JP2008098486A - Light emitting element - Google Patents

Light emitting element Download PDF

Info

Publication number
JP2008098486A
JP2008098486A JP2006279954A JP2006279954A JP2008098486A JP 2008098486 A JP2008098486 A JP 2008098486A JP 2006279954 A JP2006279954 A JP 2006279954A JP 2006279954 A JP2006279954 A JP 2006279954A JP 2008098486 A JP2008098486 A JP 2008098486A
Authority
JP
Japan
Prior art keywords
light
layer
transparent conductive
light emitting
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006279954A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nishizono
和博 西薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006279954A priority Critical patent/JP2008098486A/en
Publication of JP2008098486A publication Critical patent/JP2008098486A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain excellent light extraction efficiency by reducing the influence of light absorption in transparent conductive layers of a light emitting element in which the transparent conductive layers having the absorptivity of ultraviolet light and near-ultraviolet light are formed. <P>SOLUTION: In the light emitting element, an n-type gallium nitride group compound semiconductor layer 12, a light emitting layer 13 and a p-type gallium nitride group compound semiconductor layer 14 are formed on substrate 10. A p-type electrode 15 composed of laminating a plurality of transparent conductive layers 15a, 15b, 15c including phosphors for converting the wavelength of light generated from the light emitting layer 13 is formed on the surface of the p-type gallium nitride group compound semiconductor layer 14, the transparent conductive layer 15a most close to the light emitting layer 13 includes a phosphor 17a for converting light generated from the light emitting layer 13 into light of a first wavelength and the transparent conductive layers 15b, 15c including phosphors 17b, 17c for converting the light generated from the light emitting layer 13 into light of a wavelength shorter than the first wavelength are laminated according to separation from the light emitting layer 13. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、化学式InAlGa1−x−yN(ただし、0≦x,y≦1,x+y≦1)等で表される窒化ガリウム系化合物半導体(III族窒化物系化合物半導体)が積層されてなる発光素子に関するものである。 The present invention has the formula In x Al y Ga 1-x -y N ( However, 0 ≦ x, y ≦ 1 , x + y ≦ 1) gallium nitride-based compound represented by such as a semiconductor (III-V nitride compound semiconductor) The present invention relates to a light emitting element in which is laminated.

化学式InAlGa1−x−yN(0≦x,y≦1,x+y≦1)等で表される窒化ガリウム系化合物半導体は、AlNやInNなどとの混晶であるAlGaN,InGaN,InGaAlN等となるように組成を選択することにより、可視光領域から紫外光領域までの発光が可能な発光ダイオード(LED)や半導体レーザ(LD)などの発光素子の材料として検討されており、一部は実用化が図られている。 Gallium nitride-based compound semiconductors represented by the chemical formula In x Al y Ga 1-xy N (0 ≦ x, y ≦ 1, x + y ≦ 1) are AlGaN, InGaN which are mixed crystals with AlN, InN, and the like. , InGaAlN, etc., by selecting the composition so as to be a material for light emitting diodes such as light emitting diodes (LEDs) and semiconductor lasers (LDs) that can emit light from the visible light region to the ultraviolet light region, Some are being put to practical use.

また、MESFET(Metal-Semiconductor Field Effect Transistor)、MISFET(Metal-Insulator-Semiconductor FET)、高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)等の電界効果トランジスタ(FET)やショットキーバリアダイオード(SBD)等の電子素子の半導体材料としても検討され、高出力の高周波を扱う電子素子としても開発が進められている。   Also, field effect transistors (FETs) such as MESFETs (Metal-Semiconductor Field Effect Transistors), MISFETs (Metal-Insulator-Semiconductor FETs), high electron mobility transistors (HEMTs), and Schottky barrier diodes (SBDs). ), Etc., and are being developed as electronic devices that handle high-output high-frequency waves.

図2に、従来の窒化ガリウム系化合物半導体を用いた発光素子の概略的な断面図を示す。この発光素子は、例えば基板としてサファイア基板1を用い、そのサファイア基板1上にバッファ層2を介して、n型窒化ガリウム系化合物半導体層3、発光層となる活性層4、p型窒化ガリウム系化合物半導体層5を形成し、n型電極6を形成するためにp型窒化ガリウム系化合物半導体層5の一部をエッチングし、n型窒化ガリウム系化合物半導体層3の一部を露出させている。p型電極は、活性層4で発光した光をp型窒化ガリウム系化合物半導体層5の側に取り出すために、p型窒化ガリウム系化合物半導体層5の一面に透明電極7を形成し、さらに透明電極7上の一部に外部にワイヤボンディング等するためのパッド電極8が形成されている。   FIG. 2 is a schematic cross-sectional view of a light emitting device using a conventional gallium nitride compound semiconductor. In this light emitting device, for example, a sapphire substrate 1 is used as a substrate, and an n-type gallium nitride compound semiconductor layer 3, an active layer 4 serving as a light emitting layer, and a p-type gallium nitride system are provided on the sapphire substrate 1 via a buffer layer 2. The compound semiconductor layer 5 is formed, and a part of the p-type gallium nitride compound semiconductor layer 5 is etched to form a part of the n-type gallium nitride compound semiconductor layer 3 in order to form the n-type electrode 6. . The p-type electrode has a transparent electrode 7 formed on one surface of the p-type gallium nitride compound semiconductor layer 5 in order to extract light emitted from the active layer 4 to the p-type gallium nitride compound semiconductor layer 5 side. A pad electrode 8 for wire bonding or the like is formed on a part of the electrode 7 outside.

このような透明電極7としては、ニッケル(Ni)層と金(Au)層の積層体が主に用いられている。また、例えば特許文献1には、透明電極として、透明な導電性酸化物であるスズ添加酸化インジウム(ITO)から成るものを用いることが記載されている。   As such a transparent electrode 7, a laminate of a nickel (Ni) layer and a gold (Au) layer is mainly used. For example, Patent Document 1 describes that a transparent electrode made of tin-doped indium oxide (ITO), which is a transparent conductive oxide, is used.

さらに、このような発光素子を利用して白色光源を得るための構成として、特許文献2には、発光素子(LED素子)をステム上に配置し、波長変換を行う蛍光体を含む透明な樹脂により発光素子の周囲をモールドする構成が記載されている。   Furthermore, as a configuration for obtaining a white light source using such a light emitting element, Patent Document 2 discloses a transparent resin including a phosphor that arranges a light emitting element (LED element) on a stem and performs wavelength conversion. Describes a configuration in which the periphery of the light emitting element is molded.

また、発光素子から生じた光をモールド樹脂中の蛍光体により波長変換して白色光を得る発光素子の製造方法は、モールド樹脂に蛍光体を含有させる工程が必須であり、単色光を発光する発光素子の製造に比べて、工程数が増加していた。この問題を解決する発光素子の製造方法として、特許文献3には、発光層とIn層からなる発光ダイオードの製造方法であって、In層に波長変換を行う無機蛍光体を含有させる製造方法が記載されている。
実開平6−38265号公報 特開平5−152609号公報 特開2002−164576号公報
In addition, a method for manufacturing a light-emitting element that obtains white light by converting the wavelength of light generated from the light-emitting element using a phosphor in the mold resin requires a step of incorporating the phosphor into the mold resin, and emits monochromatic light. Compared with the manufacture of a light emitting device, the number of processes has increased. As the method of manufacturing the light emitting device to solve this problem, Patent Document 3, a method of manufacturing a light emitting diode comprising a light-emitting layer and the In 2 O 3 layer, an inorganic phosphor performs wavelength conversion to In 2 O 3 layer A production method is described which contains.
Japanese Utility Model Publication No. 6-38265 JP-A-5-152609 JP 2002-164576 A

しかしながら、特許文献1に記載されている発光素子においては、通常のニッケル層と金層の積層体の光透過率(波長400nm付近の光に対する光透過率)が60%程度であるのに対して、スズ添加酸化インジウム(ITO)の光透過率(波長400nm付近の光に対する光透過率)は80%〜90%と高い。しかし、ITOは、屈折率が約2.1であり、窒化ガリウムの2.5には近いが空気の1とは大きく異なるため、発光層で生じた光はp型GaN層からITO層へは界面での反射が小さく進行するが、ITO層と空気との界面において大きな反射が生じる。さらに、ITO層と空気との界面で多重的に反射を繰返して、p型GaN層及びITO層内を通過する光や、閉じ込められた光は、p型GaN層及びITO層によって徐々に吸収され減衰することとなる。従って、発光素子の光取り出し効率を向上させることにも限界がある。   However, in the light emitting device described in Patent Document 1, the light transmittance (light transmittance with respect to light having a wavelength of around 400 nm) of a normal laminate of a nickel layer and a gold layer is about 60%. The light transmittance of tin-added indium oxide (ITO) (light transmittance with respect to light having a wavelength near 400 nm) is as high as 80% to 90%. However, since ITO has a refractive index of about 2.1 and is close to 2.5 of gallium nitride, but significantly different from air 1, light generated in the light emitting layer is transferred from the p-type GaN layer to the ITO layer. Although reflection at the interface proceeds small, large reflection occurs at the interface between the ITO layer and air. Furthermore, the light that passes through the p-type GaN layer and the ITO layer by being repeatedly reflected at the interface between the ITO layer and air and the confined light are gradually absorbed by the p-type GaN layer and the ITO layer. It will be attenuated. Therefore, there is a limit to improving the light extraction efficiency of the light emitting element.

また、特許文献2に記載されているように、LED素子の周囲を波長変換可能な蛍光体を含む樹脂でモールドし、例えば白色光を得る場合には、屈折率が約1.5の樹脂でモールドすることにより、ITO層から樹脂へ通過する際の界面での光の反射は空気の場合よりは抑制される。しかしながら、LED素子の発光波長が400nm近傍の近紫外光を用いた場合、長時間の使用による樹脂の劣化やLED素子自体の発熱による樹脂の劣化による光透過率の低下などの懸念がある。さらに、発光波長が400nm付近の近紫外光に対してはITO層の光透過率が380nm〜390nm付近で低下するため、ITO層での光の吸収の影響が顕著になる。   Further, as described in Patent Document 2, when the periphery of the LED element is molded with a resin containing a phosphor capable of wavelength conversion, and white light is obtained, for example, a resin having a refractive index of about 1.5 is used. By molding, the reflection of light at the interface when passing from the ITO layer to the resin is suppressed more than in the case of air. However, when near-ultraviolet light having an emission wavelength of the LED element of around 400 nm is used, there are concerns such as deterioration of the resin due to long-term use and reduction of light transmittance due to deterioration of the resin due to heat generation of the LED element itself. Furthermore, for near-ultraviolet light having an emission wavelength of around 400 nm, the light transmittance of the ITO layer decreases near 380 nm to 390 nm, so that the influence of light absorption in the ITO layer becomes significant.

また、特許文献3に記載されているような、モールド樹脂中の蛍光体ではなく、不純物を添加したIn層中に含有された無機蛍光体により波長変換を行う構成では、蛍光体をIn層中に均一に分散することが困難であり、発光色のむらが生じる懸念がある。 In addition, in the configuration in which wavelength conversion is performed by an inorganic phosphor contained in an In 2 O 3 layer to which impurities are added instead of the phosphor in the mold resin as described in Patent Document 3, the phosphor is used as the phosphor. It is difficult to disperse uniformly in the In 2 O 3 layer, and there is a concern that uneven emission color may occur.

また、発光層からの発光が青色光で、蛍光体により黄色光に波長変換し白色光を得る構成では、使用する蛍光体は1種類であるため、発光色のむらは顕著とはならない。しかし、発光層からの発光が紫外光や近紫外光であり、赤色光、緑色光、青色光にそれぞれ変換する蛍光体により波長変換を行って白色光を得る場合、蛍光体をIn層中に均一に分散させる必要があるため、発光色のむらが顕著になる懸念がある。 Further, in the configuration in which the light emitted from the light emitting layer is blue light and the wavelength is converted into yellow light by the phosphor to obtain white light, since the phosphor used is one kind, the unevenness of the emission color is not significant. However, when the light emitted from the light emitting layer is ultraviolet light or near ultraviolet light, and white light is obtained by performing wavelength conversion using phosphors that convert red light, green light, and blue light, respectively, the phosphor is converted to In 2 O 3. Since it is necessary to disperse uniformly in the layer, there is a concern that unevenness in emission color becomes remarkable.

さらに、不純物を添加したIn(不純物がSnの場合はITO)層の場合、上記したように紫外光や近紫外光の吸収があるため、発光層で生じた光はITO層中を進行する間に蛍光体により波長が変換されるものもあるが、徐々に吸収され、発光層より離れた側であるITO層上部の方では変換される割合も少なくなり、効率が悪い。 Furthermore, in the case of an In 2 O 3 layer doped with impurities (ITO when the impurity is Sn) layer, the light generated in the light emitting layer passes through the ITO layer because of absorption of ultraviolet light and near ultraviolet light as described above. While some of the wavelength is converted by the phosphor while it travels, it is gradually absorbed and the rate of conversion on the upper part of the ITO layer on the side farther from the light emitting layer is reduced, resulting in poor efficiency.

従って、本発明は上記従来の技術における問題点に鑑みて完成されたものであり、その目的は、紫外光や近紫外光の吸収性があるITO層などの透明導電層中での光吸収の影響をより小さくし、光取り出し効率に優れた窒化ガリウム系化合物半導体を用いた発光素子を提供することを目的とする。   Accordingly, the present invention has been completed in view of the above problems in the prior art, and its purpose is to absorb light in a transparent conductive layer such as an ITO layer that absorbs ultraviolet light or near ultraviolet light. An object of the present invention is to provide a light-emitting element using a gallium nitride-based compound semiconductor having a smaller influence and excellent light extraction efficiency.

本発明の発光素子は、基板上に、n型窒化ガリウム系化合物半導体層と、窒化ガリウム系化合物半導体から成る発光層と、p型窒化ガリウム系化合物半導体層とが形成されている発光素子において、前記p型窒化ガリウム系化合物半導体層は、前記発光層により生じた光の波長を変換する蛍光体をそれぞれ含む複数の透明導電層が積層されて成るp型電極が表面に形成されており、前記複数の透明導電層は、前記発光層に最も近い前記透明導電層が前記発光層により生じた光を第1波長の光に変換する蛍光体を含むものであり、前記発光層から離れるに従って前記発光層により生じた光を前記第1波長の光よりもより短波長の光に変換する蛍光体を含む前記透明導電層が積層されていることを特徴とするものである。   The light emitting device of the present invention is a light emitting device in which an n-type gallium nitride compound semiconductor layer, a light emitting layer made of a gallium nitride compound semiconductor, and a p type gallium nitride compound semiconductor layer are formed on a substrate. The p-type gallium nitride compound semiconductor layer has a p-type electrode formed by laminating a plurality of transparent conductive layers each containing a phosphor that converts the wavelength of light generated by the light emitting layer, The plurality of transparent conductive layers include a phosphor that converts light generated by the light emitting layer into light having a first wavelength by the transparent conductive layer closest to the light emitting layer, and emits the light as the distance from the light emitting layer increases. The transparent conductive layer including a phosphor that converts light generated by the layer into light having a wavelength shorter than that of the light having the first wavelength is laminated.

また、本発明の発光素子は好ましくは、前記複数の透明導電層は、前記発光層により生じた光を赤色光に変換する蛍光体を含む透明導電層と、前記発光層により生じた光を緑色光に変換する蛍光体を含む透明導電層と、前記発光層により生じた光を青色光に変換する蛍光体を含む透明導電層とが前記発光層側から順次積層されており、前記発光層で生じた光を白色光として外部に放射させることを特徴とするものである。   In the light emitting device of the present invention, preferably, the plurality of transparent conductive layers include a transparent conductive layer including a phosphor that converts light generated by the light emitting layer into red light, and light generated by the light emitting layer is green. A transparent conductive layer containing a phosphor that converts light into light and a transparent conductive layer that contains a phosphor that converts light generated by the light emitting layer into blue light are sequentially stacked from the light emitting layer side. The generated light is emitted to the outside as white light.

また、本発明の発光素子は好ましくは、前記n型窒化ガリウム系化合物半導体層は、露出した表面に、前記発光層により生じた光の波長を変換する蛍光体をそれぞれ含む複数の透明導電層が積層されて成るn型電極が形成されており、前記複数の透明導電層は、前記発光層に最も近い前記透明導電層が前記発光層により生じた光を第1波長の光に変換する蛍光体を含むものであり、前記発光層から離れるに従って前記発光層により生じた光を前記第1波長の光よりもより短波長の光に変換する蛍光体を含む前記透明導電層が積層されていることを特徴とする。   In the light-emitting device of the present invention, preferably, the n-type gallium nitride compound semiconductor layer has a plurality of transparent conductive layers each containing a phosphor that converts a wavelength of light generated by the light-emitting layer on an exposed surface. A plurality of transparent conductive layers are formed, and the transparent conductive layer closest to the light emitting layer is a phosphor that converts light generated by the light emitting layer into light having a first wavelength. And the transparent conductive layer including a phosphor that converts light generated by the light emitting layer into light having a shorter wavelength than the light having the first wavelength as the distance from the light emitting layer is increased. It is characterized by.

また、本発明の発光素子は好ましくは、前記複数の透明導電層は、前記発光層から離れるに従って厚みが薄くなっていることを特徴とする。   In the light emitting device of the present invention, it is preferable that the plurality of transparent conductive layers have a thickness that decreases with distance from the light emitting layer.

本発明の発光素子は、基板上に、n型窒化ガリウム系化合物半導体層と、窒化ガリウム系化合物半導体から成る発光層と、p型窒化ガリウム系化合物半導体層とが形成されている発光素子において、p型窒化ガリウム系化合物半導体層は、発光層により生じた光の波長を変換する蛍光体をそれぞれ含む複数の透明導電層が積層されて成るp型電極が表面に形成されており、複数の透明導電層は、発光層に最も近い透明導電層が発光層により生じた光を第1波長の光に変換する蛍光体を含むものであり、発光層から離れるに従って発光層により生じた光を第1波長の光よりもより短波長の光に変換する蛍光体を含む透明導電層が積層されており、異なる波長に変換する蛍光体を各透明導電層ごとに含ませているため、合成された光の色の均一性がよくなる。   The light emitting device of the present invention is a light emitting device in which an n-type gallium nitride compound semiconductor layer, a light emitting layer made of a gallium nitride compound semiconductor, and a p type gallium nitride compound semiconductor layer are formed on a substrate. The p-type gallium nitride compound semiconductor layer has a p-type electrode formed by laminating a plurality of transparent conductive layers each containing a phosphor that converts the wavelength of light generated by the light emitting layer, and has a plurality of transparent The conductive layer includes a phosphor whose transparent conductive layer closest to the light emitting layer converts light generated by the light emitting layer into light having a first wavelength. A transparent conductive layer containing a phosphor that converts light having a shorter wavelength than light having a wavelength is laminated, and each transparent conductive layer contains a phosphor that converts light having a different wavelength. Color uniformity Well made.

例えば、In層等の透明導電層中に3種(3色)の蛍光体を一緒に分散させようとしても、透明導電層の全ての部分において3種の蛍光体が均一の割合で分散する可能性は低く、極端な場合は凝集などにより1色の蛍光体が部分的に集まったりして、混合割合が不均一となりやすい。従って、最終的に合成された光が均一な色となり難くなる。これに対して、In層等の透明導電層中に1種(1色)の蛍光体を均一に分散させることは比較的容易であり、これを複数層に積層することによって、それぞれの蛍光体による蛍光への変換が均一に行われるため、最終的に合成された光の色も均一なものとなる。 For example, even if three types (three colors) of phosphors are dispersed together in a transparent conductive layer such as an In 2 O 3 layer, the three types of phosphors are uniformly distributed in all parts of the transparent conductive layer. The possibility of dispersion is low, and in an extreme case, phosphors of one color are partially collected due to aggregation or the like, and the mixing ratio tends to be non-uniform. Therefore, it is difficult for the finally synthesized light to have a uniform color. On the other hand, it is relatively easy to uniformly disperse one type (one color) of phosphor in a transparent conductive layer such as an In 2 O 3 layer, and by laminating them in a plurality of layers, Since the phosphor is uniformly converted into fluorescence, the color of the finally synthesized light is also uniform.

また、発光層に近い側の透明導電層でより波長の長い光に変換することにより、吸収の影響を小さくでき、発光層で生じた光を効果的に波長変換することが可能となる。即ち、発光層で生じた光は透明導電層を通過するが、その際一部の光はまず第1波長の光に変換する蛍光体が含まれる透明導電層中で第1波長へ変換され、第1波長(例えば600nm程度)はITO層等の透明導電層による光吸収が小さい波長であるため、第1波長の光は透明導電層にほとんど吸収されることなく外部へ取り出されるため、取り出し効率が高くなる。また、第1波長に変換する蛍光体を含む透明導電層を通過した光は、引き続き第1波長よりも短い波長の第2波長(例えば510nm程度)へ変換する蛍光体を含む透明導電層に達し、そこで第2波長に変換されるが、第2波長も透明導電層による光吸収の小さい波長であるため、第2波長の光も透明導電層にほとんど吸収されることなく外部に取り出されるため、取り出し効率が高くなる。   Moreover, by converting the light having a longer wavelength in the transparent conductive layer closer to the light emitting layer, the influence of absorption can be reduced, and the light generated in the light emitting layer can be effectively wavelength converted. That is, the light generated in the light emitting layer passes through the transparent conductive layer, but at this time, part of the light is first converted to the first wavelength in the transparent conductive layer containing the phosphor that converts the light to the first wavelength, Since the first wavelength (for example, about 600 nm) is a wavelength at which light absorption by the transparent conductive layer such as the ITO layer is small, the light of the first wavelength is extracted outside with almost no absorption by the transparent conductive layer. Becomes higher. In addition, the light that has passed through the transparent conductive layer containing the phosphor that converts to the first wavelength reaches the transparent conductive layer that contains the phosphor that continuously converts to the second wavelength shorter than the first wavelength (for example, about 510 nm). Therefore, the second wavelength is converted to the second wavelength, but since the second wavelength is also a wavelength with small light absorption by the transparent conductive layer, the light of the second wavelength is extracted outside without being almost absorbed by the transparent conductive layer. The extraction efficiency is increased.

また、蛍光体によって変換された光が透明導電層から外部の空気等に向かって進行する際に、界面で反射が生じた場合にも、反射された光は透明導電層中での吸収が小さいため、結局減衰が少ない状態で外部に取り出されることとなる。   In addition, when the light converted by the phosphor travels from the transparent conductive layer toward the outside air or the like, even when reflection occurs at the interface, the reflected light is less absorbed in the transparent conductive layer. Therefore, it will be taken out to the outside with little attenuation after all.

また、最表面側の透明導電層は、さらに波長の短い第3波長(例えば450nm程度)へ変換する蛍光体を含み、変換された光は最も吸収が大きい波長となるが、外部へ放射されるまでの経路が短くなるため、透明導電層による光吸収が比較的大きくても、光の取り出し効率が大きく低下することはない。   Further, the transparent conductive layer on the outermost surface side includes a phosphor that converts to a third wavelength (for example, about 450 nm) having a shorter wavelength, and the converted light has a wavelength with the largest absorption, but is emitted to the outside. Therefore, even if the light absorption by the transparent conductive layer is relatively large, the light extraction efficiency is not greatly reduced.

従って、蛍光体によって変換される光が、発光層に近い側より漸次長波長から短波長に変換されるため、透明導電層での光吸収を極力抑制でき、変換された各波長の光の取り出し効率が高いものとなる。   Therefore, the light converted by the phosphor is gradually converted from a long wavelength to a short wavelength from the side closer to the light emitting layer, so that light absorption in the transparent conductive layer can be suppressed as much as possible, and the converted light of each wavelength is extracted. High efficiency.

また、透明導電層から外部の空気への取り出し効率を高めるために、発光素子の周囲に透明な樹脂をモールドする際も、樹脂には発光層で生じた光ではなく蛍光体によって各波長へ変換された光が到達し通過するため、樹脂の劣化が小さくなる。即ち、窒化ガリウム系化合物半導体から成る発光層で発光する光の波長が紫外光や近紫外光の波長領域である場合、紫外光や近紫外光が蛍光体により波長の長い第1波長の光(赤色光等)や第1波長よりも短波長の光(緑色光や青色光)に変換されて外部に放射されるため、樹脂の劣化が小さくなる。   In addition, when a transparent resin is molded around the light-emitting element in order to increase the extraction efficiency from the transparent conductive layer to the outside air, the resin is converted to each wavelength by the phosphor instead of the light generated in the light-emitting layer. Since the emitted light reaches and passes, the deterioration of the resin is reduced. That is, when the wavelength of light emitted from the light emitting layer made of a gallium nitride compound semiconductor is in the wavelength region of ultraviolet light or near ultraviolet light, the light having the first wavelength (long wavelength due to the fluorescent material) Red light or the like) or light having a wavelength shorter than the first wavelength (green light or blue light) is emitted and radiated to the outside, so that deterioration of the resin is reduced.

また、一層の透明導電層中に異なる波長に変換する蛍光体を複数分散させた場合と異なり、波長の短い光に変換された光が、再度より長波長に変換する蛍光体で再変換されることがほとんどないため、変換の効率も良くなる。   In addition, unlike a case where a plurality of phosphors that convert to different wavelengths are dispersed in one transparent conductive layer, light that has been converted to light having a shorter wavelength is reconverted by a phosphor that converts to a longer wavelength again. Since there is almost nothing, the conversion efficiency is improved.

また、本発明の発光素子は好ましくは、複数の透明導電層は、発光層により生じた光を赤色光に変換する蛍光体を含む透明導電層と、発光層により生じた光を緑色光に変換する蛍光体を含む透明導電層と、発光層により生じた光を青色光に変換する蛍光体を含む透明導電層とが発光層側から順次積層されており、発光層で生じた光を白色光として外部に放射させることから、発光層で発光した光が紫外光や近紫外光の波長領域である場合、光取り出し効率の良い白色光、つまり発光効率のよい白色光を得ることができる。   In the light emitting device of the present invention, preferably, the plurality of transparent conductive layers include a transparent conductive layer including a phosphor that converts light generated by the light emitting layer into red light, and converts light generated by the light emitting layer into green light. A transparent conductive layer containing a fluorescent material and a transparent conductive layer containing a phosphor that converts light generated by the light emitting layer into blue light are sequentially laminated from the light emitting layer side, and the light generated in the light emitting layer is converted into white light. Therefore, when the light emitted from the light emitting layer is in the wavelength region of ultraviolet light or near ultraviolet light, white light with high light extraction efficiency, that is, white light with high light emission efficiency can be obtained.

即ち、発光層で生じた紫外光や近紫外光はまず赤色光に変換され、変換された赤色光は透明導電層でほとんど吸収されることなく外部に取り出される。また、一部が赤色光に変換された残りの紫外光や近紫外光は、緑色光に変換する蛍光体を含む透明導電層を通過した際に緑色光に変換され、緑色光も透明導電層でほとんど減衰されずに外部に取り出される。さらに、残りの紫外光や近紫外光は、最後に青色光に変換する蛍光体を含む透明導電層によって青色光に変換され、ほとんどそのまま外部に取り出される。このようにして、複数の透明導電層を通過するうちに順次変換された赤色光、緑色光及び青色光は、透明導電層で吸収されることなく外部に取り出されるため、赤色光、緑色光及び青色光の混色により白色光を効率良く得ることができる。   That is, ultraviolet light or near ultraviolet light generated in the light emitting layer is first converted into red light, and the converted red light is extracted outside with almost no absorption by the transparent conductive layer. In addition, the remaining ultraviolet light or near ultraviolet light partially converted into red light is converted into green light when passing through a transparent conductive layer containing a phosphor that converts to green light, and the green light is also converted into a transparent conductive layer. It is taken out to the outside with almost no attenuation. Further, the remaining ultraviolet light or near ultraviolet light is converted into blue light by the transparent conductive layer containing a phosphor that is finally converted into blue light, and is almost taken out to the outside as it is. In this way, red light, green light, and blue light that are sequentially converted while passing through the plurality of transparent conductive layers are extracted outside without being absorbed by the transparent conductive layer. White light can be efficiently obtained by mixing blue light.

さらに、紫外光や近紫外光は透明導電層の外側にはほとんど出てこないため、さらなる光取り出し効率の向上のために発光素子の周囲を透明な樹脂でモールドしたとしても、紫外光や近紫外光による樹脂の劣化がなく、長寿命の白色発光の発光素子となる。   Furthermore, since ultraviolet light and near ultraviolet light hardly come out of the transparent conductive layer, even if the periphery of the light emitting element is molded with a transparent resin to further improve the light extraction efficiency, ultraviolet light or near ultraviolet light There is no deterioration of the resin by light, and the light emitting element emits white light with a long lifetime.

また、本発明の発光素子は好ましくは、n型窒化ガリウム系化合物半導体層は、露出した表面に、発光層により生じた光の波長を変換する蛍光体をそれぞれ含む複数の透明導電層が積層されて成るn型電極が形成されており、複数の透明導電層は、n型窒化ガリウム系化合物半導体層に最も近い透明導電層が発光層により生じた光を第1波長の光に変換する蛍光体を含むものであり、n型窒化ガリウム系化合物半導体層から離れるに従って発光層により生じた光を第1波長の光よりもより短波長の光に変換する蛍光体を含む透明導電層が積層されている。即ち、n型電極がp型電極と同じ構成である。この構成により、上記と同様の効果が得られる。   In the light emitting device of the present invention, preferably, the n-type gallium nitride compound semiconductor layer is formed by laminating a plurality of transparent conductive layers each containing a phosphor for converting the wavelength of light generated by the light emitting layer on the exposed surface. And a plurality of transparent conductive layers are phosphors that convert light generated by the light emitting layer into light of a first wavelength from the transparent conductive layer closest to the n-type gallium nitride compound semiconductor layer. And a transparent conductive layer containing a phosphor that converts light generated by the light emitting layer into light having a shorter wavelength than the light having the first wavelength as the distance from the n-type gallium nitride compound semiconductor layer increases. Yes. That is, the n-type electrode has the same configuration as the p-type electrode. With this configuration, the same effect as described above can be obtained.

また、本発明の発光素子は好ましくは、複数の透明導電層は、発光層から離れるに従って厚みが薄くなっていることから、光吸収性の低い順に厚くすることとなり、光吸収をより抑えることができる。   Further, in the light emitting device of the present invention, preferably, the plurality of transparent conductive layers are thinned as they are separated from the light emitting layer, so that the thickness is increased in ascending order of light absorption, thereby further suppressing light absorption. it can.

以下、本発明の発光素子について実施の形態の例を添付図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the light emitting device of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の発光素子の1例を示すものであり、基板10上にバッファ層11を介して窒化ガリウム系化合物半導体をMOCVD法により形成し、さらにその上に蛍光体を含む透明導電層を形成したものである。多層構造の窒化ガリウム系化合物半導体は、n型窒化ガリウム系化合物半導体層12上に、窒化ガリウム系化合物半導体から成る発光層13、及びp型窒化ガリウム系化合物半導体層14が順次積層されており、n型窒化ガリウム系化合物半導体層12上及びp型窒化ガリウム系化合物半導体層14上にそれぞれ、複数の透明導電層15a,15b,15c及び16a,16b,16cが積層されて成るp型電極15及びn型電極16が形成されている。   FIG. 1 shows an example of a light-emitting element according to the present invention. A gallium nitride compound semiconductor is formed on a substrate 10 via a buffer layer 11 by MOCVD, and further a transparent conductive material containing a phosphor thereon. A layer is formed. In the gallium nitride compound semiconductor having a multilayer structure, a light emitting layer 13 made of a gallium nitride compound semiconductor and a p-type gallium nitride compound semiconductor layer 14 are sequentially stacked on an n-type gallium nitride compound semiconductor layer 12. a p-type electrode 15 formed by laminating a plurality of transparent conductive layers 15a, 15b, 15c and 16a, 16b, 16c on the n-type gallium nitride compound semiconductor layer 12 and the p-type gallium nitride compound semiconductor layer 14; An n-type electrode 16 is formed.

本発明の発光素子は、基板10上に、n型窒化ガリウム系化合物半導体層12と、窒化ガリウム系化合物半導体から成る発光層13と、p型窒化ガリウム系化合物半導体層14とが形成されている発光素子において、p型窒化ガリウム系化合物半導体層14は、発光層13により生じた光の波長を変換する蛍光体をそれぞれ含む複数の透明導電層15a,15b,15cが積層されて成るp型電極15が表面に形成されており、複数の透明導電層15a,15b,15cは、発光層13に最も近い透明導電層15aが発光層13により生じた光を第1波長の光に変換する蛍光体17aを含むものであり、発光層13から離れるに従って発光層13により生じた光を第1波長の光よりもより短波長の光に変換する蛍光体17b,17cを含む透明導電層15b,15cが積層されている構成である。   In the light emitting device of the present invention, an n-type gallium nitride compound semiconductor layer 12, a light emitting layer 13 made of a gallium nitride compound semiconductor, and a p-type gallium nitride compound semiconductor layer 14 are formed on a substrate 10. In the light-emitting element, the p-type gallium nitride compound semiconductor layer 14 is a p-type electrode formed by laminating a plurality of transparent conductive layers 15a, 15b, and 15c each containing a phosphor that converts the wavelength of light generated by the light-emitting layer 13. 15 is formed on the surface, and the plurality of transparent conductive layers 15a, 15b, and 15c are phosphors that convert light generated by the light emitting layer 13 into light having the first wavelength by the transparent conductive layer 15a closest to the light emitting layer 13. 17a, and includes phosphors 17b and 17c that convert light generated by the light emitting layer 13 into light having a shorter wavelength than light having the first wavelength as the distance from the light emitting layer 13 increases. Conductive layer 15b, is configured to 15c are stacked.

本発明の発光素子においては、基板10は透明基板であるサファイア(Al)基板を用いてもよいが、その他の透明基板としてシリコンカーバイド(SiC),酸化亜鉛(ZnO),窒化ガリウム(GaN)等から成るものでもよい。 In the light emitting device of the present invention, the substrate 10 may be a sapphire (Al 2 O 3 ) substrate which is a transparent substrate, but as other transparent substrates, silicon carbide (SiC), zinc oxide (ZnO), gallium nitride ( GaN) or the like may be used.

また光透過性のない基板として二硼化ジルコニウム(ZrB)等から成る基板を用いることができる。より具体的には、基板10として、化学式XB(ただし、XはTi,Mg,Al,Hf及びZrのうち少なくとも1種を含む。)で表される二硼化物単結晶から成る基板を用いてもよい。その場合、基板10は、窒化ガリウム系化合物半導体との格子整合性及び熱膨張係数の整合性の点で優れていることを考慮すると、ZrB単結晶からなるものを使用することが好ましい。また、ZrB単結晶において、Zrの一部がTi,Mg,Al,Hf等に置換されているものであってもよい。また、ZrB単結晶において、その結晶性また格子定数が大きく変化しない程度に不純物としてTi,Mg,Al,Hf等を含んでいても構わない。 Further, a substrate made of zirconium diboride (ZrB 2 ) or the like can be used as the substrate that does not transmit light. More specifically, a substrate made of a diboride single crystal represented by the chemical formula XB 2 (where X includes at least one of Ti, Mg, Al, Hf, and Zr) is used as the substrate 10. May be. In that case, considering that the substrate 10 is excellent in terms of lattice matching with the gallium nitride compound semiconductor and thermal expansion coefficient matching, it is preferable to use a substrate made of a ZrB 2 single crystal. In the ZrB 2 single crystal, a part of Zr may be substituted with Ti, Mg, Al, Hf, or the like. Further, the ZrB 2 single crystal may contain Ti, Mg, Al, Hf, etc. as impurities to such an extent that its crystallinity and lattice constant do not change greatly.

本発明において、n型窒化ガリウム系化合物半導体層12は、その露出した表面に、発光層14により生じた光の波長を変換する蛍光体17a〜17cをそれぞれ含む複数の透明導電層16a〜16cが積層されて成るn型電極が形成されており、複数の透明導電層16a〜16cは、n型窒化ガリウム系化合物半導体層12に最も近い透明導電層16aが発光層により生じた光を第1波長の光に変換する蛍光体を含むものであり、n型窒化ガリウム系化合物半導体層12から離れるに従って発光層14により生じた光を第1波長の光よりもより短波長の光に変換する蛍光体17aを含む透明導電層16aが積層されている。即ち、n型電極がp型電極と同じ構成である。この構成により、p型電極の場合と同様の効果が得られる。   In the present invention, the n-type gallium nitride compound semiconductor layer 12 has a plurality of transparent conductive layers 16a to 16c each including phosphors 17a to 17c that convert the wavelength of light generated by the light emitting layer 14 on the exposed surface. A laminated n-type electrode is formed, and the plurality of transparent conductive layers 16 a to 16 c are configured to emit light generated by the light emitting layer from the transparent conductive layer 16 a closest to the n-type gallium nitride compound semiconductor layer 12 at the first wavelength. A phosphor that converts light generated by the light-emitting layer 14 into light having a shorter wavelength than the light having the first wavelength as the distance from the n-type gallium nitride compound semiconductor layer 12 increases. A transparent conductive layer 16a including 17a is laminated. That is, the n-type electrode has the same configuration as the p-type electrode. With this configuration, the same effect as in the case of the p-type electrode can be obtained.

n型窒化ガリウム系化合物半導体層12におけるn型電極が形成される部位は、図1に示すように、発光層13及びp型窒化ガリウム系化合物半導体層14の一部をエッチング除去してn型窒化ガリウム系化合物半導体層12の一部を露出させた部位であってよい。   In the n-type gallium nitride compound semiconductor layer 12, the n-type electrode is formed by etching away a part of the light emitting layer 13 and the p-type gallium nitride compound semiconductor layer 14 as shown in FIG. It may be a portion where a part of the gallium nitride compound semiconductor layer 12 is exposed.

また、基板10が導電性のものである場合、n型窒化ガリウム系化合物半導体層12上に形成するn型電極16は不要となり、基板10の裏面(下面)に直接n型電極16を形成することが可能となる。   Further, when the substrate 10 is conductive, the n-type electrode 16 formed on the n-type gallium nitride compound semiconductor layer 12 is not necessary, and the n-type electrode 16 is formed directly on the back surface (lower surface) of the substrate 10. It becomes possible.

また、基板10を除去した場合には、n型窒化ガリウム系化合物半導体層12の基板10を除去した面にn型電極を形成することもできる。   In addition, when the substrate 10 is removed, an n-type electrode can be formed on the surface of the n-type gallium nitride compound semiconductor layer 12 from which the substrate 10 is removed.

また、n型窒化ガリウム系化合物半導体層12上にn型電極16を形成する場合においても、n型電極16は必ずしも透明導電層16a,16b,16cから成る必要はない。即ち、発光層13から生じた光は、基板10もしくはp型窒化ガリウム系化合物半導体層14の方に進行し、n型窒化ガリウム系化合物半導体層12上のn型電極16に達する光は少ないからである。従って、この場合、n型電極16は、チタン(Ti)層/アルミニウム(Al)層/ニッケル(Ni)層/金(Au)層等の透明導電層ではない公知の金属電極から形成されていてもよい。しかし、光取り出し効率の向上のためには、本発明の透明導電層から成るn型電極16が好ましい。   Further, even when the n-type electrode 16 is formed on the n-type gallium nitride compound semiconductor layer 12, the n-type electrode 16 does not necessarily need to be composed of the transparent conductive layers 16a, 16b, and 16c. That is, light generated from the light emitting layer 13 travels toward the substrate 10 or the p-type gallium nitride compound semiconductor layer 14, and little light reaches the n-type electrode 16 on the n-type gallium nitride compound semiconductor layer 12. It is. Therefore, in this case, the n-type electrode 16 is formed of a known metal electrode that is not a transparent conductive layer such as titanium (Ti) layer / aluminum (Al) layer / nickel (Ni) layer / gold (Au) layer. Also good. However, in order to improve the light extraction efficiency, the n-type electrode 16 made of the transparent conductive layer of the present invention is preferable.

また、n型電極16が上記のいずれの構成であっても、光を基板10と反対方向側から取り出すために、基板10と発光層13の間に金属からなる反射層、窒化ガリウムアルミニウム(AlGaN)と窒化ガリウム(GaN)等からなるブラッグ反射層(DBR:Distributed Bragg Reflector)等を設けることができる。   In addition, regardless of the configuration of the n-type electrode 16, in order to extract light from the side opposite to the substrate 10, a reflective layer made of metal between the substrate 10 and the light emitting layer 13, gallium aluminum nitride (AlGaN ) And gallium nitride (GaN) or the like, a Bragg reflective layer (DBR: Distributed Bragg Reflector) or the like can be provided.

また、バッファ層11は、窒化ガリウム系化合物半導体の格子定数や熱膨張係数が基板10の格子定数や熱膨張係数に近い場合は必ずしも形成する必要はないが、バッファ層11を形成する場合、窒化ガリウム(GaN),窒化アルミニウム(AlN),またはこれらの混晶である窒化ガリウムアルミニウム(AlGaN)から成るものを形成することができる。バッファ層11を形成する際の基板10の温度は400℃〜800℃程度である。   The buffer layer 11 is not necessarily formed when the lattice constant or thermal expansion coefficient of the gallium nitride-based compound semiconductor is close to the lattice constant or thermal expansion coefficient of the substrate 10, but when the buffer layer 11 is formed, nitriding is performed. One made of gallium (GaN), aluminum nitride (AlN), or a mixed crystal thereof, gallium aluminum nitride (AlGaN), can be formed. The temperature of the substrate 10 when forming the buffer layer 11 is about 400 ° C. to 800 ° C.

バッファ層11の形成後に基板10の温度を1000℃〜1200℃程度に上げ、n型窒化ガリウム系化合物半導体層12を引き続き形成する。n型窒化ガリウム系化合物半導体層12は、例えばGaN層であるが、AlNと窒化インジウム(InN)との混晶組成である、AlGaN層やInGaN層等であってもよい。また、n型窒化ガリウム系化合物半導体層12等の窒化ガリウム系化合物半導体の形成方法は、MOCVD法の他にも分子線エピタキシー(MBE)法やハイドライド気相成長(HVPE)法、パルスレーザデポジション(PLD)法等が挙げられる。   After the formation of the buffer layer 11, the temperature of the substrate 10 is raised to about 1000 ° C. to 1200 ° C., and the n-type gallium nitride compound semiconductor layer 12 is subsequently formed. The n-type gallium nitride compound semiconductor layer 12 is, for example, a GaN layer, but may be an AlGaN layer, an InGaN layer, or the like having a mixed crystal composition of AlN and indium nitride (InN). In addition to the MOCVD method, a method for forming a gallium nitride compound semiconductor such as the n-type gallium nitride compound semiconductor layer 12 includes a molecular beam epitaxy (MBE) method, a hydride vapor phase epitaxy (HVPE) method, and pulsed laser deposition. (PLD) method etc. are mentioned.

発光層13は、例えば、InGaN層,GaN層,AlGaN層等から成る、障壁層、井戸層から構成された量子井戸構造(MQW:Multi Quantum Well)からなっている。また、例えば、障壁層としてGaN層、井戸層としてInGaN層を用いることができる。障壁層、井戸層のIn組成、膜厚、量子井戸構造の繰り返し数により、発光波長は決定される。   The light emitting layer 13 has, for example, a quantum well structure (MQW: Multi Quantum Well) composed of a barrier layer and a well layer made of an InGaN layer, a GaN layer, an AlGaN layer, or the like. For example, a GaN layer can be used as the barrier layer, and an InGaN layer can be used as the well layer. The emission wavelength is determined by the In composition of the barrier layer and the well layer, the film thickness, and the number of repetitions of the quantum well structure.

AlGa1−xN(0≦x≦1)等の組成から成るp型窒化ガリウム系化合物半導体層14を形成した後に、蛍光体17を含んだp型電極15を形成する。p型電極15を成す透明導電層15a〜15cは、導電性酸化物等から成り、例えば、ITO(Sn添加In)層、酸化錫膜(SnO)層、酸化インジウム膜(In)層、酸化ガリウム(Ga)層、酸化ゲルマニウム(Ge,GeO)層、酸化亜鉛(ZnO)層、CuMO(M:Al,Ga,In,Sc,Y,Laのいずれかから成る)層、SrCu層を挙げることができ、またこれらに不純物を添加したものであってもよい。特に、光の透過率とp型窒化ガリウム系化合物半導体層とのコンタクト抵抗の観点からITO層がよい。 After the p-type gallium nitride compound semiconductor layer 14 having a composition such as Al x Ga 1-x N (0 ≦ x ≦ 1) is formed, the p-type electrode 15 including the phosphor 17 is formed. The transparent conductive layers 15a to 15c constituting the p-type electrode 15 are made of a conductive oxide or the like, for example, an ITO (Sn-added In 2 O 3 ) layer, a tin oxide film (SnO 2 ) layer, an indium oxide film (In 2). O 3 ) layer, gallium oxide (Ga 2 O 3 ) layer, germanium oxide (Ge 2 O 3 , GeO) layer, zinc oxide (ZnO) layer, CuMO 2 (M: Al, Ga, In, Sc, Y, La) Or a SrCu 2 O 2 layer, or an impurity added to these layers. In particular, an ITO layer is preferable from the viewpoint of light transmittance and contact resistance between the p-type gallium nitride compound semiconductor layer.

p型電極15とn型電極16は同じものでもよく、また両者で異なっていてもよい。例えば、p型窒化ガリウム系化合物半導体層上にはITO層、n型窒化ガリウム系化合物半導体層上には酸化亜鉛(ZnO)層等を形成する。   The p-type electrode 15 and the n-type electrode 16 may be the same or different. For example, an ITO layer is formed on the p-type gallium nitride compound semiconductor layer, and a zinc oxide (ZnO) layer is formed on the n-type gallium nitride compound semiconductor layer.

p型電極15は、発光層13で生じた光(基本光)を第1波長の光(赤色光)に変換する蛍光体17aを含む透明導電層15a、基本光を緑色光に変換する蛍光体17bを含む透明導電層15b、基本光を青色光に変換する蛍光体17cを含む15cからなっている。蛍光体を含む透明導電層15a〜15cはそれぞれ、たとえばゾルゲル法で形成する際に蛍光体17a〜17cの粒子を溶媒中に混合し、攪拌した後にp型窒化ガリウム系化合物半導体層14上に塗布し、乾燥し、焼成することによって、形成することができる。また、スプレー法等によっても同様に形成することができ、溶媒中に蛍光体17a〜17cの粒子を分散させ、スプレー塗布し、乾燥し、焼成することによって、蛍光体17a〜17cの粒子が分散した透明導電層15a〜15cを得ることができる。   The p-type electrode 15 includes a transparent conductive layer 15a including a phosphor 17a that converts light (basic light) generated in the light emitting layer 13 into light having a first wavelength (red light), and a phosphor that converts basic light into green light. The transparent conductive layer 15b containing 17b, and 15c containing the fluorescent substance 17c which converts basic light into blue light. The transparent conductive layers 15a to 15c containing the phosphor are respectively applied to the p-type gallium nitride compound semiconductor layer 14 after mixing the particles of the phosphors 17a to 17c in a solvent when formed by, for example, a sol-gel method. Then, it can be formed by drying and baking. Further, it can be formed in the same manner by a spray method or the like. The particles of the phosphors 17a to 17c are dispersed by dispersing the particles of the phosphors 17a to 17c in a solvent, spray coating, drying, and firing. The transparent conductive layers 15a to 15c thus obtained can be obtained.

多層構造のp型電極15を形成するには、基本光を赤色光に変換する蛍光体を含む透明導電層15aを形成した後に例えば200〜400℃程度で30分仮焼し、次に基本光を緑色光に変換する蛍光体を含む溶媒を塗布し、同様に仮焼して透明導電層15bを形成する。そして、最後に基本光を青色光に変換する蛍光体を含む溶媒を塗布し、仮焼して透明導電層15cを形成した後、引き続きより高い温度(500℃〜800℃程度)で加熱することにより、形成することができる。n型電極16を構成する透明導電層16a〜16cについても同様にして形成することができる。   In order to form the p-type electrode 15 having a multilayer structure, after forming a transparent conductive layer 15a containing a phosphor that converts basic light into red light, calcining is performed at, for example, about 200 to 400 ° C. for 30 minutes, and then basic light is formed. A solvent containing a phosphor that converts green light into green light is applied and calcined in the same manner to form the transparent conductive layer 15b. Finally, after applying a solvent containing a phosphor that converts basic light into blue light and calcining to form the transparent conductive layer 15c, heating is continued at a higher temperature (about 500 ° C. to 800 ° C.). Can be formed. The transparent conductive layers 16a to 16c constituting the n-type electrode 16 can be formed in the same manner.

透明導電層15中に含有させる蛍光体17a〜17cとしては、公知の蛍光体を用いることができる。例えば、紫外光や近紫外光等である基本光を赤色光に変換し得る蛍光体としては、YS:Eu、BaMgSi:Eu,Mn等が挙げられる。また、基本光を緑色光に変換し得る蛍光体としては、ZnS:Cu,Al、(Ba,Mg)Al1017:Eu,Mn、(Ba,Sr)SiO:Eu等が挙げられる。また、基本光を青色光に変換し得る蛍光体としては、(Sr,Ca,Ba,Ba)10(PO12:Eu、(Ba,Mg)Al1017:Eu等を挙げることができる。 As the phosphors 17a to 17c to be contained in the transparent conductive layer 15, known phosphors can be used. For example, Y 2 O 2 S: Eu, Ba 3 MgSi 2 O 8 : Eu, Mn and the like can be cited as phosphors capable of converting basic light such as ultraviolet light and near ultraviolet light into red light. Examples of the phosphor that can convert basic light into green light include ZnS: Cu, Al, (Ba, Mg) Al 10 O 17 : Eu, Mn, (Ba, Sr) 2 SiO 4 : Eu, and the like. . Examples of phosphors that can convert basic light into blue light include (Sr, Ca, Ba, Ba) 10 (PO 4 ) 6 C 12 : Eu, (Ba, Mg) Al 10 O 17 : Eu, and the like. be able to.

なお、上記のA:Bという形態の式は、BドープA(Bが微量混入されたA)というものを示す。   The above-mentioned formula of A: B indicates B dope A (A in which a small amount of B is mixed).

各蛍光体の平均粒径は、平均粒径が大きすぎると、透明導電層15a〜15cの厚みが蛍光体の粒径によって決定され厚くなるため、1μm未満であることが好ましい。   The average particle size of each phosphor is preferably less than 1 μm because if the average particle size is too large, the thickness of the transparent conductive layers 15a to 15c is determined by the particle size of the phosphor and becomes thick.

各透明導電層15a〜15cにおける蛍光体17a〜17cの含有率は、20重量%〜80重量%がよい。20重量%未満では、蛍光に変換されずに透過する光が多くなり、80重量%を超えると、次の層へ透過する基本光が少なくなるため、次の層において発生する蛍光が小さくなる。   The content of the phosphors 17a to 17c in each of the transparent conductive layers 15a to 15c is preferably 20% by weight to 80% by weight. If it is less than 20% by weight, the amount of light that is transmitted without being converted into fluorescence increases, and if it exceeds 80% by weight, the amount of basic light that is transmitted to the next layer decreases, so that the fluorescence generated in the next layer is reduced.

また各層の蛍光体17a〜17cの含有率は各層で異なっていても構わない。各層の含有率は使う蛍光体の効率等により異なるため一概に決定できないが、色度を見ながら調整することが可能である。   Further, the content of the phosphors 17a to 17c in each layer may be different in each layer. The content of each layer varies depending on the efficiency of the phosphor used, etc., and cannot be determined unconditionally, but can be adjusted while looking at the chromaticity.

透明導電層15a〜15cのそれぞれの厚みについては、あまり厚いと透明導電層15a〜15cでの光吸収が生じるため10μm以下がよく、さらには2μm以下が好ましい。また、各層の厚みはすべて同じである必要はなく、異なっていても良いが、光吸収の観点から、光吸収性の低い順に厚くすることができる。即ち、基本光を赤色光に変換する蛍光体17aを含む透明導電層15aが最も厚く、基本光を緑色光に変換する蛍光体17bを含む透明導電層15b、基本光を青色光に変換する蛍光体17cを含む透明導電層15cの順に厚くなっていることが好ましい。このように、複数の透明導電層15a〜15cは、発光層13から離れるに従って厚みが薄くなっていることから、光吸収性の低い順に厚くすることとなり、光吸収をより抑えることができる。   The thickness of each of the transparent conductive layers 15a to 15c is preferably 10 μm or less, and more preferably 2 μm or less because light absorption occurs in the transparent conductive layers 15a to 15c if the thickness is too large. Further, the thicknesses of the respective layers do not have to be the same and may be different from each other, but from the viewpoint of light absorption, the thickness can be increased in ascending order of light absorption. That is, the transparent conductive layer 15a including the phosphor 17a that converts basic light into red light is the thickest, the transparent conductive layer 15b including the phosphor 17b that converts basic light into green light, and the fluorescence that converts basic light into blue light. The transparent conductive layer 15c including the body 17c is preferably thicker in that order. As described above, since the plurality of transparent conductive layers 15a to 15c become thinner as they move away from the light emitting layer 13, the thickness is increased in ascending order of light absorption, and light absorption can be further suppressed.

また、最表面の透明導電層15cは、表面に凹凸構造が形成されていてもよい。その場合、透明導電層と周囲の空気や樹脂との屈折率差を見かけ上傾斜的に変化させることができ、光の取り出し効率をさらに高め得るという効果がある。   The outermost transparent conductive layer 15c may have a concavo-convex structure on the surface. In that case, the refractive index difference between the transparent conductive layer and the surrounding air or resin can be apparently changed in an inclined manner, and the light extraction efficiency can be further improved.

さらに、ワイヤボンディングやプローバ測定を行うために、p型電極15及びn型電極16の上にパッド電極を設けてもよい。パッド電極としては、例えばTi層/Au層の2層構造のもの等を使用することができる。   Furthermore, a pad electrode may be provided on the p-type electrode 15 and the n-type electrode 16 in order to perform wire bonding or prober measurement. As the pad electrode, for example, a two-layer structure of Ti layer / Au layer can be used.

そして、多数個の発光素子領域が形成された母基板にダイシングまたはスクライブ等を施して、各発光素子をチップ状に分離することにより、図1に示す発光素子が得られる。   Then, dicing or scribing is performed on the mother substrate on which a large number of light emitting element regions are formed, and each light emitting element is separated into chips, whereby the light emitting element shown in FIG. 1 is obtained.

発光素子は例えばセラミックパーケージ等に収容され、パッド電極をワイヤボンディング等で引き出した後に透明な樹脂で発光素子を覆い、実装される。樹脂には蛍光体が含まれていなくても十分に白色光を得ることができるが、更なる効率向上のために、透明導電層中で変換されなかった光を樹脂中で変換するために、樹脂は蛍光体を含んでいてもよい。この場合でも製造工程は増えることなく、また漏れてくる紫外光や近紫外光は従来の構成の発光素子よりは極端に少ないため、樹脂の劣化も従来の構成より小さくなる。   The light emitting element is accommodated in, for example, a ceramic package, and the pad electrode is pulled out by wire bonding or the like, and then the light emitting element is covered with a transparent resin and mounted. Even if the resin does not contain a phosphor, white light can be obtained sufficiently, but in order to further improve efficiency, in order to convert light that was not converted in the transparent conductive layer in the resin, The resin may contain a phosphor. Even in this case, the number of manufacturing processes does not increase, and the amount of leaking ultraviolet light and near ultraviolet light is extremely smaller than that of the light emitting element having the conventional structure, so that the deterioration of the resin is smaller than that of the conventional structure.

このような発光素子は次のように動作する。即ち、発光層13を含む窒化ガリウム系化合物半導体にバイアス電流を流して、発光層13で波長350〜400nm程度の紫外光〜近紫外光を発生させ、発光素子の外側にその紫外光〜近紫外光を取り出すように動作する。   Such a light emitting device operates as follows. That is, a bias current is applied to the gallium nitride compound semiconductor including the light emitting layer 13 to generate ultraviolet light to near ultraviolet light having a wavelength of about 350 to 400 nm in the light emitting layer 13, and the ultraviolet light to near ultraviolet light outside the light emitting element. Operates to extract light.

本発明の発光素子は、以上のような構成にすることによって、発光層で生じた光を発光層から近い方の透明導電層から長波長の光に変換することにより、透明導電層での光吸収、減衰を抑制でき、光取り出し効率の高い、発光効率の優れた白色光の発光素子を得ることが可能となる。また、白色光の発光素子において、集光性を高めるために透明な樹脂等に凹面鏡等の光反射部材を設けることもできる。このような照明装置は、従来の蛍光灯等よりも消費電力が小さく、小型であることから、小型で高輝度の照明装置として有効である。   The light-emitting element of the present invention is configured as described above, and converts light generated in the light-emitting layer from light from the transparent conductive layer closer to the light-emitting layer to light having a longer wavelength. Absorption and attenuation can be suppressed, and a white light emitting element with high light extraction efficiency and excellent light emission efficiency can be obtained. Further, in a white light emitting element, a light reflecting member such as a concave mirror can be provided in a transparent resin or the like in order to improve the light collecting property. Such an illuminating device consumes less power than a conventional fluorescent lamp or the like, and is small in size. Therefore, the illuminating device is effective as a small and high-luminance lighting device.

なお、本発明は上記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を施すことができる。   In addition, this invention is not limited to said embodiment, A various change can be given in the range which does not deviate from the summary of this invention.

本発明の発光素子について実施の形態の例を示す断面図である。It is sectional drawing which shows the example of embodiment about the light emitting element of this invention. 従来の発光素子の断面図である。It is sectional drawing of the conventional light emitting element.

符号の説明Explanation of symbols

10:基板
11:バッファ層
12:n型窒化ガリウム系化合物半導体層
13:発光層
14:p型窒化ガリウム系化合物半導体層
15:p型電極
16:n型電極
17:蛍光体
17a,17b,17c:蛍光体
10: substrate 11: buffer layer 12: n-type gallium nitride compound semiconductor layer 13: light emitting layer 14: p-type gallium nitride compound semiconductor layer 15: p-type electrode 16: n-type electrode 17: phosphors 17a, 17b, 17c : Phosphor

Claims (4)

基板上に、n型窒化ガリウム系化合物半導体層と、窒化ガリウム系化合物半導体から成る発光層と、p型窒化ガリウム系化合物半導体層とが形成されている発光素子において、前記p型窒化ガリウム系化合物半導体層は、前記発光層により生じた光の波長を変換する蛍光体をそれぞれ含む複数の透明導電層が積層されて成るp型電極が表面に形成されており、前記複数の透明導電層は、前記発光層に最も近い前記透明導電層が前記発光層により生じた光を第1波長の光に変換する蛍光体を含むものであり、前記発光層から離れるに従って前記発光層により生じた光を前記第1波長の光よりもより短波長の光に変換する蛍光体を含む前記透明導電層が積層されていることを特徴とする発光素子。   In a light emitting device in which an n-type gallium nitride compound semiconductor layer, a light emitting layer made of a gallium nitride compound semiconductor, and a p type gallium nitride compound semiconductor layer are formed on a substrate, the p type gallium nitride compound The semiconductor layer has a p-type electrode formed by laminating a plurality of transparent conductive layers each containing a phosphor that converts the wavelength of light generated by the light emitting layer, and the plurality of transparent conductive layers are: The transparent conductive layer closest to the light emitting layer includes a phosphor that converts light generated by the light emitting layer into light having a first wavelength, and the light generated by the light emitting layer as the distance from the light emitting layer increases. A light-emitting element, wherein the transparent conductive layer including a phosphor that converts light having a shorter wavelength than light having a first wavelength is laminated. 前記複数の透明導電層は、前記発光層により生じた光を赤色光に変換する蛍光体を含む透明導電層と、前記発光層により生じた光を緑色光に変換する蛍光体を含む透明導電層と、前記発光層により生じた光を青色光に変換する蛍光体を含む透明導電層とが前記発光層側から順次積層されており、前記発光層で生じた光を白色光として外部に放射させることを特徴とする請求項1記載の発光素子。   The plurality of transparent conductive layers include a transparent conductive layer including a phosphor that converts light generated by the light emitting layer into red light, and a transparent conductive layer that includes a phosphor that converts light generated by the light emitting layer into green light. And a transparent conductive layer containing a phosphor that converts light generated by the light emitting layer into blue light are sequentially laminated from the light emitting layer side, and the light generated in the light emitting layer is emitted as white light to the outside. The light-emitting element according to claim 1. 前記n型窒化ガリウム系化合物半導体層は、露出した表面に、前記発光層により生じた光の波長を変換する蛍光体をそれぞれ含む複数の透明導電層が積層されて成るn型電極が形成されており、前記複数の透明導電層は、前記n型窒化ガリウム系化合物半導体層に最も近い前記透明導電層が前記発光層により生じた光を第1波長の光に変換する蛍光体を含むものであり、前記n型窒化ガリウム系化合物半導体層から離れるに従って前記発光層により生じた光を前記第1波長の光よりもより短波長の光に変換する蛍光体を含む前記透明導電層が積層されていることを特徴とする請求項1または2記載の発光素子。   The n-type gallium nitride compound semiconductor layer has an n-type electrode formed by laminating a plurality of transparent conductive layers each containing a phosphor that converts the wavelength of light generated by the light-emitting layer on the exposed surface. The plurality of transparent conductive layers include a phosphor that converts light generated by the light emitting layer into light having a first wavelength by the transparent conductive layer closest to the n-type gallium nitride compound semiconductor layer. The transparent conductive layer including a phosphor that converts light generated by the light emitting layer into light having a shorter wavelength than the light having the first wavelength as the distance from the n-type gallium nitride compound semiconductor layer is increased. The light-emitting element according to claim 1 or 2. 前記複数の透明導電層は、前記発光層から離れるに従って厚みが薄くなっていることを特徴とする請求項1乃至3のいずれか記載の発光素子。   4. The light-emitting element according to claim 1, wherein the plurality of transparent conductive layers have a thickness that decreases with distance from the light-emitting layer. 5.
JP2006279954A 2006-10-13 2006-10-13 Light emitting element Pending JP2008098486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006279954A JP2008098486A (en) 2006-10-13 2006-10-13 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006279954A JP2008098486A (en) 2006-10-13 2006-10-13 Light emitting element

Publications (1)

Publication Number Publication Date
JP2008098486A true JP2008098486A (en) 2008-04-24

Family

ID=39380998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006279954A Pending JP2008098486A (en) 2006-10-13 2006-10-13 Light emitting element

Country Status (1)

Country Link
JP (1) JP2008098486A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095531A1 (en) * 2009-02-18 2010-08-26 独立行政法人産業技術総合研究所 Semiconductor light emitting diode
WO2011067987A1 (en) * 2009-12-01 2011-06-09 シャープ株式会社 Light source package, illumination device, display device, and television receiving device
WO2012048616A1 (en) * 2010-10-15 2012-04-19 深圳市瑞丰光电子股份有限公司 Method for manufacturing led chip, led chip, and led
JPWO2012057330A1 (en) * 2010-10-29 2014-05-12 株式会社光波 Light emitting device
WO2014172183A1 (en) * 2013-04-15 2014-10-23 Nthdegree Technologies Worldwide Inc. Light emitting diode with a conductive phosphor electrode and a method for its fabrication
CN104300054A (en) * 2013-07-15 2015-01-21 Lg伊诺特有限公司 Light emitting diode and light emitting diode package
JP2015095601A (en) * 2013-11-13 2015-05-18 日亜化学工業株式会社 Light emitting device and light emitting device manufacturing method
CN111129165A (en) * 2019-12-05 2020-05-08 中国电子科技集团公司第十三研究所 Schottky diode and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164576A (en) * 2000-11-28 2002-06-07 Hitachi Cable Ltd Light emitting diode
JP2002203991A (en) * 2001-10-19 2002-07-19 Toshiba Corp Semiconductive light emitting device
JP2002353499A (en) * 2001-05-23 2002-12-06 Hitachi Cable Ltd Semiconductor light-emitting device
JP2004071357A (en) * 2002-08-06 2004-03-04 Shigeo Fujita Lighting device
JP2004179644A (en) * 2002-11-12 2004-06-24 Nichia Chem Ind Ltd Phosphor lamination and light source using the same
JP2005191326A (en) * 2003-12-26 2005-07-14 Nichia Chem Ind Ltd Semiconductor light emitting device
JP2006179618A (en) * 2004-12-21 2006-07-06 Fujikura Ltd Semiconductor light emitting device and its manufacturing method
JP2006261554A (en) * 2005-03-18 2006-09-28 Kyocera Corp Light emitting diode device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164576A (en) * 2000-11-28 2002-06-07 Hitachi Cable Ltd Light emitting diode
JP2002353499A (en) * 2001-05-23 2002-12-06 Hitachi Cable Ltd Semiconductor light-emitting device
JP2002203991A (en) * 2001-10-19 2002-07-19 Toshiba Corp Semiconductive light emitting device
JP2004071357A (en) * 2002-08-06 2004-03-04 Shigeo Fujita Lighting device
JP2004179644A (en) * 2002-11-12 2004-06-24 Nichia Chem Ind Ltd Phosphor lamination and light source using the same
JP2005191326A (en) * 2003-12-26 2005-07-14 Nichia Chem Ind Ltd Semiconductor light emitting device
JP2006179618A (en) * 2004-12-21 2006-07-06 Fujikura Ltd Semiconductor light emitting device and its manufacturing method
JP2006261554A (en) * 2005-03-18 2006-09-28 Kyocera Corp Light emitting diode device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095531A1 (en) * 2009-02-18 2010-08-26 独立行政法人産業技術総合研究所 Semiconductor light emitting diode
JP5354622B2 (en) * 2009-02-18 2013-11-27 独立行政法人産業技術総合研究所 Semiconductor light emitting diode
US8659039B2 (en) 2009-02-18 2014-02-25 National Institute Of Advanced Industrial Science And Technology Semiconductor light emitting diode
WO2011067987A1 (en) * 2009-12-01 2011-06-09 シャープ株式会社 Light source package, illumination device, display device, and television receiving device
WO2012048616A1 (en) * 2010-10-15 2012-04-19 深圳市瑞丰光电子股份有限公司 Method for manufacturing led chip, led chip, and led
JPWO2012057330A1 (en) * 2010-10-29 2014-05-12 株式会社光波 Light emitting device
WO2014172183A1 (en) * 2013-04-15 2014-10-23 Nthdegree Technologies Worldwide Inc. Light emitting diode with a conductive phosphor electrode and a method for its fabrication
US9397265B2 (en) 2013-04-15 2016-07-19 Nthdegree Technologies Worldwide Inc. Layered conductive phosphor electrode for vertical LED and method for forming same
CN104300054A (en) * 2013-07-15 2015-01-21 Lg伊诺特有限公司 Light emitting diode and light emitting diode package
EP2827391A1 (en) * 2013-07-15 2015-01-21 LG Innotek Co., Ltd. Light emitting diode and light emitting diode package
US9627584B2 (en) 2013-07-15 2017-04-18 Lg Innotek Co., Ltd. Light emitting device and light emitting device package
JP2015095601A (en) * 2013-11-13 2015-05-18 日亜化学工業株式会社 Light emitting device and light emitting device manufacturing method
CN111129165A (en) * 2019-12-05 2020-05-08 中国电子科技集团公司第十三研究所 Schottky diode and preparation method thereof
CN111129165B (en) * 2019-12-05 2023-11-28 中国电子科技集团公司第十三研究所 Schottky diode and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5000612B2 (en) Gallium nitride light emitting diode
KR102415331B1 (en) light emitting diode(LED) package and apparatus including the same
JP5918221B2 (en) LED chip manufacturing method
TWI447966B (en) Semiconductor light emitting device and method of fabricating semiconductor light emitting device
TWI430480B (en) Light emitting device
JP6062431B2 (en) Semiconductor light emitting device
JP5151301B2 (en) Semiconductor light emitting device and manufacturing method thereof
US9099624B2 (en) Semiconductor light emitting device and package
US8426843B2 (en) Radiation-emitting semiconductor body
JP2009088299A (en) Light-emitting element and light-emitting device provided with the element
JP2008098486A (en) Light emitting element
US8395173B2 (en) Semiconductor light-emitting element, method of manufacturing same, and light-emitting device
JP2008300621A (en) Semiconductor light-emitting element and its manufacturing method
TWI420699B (en) Light emitting device having vertical structure and method for manufacturing the same
KR20230118056A (en) Led lighting apparatus having improved color lendering and led filament
KR101439153B1 (en) Led chip with curvature board and led package using the same
JP2010171341A (en) Semiconductor light emitting element
JP5983068B2 (en) Semiconductor light emitting element and light emitting device
EP4254522A1 (en) Single-chip multi-band light-emitting diode, and light-emitting device and light-emitting module having same
US20220165923A1 (en) Cover structure arrangements for light emitting diode packages
US9923119B2 (en) White LED chip and white LED packaging device
US20170170369A1 (en) Surface mountable light emitting diode devices
US20110062472A1 (en) Wavelength-converted semiconductor light emitting device
US20220216188A1 (en) Light emitting device and light emitting module having the same
US20230395760A1 (en) Passivation structures for light-emitting diode chips

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120117