙江雄邦节能产品有限公司 Ceramic substrate LED apparatus
JP2011054987A (en) * 2010-11-08 2011-03-17 Asahi Rubber Inc Led lamp
KR101873998B1 (en) * 2011-07-28 2018-07-05 엘지이노텍 주식회사 Light emitting device package and lighting system including the same
KR101719645B1 (en) * 2011-12-21 2017-03-24 서울반도체 주식회사 Light emitting diode chip having wavelength converting layer, method of fabricating the same and package having the same
KR20120049161A (en) * 2011-12-21 2012-05-16 서울반도체 주식회사 Light emitting diode chip having wavelength converting layer, method of fabricating the same and package having the same
JP2012060192A (en) * 2011-12-26 2012-03-22 Toshiba Corp Light emitting device, method for manufacturing the light emitting device, and light emitting device manufacturing apparatus
US9269876B2 (en) 2012-03-06 2016-02-23 Soraa, Inc. Light emitting diodes with low refractive index material layers to reduce light guiding effects
TWI466336B (en) * 2012-04-25 2014-12-21 Advanced Optoelectronic Tech Led manufacturing method
US8921132B2 (en) 2012-04-25 2014-12-30 Advanced Optoelectronic Technology, Inc. Method for manufacturing LED package
US10604865B2 (en) 2012-06-04 2020-03-31 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of semipolar gallium nitride boules
US10145026B2 (en) 2012-06-04 2018-12-04 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of semipolar gallium nitride boules
JP2014065800A (en) * 2012-09-25 2014-04-17 Covalent Materials Corp Laminate-type ceramic composite
US9978904B2 (en) 2012-10-16 2018-05-22 Soraa, Inc. Indium gallium nitride light emitting devices
JP2014123738A (en) * 2012-12-21 2014-07-03 Soraa Inc Method of coating violet led with luminescent material and device
US9761763B2 (en) 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
JP2014170895A (en) * 2013-03-05 2014-09-18 Mitsubishi Chemicals Corp Wavelength conversion member and light-emitting device using the same
WO2014203479A1 (en) * 2013-06-21 2014-12-24 パナソニックIpマネジメント株式会社 Light source, and vehicle headlamp equipped with light source
US9455382B2 (en) 2013-07-05 2016-09-27 Nichia Corporation Light emitting device
US9410664B2 (en) 2013-08-29 2016-08-09 Soraa, Inc. Circadian friendly LED light source
US9419189B1 (en) 2013-11-04 2016-08-16 Soraa, Inc. Small LED source with high brightness and high efficiency
US10529902B2 (en) 2013-11-04 2020-01-07 Soraa, Inc. Small LED source with high brightness and high efficiency
US9653662B2 (en) 2013-12-05 2017-05-16 Nichia Corporation Light emitting device
US9960326B2 (en) 2013-12-05 2018-05-01 Nichia Corporation Light emitting device
US9660151B2 (en) 2014-05-21 2017-05-23 Nichia Corporation Method for manufacturing light emitting device
WO2016006120A1 (en) * 2014-07-10 2016-01-14 エムテックスマート株式会社 Led manufacturing method and led
US9859476B2 (en) 2014-07-10 2018-01-02 Mtek-Smart Corporation LED production method and LEDs
US9929320B2 (en) 2014-12-18 2018-03-27 Samsung Electronics Co., Ltd. Wavelength conversion film and light emitting device package including the same
WO2018163691A1 (en) * 2017-03-10 2018-09-13 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP2018151610A (en) * 2017-03-10 2018-09-27 日本電気硝子株式会社 Wavelength conversion member and light emitting device
US10698307B2 (en) 2017-12-18 2020-06-30 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion device, light source device, lighting apparatus, and projection image display apparatus
JP2019109330A (en) * 2017-12-18 2019-07-04 パナソニックIpマネジメント株式会社 Wavelength conversion device, light source apparatus, illumination apparatus and projection type video display apparatus

Also Published As

Publication number Publication date
JP5138145B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5138145B2 (en) Phosphor laminate structure and light source using the same
JP4337574B2 (en) LIGHT EMITTING DEVICE AND METHOD FOR FORMING THE SAME
JP4667803B2 (en) Light emitting device
JP4407204B2 (en) Light emitting device
JP4645071B2 (en) Package molded body and semiconductor device using the same
JP4438492B2 (en) Semiconductor device and manufacturing method thereof
JP4868685B2 (en) Phosphor
JP4222017B2 (en) Light emitting device
JP4529349B2 (en) Nitride-based phosphor and light emitting device
JP3972889B2 (en) Light emitting device and planar light source using the same
JP4760082B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same
JPWO2006077740A1 (en) Light emitting device and manufacturing method thereof
JP4892861B2 (en) Nitride phosphor and light emitting device using the same
JP5066786B2 (en) Nitride phosphor and light emitting device using the same
JP2004071726A (en) Light emitting device
JP2004363343A (en) Light emitting device and method of forming the same
KR20060079238A (en) Light-emitting device
JP4931372B2 (en) Light emitting device
JP4218328B2 (en) Nitride phosphor and light emitting device using the same
JP4899431B2 (en) Nitride-based phosphor and light-emitting device using the same
JP4221950B2 (en) Phosphor
JP4009868B2 (en) Nitride phosphor and light emitting device using the same
JP4613546B2 (en) Light emitting device
JP4215046B2 (en) Nitride phosphor and light emitting device using the same
JP4492189B2 (en) Light emitting device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060524

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060524

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121114

R150 Certificate of patent or registration of utility model

Ref document number: 5138145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term