JP2004171951A - 有機半導体素子用陽極 - Google Patents

有機半導体素子用陽極 Download PDF

Info

Publication number
JP2004171951A
JP2004171951A JP2002336928A JP2002336928A JP2004171951A JP 2004171951 A JP2004171951 A JP 2004171951A JP 2002336928 A JP2002336928 A JP 2002336928A JP 2002336928 A JP2002336928 A JP 2002336928A JP 2004171951 A JP2004171951 A JP 2004171951A
Authority
JP
Japan
Prior art keywords
layer
organic
electrode layer
anode
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002336928A
Other languages
English (en)
Other versions
JP4248853B2 (ja
Inventor
Yasuyuki Oyagi
康 之 大八木
Toshitaka Mori
利 隆 森
Junji Kido
戸 淳 二 城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2002336928A priority Critical patent/JP4248853B2/ja
Publication of JP2004171951A publication Critical patent/JP2004171951A/ja
Application granted granted Critical
Publication of JP4248853B2 publication Critical patent/JP4248853B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】製造プロセスにおいて生じる有機半導体素子特性のバラツキを低減し、かつ当該素子を高温条件下で使用する場合であっても素子特性に経時変化の少ない安定した有機半導体素子用陽極を提供する。
【解決手段】陽極と有機層と陰極とからなるトップエミッション型の有機半導体素子に使用される陽極であって、導電性電極層と酸化防止電極層と正孔注入金属酸化物層とがこの順で形成されてなることを特徴とする。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は有機電界発光素子、有機トランジスター素子、有機太陽電池等の有機半導体素子用陽極、およびその製造方法に関する。
【0002】
【従来技術】
代表的な有機半導体素子の例として電界発光を利用した有機電界発光素子(以下、有機EL素子という。)は、自己発光のため視認性が高く、かつ完全固体素子であるため、耐衝撃性に優れるなどの特徴を有することから、各種表示装置における発光素子としての利用が注目されている。
【0003】
このようなEL素子には、発光材料として無機化合物を用いる無機EL素子と、有機化合物を用いる有機EL素子とがある。このうち、有機EL素子は、駆動電圧を大幅に低くした小型化が容易であるため、次世代の表示素子としてその実用化研究が積極的になされている。有機EL素子の構成は、基板側から陽極/有機層/陰極の積層を基本とし、ガラス板等の基材上に、透明陽極を形成する構成が通常採用されている。この場合、発光は基材側に取り出される、いわゆる「下面発光素子」となる。
【0004】
近年、陰極を透明にして発光を陰極側から取り出す、いわゆるトップエミッション型である「上面発光素子」の試みがなされている。当該上面発光素子では、陰極と共に陽極も透明にすれば、全体として透明な発光素子とすることができる。このように、陽極に透明電極を用いることにより、発光素子の背景色として任意な色を採用できるため、発光時以外もカラフルなディスプレイとすることが可能で、表示の装飾性が改善される。また背景色として黒を採用した場合には、発光時のコントラストを向上させることができる。さらに、カラーフィルタや色変換層を用いる場合は、発光素子の上にかかるフィルタ等を配置することが可能となる。アクディブ駆動表示装置においては、トップエミッション型にすることにより、TFTにより有機層で発光した光が遮へいされることがないため開口率の高い表示装置ができる。
【0005】
一方、このような上面発光素子では陽極の透明化とは別に、電極低抵抗化のため、金属の陽極など様々な陽極材料の検討がされている。有機EL素子以外の有機半導体素子一般にも言えることであるが、陽極材料としては仕事関数が4.8eV以上の導伝性を示すものであれば特に制限がないとされている。特開平10−162959号公報や特開2001−43980号公報には、陽極材料として、黒色の半導性の酸化物であるCr ,Pr ,NiO,Mn,MnO等を用いることができることが開示されている(特許文献1および2参照)。
【0006】
また、特開2002−216976号公報では、陽極の構成として、下部電極上に下部電極の酸化物を緩衝薄膜層として形成することで下部電極の表面の粗さを均一化し、漏れ電流やダークスポットの発生を抑制している(特許文献3参照)。当該緩衝薄膜層は、正孔注入金属酸化物、特にクロムの酸化物を使用してスパッタリング処理や熱処理によって形成される。なお、緩衝薄膜層としては、酸化クロム以外にも、酸化モリブデンや酸化ニッケルが挙げられている。
【0007】
【特許文献1】
特開平10−162959号公報
【特許文献2】
特開2001−43980号公報
【特許文献3】
特開2002−216976号公報
【0008】
【発明が解決しようとする課題】
陽極として上記の文献に開示されたような、金属およびその金属酸化物を用いた場合、有機層への正孔注入特性は、前記正孔注入金属酸化物の膜厚に依存する。
【0009】
しかしながら、金属酸化膜の下の導伝性金属材料等によっては、基板洗浄や有機層形成等の熱プロセスにより、当該金属酸化物層が拡大することが懸念され、また素子を高温化で使用するときの有機層中等の残留酸素等でも金属酸化物層の拡大の可能性がある。
【0010】
さらに、このような金属酸化物を正孔注入層として陽極に使用した場合、熱処理での金属酸化物層の膜厚制御は一般に難しいため、製造プロセスにおいて生じる電圧電流特性の変化に伴う電圧輝度特性や電流輝度特性等の素子特性のばらつきや、素子を高温条件下で使用する際の素子特性の経時変化などが問題になる。
【0011】
本発明は、上記の問題に鑑みてなされたものであり、その目的とするところは、製造プロセスにおいて生じる有機半導体素子特性のばらつきを低減し、かつ当該素子を高温条件下で使用する場合であっても素子特性に経時変化の少ない安定した有機半導体素子用陽極を提供するものである。
【0012】
【発明を解決する為の手段】
上記の目的を達成するために、本発明の有機半導体素子用陽極は、陽極と有機層と陰極とからなるトップエミッション型の有機半導体素子に使用される陽極であって、導電性電極層と酸化防止電極層と正孔注入金属酸化物層とがこの順で形成されてなることを特徴とするものである。
【0013】
また、前記酸化防止電極層が、導電体であることが好ましい。このように、金属酸化物層の酸化を防止するための酸化防止電極層が、導電性電極層を兼ねることで、陽極の層構成が簡易になり、製造プロセスを簡略化することができる。
【0014】
本発明の態様として、陽極は、前記導電性電極層、前記酸化防止電極層、および前記正孔注入金属酸化物電極層の各層が、1層または2層以上の層構造からなるものであることが好ましい。このように各電極層を多層化することにより、各層間の密着性向上が向上し、かつ膜応力が緩和される。
【0015】
また、本発明の有機半導体素子用陽極は、前記導電性電極層が前記酸化防止電極層および前期正孔注入金属酸化物電極層よりも導電率が高い物質からなるものであることが好ましい。導電性電極層の導電率を他の層よりも高くすることにより、電極の抵抗に関わる電力の回路損失を軽減することができる。
【0016】
さらに好ましくは、前記正孔注入金属酸化物層が、金属膜を、酸素原子を含むガス雰囲気下でプラズマ処理することにより形成されてなるものである。このように金属膜を直接プラズマ処理により酸化させることにより、酸化膜の形成工程と洗浄工程とを兼ねることになり製造プロセスの簡略化が可能となる。
【0017】
一方、正孔注入金属酸化物層が、金属膜を熱処理することにより形成されてなるものであっても良い。
【0018】
また、別の態様としての本発明の有機半導体素子は、上記の陽極を用いた有機半導体素子であって、前記電極上に有機層形成する際に、当該陽極の熱処理を行うことを特徴とするものである。また、別の態様としては、本発明の有機半導体素子は、陽極上に有機層および陰極を形成した後に、当該素子を高温熱処理して得られることを特徴とするものである。このように、形成された陽極上に有機層を設ける際、または有機層および陰極を設けた後に当該素子を熱処理することにより、有機半導体素子を高温下で使用する場合であっても正孔注入金属酸化物層の膜厚拡大を防止でき、素子特性のばらつきや高温下での経時変化の少ない安定した有機半導体素子用陽極を提供することができる。
【0019】
【発明の実施形態】
以下、本発明の有機半導体素子用陽極及びその製造方法を上面発光型有機EL素子に適用した例について詳細を説明をするが、他の有機半導体素子に適用できることは言うまでもない。
【0020】
本発明を適用した上面発光型有機EL素子の構成を図1に模式的に示す。基板上に陽極、発光層を含む有機層、透明もしくは半透明陰極の順に積層されており、特に陽極は基板側から導電性電極層、酸化防止電極層、正孔注入金属酸化物電極層がこの順で構成されており、正孔注入金属酸化物電極層と有機層とが接する構成で成り立っている。以下にこれら構成について説明する。
【0021】
<陽極>
1.正孔注入金属酸化物電極層
本発明を構成する正孔注入金属酸化物電極層について説明する。正孔注入金属酸化物電極層として好適な材料は、比較的良好な導電性を示す金属酸化物で、かつ有機層への正孔注入に好適な仕事関数が大きい金属酸化物材料が挙げられる。
【0022】
具体的には、酸化クロム、酸化モリブデン、酸化タングステン、酸化ニッケル、酸化ニオブ、酸化鉄、酸化イリジウム、酸化オスミウム、酸化プラセオジウム、酸化チタン等が挙げられる。また、それら材料の複数層の積層体であってもよい。
【0023】
正孔注入金属酸化物電極層の形成方法としては、スパッタリング法、真空加熱蒸着法、EB蒸着、イオンプレーティング、CVD法等で直接、金属酸化物を成膜してもよい。また、上記金属酸化物を構成する金属を前記スパッタリング法、真空加熱蒸着法、EB蒸着、イオンプレーティング、CVD法等で成膜しその後、酸素原子を含む雰囲気中で熱処理を行うか、または酸素原子を含むガス雰囲気下でプラズマ処理を行うことにより形成することもできる。特に、後者のプラズマ処理の場合、当該電極層の洗浄工程も兼ねることができるため、製造プロセスの簡略化を図ることができる。
【0024】
正孔注入金属酸化物電極層として、クロムをプラズマ処理することによりクロム酸化物を形成する場合には、プラズマガスとしてアルゴン(Ar)と酸素(O)とを用い、Ar:O=1:1の分圧としてプラズマガスとし、成膜雰囲気内のガス圧力を0.5Pa程度に保ち、RF出力を100Wに設定した酸素プラズマ処理を行うことにより、酸化クロムから成る耐腐食性の電荷注入促進層(正孔注入金属酸化物電極層)を形成することができる。膜厚は、酸素プラズマ下に曝した時間、または所定の金属層の膜厚を設けておくことにより制御することができる。
【0025】
なお、酸化クロムの組成は一種に限定されることはなく、酸素分圧、金属層の熱処理条件によってはCrO、Cr、Cr、およびCr12等が形成される。
【0026】
前記正孔注入金属酸化物層の膜厚は、2nm〜200nmであることが好ましく、さらに好ましくは5nmから50nmである。当該金属酸化物層の膜厚が200nmを超えると、正孔注入特性が悪化する。
【0027】
2.酸化防止電極層
本発明の陽極を構成する酸化防止電極層は、前記正孔注入金属酸化物電極層を酸化防止電極層上に成膜することにより膜厚の制御を簡単にする目的で設けられる。
【0028】
一般に金属酸化膜を熱処理またはプラズマ処理により形成した場合、当該金属酸化膜形成の膜質と膜厚との制御は難しいとされている。そこで、酸化防止電極上に所望の膜厚の金属層を成膜した後に、膜質および膜厚が飽和するまで熱処理またはプラズマ処理等することにより金属酸化膜を形成する方法が好ましく用いることができる。このように、膜厚等が飽和するまで、熱処理等を行うことにより、製造マージンも大きくなり、素子品質のばらつきを抑えることができる。
【0029】
また、当該酸化防止電極層を導電性電極と正孔注入金属酸化物電極との間に設けることにより、素子特性のばらつきを抑制することができる。すなわち、直接前記正孔注入金属酸化物電極を前記導伝性電極上に所望の膜厚になるように成膜した場合、洗浄工程や有機層形成工程や陰極形成工程等の製造工程における熱処理により、導伝性電極層を構成する金属によっては当該導伝性電極層の酸化が進行し素子特性のばらつきをもたらす。かかる熱処理による酸化は、熱処理やプラズマ処理で形成した前期正孔注入金属酸化物電極層についても同様である。上記のように酸化防止電極層を導電性電極と正孔注入金属酸化物電極との間に設けることにより熱処理時の導電性電極の酸化を防ぐことができる。
【0030】
さらに、酸化防止電極層設けることにより、有機半導体素子自体が高温下で保管されたり、または動作する際に、当該素子中の残留酸素や素子中の酸素原子の拡散による前記正孔注入金属酸化物電極の膜厚の変化を防ぐことができ、素子特性の経時変化を抑制することができる。
【0031】
このような酸化防止電極層として酸化され難い金属たとえば、金、白金、パラジウム等、窒化チタン、窒化クロム等の金属窒化物等が挙げられる。また、これら材料を複数層設けた積層体でも良い。好ましくは酸化防止層の膜厚は2nm以上で、成膜時のピンホール等を考慮するとさらに好ましくは10nm以上である。酸化防止層の非抵抗値が大きい場合は電力の回路損失等を考慮して、10nm程度の膜厚とすることが好ましい。
【0032】
3.導電性電極層
導電性電極層を形成する材料としては、導電性であれば特に限定はされない。一例として、Au、Ta、W、Pt、Ni、Pd、Cr、Cu、Mo、もしくはAl合金、Ni合金、およびCr合金等の組み合せ等、またはこれら金属材料の積層構造を挙げることができる。導電性電極層の成膜方法としては、スパッタリング法、真空加熱蒸着法、EB蒸着、イオンプレーティング等を挙げることができる。
【0033】
有機EL素子の場合、通常の無機半導体を用いた発光ダイオードと同様、電流駆動型素子である為、特に大面積化を考えたときに電極及び配線抵抗による電力の回路損失が大きな課題になっている。前記、導電性電極層に用いる窒化チタン、窒化クロム等の金属窒化物の抵抗率は一般に高く、導電性電極層の抵抗率が高いと発光エリアを大きく場合は発光強度の面内ムラ等の問題も懸念される。かかる理由から、上記材料からなる導電性電極層は、前記酸化防止電極層および前期正孔注入金属酸化物電極層よりも導電率が高い物質からなるものであることが好ましく、具体的には、固有抵抗率では1×10−2Ω・cm以下が好ましく、さらに好ましくは5×10−4Ω・cm以下である。電極抵抗による電力の回路損失を防ぐためには抵抗が低い(導電性が高い)方が好ましい。
【0034】
<有機層>
通常、有機層としては、有機発光層、正孔注入輸送層、電子注入層、電子輸送層等で構成される。このような本発明における有機層としては、発光層を少なくとも一層含むことが必須である。また、有機発光層と上記各層を組み合わせて、複数層からなる有機層とすることも可能である。
【0035】
また、本発明の陽極上に有機層を形成する方法としては、そのパターニングの必要性から、高精細なパターニングを可能とする方法であれば特に限定はされない。例えば、蒸着法、印刷法、インクジェット法等によりパターン状に有機層を形成する方法や、有機層を形成する材料を塗工液として塗布する方法、例えば、スピンコーティング法、キャスティング法、ディッピング法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法、自己組織化法(交互吸着法、自己組織化単分子膜法)等の塗布方法が挙げられる。この中でも特に、本発明においては、蒸着法、およびスピンコート法、インクジェット法を用いて有機層を形成することが好ましい。
【0036】
1.有機発光層
以下、有機発光層について説明する。有機EL素子において、発光層は必須の層であり、かつフルカラーおよびマルチカラーのディスプレイを製造する際には、パターニングを必要とする層である。このような発光層を形成する材料としては、通常、色素系、金属錯体系、または高分子系の発光材料を挙げることができる。以下、このような発光層を形成する材料として、発光材料について説明する。
【0037】
(1)色素系材料
色素系材料としては、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体、トリフェニルアミン誘導体、オキサジアゾ−ル誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、シロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、トリフマニルアミン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー等を挙げることができる。
【0038】
(2)金属錯体系材料
金属錯体系材料としては、アルミキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾール亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、ユーロピウム錯体、イリジウム金属錯体、プラチナ金属錯体等、中心金属に、Al、Zn、Be等または、Tb、Eu、Dy等の希土類金属を有し、配位子にオキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造等を有する金属錯体等を挙げることができる。
【0039】
(3)高分子系材料
高分子系の材料としては、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体等、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素体、金属錯体系発光材料を高分子化したもの等を挙げることができる。
【0040】
2.有機正孔注入輸送層、有機電子注入層、有機電子輸送層
有機正孔注入輸送層、有機電子注入層、および有機電子輸送層の各層は、電極から有機発光層への電荷の注入を安定させる事を目的で形成される。
【0041】
正孔注入輸送層は陽極から有機発光層への正孔の注入を促進または安定化させ、有機電子注入層および有機電子輸送層は、有機発光層への電子の注入を促進または安定化させる。
【0042】
(1)有機正孔注入輸送層
正孔注入輸送層としては、陽極から注入された正孔を発光層内へ輸送することが可能である層であれば特に限定されない。例えば、陽極から注入された正孔を安定に発光層内へ注入する機能を有する正孔注入層、および、陽極から注入された正孔を発光層内へ輸送する機能を有する正孔輸送層のいずれか一方からなる場合、またはそれらの組合せからなる場合や、これら両機能を有する層からなる場合であってもよい。
【0043】
さらに、正孔注入輸送層の膜厚としては、その機能が十分に発揮される膜厚であれば特に限定されないが、10nm〜300nmの範囲内、その中でも30nm〜100nmの範囲内であることが好ましい。
【0044】
このような正孔注入輸送層としては、陽極から注入された正孔を安定に発光層へ輸送する材料であれば特に限定はされない。具体的には、N−(1−ナフチル)−N−フェニルべジジン(α−NPD)、4,4,4−トリス(3−メチルフェニルフェニルアミノ)トリフェニルアミン(MTDATA)、さらに高分子量の材料としてはポリ3,4エチレンジオキシチオフェン(PEDOT)、ポリアニリン誘導体、ポリフェニレンビニレン誘導体等が挙げられる。
【0045】
(2)有機電子注入層
有機電子注入層としては、透明陰極および保護層から注入された電子を安定に発光層へ注入する機能を有する電子注入層、および、下記に記す電子を発光層へ輸送する機能を有する有機電子輸送層のいずれか一方からなる場合、またはそれらの組合せからなる場合や、これら両機能を有する単層からなる場合であってもよい。
【0046】
有機電子注入層として電子輸送性有機材料とアルカリ金属あるいはアルカリ土類金属との共蒸着層が挙げられる。好適な電子輸送材料としてはBCP(バソキュプロイン)あるいはBphen(バソフェナントロリン)とLi、Cs、Ba、Srなどの共蒸着層が挙げられる。共蒸着からなる電子注入層はモル比で有機材料:金属が1:1〜1:3、好ましくは1:1〜1:2程度である。これらの共蒸着層は電子移動度が大きく、かつ透光性が金属単体に比べ高いための膜厚は5nm〜200nm、好ましくは10nm〜80nm程度である。
【0047】
(3)有機電子輸送層
有機電子輸送層を形成する材料としては、上記電子注入層から注入された電子を発光層内へ輸送することが可能な材料であれば特に限定されない。具体的には、電子輸送性の有機材料として、Alq(アルミニウムキノリノール錯体)、BCP(バソキュプロン)あるいはBphen(バソフェナントロリン)を挙げることができる。
【0048】
<透明、半透明陰極>
透明または半透明陰極は、有機層界面で電子の注入を促進させる電子注入電極層と、有機層や電子注入電極層を透明電極層成膜時のダメージや酸化等から保護する保護電極層と、光取出しのための透明電極層とからなる。
【0049】
1.透明電極層
透明電極層は、有機EL層への電荷の注入を安定化させる材料であれば特に限定はなく、導電性を有する無機酸化物が好適に用いられる。このような導電性を有する無機材料としては、具体的には、In−Zn−O、In−Sn−O(ITO)、ZnO−Al、Zn−Sn−O、In−O、Sn−O、Zn−O、Cd−O、Cd−In−O、Cd−Sn−O、Mg−In−O、Ca−Ga−O系またはTiO、TiN、ZrN、HfN、LaB等を挙げることができる。その中でも、ITO、IZO、TiNを用いることが好ましい。ITO、IZOは、導電性および光の透過率が高く、抵抗率が低いことから、光の取り出し効率を向上させると共に、EL素子の駆動電圧を低電圧化することができるからである。また、TiNは導電性および光の透過率が高く、抵抗率が低いことから、光の取り出し効率を向上させると共に、スパッタリング成膜工程において酸素を導入する必要がなく、有機層、および電子注入層の酸化を防止することができるからである。
【0050】
透明電極層の光の透過率としては、可視領域380nm〜780nmの範囲内で、50%以上、特に80%以上であることが好ましい。上記範囲内の光の透過率を有する透明電極層であれば、当該透明、透明電極層側から良好に光を取り出すことができる。
【0051】
なお、本発明における透過率、反射率は、紫外可視分光光度計(株式会社島津製作所製、UV−2200A)を用い室温、大気中により測定された値を示すものである。
【0052】
さらに、透明電極層の膜厚としては、10nm〜500nmの範囲内、特に、50nm〜300nmの範囲内であることが好ましい。10nmよりも膜厚を薄くすると、導電性が不充分となり電極としての機能が発揮されない可能性がある。一方、500nmよりも膜厚を厚くすると、光透過率が低下するおそれがあり、さらにEL素子を多少変形させる際に可撓性が劣り、透明電極層内にクラックが生じやすくなる場合もあるからである。
【0053】
2.保護電極層
保護層は電荷輸送としての機能、ならびに、透明電極成膜工程における電子注入層および有機層を保護(スパッタリング、EB、イオンプレーティング等の成膜工程からの保護)する機能の両機能を有する。電子注入層上に透明電極をスパッタリングにより形成する際は、数百ボルトで高エネルギー量のArの衝撃を電子注入層および有機層が受けるため、有機発光層の構造が変化し電子注入において、有機発光層と透明電極との界面で無放射消光を引き起こし発光特性の低下を招く。また電子注入層が、アルカリ金属またはアルカリ土類金属から構成されている場合、その電子注入層が酸化され易く、またスパッタリングにおけるITO、IZO電極形成工程における酸素導入により金属が酸化し、電子注入機能を失う場合がある。
【0054】
保護層は導電体層としての機能に加えて、電子注入層および有機層を保護する目的で、電子注入層と透明電極との間に保護層を設けることにより、電子注入層および有機層のスパッタダメージが軽減され、有機EL素子の発光効率および耐久性を改善することができる。
【0055】
保護層の成膜方法としては真空蒸着、スパッタリング、EB等が挙げられる。好適な材料としては固有抵抗率が1×10−2Ω・cm以下であれば制限は無く、金属材料の場合は、アルミニウム(Al)、銀(Ag)、金(Au)、クロム(Cr)、もしくはマグネシウム(Mg)とAgとの合金、MgとAlとの合金、およびクロム、ニッケルを含む合金等を用いることができる。このような金属材料からなる保護層を形成した場合には、その膜厚は、5nm〜30nm、特に、8nm〜25nmの範囲内とすることが好ましい。これは、上面の透明電極から光を取り出す必要性から、保護層にも透光性が要求されるからである。
【0056】
一方、透光性を有する材料の場合は、TiN、ZrN、HfN、LaB等を挙げることができる。これは、電子注入層が、アルカリ金属またはアルカリ土類金属から構成されている場合、保護層の形成工程で酸素導入を行う必要がなく電子注入層の酸化を防止できるからである。その膜厚は10nm〜200nm、特に、20nm〜50nmの範囲内とすることが好ましい。
【0057】
3.電子注入電極層
電子注入電極層としては、透明陰極および保護層から注入された電子を安定に発光層へ注入する機能を有する電子注入層、もしくは電子を発光層へ輸送する機能を有する電子輸送層のいずれか一方からなるものであっても、またはそれらの組合せからなるものであってもよく、さらに、これら両機能を有する単層からなるものであってもよい。
【0058】
電子注入電極層は、有機層と保護電極層の間に配置される。本実施形態のように保護電極層としてAlやAuからなる導電材料を用いる場合、保護電極層の仕事関数が大きく、保護電極層と有機発光層との界面でのエネルギー障壁が高くなり、低電圧下では保護電極層から有機発光層へ直接電子を注入することが困難となる。そこで、保護電極層と有機発光層との間に電子注入電極層を設けて、当該電子注入層をアルカリ金属やアルカリ土類金属の酸化物、またはフッ化物(例えば、LiF、NaF、LiO、MgF、CaF、SrF、BaF)等の材料により形成することにより、低電圧での電子注入が容易となり耐久性に優れた有機EL素子となる。これは、保護層からの電荷注入が容易になることで駆動電圧が低下するためである。また、アルカリ土類金属のフッ化物が、アルカリ金属の化合物あるいはアルカリ土類金属の酸化物に比べて水との反応性が低く、電子注入電極層の成膜中あるいは成膜後における吸水が少ないためである。さらに、アルカリ土類金属のフッ化物は、アルカリ金属の化合物に比べて融点が高いため、耐熱安定性も改善されるためである。
【0059】
これらのアルカリ金属またはアルカリ土類金属の化合物は絶縁性であることから、膜厚としては0.2〜10nmの範囲が好ましい。
【0060】
また、上記電子注入層の他に、4.0eV以下の仕事関数を有する金属材料単体を、電子注入層として設けることにより電子の注入が容易となる。 具体的には、Ba、Ca、Li、Cs、Mg等が挙げられる。このような金属材料で構成される電子注入層を形成した場合には、その膜厚は、0.2nm〜50nm、特に、0.2nm〜20nmの範囲内とすることが好ましい。これは、上面の透明電極から光を取り出す必要性から、電子注入層にも透光性が要求されるからである。
【0061】
<基材>
以下、本発明の一態様である有機EL素子を作製する基材について説明する。
【0062】
基材として用いることが可能な材料としては、自己支持性を有する材料であれば特に限定されない。また、金属層の下に基材を設けることから、特に透明性を有していなくてもよい。例えば、石英やガラス、シリコンウェハ、TFT(薄膜トランジスタ)が形成されたガラス、高分子基材としては、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリフェニレンスルフィド(PPS)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルスルホン(PES)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)等を挙げることができる。この中でも、石英、ガラス、シリコンウェハ、またはスーパーエンジニアリングプラスチックであるポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルスルホン(PES)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)が好ましい。これらは200℃以上の耐熱性を有しており、アクティブ駆動表示装置のTFTの製造工程でのプロセスを考慮すると、製造段階での基材温度を高くすることができるからである。
【0063】
【実施例】
実施例1
図2に示すような構成の本発明の有機半導体用陽極を用いた上面発光型有機EL素子1を作製した。
【0064】
基材として、縦横25mm×25mmで厚みが0.7mmの無アルカリガラスNA35(NHテクノグラス社製)の透明ガラスを洗浄後、マグネトロンスパッタリング法にて膜厚170nmのクロムからなる導電性電極層を形成した。
【0065】
上記の導電性電極層上に窒化チタンをチタンターゲットおよびスパッタリングガスにArおよびNを用いてマグネトロンスパッタリング法にて膜厚20nmの酸化防止電極層を形成した。
【0066】
上記の酸化防止電極層上にクロムをマグネトロンスパッタリング法にて成膜し、膜厚10nmの正孔注入金属酸化物電極層を形成した。
【0067】
電極のパターンニングのため、2mm幅ライン×2本のパターン形成をフォトリソグラフィーとドライエッチングの手法で行った。
【0068】
このようにして電極を形成した後、基板洗浄を行い、最表面のクロムに酸化処理を行う為にプラズマ処理を行った。はじめにスパッタガスとしてArを用い、圧力1.0Pa、RF出力100Wにて自然酸化されている金属層表面の酸化層を除去した後、スパッタガスとしてArとOとを用い、ガス分圧Ar:O=1:1、圧力1.0Pa、RF出力100Wの条件で1分間プラズマ処理を行い、クロム層を酸化させて正孔注入金属酸化物電極層を形成し、本発明の有機半導体用陽極1を作製した。
【0069】
次に、得られた有機半導体用陽極1上に有機層を形成した。有機層は正孔注入層と有機発行層の2層構成とし、前記有機半導体用陽極上に正孔注入輸送層として、下記化学式(1)に示すポリエチレンジオキシチオフェン(PSSに分散させたもの):PEDOT(PSS)(バエルン社製、商品名 Baytron P CH8000)をスピンコートにより膜厚80nmで形成し、真空加熱乾燥させた。
【0070】
【化1】
Figure 2004171951
次に、酸素濃度が0.8ppm低酸素条件下で、かつ湿度が1ppm以下(露点−117℃)の低湿度条件下のグローブボックス中にて、上記の陽極上に有機発光層を設けた。発光層は、下記化学式(2)に示すポリ(ジオクチルジビニレンフルオレン−co−アントラセン)(PF)を厚み80nmに成膜し、真空加熱乾燥を行うことにより形成した。
【0071】
【化2】
Figure 2004171951
次に、上記の有機層上に透明陰極を形成した。透明陰極は電子注入電極層、保護電極層、透明電極層の3層構成とした。まず電子注入電極層としてCaを真空加熱蒸着により形成した。成膜条件は、真空度8×10−5Pa、成膜速度0.2Å/秒で3nmであった。その後、電子注入電極層上に、Auを真空蒸着法にて真空度8×10−5Pa、成膜速度0.1Å/秒の条件により、20nmの厚みの保護層を形成した。
【0072】
得られた保護層上に透明電極層としてIZOをスパッタリングにより形成した。対向ターゲット式マグネトロンスパッタ装置を用い、成膜条件としてスパッタガスがArとOとの混合ガス(体積比Ar:O=400:1)、RF出力100W、DC出力80W、成膜速度2Å/秒で5.5×10−2Paにより、膜厚150nmの透明電極層を形成した。陽極と交差する透明陰極を形成することで発光エリア2mm×2mmの有機EL素子1を作製した。
【0073】
得られた有機EL素子1からの発光を透明陰極側から観測した。当該素子の8V印加時の電流密度は、200mA/cmで、880cd/m、4.4cd/Aであった。
【0074】
比較例1
酸化防止電極層を設けたことによる、当該発光素子の特性への影響を調べるため、図3に示すように実施例1の陽極から酸化防止電極層(窒化チタン)を除いた上面発光型有機EL素子2を作製した。基材および各層は実施例1で用いたものと同様の材料で、同様の条件にて作製した。
得られた有機EL素子2からの発光を透明陰極側から観測した。当該素子の8V印加時の電流密度は、210mA/cmで、950cd/m、4.5cd/Aであった。
【0075】
このように、本発明の有機EL発光素子(実施例1)では、酸化防止電極層を陽極に形成した場合であっても、従来の有機EL素子(比較例1)と同等の発光特性を有するものであった。
【0076】
実施例2
本発明の有機半導体素子用陽極のプロセス安定性を見るために、図4に示すような素子3を作製し以下の実験を行った。
【0077】
実施例1と同様にして、陽極、有機層を作製し、陰極は電子注入層を形成せず、発光層上にAuを20nm真空蒸着法により成膜して、さらにAu上にAlを150nm真空蒸着法により成膜することにより、有機EL素子3を得た。但し、正孔注入金属酸化物電極層の形成時にクロムのプラズマ処理時間を変化させて素子を作製した。それらの素子に6Vの電圧を印加した時の電流密度を表1に示す。
【0078】
【表1】
Figure 2004171951
比較例2
次に図5に示すような素子4を作製し以下の実験を行った。実施例2と同様にして陽極、有機層を作製し、陰極は電子注入層を形成せず、発光層上にAuを20nm真空蒸着法により成膜して、さらにAu上にAlを150nm真空蒸着法により成膜することにより、有機EL素子4を得た。但し、正孔注入金属酸化物電極層の形成時にクロムのプラズマ処理時間を変化させて素子を作製した。それらの素子に6Vの電圧を印加した時の電流密度を表2に示す。
【0079】
【表2】
Figure 2004171951
実施例1では一定時間以上のプラズマ処理で電流密度が安定しているのに対し、比較例2ではある処理時間をピークに電流密度が悪化している。本発明の陽極を構成する酸化防止層が、製造プロセスによる素子特性のばらつき抑制に大きな効果があることがわかる。
【0080】
同様に熱処理による正孔注入金属酸化物電極層の製造プロセスによる素子特性のばらつきや、高温環境下での素子特性の経時変化を抑えるのに大きな効果が見いだされた。
【0081】
【発明の効果】
以上の説明は主に有機EL素子の陽極について行ったが、一般の有機半導体素子用陽極に適応できることは言うまでもない。したがって、本発明は有機半導体素子において、正孔注入金属酸化物電極層と導電性電極層との間に酸化防止電極層を設けることにより、製造プロセスでの素子特性ばらつきを低減でき、また当該素子を高温下で使用した場合であっても、素子特性の経時変化を抑制することができる。
【図面の簡単な説明】
【図1】本発明の一態様である、上面発光型有機EL素子の構成を示した模式図である。
【図2】実施例1の上面発光型有機EL素子1の構成を示した模式図である。
【図3】比較例1の上面発光型有機EL素子2の構成を示した模式図である。
【図4】実施例2の上面発光型有機EL素子3の構成を示した模式図である。
【図5】比較例2の上面発光型有機EL素子4の構成を示した模式図である。
【符号の説明】
1. 基板
2. 金属電極層
3. 酸化防止電極層
4. 正孔注入金属酸化物電極層
5. 正孔注入輸送層
6. 有機発光層
7. 有機電子輸送層または有機電子注入層
8. 電子注入電極層
9. 保護電極層
10. 透明電極層

Claims (8)

  1. 陽極と有機層と陰極とからなるトップエミッション型の有機半導体素子に使用される陽極であって、導電性電極層と酸化防止電極層と正孔注入金属酸化物層とがこの順で形成されてなることを特徴とする、有機半導体素子用陽極。
  2. 前記酸化防止電極層が、導電体である、請求項1に記載の陽極。
  3. 前記導電性電極層、前記酸化防止電極層、および前記正孔注入金属酸化物電極層の各層が、1層または2層以上の層構造からなる、請求項1または請求項2に記載の陽極。
  4. 前記導電性電極層が、前記酸化防止電極層および前期正孔注入金属酸化物電極層よりも導電率が高い物質からなる、請求項1〜3のいずれか1項に記載の陽極。
  5. 前記正孔注入金属酸化物層が、前記酸化防止電極層上に形成された金属膜を、酸素原子を含むガス雰囲気下でプラズマ処理することにより形成されてなる、請求項1〜4のいずれか1項に記載の陽極。
  6. 前記正孔注入金属酸化物層が、前記酸化防止電極層上に形成された金属膜を、熱処理することにより形成されてなる、請求項1〜4のいずれか1項に記載の陽極。
  7. 請求項1〜6のいずれか1項に記載の有機半導体素子用陽極を用いた素子であって、前記陽極上に前記有機層を設ける際に、熱処理して得られることを特徴とする、有機半導体素子。
  8. 請求項1〜6のいずれか1項に記載の有機半導体素子用陽極を用いた素子であって、前記陽極、前記有機層、および前記陰極を形成した後に、高温処理して得られることを特徴とする、有機半導体素子。
JP2002336928A 2002-11-20 2002-11-20 有機半導体素子用陽極 Expired - Fee Related JP4248853B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002336928A JP4248853B2 (ja) 2002-11-20 2002-11-20 有機半導体素子用陽極

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002336928A JP4248853B2 (ja) 2002-11-20 2002-11-20 有機半導体素子用陽極

Publications (2)

Publication Number Publication Date
JP2004171951A true JP2004171951A (ja) 2004-06-17
JP4248853B2 JP4248853B2 (ja) 2009-04-02

Family

ID=32700619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002336928A Expired - Fee Related JP4248853B2 (ja) 2002-11-20 2002-11-20 有機半導体素子用陽極

Country Status (1)

Country Link
JP (1) JP4248853B2 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071696A (ja) * 2003-08-21 2005-03-17 Sharp Corp 有機el素子
JP2006294261A (ja) * 2005-04-05 2006-10-26 Fuji Electric Holdings Co Ltd 有機el発光素子およびその製造方法
JP2006303463A (ja) * 2005-03-25 2006-11-02 Semiconductor Energy Lab Co Ltd 発光装置
JP2007025703A (ja) * 2005-07-20 2007-02-01 Samsung Electronics Co Ltd アレイ基板及びその製造方法並びに表示装置
WO2007032062A1 (ja) * 2005-09-14 2007-03-22 Tadahiro Ohmi 有機エレクトロルミネッセンス素子の製造方法
WO2009122876A1 (ja) * 2008-03-31 2009-10-08 住友化学株式会社 有機エレクトロルミネッセンス素子およびその製造方法
JP2009277788A (ja) * 2008-05-13 2009-11-26 Panasonic Corp 有機エレクトロルミネッセント素子およびその製造方法
JP2010161185A (ja) * 2009-01-08 2010-07-22 Ulvac Japan Ltd 有機el表示装置、有機el表示装置の製造方法
JP2011181508A (ja) * 2005-03-25 2011-09-15 Semiconductor Energy Lab Co Ltd 発光装置
US8174009B2 (en) 2008-10-24 2012-05-08 Panasonic Corporation Organic electroluminescence element and manufacturing method thereof
US8362473B2 (en) 2008-09-30 2013-01-29 Panasonic Corporation Organic EL device and method for manufacturing same
WO2013027735A1 (ja) * 2011-08-24 2013-02-28 株式会社日本触媒 有機電界発光素子
JP2013062498A (ja) * 2011-08-24 2013-04-04 Nippon Shokubai Co Ltd 有機電界発光素子
JP2013062478A (ja) * 2011-08-24 2013-04-04 Nippon Shokubai Co Ltd 有機電界発光素子
US8530922B2 (en) 2009-12-04 2013-09-10 Panasonic Corporation Organic EL device and method for manufacturing same
JP2018055936A (ja) * 2016-09-28 2018-04-05 株式会社Joled 有機el表示パネル、及び有機el表示パネルの製造方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071696A (ja) * 2003-08-21 2005-03-17 Sharp Corp 有機el素子
US9246056B2 (en) 2005-03-25 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2011181508A (ja) * 2005-03-25 2011-09-15 Semiconductor Energy Lab Co Ltd 発光装置
JP2015057792A (ja) * 2005-03-25 2015-03-26 株式会社半導体エネルギー研究所 発光装置
JP2013020986A (ja) * 2005-03-25 2013-01-31 Semiconductor Energy Lab Co Ltd 発光装置
JP2006303463A (ja) * 2005-03-25 2006-11-02 Semiconductor Energy Lab Co Ltd 発光装置
US8362688B2 (en) 2005-03-25 2013-01-29 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2006294261A (ja) * 2005-04-05 2006-10-26 Fuji Electric Holdings Co Ltd 有機el発光素子およびその製造方法
JP2007025703A (ja) * 2005-07-20 2007-02-01 Samsung Electronics Co Ltd アレイ基板及びその製造方法並びに表示装置
WO2007032062A1 (ja) * 2005-09-14 2007-03-22 Tadahiro Ohmi 有機エレクトロルミネッセンス素子の製造方法
EP2271182A1 (en) * 2008-03-31 2011-01-05 Sumitomo Chemical Company, Limited Organic electroluminescence element and method for manufacturing the same
EP2271182A4 (en) * 2008-03-31 2011-05-04 Sumitomo Chemical Co ORGANIC ELECTROLUMINESCENCE ELEMENT AND MANUFACTURING METHOD THEREOF
WO2009122876A1 (ja) * 2008-03-31 2009-10-08 住友化学株式会社 有機エレクトロルミネッセンス素子およびその製造方法
JP2009245787A (ja) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP2009277788A (ja) * 2008-05-13 2009-11-26 Panasonic Corp 有機エレクトロルミネッセント素子およびその製造方法
US8529308B2 (en) 2008-05-13 2013-09-10 Panasonic Corporation Organic electroluminescence element with enhanced electron blocking characteristics and manufacturing method thereof
US8362473B2 (en) 2008-09-30 2013-01-29 Panasonic Corporation Organic EL device and method for manufacturing same
US8174009B2 (en) 2008-10-24 2012-05-08 Panasonic Corporation Organic electroluminescence element and manufacturing method thereof
JP2010161185A (ja) * 2009-01-08 2010-07-22 Ulvac Japan Ltd 有機el表示装置、有機el表示装置の製造方法
US8530922B2 (en) 2009-12-04 2013-09-10 Panasonic Corporation Organic EL device and method for manufacturing same
JP2013062478A (ja) * 2011-08-24 2013-04-04 Nippon Shokubai Co Ltd 有機電界発光素子
JP2013062498A (ja) * 2011-08-24 2013-04-04 Nippon Shokubai Co Ltd 有機電界発光素子
WO2013027735A1 (ja) * 2011-08-24 2013-02-28 株式会社日本触媒 有機電界発光素子
JP2018055936A (ja) * 2016-09-28 2018-04-05 株式会社Joled 有機el表示パネル、及び有機el表示パネルの製造方法

Also Published As

Publication number Publication date
JP4248853B2 (ja) 2009-04-02

Similar Documents

Publication Publication Date Title
JP4736890B2 (ja) 有機エレクトロルミネッセンス素子
JP4689176B2 (ja) 有機エレクトロルミネッセンス素子
JP5333121B2 (ja) 有機エレクトロルミネッセンス素子、その製造方法及び発光表示装置
JP4852008B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP4248853B2 (ja) 有機半導体素子用陽極
JP4210093B2 (ja) 有機エレクトロルミネッセント画像表示装置
JP5017820B2 (ja) エレクトロルミネッセンス素子およびその製造方法
JP4515735B2 (ja) 表示素子およびその製造方法
US20050007016A1 (en) Organic electroluminescent element
JP4255250B2 (ja) エレクトロルミネッセント素子
JP4615083B2 (ja) 二重絶縁層を有する有機電界発光素子
JP2001093671A6 (ja) 二重絶縁層を有する有機電界発光素子
JP2005044799A (ja) 有機電界発光素子
JP2010055864A (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP2009246126A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP4907714B2 (ja) 有機エレクトロルミネッセンス素子
EP2273577A1 (en) Organic electroluminescence element, and method for production thereof
JP5499612B2 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
US7714505B2 (en) Electroluminescence element
JP6781606B2 (ja) 有機el素子の製造方法
JP6387602B2 (ja) 透明電極、透明電極の製造方法、透明電極を備えた有機エレクトロルミネッセンス素子
JP2005346925A (ja) 有機発光素子およびその製造方法
JP2005235564A (ja) 有機elデバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080523

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080722

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4248853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees